1
|
Huang X, Zhang Z, Wang Z, Luo T, Yang M, Guo X, Du X, Ma T, Zhang Y. Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis. J Neuroinflammation 2025; 22:17. [PMID: 39856699 PMCID: PMC11759451 DOI: 10.1186/s12974-025-03342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs). METHODS The transcriptome of sorted CD19+B cells obtained from MG patients in active and remission state was performed by RNA sequencing. The hallmark gene NF-kappaB-inducing kinase (NIK/MAP3K14) associated with NF-κB and TNF signaling was identified, and the expression levels of NIK in CD19+B cells, CD4+T cells and serum from new-onset MG patients and controls were validated by flow cytometry, qPCR and ELISA. In vitro and in vivo, the effects of NIK inhibitor (B022) on the function of CD19+B cells and CD4+T cells were detected under the MG PBMCs, sorted B cells and experimental autoimmune MG (EAMG) rat model, respectively. RESULTS The expression levels of NIK were upregulated in CD19+B cells, CD4+T cells and serum from new-onset MG patients. Notably, increased serum NIK levels were positively correlated with disease severity and decreased with disease remission. NIK inhibitor B022 significantly reduced B-cell activation, proliferation, ASCs differentiation and pathogenic function, as well as CD4+T cell activation and Th17 cells differentiation in vitro. Intraperitoneal injection of B022 ameliorated the severity of EAMG rats, and reduced proportion of pathogenic B and T cell subsets, antibody levels and postsynaptic membrane damage. CONCLUSIONS Targeting NIK with small molecule kinase inhibitors can effectively shape B cell homeostasis, and exhibit protective effects in the EAMG rat model, which may be an effective novel treatment strategy for MG.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Tiancheng Luo
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Mingjin Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xinyan Guo
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Tianyu Ma
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Fathi Kazerooni A, Kraya A, Rathi KS, Kim MC, Vossough A, Khalili N, Familiar AM, Gandhi D, Khalili N, Kesherwani V, Haldar D, Anderson H, Jin R, Mahtabfar A, Bagheri S, Guo Y, Li Q, Huang X, Zhu Y, Sickler A, Lueder MR, Phul S, Koptyra M, Storm PB, Ware JB, Song Y, Davatzikos C, Foster JB, Mueller S, Fisher MJ, Resnick AC, Nabavizadeh A. Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma. Nat Commun 2025; 16:340. [PMID: 39747214 PMCID: PMC11697432 DOI: 10.1038/s41467-024-55659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness and suitability for immunotherapy has the potential to improve clinical management and outcomes. Here, we present a radiogenomic analysis of pLGGs, integrating MRI and RNA sequencing data. We identify three immunologically distinct clusters, with one group characterized by increased immune activity and poorer prognosis, indicating potential benefit from immunotherapies. We develop a radiomic signature that predicts these immune profiles with over 80% accuracy. Furthermore, our clinicoradiomic model predicts progression-free survival and correlates with treatment response. We also identify genetic variants and transcriptomic pathways associated with progression risk, highlighting links to tumor growth and immune response. This radiogenomic study in pLGGs provides a framework for the identification of high-risk patients who may benefit from targeted therapies.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Adam Kraya
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariana M Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deep Gandhi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neda Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Varun Kesherwani
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hannah Anderson
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aria Mahtabfar
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sina Bagheri
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qi Li
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Sickler
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saksham Phul
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanquan Song
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Mueller
- Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Li M, Tang Z, Shu R, Wu H, Wang Y, Chen Z, Cheng Z, Yan X, Zhao N, Tang X, Zhang H, Sun L. Polymorphonuclear myeloid-derived suppressor cells play a proinflammatory role via TNF-α + B cells through BAFF/BTK/NF-κB signalling pathway in the pathogenesis of collagen-induced arthritis mice. Immunology 2023; 170:286-300. [PMID: 37337447 DOI: 10.1111/imm.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Although various studies have been performed on the function of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in RA, the results were conflicting. Here we were trying to clarify the role of PMN-MDSCs in the pathogenesis of RA and its specific mechanisms. We detected the frequencies and counts of PMN-MDSCs, TNF-α+ B cells and Ki67+ B cells in spleen and inflamed joints of collagen-induced arthritis (CIA) mice using flow cytometry. The pathological role of PMN-MDSCs was examined by anti-Ly6G neutralizing antibodies against PMN-MDSCs or adoptive transfer of PMN-MDSCs. And the modulation of PMN-MDSCs on B cells was conducted by coculture assays, RNA-Seq, RT-qPCR, and so on. The mechanism of BAFF regulating B cells was verified through western blot and flow cytometry. PMN-MDSCs accumulated in the spleen and joints of CIA mice. PMN-MDSCs depletion could alleviate the arthritis severity, which was accompanied by decreased TNF-α secretion and proliferation of B cells. And its adoptive transfer also facilitated disease progress. Furthermore, PMN-MDSCs from CIA mice had higher expression level of BAFF, which regulated TNF-α expression, proliferation and apoptosis of B cells in vitro. What's more, BAFF promoted phosphorylation of BTK/NF-κB signalling pathway. And Ibrutinib (BTK inhibitor) could reverse the effect of BAFF on TNF-α expression of B cells. Our study suggested that PMN-MDSCs enhanced disease severity of CIA and manipulated TNF-α expression, proliferation and apoptosis of B cells via BAFF, furthermore, BAFF promoted TNF-α expression through BTK/NF-κB signalling pathway, which demonstrated a novel pathogenesis of PMN-MDSCs in CIA.
Collapse
Affiliation(s)
- Mei Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhicheng Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruilu Shu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haolin Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyan Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixue Cheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyi Yan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Bilgic SN, Domaniku A, Toledo B, Agca S, Weber BZC, Arabaci DH, Ozornek Z, Lause P, Thissen JP, Loumaye A, Kir S. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia. Nature 2023; 617:827-834. [PMID: 37165186 DOI: 10.1038/s41586-023-06047-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.
Collapse
Affiliation(s)
- Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bahar Z C Weber
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Dilsad H Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Zeynep Ozornek
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Pascale Lause
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.
| |
Collapse
|
6
|
Keeney JN, Winters A, Sitcheran R, West AP. NF-κB-Inducing Kinase Governs the Mitochondrial Respiratory Capacity, Differentiation, and Inflammatory Status of Innate Immune Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1123-1133. [PMID: 36881877 PMCID: PMC10073338 DOI: 10.4049/jimmunol.2200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
NF-κB-inducing kinase (NIK), which is essential for the activation of the noncanonical NF-κB pathway, regulates diverse processes in immunity, development, and disease. Although recent studies have elucidated important functions of NIK in adaptive immune cells and cancer cell metabolism, the role of NIK in metabolic-driven inflammatory responses in innate immune cells remains unclear. In this study, we demonstrate that murine NIK-deficient bone marrow-derived macrophages exhibit defects in mitochondrial-dependent metabolism and oxidative phosphorylation, which impair the acquisition of a prorepair, anti-inflammatory phenotype. Subsequently, NIK-deficient mice exhibit skewing of myeloid cells characterized by aberrant eosinophil, monocyte, and macrophage cell populations in the blood, bone marrow, and adipose tissue. Furthermore, NIK-deficient blood monocytes display hyperresponsiveness to bacterial LPS and elevated TNF-α production ex vivo. These findings suggest that NIK governs metabolic rewiring, which is critical for balancing proinflammatory and anti-inflammatory myeloid immune cell function. Overall, our work highlights a previously unrecognized role for NIK as a molecular rheostat that fine-tunes immunometabolism in innate immunity, and suggests that metabolic dysfunction may be an important driver of inflammatory diseases caused by aberrant NIK expression or activity.
Collapse
Affiliation(s)
- Justin N. Keeney
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Ashley Winters
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
7
|
NF-κB-inducing kinase maintains mitochondrial efficiency and systemic metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166682. [PMID: 36878304 DOI: 10.1016/j.bbadis.2023.166682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
NF-κB-inducing kinase (NIK) is an essential upstream inducer of noncanonical NF-κB signaling and a critical regulator of immunity and inflammation. Our recent work has demonstrated that NIK regulates mitochondrial respiration and adaptive metabolic responses in cancer and innate immune cells. However, it is not clear whether NIK also has roles in regulating systemic metabolism. In this study, we demonstrate that NIK has local and systemic effects on developmental and metabolic processes. Our findings show that NIK-deficient mice exhibit reduced adiposity, as well as elevated energy expenditure both basally, and under the stress of a high-fat diet. Moreover, we identify NF-κB-independent and -dependent functions for NIK in white adipose tissue metabolism and development. Specifically, we found that in an NF-κB-independent manner NIK is required for maintaining mitochondrial fitness, as NIK-deficient adipocytes have impaired mitochondrial membrane potential and spare respiratory capacity. In addition to mitochondrial exhaustion, NIK-deficient adipocytes and ex vivo adipose tissue exhibit a compensatory upregulation of glycolysis to meet bioenergetic demands. Finally, while NIK regulation of mitochondrial metabolism in preadipocytes is NF-κB-independent, we demonstrate that NIK has a complementary role in adipocyte differentiation that requires activation of RelB and the noncanonical NF-κB pathway. Collectively, these data demonstrate that NIK has critical roles in local and systemic development and metabolism. Our findings establish NIK as an important regulator of organelle, cell, and systemic metabolic homeostasis, suggesting that metabolic dysfunction may be an important and unappreciated component of immune disorders and inflammatory diseases arising from NIK deficiency.
Collapse
|
8
|
Reus JB, Rex EA, Gammon DB. How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses. Pathogens 2022; 11:pathogens11091061. [PMID: 36145493 PMCID: PMC9502310 DOI: 10.3390/pathogens11091061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine–receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus–NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.
Collapse
|
9
|
Haselager MV, Eldering E. The Therapeutic Potential of Targeting NIK in B Cell Malignancies. Front Immunol 2022; 13:930986. [PMID: 35911754 PMCID: PMC9326486 DOI: 10.3389/fimmu.2022.930986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a key player in non-canonical NF-κB signaling, involved in several fundamental cellular processes, and is crucial for B cell function and development. In response to certain signals and ligands, such as CD40, BAFF and lymphotoxin-β activation, NIK protein stabilization and subsequent NF-κB activation is achieved. Overexpression or overactivation of NIK is associated with several malignancies, including activating mutations in multiple myeloma (MM) and gain-of-function in MALT lymphoma as a result of post-translational modifications. Consequently, drug discovery studies are devoted to pharmacologic modulation of NIK and development of specific novel small molecule inhibitors. However, disease-specific in vitro and in vivo studies investigating NIK inhibition are as of yet lacking, and clinical trials with NIK inhibitors remain to be initiated. In order to bridge the gap between bench and bedside, this review first briefly summarizes our current knowledge on NIK activation, functional activity and stability. Secondly, we compare current inhibitors targeting NIK based on efficacy and specificity, and provide a future perspective on the therapeutic potential of NIK inhibition in B cell malignancies.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- *Correspondence: Eric Eldering,
| |
Collapse
|
10
|
Manou-Stathopoulou S, Lewis MJ. Diversity of NF-κB signalling and inflammatory heterogeneity in Rheumatic Autoimmune Disease. Semin Immunol 2021; 58:101649. [PMID: 36064646 DOI: 10.1016/j.smim.2022.101649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic Autoimmune Rheumatic Diseases, including Rheumatoid Arthritis, Systemic Lupus Erythematosus and Sjogren's syndrome, are characterised by a loss of immune tolerance and chronic inflammation. There is marked heterogeneity in clinical and molecular phenotypes in each condition, and the aetiology of these is unclear. NF-κB is an inducible transcription factor that is critical in the physiological inflammatory response, and which has been implicated in chronic inflammation. Genome-wide association studies have linked risk alleles related to the NF-κB pathway to the pathogenesis of multiple Systemic Autoimmune Rheumatic Diseases. This review describes how cell- and pathway-specific NF-κB activation contribute to the spectrum of clinical phenotypes and molecular pathotypes in rheumatic disease. Potential clinical applications are explored, including therapeutic interventions and utilisation of NF-κB as a biomarker of disease subtypes and treatment response.
Collapse
Affiliation(s)
- Sotiria Manou-Stathopoulou
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
11
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Lymph node formation and B cell homeostasis require IKK-α in distinct endothelial cell-derived compartments. Proc Natl Acad Sci U S A 2021; 118:2100195118. [PMID: 34810256 DOI: 10.1073/pnas.2100195118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Global inactivation of IκB kinase (IKK)-α results in defective lymph node (LN) formation and B cell maturation, and loss of IKK-α-dependent noncanonical NF-κB signaling in stromal organizer and hematopoietic cells is thought to underlie these distinct defects. We previously demonstrated that this pathway is also activated in vascular endothelial cells (ECs). To determine the physiologic function of EC-intrinsic IKK-α, we crossed IkkαF/F mice with Tie2-cre or Cdh5-cre mice to ablate IKK-α in ECs. Notably, the compound defects of global IKK-α inactivation were recapitulated in IkkαTie2 and IkkαCdh5 mice, as both lacked all LNs and mature follicular and marginal zone B cell numbers were markedly reduced. However, as Tie2-cre and Cdh5-cre are expressed in all ECs, including blood forming hemogenic ECs, IKK-α was also absent in hematopoietic cells (HC). To determine if loss of HC-intrinsic IKK-α affected LN development, we generated IkkαVav mice lacking IKK-α in only the hematopoietic compartment. While mature B cell numbers were significantly reduced in IkkαVav mice, LN formation was intact. As lymphatic vessels also arise during development from blood ECs, we generated IkkαLyve1 mice lacking IKK-α in lymphatic ECs (LECs) to determine if IKK-α in lymphatic vessels impacts LN development. Strikingly, while mature B cell numbers were normal, LNs were completely absent in IkkαLyve1 mice. Thus, our findings reveal that IKK-α in distinct EC-derived compartments is uniquely required to promote B cell homeostasis and LN development, and we establish that LEC-intrinsic IKK-α is absolutely essential for LN formation.
Collapse
|
13
|
Haftmann C, Zwicky P, Ingelfinger F, Mair F, Floess S, Riedel R, Durek P, Spalinger MR, Friebel E, Leung BP, Lutz M, Puertas N, Amorim A, Schärli S, Becher B, Kisielow J, Waisman A, Mashreghi MF, Huehn J, Becher B. Protection against autoimmunity is driven by thymic epithelial cell-mediated regulation of T reg development. Sci Immunol 2021; 6:eabf3111. [PMID: 34797691 DOI: 10.1126/sciimmunol.abf3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB–inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell–dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.
Collapse
Affiliation(s)
- Claudia Haftmann
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Florian Mair
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Division of Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stefan Floess
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
| | - René Riedel
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Marianne R Spalinger
- Universitätsspital, Klinik für Gastroenterologie und Hepatologie, Zürich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Brian P Leung
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA, USA
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicole Puertas
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Amorim
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Stefanie Schärli
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Benedict Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
- Berlin Institute of Health (BIH), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Huehn
- Helmholtz Centre for Infection Research, Experimental Immunology, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021; 6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios Lougaris
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yousef Badran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Beano
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luisa Bercich
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Incardona
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Pediatric Radiology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Phammela Abarzua
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silvia Parolini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Tabellini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Maio
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg Hollander
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Paediatric Immunology, Department of Biomedicine, University of Basel, University Children's Hospital Basel, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandro Plebani
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Jie Z, Ko CJ, Wang H, Xie X, Li Y, Gu M, Zhu L, Yang JY, Gao T, Ru W, Tang SJ, Cheng X, Sun SC. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. SCIENCE ADVANCES 2021; 7:eabh0609. [PMID: 34516909 PMCID: PMC8442891 DOI: 10.1126/sciadv.abh0609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microglia have been implicated in neuroinflammatory diseases, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). We demonstrate that microglia mediate EAE disease progression via a mechanism relying on the noncanonical nuclear factor kB (NF-κB) pathway. Microglia-specific deletion of the noncanonical NF-κB-inducing kinase (NIK) impairs EAE disease progression. Although microglial NIK is dispensable for the initial phase of T cell infiltration into the central nervous system (CNS) and EAE disease onset, it is critical for the subsequent CNS recruitment of inflammatory T cells and monocytes. Our data suggest that following their initial CNS infiltration, T cells activate the microglial noncanonical NF-κB pathway, which synergizes with the T cell-derived cytokine granulocyte-macrophage colony-stimulating factor to induce expression of chemokines involved in the second-wave of T cell recruitment and disease progression. These findings highlight a mechanism of microglial function that is dependent on NIK signaling and required for EAE disease progression.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun-Jung Ko
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Hui Wang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoping Xie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Yanchuan Li
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Meidi Gu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Lele Zhu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Jin-Young Yang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Tianxiao Gao
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
16
|
Xie X, Zhu L, Jie Z, Li Y, Gu M, Zhou X, Wang H, Chang JH, Ko CJ, Cheng X, Sun SC. TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells. Cell Mol Immunol 2021; 18:2262-2274. [PMID: 33203937 PMCID: PMC8429472 DOI: 10.1038/s41423-020-00583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Generation and maintenance of antigen-specific effector and memory T cells are central events in immune responses against infections. We show that TNF receptor-associated factor 2 (TRAF2) maintains a survival signaling axis in effector and memory CD8 T cells required for immune responses against infections. This signaling axis involves activation of Tpl2 and its downstream kinase ERK by NF-κB-inducing kinase (NIK) and degradation of the proapoptotic factor Bim. NIK mediates Tpl2 activation by stimulating the phosphorylation and degradation of the Tpl2 inhibitor p105. Interestingly, while NIK is required for Tpl2-ERK signaling under normal conditions, uncontrolled NIK activation due to loss of its negative regulator, TRAF2, causes constitutive degradation of p105 and Tpl2, leading to severe defects in ERK activation and effector/memory CD8 T cell survival. Thus, TRAF2 controls a previously unappreciated signaling axis mediating effector/memory CD8 T cell survival and protective immunity.
Collapse
Affiliation(s)
- Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Schweighoffer E, Tybulewicz VL. BAFF signaling in health and disease. Curr Opin Immunol 2021; 71:124-131. [PMID: 34352467 DOI: 10.1016/j.coi.2021.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
BAFF is a critical cytokine supporting the survival of mature naïve B cells, acting through the BAFFR receptor. Recent studies show that BAFF and BAFFR are also required for the survival of memory B cells, autoimmune B cells as well as malignant chronic lymphocytic leukaemia (CLL) cells. BAFFR cooperates with other receptors, notably the B cell antigen receptor (BCR), a process which is critical for the expansion of autoimmune and CLL cells. This crosstalk may be mediated by TRAF3 which interacts with BAFFR and with CD79A, a signalling subunit of the BCR and the downstream SYK kinase, inhibiting its activity. BAFF binding to BAFFR leads to degradation of TRAF3 which may relieve inhibition of SYK activity transducing signals to pathways required for B cell survival. BAFFR activates both canonical and non-canonical NF-κB signalling and both pathways play important roles in the survival of B cells and CLL cells.
Collapse
Affiliation(s)
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK; Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
18
|
Gu M, Zhou X, Sohn JH, Zhu L, Jie Z, Yang JY, Zheng X, Xie X, Yang J, Shi Y, Brightbill HD, Kim JB, Wang J, Cheng X, Sun SC. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nat Immunol 2021; 22:193-204. [PMID: 33398181 PMCID: PMC7855506 DOI: 10.1038/s41590-020-00829-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/29/2020] [Indexed: 01/28/2023]
Abstract
Metabolic reprograming toward aerobic glycolysis is a pivotal mechanism shaping immune responses. Here we show that deficiency in NF-κB-inducing kinase (NIK) impairs glycolysis induction, rendering CD8+ effector T cells hypofunctional in the tumor microenvironment. Conversely, ectopic expression of NIK promotes CD8+ T cell metabolism and effector function, thereby profoundly enhancing antitumor immunity and improving the efficacy of T cell adoptive therapy. NIK regulates T cell metabolism via a NF-κB-independent mechanism that involves stabilization of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway. NIK prevents autophagic degradation of HK2 through controlling cellular reactive oxygen species levels, which in turn involves modulation of glucose-6-phosphate dehydrogenase (G6PD), an enzyme that mediates production of the antioxidant NADPH. We show that the G6PD-NADPH redox system is important for HK2 stability and metabolism in activated T cells. These findings establish NIK as a pivotal regulator of T cell metabolism and highlight a post-translational mechanism of metabolic regulation.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Tumor
- Colonic Neoplasms/enzymology
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Cytotoxicity, Immunologic
- Energy Metabolism
- Enzyme Stability
- Female
- Glucosephosphate Dehydrogenase/metabolism
- Glycolysis
- Hexokinase/genetics
- Hexokinase/metabolism
- Immunotherapy, Adoptive
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- Male
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Knockout
- NADP/metabolism
- Phenotype
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Tumor Microenvironment
- NF-kappaB-Inducing Kinase
- Mice
Collapse
Affiliation(s)
- Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Precision for Medicine, Houston, TX, USA
| | - Yaoyao Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans D Brightbill
- Department of Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
19
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
20
|
Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1874:188449. [PMID: 33058996 DOI: 10.1016/j.bbcan.2020.188449] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
The understanding of the impact of the non-canonical NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway in several human diseases including autoimmune, inflammatory and cancers has been on the rise. This pathway induces the expression of several important genes involved in diverse biological processes. Though progress has been made in understanding the activation, regulation and biological functions of the non-canonical NF-κB signaling mechanism, no specific drug has been approved to target NF-κB inducing kinase (NIK), the key signaling molecule in this pathway. The inhibition of NIK can serve as a potential therapeutic strategy for various ailments, especially for the treatment of different types of human cancers. There are other targetable downstream molecules in this pathway as well. This review highlights the possible role of the non-canonical NF-κB pathway in normal physiology as well as in different cancers and discusses about various pharmacological strategies to modulate the activation of this pathway.
Collapse
Affiliation(s)
- Dhakshayini Morgan
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida 201313, India
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore; Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Dr, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore.
| |
Collapse
|
21
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1194] [Impact Index Per Article: 238.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
22
|
Whillock AL, Mambetsariev N, Lin WW, Stunz LL, Bishop GA. TRAF3 regulates the oncogenic proteins Pim2 and c-Myc to restrain survival in normal and malignant B cells. Sci Rep 2019; 9:12884. [PMID: 31501481 PMCID: PMC6733949 DOI: 10.1038/s41598-019-49390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
TRAF3 is a versatile intracellular adapter protein with multiple context-specific roles. Uniquely in B cells, TRAF3 deficiency enhances survival and increases the risk of transformation, as loss of TRAF3 is observed in several types of B cell cancers. Here, we report a new mechanism for TRAF3 in the restraint of B cell survival. We found that TRAF3 deficiency was associated with induction of the pro-survival kinase Pim2 in mouse primary B cells and human malignant B cell lines. The increase in Pim2 was independent of NF-κB2 activation but was ameliorated with inhibition of STAT3 expression or function. TRAF3 deficiency also led to a Pim2-dependent increase in c-Myc protein levels and was associated with reduced c-Myc ubiquitination. TRAF3-deficient primary B cells were less sensitive to cell death induced by the Pim inhibitors SGI-1776 and TP-3654. Interestingly, human malignant B cell lines with low expression of TRAF3 were more sensitive to Pim inhibition-induced cell death. Combination treatment of TRAF3-deficient B cells and B cell tumor lines with c-Myc inhibitors enhanced their sensitivity to Pim inhibition, suggesting a possible therapeutic strategy. TRAF3 thus suppresses a Pim2-mediated B cell survival axis, which can be a potential target for treatment of B cell malignancies.
Collapse
Affiliation(s)
- Amy L Whillock
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Nurbek Mambetsariev
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Northwestern Memorial Hospital, Chicago, IL, USA
| | - Wai W Lin
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura L Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gail A Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA. .,Internal Medicine, University of Iowa, Iowa City, IA, USA. .,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA. .,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
23
|
Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, Lin D, Gu M, Zhou X, Li HS, Watowich SS, Jain A, Yun Jung S, Qin J, Cheng X, Sun SC. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29:474-485. [PMID: 31086255 DOI: 10.1038/s41422-019-0174-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1. Otub1 deficiency not only promotes signal-induced p100 processing and noncanonical NF-κB activation but also causes steady-state p100 degradation, leading to aberrant NF-κB activation in the canonical pathway. B-cell-conditional deletion of Otub1 results in B-cell hyperplasia, antibody hyper-production, and lupus-like autoimmunity. Otub1-deficient B cells display aberrantly activated phenotypes and overproduce the cytokine IL-6, contributing to autoimmunity induction. Thus, maintenance of p100 stability by Otub1 serves as an unusual mechanism of NF-κB regulation that prevents autoimmunity.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Valiño-Rivas L, Vaquero JJ, Sucunza D, Gutierrez S, Sanz AB, Fresno M, Ortiz A, Sanchez-Niño MD. NIK as a Druggable Mediator of Tissue Injury. Trends Mol Med 2019; 25:341-360. [PMID: 30926358 DOI: 10.1016/j.molmed.2019.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
NF-κB-inducing kinase (NIK, MAP3K14) is best known as the apical kinase that triggers non-canonical NF-κB activation and by its role in the immune system. Recent data indicate a role for NIK expressed by non-lymphoid cells in cancer, kidney disease, liver injury, glucose homeostasis, osteosarcopenia, vascular calcification, hematopoiesis, and endothelial function. The spectrum of NIK-associated disease now ranges from immunodeficiency (when NIK is defective) to autoimmunity, cancer, sterile inflammation, fibrosis, and metabolic disease when NIK is overactive. The development of novel small-molecule NIK inhibitors has paved the way to test NIK targeting to treat disease in vivo, and may eventually lead to NIK targeting in the clinic. In addition, NIK activators are being explored for specific conditions such as myeloid leukemia.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Juan José Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - Sara Gutierrez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas de la UAM, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain; These authors contributed equally.
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain; These authors contributed equally.
| |
Collapse
|
25
|
Ramakrishnan SK, Zhang H, Ma X, Jung I, Schwartz AJ, Triner D, Devenport SN, Das NK, Xue X, Zeng MY, Hu Y, Mortensen RM, Greenson JK, Cascalho M, Wobus CE, Colacino JA, Nunez G, Rui L, Shah YM. Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nat Commun 2019; 10:660. [PMID: 30737385 PMCID: PMC6368617 DOI: 10.1038/s41467-019-08581-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Microfold cells (M-cells) are specialized cells of the intestine that sample luminal microbiota and dietary antigens to educate the immune cells of the intestinal lymphoid follicles. The function of M-cells in systemic inflammatory responses are still unclear. Here we show that epithelial non-canonical NFkB signaling mediated by NFkB-inducing kinase (NIK) is highly active in intestinal lymphoid follicles, and is required for M-cell maintenance. Intestinal NIK signaling modulates M-cell differentiation and elicits both local and systemic IL-17A and IgA production. Importantly, intestinal NIK signaling is active in mouse models of colitis and patients with inflammatory bowel diseases; meanwhile, constitutive NIK signaling increases the susceptibility to inflammatory injury by inducing ectopic M-cell differentiation and a chronic increase of IL-17A. Our work thus defines an important function of non-canonical NFkB and M-cells in immune homeostasis, inflammation and polymicrobial sepsis.
Collapse
Affiliation(s)
| | - Huabing Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiaoya Ma
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Inkyung Jung
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Andrew J Schwartz
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Samantha N Devenport
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Nupur K Das
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Melody Y Zeng
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Richard M Mortensen
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marilia Cascalho
- Transplantation Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Yang J, Zhang S, Zhang L, Xie X, Wang H, Jie Z, Gu M, Yang JY, Cheng X, Sun SC. Lymphatic endothelial cells regulate B-cell homing to lymph nodes via a NIK-dependent mechanism. Cell Mol Immunol 2019; 16:165-177. [PMID: 29503445 PMCID: PMC6355805 DOI: 10.1038/cmi.2017.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 01/19/2023] Open
Abstract
B cells home to the lymph nodes (LNs) via high endothelial venules (HEVs) under the guidance of chemokines, particularly CXCL13. However, as CXCL13 is not directly made in HEVs, the molecular mechanism mediating B-cell homing to LNs has remained unclear. We show here that nuclear factor (NF)-κB-inducing kinase (NIK), a kinase mediating activation of the noncanonical NF-κB pathway, functions in lymphatic endothelial cells (LECs) to regulate B-cell homing to LNs. LEC-conditional deletion of NIK in mice did not affect the integrity or global function of lymphatic vessels but caused a severe reduction in the frequency of B cells in LNs. The LEC-specific NIK deficiency did not affect the survival of B cells or the frequency of B cells in the spleen. B-cell adoptive transfer studies revealed that the LEC-specific NIK deletion impairs the ability of LNs to recruit B cells. We further show that NIK mediates expression of the chemokines CXCL13 and CCL19 in LECs. Although CCL19 is also expressed in blood endothelial cells (BECs), CXCL13 is not produced in BECs. These results suggest that NIK regulates naive B-cell homing to LNs via mediating production of the B-cell homing chemokine CXCL13 in LECs.
Collapse
Affiliation(s)
- Jie Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Siya Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.
- The University of Texas Graduate School of Biomedical Sciences, 77030, Houston, TX, USA.
| |
Collapse
|
27
|
Aird A, Lagos M, Vargas-Hernández A, Posey JE, Coban-Akdemir Z, Jhangiani S, Mace EM, Reyes A, King A, Cavagnaro F, Forbes LR, Chinn IK, Lupski JR, Orange JS, Poli MC. Novel Heterozygous Mutation in NFKB2 Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome. Front Pediatr 2019; 7:303. [PMID: 31417880 PMCID: PMC6682634 DOI: 10.3389/fped.2019.00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor kappa-B subunit 2 (NF-κB2/p100/p52), encoded by NFKB2 (MIM: 164012) belongs to the NF-κB family of transcription factors that play a critical role in inflammation, immunity, cell proliferation, differentiation and survival. Heterozygous C-terminal mutations in NFKB2 have been associated with early-onset common variable immunodeficiency (CVID), central adrenal insufficiency and ectodermal dysplasia. Only two previously reported cases have documented decreased natural killer (NK) cell cytotoxicity, and little is known about the role of NF-κB2 in NK cell maturation and function. Here we report a 13-year-old female that presented at 6 years of age with a history of early onset recurrent sinopulmonary infections, progressive hair loss, and hypogamaglobulinemia consistent with a clinical diagnosis of CVID. At 9 years of age she had cytomegalovirus (CMV) pneumonia that responded to ganciclovir treatment. Functional NK cell testing demonstrated decreased NK cell cytotoxicity despite normal NK cell numbers, consistent with a greater susceptibility to systemic CMV infection. Research exome sequencing (ES) was performed and revealed a novel de novo heterozygous nonsense mutation in NFKB2 (c.2611C>T, p.Gln871*) that was not carried by either of her parents. The variant was Sanger sequenced and confirmed to be de novo in the patient. At age 12, she presented with a reactivation of the systemic CMV infection that was associated with severe and progressive nephrotic syndrome with histologic evidence of pedicellar effacement and negative immunofluorescence. To our knowledge, this is the third NF-κB2 deficient patient in which an abnormal NK cell function has been observed, suggesting a role for non-canonical NF-κB2 signaling in NK cell cytotoxicity. NK cell function should be assessed in patients with mutations in the non-canonical NF-κB pathway to explore the risk for systemic viral infections that may lead to severe complications and impact patient survival. Similarly NF-κB2 should be considered in patients with combined immunodeficiency who have aberrant NK cell function. Further studies are needed to characterize the role of NF-κB2 in NK cell cytotoxic function.
Collapse
Affiliation(s)
- Alejandra Aird
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Macarena Lagos
- Clínica Las Condes, Santiago, Chile.,Hospital Padre Hurtado, Santiago, Chile
| | - Alexander Vargas-Hernández
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Shalini Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Emily M Mace
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, NY, United States
| | - Anaid Reyes
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Alejandra King
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Felipe Cavagnaro
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Lisa R Forbes
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Ivan K Chinn
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - James R Lupski
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, NY, United States
| | - Maria Cecilia Poli
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Center for Human Immunobiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
28
|
Jie Z, Yang JY, Gu M, Wang H, Xie X, Li Y, Liu T, Zhu L, Shi J, Zhang L, Zhou X, Joo D, Brightbill HD, Cong Y, Lin D, Cheng X, Sun SC. NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nat Immunol 2018; 19:1224-1235. [PMID: 30250187 PMCID: PMC6195481 DOI: 10.1038/s41590-018-0206-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play an integral role in regulating mucosal immunity and homeostasis, but the signaling network mediating this function of DCs is poorly defined. We identified the noncanonical NF-κB-inducing kinase (NIK) as a crucial mediator of mucosal DC function. DC-specific NIK deletion impaired intestinal immunoglobulin A (IgA) secretion and microbiota homeostasis, rendering mice sensitive to an intestinal pathogen, Citrobacter rodentium. DC-specific NIK was required for expression of the IgA transporter polymeric immunoglobulin receptor (pIgR) in intestinal epithelial cells, which in turn relied on the cytokine IL-17 produced by TH17 cells and innate lymphoid cells (ILCs). NIK-activated noncanonical NF-κB induced expression of IL-23 in DCs, contributing to the maintenance of TH17 cells and type 3 ILCs. Consistent with the dual functions of IL-23 and IL-17 in mucosal immunity and inflammation, NIK deficiency also ameliorated colitis induction. Thus, our data suggest a pivotal role for the NIK signaling axis in regulating DC functions in intestinal immunity and homeostasis.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghyun Joo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans D Brightbill
- Department of Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Yingzi Cong
- Department of Pathology and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
29
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
30
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
31
|
Brightbill HD, Suto E, Blaquiere N, Ramamoorthi N, Sujatha-Bhaskar S, Gogol EB, Castanedo GM, Jackson BT, Kwon YC, Haller S, Lesch J, Bents K, Everett C, Kohli PB, Linge S, Christian L, Barrett K, Jaochico A, Berezhkovskiy LM, Fan PW, Modrusan Z, Veliz K, Townsend MJ, DeVoss J, Johnson AR, Godemann R, Lee WP, Austin CD, McKenzie BS, Hackney JA, Crawford JJ, Staben ST, Alaoui Ismaili MH, Wu LC, Ghilardi N. NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus. Nat Commun 2018; 9:179. [PMID: 29330524 PMCID: PMC5766581 DOI: 10.1038/s41467-017-02672-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
NF-κB-inducing kinase (NIK) mediates non-canonical NF-κB signaling downstream of multiple TNF family members, including BAFF, TWEAK, CD40, and OX40, which are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Here, we show that experimental lupus in NZB/W F1 mice can be treated with a highly selective and potent NIK small molecule inhibitor. Both in vitro as well as in vivo, NIK inhibition recapitulates the pharmacological effects of BAFF blockade, which is clinically efficacious in SLE. Furthermore, NIK inhibition also affects T cell parameters in the spleen and proinflammatory gene expression in the kidney, which may be attributable to inhibition of OX40 and TWEAK signaling, respectively. As a consequence, NIK inhibition results in improved survival, reduced renal pathology, and lower proteinuria scores. Collectively, our data suggest that NIK inhibition is a potential therapeutic approach for SLE.
Collapse
Affiliation(s)
- Hans D Brightbill
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Eric Suto
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Nicole Blaquiere
- Department of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Nandhini Ramamoorthi
- Department of Biomarker Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Swathi Sujatha-Bhaskar
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Emily B Gogol
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Georgette M Castanedo
- Department of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Benjamin T Jackson
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Youngsu C Kwon
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Susan Haller
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Justin Lesch
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Karin Bents
- Evotec, Inc., Essener Bogen 7, Hamburg, 22419, Germany
| | - Christine Everett
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Pawan Bir Kohli
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Sandra Linge
- Evotec, Inc., Essener Bogen 7, Hamburg, 22419, Germany
| | - Laura Christian
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Leonid M Berezhkovskiy
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Peter W Fan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Kelli Veliz
- Department of Laboratory Animal Resources, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Michael J Townsend
- Department of Biomarker Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Jason DeVoss
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Adam R Johnson
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | | | - Wyne P Lee
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Brent S McKenzie
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - James J Crawford
- Department of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Steven T Staben
- Department of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Moulay H Alaoui Ismaili
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Lawren C Wu
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA
| | - Nico Ghilardi
- Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA.
| |
Collapse
|
32
|
Schweighoffer E, Tybulewicz VL. Signalling for B cell survival. Curr Opin Cell Biol 2017; 51:8-14. [PMID: 29149682 DOI: 10.1016/j.ceb.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
The number of mature B cells is carefully controlled by signalling from receptors that support B cell survival. The best studied of these are the B cell antigen receptor (BCR) and BAFFR. Recent work has shown that signalling from these receptors is closely linked, involves the CD19 co-receptor, and leads to activation of canonical and non-canonical NF-κB pathways, ERK1, ERK2 and ERK5 MAP kinases, and PI-3 kinases. Importantly, studies show that investigation of the importance of signalling molecules in cell survival requires the use of inducible gene deletions within mature B cells. This overcomes the limitations of many earlier studies using constitutive gene deletions which were unable to distinguish between requirements for a protein in development versus survival.
Collapse
Affiliation(s)
| | - Victor Lj Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK; Imperial College, London W12 0NN, UK.
| |
Collapse
|
33
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
34
|
McAllister EJ, Apgar JR, Leung CR, Rickert RC, Jellusova J. New Methods To Analyze B Cell Immune Responses to Thymus-Dependent Antigen Sheep Red Blood Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2998-3003. [PMID: 28916524 DOI: 10.4049/jimmunol.1700454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/14/2017] [Indexed: 01/22/2023]
Abstract
B cells contribute critically to an effective immune response by producing Ag-specific Abs. During the immune response to so-called "thymus-dependent Ags," activated B cells seek T cell help and form germinal centers. In contrast, thymus-independent Ags generally do not induce germinal center formation. In the germinal center, B cells undergo somatic hypermutation, affinity-based clonal expansion, and differentiation to produce plasma cells and memory B cells. Valuable insight into these processes has been gained by using model hapten-carrier complexes or SRBCs. SRBCs induce robust germinal center formation in mice. Therefore, this Ag is commonly used to study germinal center responses. In contrast to haptenated Ags, thus far it has been difficult to measure the titer of Ag-specific Abs or the expansion of Ag-specific B cells after immunization with SRBCs. We have developed new, simple methods to access these parameters, thus providing new tools to study germinal center and Ab responses.
Collapse
Affiliation(s)
- Ellen J McAllister
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Baden-Württemberg 79104, Germany.,Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Baden-Württemberg 79104, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg 79108, Germany; and
| | - John R Apgar
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Charlotte R Leung
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Robert C Rickert
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg 79108, Germany; and
| | - Julia Jellusova
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Freiburg, Baden-Württemberg 79104, Germany; .,Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Baden-Württemberg 79104, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg 79108, Germany; and
| |
Collapse
|
35
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Heath Graduate School of Biomedical Sciences, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Xiu Y, Xue WY, Lambertz A, Leidinger M, Gibson-Corley K, Zhao C. Constitutive Activation of NIK Impairs the Self-Renewal of Hematopoietic Stem/Progenitor Cells and Induces Bone Marrow Failure. Stem Cells 2017; 35:777-786. [PMID: 27733012 PMCID: PMC5817891 DOI: 10.1002/stem.2523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
Previously we have shown that loss of non-canonical NF-κB signaling impairs self-renewal of hematopoietic stem/progenitor cells (HSPCs). This prompted us to investigate whether persistent activation of the non-canonical NF-κB signaling will have supportive effects on HSPC self-renewal. NF-κB-inducing kinase (NIK) is an important kinase that mainly activates the non-canonical pathway through directly phosphorylating IKKα. In contrast to our expectations, constitutive activation of NIK in the hematopoietic system leads to bone marrow (BM) failure and postnatal lethality due to intrinsic impairment of HSPC self-renewal and extrinsic disruption of BM microenvironment through enhancing osteoclastogenesis. The impaired HSPC function is associated with reduced cell proliferation and increased apoptosis and inflammatory cytokine responses. RNAseq analysis of control and NIK-activated HSPCs reveals that these effects are through non-canonical NF-κB signaling without significant changes in the canonical pathway. Gene set expression analysis of RNAseq data reveals globally decreased stem cell signature, increased maturation signature, and increased inflammatory responses. Many genes (Mpl, Tifab, Emcn, Flt3, Bcl2, and others) that regulate HSPC self-renewal, lineage commitment, and apoptosis are significantly downregulated-and those genes that regulate inflammatory responses and cell cycle inhibition (Cdkn2a and Cdkn2b) are significantly upregulated-by activation of NIK. Importantly, our data demonstrate that activation of NIK-non-canonical signaling has distinct phenotypes-smaller spleen size, decreased white blood cell counts, and reduced HSPC proliferation-compared to activation of canonical signaling. Collectively, these data indicate that the balanced non-canonical NF-κB signaling is essential for maintaining normal hematopoiesis and NIK-non-canonical signaling contributes to the development of BM failure. Stem Cells 2017;35:777-786.
Collapse
Affiliation(s)
- Yan Xiu
- Department of Pathology Carver College of Medicine, University of Iowa, IA 52242
| | | | - Allyn Lambertz
- Department of Pathology Carver College of Medicine, University of Iowa, IA 52242
| | - Mariah Leidinger
- Department of Pathology Carver College of Medicine, University of Iowa, IA 52242
| | | | - Chen Zhao
- Department of Pathology Carver College of Medicine, University of Iowa, IA 52242
| |
Collapse
|
37
|
30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 2017; 168:37-57. [PMID: 28086098 DOI: 10.1016/j.cell.2016.12.012] [Citation(s) in RCA: 1458] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
NF-κB was discovered 30 years ago as a rapidly inducible transcription factor. Since that time, it has been found to have a broad role in gene induction in diverse cellular responses, particularly throughout the immune system. Here, we summarize elaborate regulatory pathways involving this transcription factor and use recent discoveries in human genetic diseases to place specific proteins within their relevant medical and biological contexts.
Collapse
|
38
|
Mambetsariev N, Lin WW, Wallis AM, Stunz LL, Bishop GA. TRAF3 deficiency promotes metabolic reprogramming in B cells. Sci Rep 2016; 6:35349. [PMID: 27752131 PMCID: PMC5082756 DOI: 10.1038/srep35349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) is a critical regulator of B lymphocyte survival. B cell-specific TRAF3 deficiency results in enhanced viability and is associated with development of lymphoma and multiple myeloma. We show that TRAF3 deficiency led to induction of two proteins important for glucose metabolism, Glut1 and Hexokinase 2 (HXK2). This was associated with increased glucose uptake. In the absence of TRAF3, anaerobic glycolysis and oxidative phosphorylation were increased in B cells without changes in mitochondrial mass or reactive oxygen species. Chemical inhibition of glucose metabolism or glucose deprivation substantially attenuated the enhanced survival of TRAF3-deficient B cells, with a decrease in the pro-survival protein Mcl-1. Changes in Glut1 and Mcl-1 levels, glucose uptake and B cell number in the absence of TRAF3 were all dependent upon NF-κB inducing kinase (NIK). These results indicate that TRAF3 deficiency suffices to metabolically reprogram B cells, a finding that improves our understanding of the role of TRAF3 as a tumor suppressor, and suggests potential therapeutic strategies.
Collapse
Affiliation(s)
- Nurbek Mambetsariev
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Medical Scientist Training Program, The University of Iowa, Carver College of Medicine, 2206 MERF, Iowa City, IA 52242-2600, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Wai W. Lin
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Alicia M. Wallis
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Laura L. Stunz
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Medical Scientist Training Program, The University of Iowa, Carver College of Medicine, 2206 MERF, Iowa City, IA 52242-2600, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
- University of Iowa and DVA Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
- Internal Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| |
Collapse
|
39
|
Metzler G, Kolhatkar NS, Rawlings DJ. BCR and co-receptor crosstalk facilitate the positive selection of self-reactive transitional B cells. Curr Opin Immunol 2016; 37:46-53. [PMID: 26605835 DOI: 10.1016/j.coi.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
The establishment of a diverse B cell repertoire requires fine-tuning of antigen receptor selection during development in order to permit sufficient diversity while reducing the potential for autoimmunity. In this review, we highlight recent studies demonstrating the central role of the B cell antigen receptor (BCR), in coordination with other key pro-survival signals mediated by CD40, BAFF-R, TACI and/or TLRs, in regulating both negative and positive selection of autoreactive B cells. In particular, we show how altered antigen or co-stimulatory signaling can facilitate positive selection of transitional B cells with self-reactive BCRs, ultimately leading to their entry into the mature, naive B cell compartment. We propose a model wherein altered receptor signals (due to inherited genetic changes) leads: first, to enhanced positive selection of autoreactive cells into the naïve B cell repertoire; subsequently, to an increased probability of pathogenic germinal center responses in individuals with a broad range of autoimmune disorders.
Collapse
Affiliation(s)
- Genita Metzler
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Nikita S Kolhatkar
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States; Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States.
| |
Collapse
|
40
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
41
|
Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development. Proc Natl Acad Sci U S A 2016; 113:9063-8. [PMID: 27457956 DOI: 10.1073/pnas.1602728113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NF-κB signaling cascade relays external signals essential for B-cell growth and survival. This cascade is frequently hijacked by cancers that arise from the malignant transformation of germinal center (GC) B cells, underscoring the importance of deciphering the function of NF-κB in these cells. The NF-κB signaling cascade is comprised of two branches, the canonical and alternative NF-κB pathways, mediated by distinct transcription factors. The expression and function of the transcription factors of the alternative pathway, RELB and NF-κB2, in late B-cell development is incompletely understood. Using conditional deletion of relb and nfkb2 in GC B cells, we here report that ablation of both RELB and NF-κB2, but not of the single transcription factors, resulted in the collapse of established GCs. RELB/NF-κB2 deficiency in GC B cells was associated with impaired cell-cycle entry and reduced expression of the cell-surface receptor inducible T-cell costimulator ligand that promotes optimal interactions between B and T cells. Analysis of human tonsillar tissue revealed that plasma cells and their precursors in the GC expressed high levels of NF-κB2 relative to surrounding lymphocytes. Accordingly, deletion of nfkb2 in murine GC B cells resulted in a dramatic reduction of antigen-specific antibody-secreting cells, whereas deletion of relb had no effect. These results demonstrate that the transcription factors of the alternative NF-κB pathway control distinct stages of late B-cell development, which may have implications for B-cell malignancies that aberrantly activate this pathway.
Collapse
|
42
|
Poburski D, Boerner JB, Koenig M, Ristow M, Thierbach R. Time-resolved functional analysis of acute impairment of frataxin expression in an inducible cell model of Friedreich ataxia. Biol Open 2016; 5:654-61. [PMID: 27106929 PMCID: PMC4874353 DOI: 10.1242/bio.017004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Friedreich ataxia is a neurodegenerative disease caused by a GAA triplet repeat expansion in the first intron of the frataxin gene, which results in reduced expression levels of the corresponding protein. Despite numerous animal and cellular models, therapeutic options that mechanistically address impaired frataxin expression are lacking. Here, we have developed a new mammalian cell model employing the Cre/loxP recombination system to induce a homozygous or heterozygous frataxin knockout in mouse embryonic fibroblasts. Induction of Cre-mediated disruption by tamoxifen was successfully tested on RNA and protein levels. After loss of frataxin protein, cell division, aconitase activity and oxygen consumption rates were found to be decreased, while ROS production was increased in the homozygous state. By contrast, in the heterozygous state no such changes were observed. A time-resolved analysis revealed the loss of aconitase activity as an initial event after induction of complete frataxin deficiency, followed by secondarily elevated ROS production and a late increase in iron content. Initial impairments of oxygen consumption and ATP production were found to be compensated in the late state and seemed to play a minor role in Friedreich ataxia pathophysiology. In conclusion and as predicted from its proposed role in iron sulfur cluster (ISC) biosynthesis, disruption of frataxin primarily causes impaired function of ISC-containing enzymes, whereas other consequences, including elevated ROS production and iron accumulation, appear secondary. These parameters and the robustness of the newly established system may additionally be used for a time-resolved study of pharmacological candidates in a HTS manner. Summary: The use of a new mammalian cell model with inducible homozygous and heterozygous frataxin knockout allows new insights into the chronology and causes of the disease Friedreich ataxia.
Collapse
Affiliation(s)
- Dörte Poburski
- Institute of Nutrition, Friedrich Schiller University (FSU) Jena, Dornburgerstraße 24, Jena D-07743, Germany
| | - Josefine Barbara Boerner
- Institute of Nutrition, Friedrich Schiller University (FSU) Jena, Dornburgerstraße 24, Jena D-07743, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, Montpellier F-34093, France
| | - Michael Ristow
- Institute of Nutrition, Friedrich Schiller University (FSU) Jena, Dornburgerstraße 24, Jena D-07743, Germany
| | - René Thierbach
- Institute of Nutrition, Friedrich Schiller University (FSU) Jena, Dornburgerstraße 24, Jena D-07743, Germany
| |
Collapse
|
43
|
Hahn M, Macht A, Waisman A, Hövelmeyer N. NF-κB-inducing kinase is essential for B-cell maintenance in mice. Eur J Immunol 2016; 46:732-41. [PMID: 26593098 DOI: 10.1002/eji.201546081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/27/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
NF-κB-inducing kinase (NIK) is a key mediator of the noncanonical NF-κB signaling pathway, which is critical for normal B-cell development and function. It is well established that the complete deletion of NIK in mice results in defective B cells and impaired secondary lymphoid organogenesis. To address the role of NIK deficiency specifically in B cells, we generated a new mouse strain for the conditional deletion of this kinase. Deletion of NIK during B-cell development results in a drastic reduction of mature B cells from the transitional 2 stage on, while B-1 B cells are less affected. Moreover, deletion of NIK in the germinal centers decreases the numbers of germinal center B cells and impairs the ability of NIK-deficient B cells to develop into class-switched cells in vivo. This new mouse strain will be helpful for studying the role of NIK in different cell types of the body.
Collapse
Affiliation(s)
- Matthias Hahn
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anna Macht
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
44
|
Li Y, Wang H, Zhou X, Xie X, Chen X, Jie Z, Zou Q, Hu H, Zhu L, Cheng X, Brightbill HD, Wu LC, Wang L, Sun SC. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses. Sci Rep 2016; 6:22115. [PMID: 26912039 PMCID: PMC4766435 DOI: 10.1038/srep22115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 02/05/2023] Open
Abstract
NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses.
Collapse
Affiliation(s)
- Yanchuan Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xiang Chen
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Qiang Zou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hongbo Hu
- State Key Laboratory of Biotherapy, West China Hospital, Si-Chuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
| | - Hans D Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C. Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Linfang Wang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
45
|
De Silva NS, Silva K, Anderson MM, Bhagat G, Klein U. Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2591-601. [PMID: 26851215 DOI: 10.4049/jimmunol.1501120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
BAFF is critical for the survival and maturation of mature B cells. BAFF, via BAFFR, activates multiple signaling pathways in B cells, including the alternative NF-κB pathway. The transcription factors RELB and NF-κB2 (p100/p52) are the downstream mediators of the alternative pathway; however, the B cell-intrinsic functions of these NF-κB subunits have not been studied in vivo using conditional alleles, either individually or in combination. We in this study report that B cell-specific deletion of relb led to only a slight decrease in the fraction of mature splenic B cells, whereas deletion of nfkb2 caused a marked reduction. This phenotype was further exacerbated upon combined deletion of relb and nfkb2 and most dramatically affected the maintenance of marginal zone B cells. BAFF stimulation, in contrast to CD40 activation, was unable to rescue relb/nfkb2-deleted B cells in vitro. RNA-sequencing analysis of BAFF-stimulated nfkb2-deleted versus normal B cells suggests that the alternative NF-κB pathway, in addition to its critical role in BAFF-mediated cell survival, may control the expression of genes involved in the positioning of B cells within the lymphoid microenvironment and in the establishment of T cell-B cell interactions. Thus, by ablating the downstream transcription factors of the alternative NF-κB pathway specifically in B cells, we identify in this study a critical role for the combined activity of the RELB and NF-κB2 subunits in B cell homeostasis that cannot be compensated for by the canonical NF-κB pathway under physiological conditions.
Collapse
Affiliation(s)
- Nilushi S De Silva
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and
| | - Kathryn Silva
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Michael M Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Ulf Klein
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
46
|
Kaileh M, Vazquez E, MacFarlane AW, Campbell K, Kurosaki T, Siebenlist U, Sen R. mTOR-Dependent and Independent Survival Signaling by PI3K in B Lymphocytes. PLoS One 2016; 11:e0146955. [PMID: 26785352 PMCID: PMC4718598 DOI: 10.1371/journal.pone.0146955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
Peripheral B lymphocyte survival requires the B cell receptor (BCR) and B cell activating factor (BAFF) binding to its receptor (BAFF-R). Deletion of the BCR, or its signal transducing chaperone Igβ, leads to rapid loss of mature B cells, indicating that signals initiated at the BCR are crucial for B cell survival. BAFF or BAFF-R deficiency also significantly reduces the numbers of mature B cells despite normal BCR expression. Together, these observations indicate that continued BCR and BAFF-R signaling are essential for the survival of mature resting B cells in the periphery. Here we demonstrate that tonic BCR signals up-regulate p100 (Nfkb2) as well as Mcl-1 protein expression at a post-transcriptional level via a PI3K-dependent pathway. p100 expression is mTOR-independent, whereas Mcl-1 expression is mTOR-dependent. BAFF treatment further elevated Mcl-1 levels by an mTOR-independent pathway, while consuming p100. Accordingly, Mcl-1 induction by BAFF is abrogated in Nfkb2-/- B cells. We propose that the cumulative effects of the BCR and BAFF-R signaling pathways increase Mcl-1 levels beyond the threshold required for B cell survival.
Collapse
Affiliation(s)
- Mary Kaileh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Estefania Vazquez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander W. MacFarlane
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, Pennsylvania, United States of America
| | - Kerry Campbell
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, Pennsylvania, United States of America
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Katakam AK, Brightbill H, Franci C, Kung C, Nunez V, Jones C, Peng I, Jeet S, Wu LC, Mellman I, Delamarre L, Austin CD. Dendritic cells require NIK for CD40-dependent cross-priming of CD8+ T cells. Proc Natl Acad Sci U S A 2015; 112:14664-9. [PMID: 26561586 PMCID: PMC4664370 DOI: 10.1073/pnas.1520627112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB-inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c(+) cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8(+) T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8(+) DCs in vitro, namely antigen cross-presentation to CD8(+) T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4(+) T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.
Collapse
Affiliation(s)
- Anand K Katakam
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Hans Brightbill
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Christian Franci
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Chung Kung
- Department of Mouse Genetics, Genentech Inc., South San Francisco, CA 94080
| | - Victor Nunez
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Charles Jones
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Ira Mellman
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080;
| | - Lélia Delamarre
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080;
| |
Collapse
|