1
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Le Guernic A, Geffard A, Rioult D, Bigot-Clivot A, Leprêtre M, Palos Ladeiro M. Cellular and molecular complementary immune stress markers for the model species Dreissena polymorpha. FISH & SHELLFISH IMMUNOLOGY 2020; 107:452-462. [PMID: 33197585 DOI: 10.1016/j.fsi.2020.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to combine cellular and molecular analyses for better detail the effects of various stresses on a sentinel species of freshwater invertebrate. For this purpose, the hemocytes of the zebra mussel, Dreissena polymorpha, were exposed to different stresses at two different intensities, high or low: chemical (cadmium and ionomycin), physical (ultraviolet B), or biological ones (Cryptosporidium parvum and Toxoplasma gondii). After exposure, flow cytometry and droplet digital PCR analyses were performed on the same pools of hemocytes. Several responses related to necrosis, apoptosis, phagocytosis, production of nitric oxide and expression level of several genes related to the antioxidant, detoxification and immune systems were evaluated. Results showed that hemocyte integrity was compromised by both chemical and physical stress, and cellular markers of phagocytosis reacted to ionomycin and protozoa. While cadmium induced oxidative stress and necrosis, ionomycin tends to modulate the immune response of hemocytes. Although both biological stresses led to a similar immune response, C. parvum oocysts induced more effects than T. gondii, notably through the expression of effector caspases gene and an increase in hemocyte necrosis. This suggests different management of the two protozoa by the cell. This work provides new knowledge of biomarkers in the zebra mussel, at both cellular and molecular levels, and contributes to elucidate the mechanisms of action of different kinds of stress in this species.
Collapse
Affiliation(s)
- Antoine Le Guernic
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France.
| | - Alain Geffard
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Damien Rioult
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France; Plateau Technique Mobile en Cytométrie Environnementale MOBICYTE, URCA/INERIS, URCA, 51687, Reims, France
| | - Aurélie Bigot-Clivot
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Maxime Leprêtre
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| | - Mélissa Palos Ladeiro
- Reims Champagne-Ardenne University (URCA), Campus Moulin de La Housse, UMR-I02 SEBIO, 51687, Reims, France
| |
Collapse
|
3
|
Kranaster P, Karreman C, Dold JEGA, Krebs A, Funke M, Holzer AK, Klima S, Nyffeler J, Helfrich S, Wittmann V, Leist M. Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity. Arch Toxicol 2019; 94:449-467. [PMID: 31828357 DOI: 10.1007/s00204-019-02642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.
Collapse
Affiliation(s)
- Petra Kranaster
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Alice Krebs
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Melina Funke
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Kooperatives Promotionskolleg (KPK) InViTe, University of Konstanz, 78457, Konstanz, Germany
| | - Johanna Nyffeler
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Environmental Protection Agency, Durham, NC, USA
| | - Stefan Helfrich
- The Bioimaging Center, University of Konstanz, 78457, Konstanz, Germany.,KNIME GmbH, 78467, Konstanz, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
4
|
Major changes of cell function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural genetic drift. Arch Toxicol 2018; 92:3487-3503. [PMID: 30298209 PMCID: PMC6290691 DOI: 10.1007/s00204-018-2326-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The “ATCC” cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while “UKN” cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells.
Collapse
|
5
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Delp J, Gutbier S, Cerff M, Zasada C, Niedenführ S, Zhao L, Smirnova L, Hartung T, Borlinghaus H, Schreiber F, Bergemann J, Gätgens J, Beyss M, Azzouzi S, Waldmann T, Kempa S, Nöh K, Leist M. Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol Appl Pharmacol 2017; 354:64-80. [PMID: 29278688 DOI: 10.1016/j.taap.2017.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.
Collapse
Affiliation(s)
- Johannes Delp
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Cerff
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Christin Zasada
- Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Sebastian Niedenführ
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Liang Zhao
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Lena Smirnova
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Hanna Borlinghaus
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany; Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Jörg Bergemann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Martin Beyss
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Salah Azzouzi
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Tanja Waldmann
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Kempa
- Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; CAAT-Europe, University of Konstanz, Konstanz 78457, Germany.
| |
Collapse
|
7
|
Leist M. New animal-free concepts and test methods for developmental toxicity and peripheral neurotoxicity. Altern Lab Anim 2017; 45:253-260. [PMID: 29112453 DOI: 10.1177/026119291704500505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The complex toxicological fields of repeat dose organ toxicity (RDT) and developmental and reproductive toxicity (DART) still require new concepts and approaches to achieve a fully animal-free safety assessment of chemicals. One novel approach is the generation of relevant human cell types from pluripotent stem cells, and the use of such cells for the establishment of phenotypic test methods. Due to their broad endpoints, such tests capture multiple types of toxicants, i.e. they are a readout for the activation of many adverse outcome pathways (AOPs). The 2016 Lush Science Prize was awarded for the development of one such assay, the PeriTox test, which uses human peripheral neurons generated from stem cells. The assay endpoints measure various cell functions, and these give information on the potential neurotoxicity and developmental neurotoxicity hazard of test compounds. The PeriTox test method has a high predictivity and sensitivity for peripheral neurotoxicants, and thus addresses the inherent challenges in pesticide testing and drug development. Data from the test can be obtained quickly and at a relatively high-throughput, and thus, the assay has the potential to replace animal-based safety assessment during early product development or for screening potential environmental toxicants.
Collapse
Affiliation(s)
- Marcel Leist
- In Vitro Toxicology and Biomedicine Laboratory, Department of Biology, University of Konstanz, Konstanz, Germany; CAAT-Europe, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, Konstanz, Germany; Co-operative Research Training Group on In Vitro Testing of Active Ingredients, Konstanz-Sigmaringen, Germany
| |
Collapse
|
8
|
Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T, Danen E, van Ravenzwaay B, Kamp H, Gardner I, Godoy P, Bois FY, Braeuning A, Reif R, Oesch F, Drasdo D, Höhme S, Schwarz M, Hartung T, Braunbeck T, Beltman J, Vrieling H, Sanz F, Forsby A, Gadaleta D, Fisher C, Kelm J, Fluri D, Ecker G, Zdrazil B, Terron A, Jennings P, van der Burg B, Dooley S, Meijer AH, Willighagen E, Martens M, Evelo C, Mombelli E, Taboureau O, Mantovani A, Hardy B, Koch B, Escher S, van Thriel C, Cadenas C, Kroese D, van de Water B, Hengstler JG. Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 2017; 91:3477-3505. [DOI: 10.1007/s00204-017-2045-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
|
9
|
Balzekas I, Hernandez J, White J, Koh S. Confounding effect of EEG implantation surgery: Inadequacy of surgical control in a two hit model of temporal lobe epilepsy. Neurosci Lett 2016; 622:30-6. [PMID: 27095588 DOI: 10.1016/j.neulet.2016.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
In rodent models of epilepsy, EEG implantation surgery is an essential modality to evaluate electrographic seizures. The inflammatory consequences of EEG electrode-implantation and their resultant effects on seizure susceptibility are unclear. We evaluated electrode-implantation in a two-hit model of epileptogenesis in C57BL/6 mice that included brief, recurrent febrile seizures (FS) at P14 and kainic acid induced seizures (KA-SZ) at P28. During KA-SZ, latencies to first electrographic and behavioral seizures, seizure severity, and KA dose sensitivity were measured. Mice that received subdural screw electrode implants at P25 for EEG monitoring at P28 had significantly shorter latencies to seizures than sham mice, regardless of early life seizure experience. Electrode-implanted mice were sensitive to low dose KA as shown by high mortality rate at KA doses above 10mg/kg. We then directly compared electrode-implantation and KA-SZ in seizure naive CX3CR1(GFP/+) transgenic C57BL/6 mice, wherein microglia express green fluorescent protein (GFP), to determine if microglia activation related to surgery was associated with the increased seizure susceptibility in electrode-implanted mice from the two-hit model. Hippocampal microglia activation, as demonstrated by percent area GFP signal and GFP positive cell counts, prior to seizures was indistinguishable between electrode-implanted mice and controls, but was significantly greater in electrode-implanted mice following seizures. Electrode-implantation had a confounding priming effect on the inflammatory response to subsequent seizures.
Collapse
Affiliation(s)
- Irena Balzekas
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jose Hernandez
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jacob White
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sookyong Koh
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
10
|
Gupta S, Prasad GVRK, Mukhopadhaya A. Vibrio cholerae Porin OmpU Induces Caspase-independent Programmed Cell Death upon Translocation to the Host Cell Mitochondria. J Biol Chem 2015; 290:31051-68. [PMID: 26559970 DOI: 10.1074/jbc.m115.670182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.
Collapse
Affiliation(s)
- Shelly Gupta
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - G V R Krishna Prasad
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Arunika Mukhopadhaya
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
11
|
Efremova L, Schildknecht S, Adam M, Pape R, Gutbier S, Hanf B, Bürkle A, Leist M. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol 2015; 172:4119-32. [PMID: 25989025 DOI: 10.1111/bph.13193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Few neuropharmacological model systems use human neurons. Moreover, available test systems rarely reflect functional roles of co-cultured glial cells. There is no human in vitro counterpart of the widely used 1-methyl-4-phenyl-tetrahydropyridine (MPTP) mouse model of Parkinson's disease EXPERIMENTAL APPROACH We generated such a model by growing an intricate network of human dopaminergic neurons on a dense layer of astrocytes. In these co-cultures, MPTP was metabolized to 1-methyl-4-phenyl-pyridinium (MPP(+) ) by the glial cells, and the toxic metabolite was taken up through the dopamine transporter into neurons. Cell viability was measured biochemically and by quantitative neurite imaging, siRNA techniques were also used. KEY RESULTS We initially characterized the activation of PARP. As in mouse models, MPTP exposure induced (poly-ADP-ribose) synthesis and neurodegeneration was blocked by PARP inhibitors. Several different putative neuroprotectants were then compared in mono-cultures and co-cultures. Rho kinase inhibitors worked in both models; CEP1347, ascorbic acid or a caspase inhibitor protected mono-cultures from MPP(+) toxicity, but did not protect co-cultures, when used alone or in combination. Application of GSSG prevented degeneration in co-cultures, but not in mono-cultures. The surprisingly different pharmacological profiles of the models suggest that the presence of glial cells, and the in situ generation of the toxic metabolite MPP(+) within the layered cultures played an important role in neuroprotection. CONCLUSIONS AND IMPLICATIONS Our new model system is a closer model of human brain tissue than conventional cultures. Its use for screening of candidate neuroprotectants may increase the predictiveness of a test battery.
Collapse
Affiliation(s)
- Liudmila Efremova
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.,Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany
| | - Stefan Schildknecht
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Martina Adam
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Regina Pape
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.,Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany
| | - Benjamin Hanf
- Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany.,Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Rahnenführer J, Leist M. From smoking guns to footprints: mining for critical events of toxicity pathways in transcriptome data. Arch Toxicol 2015; 89:813-7. [PMID: 25851820 PMCID: PMC4396704 DOI: 10.1007/s00204-015-1497-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
Affiliation(s)
| | - Marcel Leist
- Doerenakmp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, PO Box M657, 78457 Konstanz, Germany
| |
Collapse
|
13
|
Smirnova L, Hogberg HT, Leist M, Hartung T. Developmental neurotoxicity - challenges in the 21st century and in vitro opportunities. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2015; 31:129-56. [PMID: 24687333 DOI: 10.14573/altex.1403271] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/23/2022]
Abstract
In recent years neurodevelopmental problems in children have increased at a rate that suggests lifestyle factors and chemical exposures as likely contributors. When environmental chemicals contribute to neurodevelopmental disorders developmental neurotoxicity (DNT) becomes an enormous concern. But how can it be tackled? Current animal test- based guidelines are prohibitively expensive, at $ 1.4 million per substance, while their predictivity for human health effects may be limited, and mechanistic data that would help species extrapolation are not available. A broader screening for substances of concern requires a reliable testing strategy, applicable to larger numbers of substances, and sufficiently predictive to warrant further testing. This review discusses the evidence for possible contributions of environmental chemicals to DNT, limitations of the current test paradigm, emerging concepts and technologies pertinent to in vitro DNT testing and assay evaluation, as well as the prospect of a paradigm shift based on 21st century technologies.
Collapse
Affiliation(s)
- Lena Smirnova
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, USA
| | | | | | | |
Collapse
|
14
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
16
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E, Guillou C, Heuer J, Hogberg HT, Jungnickel H, Keun HC, Krennrich G, Krupp E, Luch A, Noor F, Peter E, Riefke B, Seymour M, Skinner N, Smirnova L, Verheij E, Wagner S, Hartung T, van Ravenzwaay B, Leist M. Metabolomics in toxicology and preclinical research. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2013; 30:209-25. [PMID: 23665807 DOI: 10.14573/altex.2013.2.209] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.
Collapse
Affiliation(s)
- Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
19
|
Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 2013; 3:428. [PMID: 23335928 PMCID: PMC3547286 DOI: 10.3389/fimmu.2012.00428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022] Open
Abstract
For almost 20 years, apoptosis and secondary necrosis have been considered the major source of autoantigens and endogenous adjuvants in the pathogenic model of systemic autoimmune diseases. This focus is justified in part because initial evidence in systemic lupus erythematosus (SLE) guided investigators toward the study of apoptosis, but also because other forms of cell death were unknown. To date, it is known that many other forms of cell death occur, and that they vary in their capacity to stimulate as well as inhibit the immune system. Among these, NETosis (an antimicrobial form of death in neutrophils in which nuclear material is extruded from the cell forming extracellular traps), is gaining major interest as a process that may trigger some of the immune features found in SLE, granulomatosis with polyangiitis (formerly Wegener’s granulomatosis) and Felty’s syndrome. Although there have been volumes of very compelling studies published on the role of cell death in autoimmunity, no unifying theory has been adopted nor have any successful therapeutics been developed based on this important pathway. The recent inclusion of NETosis into the pathogenic model of autoimmune diseases certainly adds novel insights into this paradigm, but also reveals a previously unappreciated level of complexity and raises many new questions. This review discusses the role of cell death in systemic autoimmune diseases with a focus on apoptosis and NETosis, highlights the current short comings in our understanding of the vast complexity of cell death, and considers the potential shift in the cell death paradigm in autoimmunity. Understanding this complexity is critical in order to develop tools to clearly define the death pathways that are active in systemic autoimmune diseases, identify drivers of disease propagation, and develop novel therapeutics.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | |
Collapse
|
20
|
Levano K, Punia V, Raghunath M, Debata PR, Curcio GM, Mogha A, Purkayastha S, McCloskey D, Fata J, Banerjee P. Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning. J Neurochem 2011; 120:302-13. [PMID: 22007859 DOI: 10.1111/j.1471-4159.2011.07543.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The molecule responsible for the enzyme activity plasma membrane (PM) aminophospholipid translocase (APLT), which catalyzes phosphatidylserine (PS) translocation from the outer to the inner leaflet of the plasma membrane, is unknown in mammals. A Caenorhabditis elegans study has shown that ablation of transbilayer amphipath transporter-1 (TAT-1), which is an ortholog of a mammalian P-type ATPase, Atp8a1, causes PS externalization in the germ cells. We demonstrate here that the hippocampal cells of the dentate gyrus, and Cornu Ammonis (CA1, CA3) in mice lacking Atp8a1 exhibit a dramatic increase in PS externalization. Although their hippocampi showed no abnormal morphology or heightened apoptosis, these mice displayed increased activity and a marked deficiency in hippocampus-dependent learning, but no hyper-anxiety. Such observations indicate that Atp8a1 plays a crucial role in PM-APLT activity in the neuronal cells. In corroboration, ectopic expression of Atp8a1 but not its close homolog, Atp8a2, caused an increase in the population (V(max) ) of PM-APLT without any change in its signature parameter K(m) in the neuronal N18 cells. Conversely, expression of a P-type phosphorylation-site mutant of Atp8a1 (Atp8a1*) caused a decrease in V(max) of PM-APLT without significantly altering its K(m) . The Atp8a1*-expressing N18 cells also exhibited PS externalization without apoptosis. Together, our data strongly indicate that Atp8a1 plays a central role in the PM-APLT activity of some mammalian cells, such as the neuronal N18 and hippocampal cells.
Collapse
Affiliation(s)
- Kelly Levano
- CUNY Doctoral Program in Biochemistry, City University of New York at the College of Staten Island, Staten Island, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJC, Pardo J, Froelich CJ. Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS One 2011; 6:e24286. [PMID: 21931672 PMCID: PMC3171411 DOI: 10.1371/journal.pone.0024286] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.
Collapse
Affiliation(s)
- Sunil S. Metkar
- Department of Medicine, NorthShore University HealthSystems Research Institute, Evanston, Illinois, United States of America
| | - Baikun Wang
- Department of Medicine, NorthShore University HealthSystems Research Institute, Evanston, Illinois, United States of America
| | - Elena Catalan
- Departamento Bioquimica y Biologia Molecular y Cellular, University of Zaragoza, Zaragoza, Spain
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Robert J. C. Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Oxford, United Kingdom
| | - Julian Pardo
- Departamento Bioquimica y Biologia Molecular y Cellular, University of Zaragoza, Zaragoza, Spain
- Fundación Aragón I+D, Zaragoza, Spain
| | - Christopher J. Froelich
- Department of Medicine, NorthShore University HealthSystems Research Institute, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
The precise, regional execution of programmed cell death is required for the proper patterning and sculpting of the embryonic primordium during animal development. In addition, cell death that is not directly involved in sculpting is also widely observed. The most abundant morphological form of programmed cell death in developing animals is apoptosis, and identification of the apoptotic genetic pathways has enabled the study of apoptosis' regulation and roles during development. Genetic and bio-imaging studies have permitted the study of the active roles of cell death in development and organismal homeostasis.
Collapse
Affiliation(s)
- Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Abstract
A canonical regulatory pathway involving the members of the Bcl-2 and caspase families has been established to regulate developmental apoptosis in nematodes and flies. However, mutant mice that have major deficiencies in this apoptosis pathway show only relatively minor developmental defects. Recent revelations indicate that multiple mechanisms are involved in regulating cell death during mammalian development, tissue homeostasis, and pathological cell loss. Here, we critically evaluate the evidence demonstrating the existence of alternative cell death mechanisms, including apoptosis of lower organisms in the absence of canonical apoptosis mediators, autophagic cell death, necroptosis, elimination by shedding, keratinocyte death by cornification, and cell-cell cannibalism by entosis. The physiological relevance of alternative cell death mechanisms as primary and backup mechanisms is discussed.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
24
|
Microglia-associated granule cell death in the normal adult dentate gyrus. Brain Struct Funct 2009; 214:25-35. [PMID: 19936784 PMCID: PMC2782120 DOI: 10.1007/s00429-009-0231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/11/2009] [Indexed: 01/28/2023]
Abstract
Microglial cells are constantly monitoring the central nervous system for sick or dying cells and pathogens. Previous studies showed that the microglial cells in the dentate gyrus have a heterogeneous morphology with multipolar cells in the hilus and fusiform cells apposed to the granule cell layer both at the hilar and at the molecular layer borders. Although previous studies showed that the microglia in the dentate gyrus were not activated, the data in the present study show dying granule cells apposed by Iba1-immunolabeled microglial cell bodies and their processes both at hilar and at molecular layer borders of the granule cell layer. Initially, these Iba1-labeled microglial cells surround individual, intact granule cell bodies. When small openings in the plasma membrane of granule cells are observed, microglial cells are apposed to these openings. When larger openings in the plasma membrane occur at this site of apposition, the granule cells display watery perikaryal cytoplasm, watery nucleoplasm and damaged organelles. Such morphological features are characteristic of neuronal edema. The data also show that following this localized disintegration of the granule cell’s plasma membrane, the Iba1-labeled microglial cell body is found within the electron-lucent perikaryal cytoplasm of the granule cell, where it is adjacent to the granule cell’s nucleus which is deformed. We propose that granule cells are dying by a novel microglia-associated mechanism that involves lysis of their plasma membranes followed by neuronal edema and nuclear phagocytosis. Based on the morphological evidence, this type of cell death differs from either apoptosis or necrosis.
Collapse
|
25
|
Abstract
OBJECTIVES We have previously reported that pancreatic stellate cells (PSCs) have a phagocytic function. The aim of the present study was to investigate whether engulfment of necrotic acinar cells affects pancreatic fibrogenesis. METHODS Rat pancreatic acinar cells were incubated for 48 hours to induce necrosis, and PSCs were allowed to interact with them for 12 to 48 hours. Annexin V and propidium iodide staining or detection of DNA fragmentation was used to identify cell death. RESULTS A large number of necrotic acinar cells were engulfed by PSCs. When PSCs were exposed to necrotic acinar cells for 12 hours, the number of living PSCs was significantly lower than among the control PSCs, which were not exposed to necrotic acinar cells. DNA degradation was observed in PSCs that had ingested necrotic acinar cells, and they were Annexin V and propidium iodide positive, suggesting that engulfment of necrotic acinar cells induced PSC death. There was no difference between the concentrations of transforming growth factor-beta in the medium of the PSCs that had engulfed acinar cells and the medium of the control PSCs. CONCLUSIONS Engulfment of necrotic acinar cells by PSCs induces PSC death, suggesting that engulfment of necrotic acinar cells may inhibit the progression of fibrogenesis.
Collapse
|
26
|
Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13:463-82. [PMID: 18322800 PMCID: PMC7102248 DOI: 10.1007/s10495-008-0187-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 01/11/2023]
Abstract
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.
Collapse
|
27
|
Khurana M, Collins HA, Karotki A, Anderson HL, Cramb DT, Wilson BC. Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. Photochem Photobiol 2008; 83:1441-8. [PMID: 18028219 DOI: 10.1111/j.1751-1097.2007.00185.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT), the combined action of a photosensitizer and light to produce a cytotoxic effect, is an approved therapy for a number of diseases. At present, clinical PDT treatments involve one-photon excitation of the photosensitizer. A major limitation is that damage may be caused to healthy tissues that have absorbed the drug and lie in the beam path. Two-photon excitation may minimize this collateral damage, as the probability of absorption increases with the square of the light intensity, enabling spatial confinement of the photosensitizer activation. A potential application is the treatment of the wet-form of age-related macular degeneration, the foremost cause of central vision loss in the elderly. Herein, the commercial photosensitizers Visudyne and Photofrin are used to demonstrate quantitative in vitro two-photon PDT. A uniform layer of endothelial cells (YPEN-1) was irradiated with a Ti:sapphire laser (300 fs, 865 nm, 90 MHz) using a confocal scanning microscope. Quantification of the two-photon PDT effect was achieved using the permeability stain Hoechst 33258 and a SYTOX Orange viability stain. Visudyne was found to be around seven times more effective as a two-photon photosensitizer than Photofrin under the conditions used, consistent with its higher two-photon absorption cross-section. We also demonstrate for the first time the quadratic intensity dependence of cellular two-photon PDT. This simple in vitro method for quantifying the efficacy of photosensitizers for two-photon excited PDT will be valuable to test specifically designed two-photon photosensitizers before proceeding to in vivo studies in preclinical animal models.
Collapse
Affiliation(s)
- Mamta Khurana
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Nakayama J, Ohtsuki M, Oda T. Caspase-independent cell death by Fas ligation in human thymus-derived T cell line, HPB-ALL cells. Microbiol Immunol 2007; 51:1029-37. [PMID: 17951993 DOI: 10.1111/j.1348-0421.2007.tb03987.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In HPB-ALL cells, a human thymus-derived T-cell line, Fas (CD95)-mediated cell death was inhibited by about only 50% as a result of treatment with an amount of benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)-CH(2)F (zVAD-fmk) sufficient to block the caspase activity. Fas-mediated caspase-independent cell death was not observed in other lymphoblast cell lines or mouse activated splenocytes, but this type of cell death was observed in mouse and rat thymocytes, the same as for HPB-ALL cells. This suggests that Fas-mediated caspase-independent cell death is a common feature in thymocytes. The signaling pathway of caspase-independent cell death has not yet been fully elucidated. In HPB-ALL cells, DNA fragmentation, one of the features of apoptotic cells, did not occur in the caspase-independent cell death after Fas ligation. On the other hand, this type of cell death and the surface exposure of phosphatidylserine were recovered by pretreatment with geldanamycin, which brought about a decrease in receptor interacting protein (RIP) kinase expression. These results suggested that HPB-ALL cells have a caspase-independent RIP kinasedependent pathway for Fas ligation.
Collapse
Affiliation(s)
- Junichi Nakayama
- Biological Research Laboratories III, Daiichi-Sankyo Co., Ltd, Shinnagawa-ku, Tokyo 140-8710, Japan.
| | | | | |
Collapse
|
29
|
Deorukhkar AA, Chander R, Pandey R, Sainis KB. A novel N-alkylated prodigiosin analogue induced death in tumour cell through apoptosis or necrosis depending upon the cell type. Cancer Chemother Pharmacol 2007; 61:355-63. [PMID: 17429627 DOI: 10.1007/s00280-007-0475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 03/16/2007] [Indexed: 01/28/2023]
Abstract
PURPOSE To investigate the mechanism of cell death induced by the N-alkylated prodigiosin analogue, 2,2'-[3-methoxy-1'amyl-5'-methyl-4-(1''-pyrryl)] dipyrryl-methene (MAMPDM) in S-180 and EL-4 tumour cell lines. METHODS Effect of MAMPDM on cell viability was assessed by MTT dye conversion. Induction of apoptosis was assessed by monitoring caspase 3 activity using a fluorogenic substrate, fragmentation of DNA by gel electrophoresis and sub-diploid DNA containing cells by flowcytometry. Necrosis was estimated by flowcytometric analysis of the uptake of propidium iodide. RESULTS MAMPDM inhibited the proliferation of murine fibrosarcoma, S-180 cells and induced cell death. Investigations into the mechanism of cell death by MAMPDM in S-180 cells showed absence of hallmarks of apoptotic cell death such as activation of caspase 3, DNA fragmentation and presence of cells with sub-diploid DNA content. However, there was a rapid loss of membrane integrity as assessed by uptake of propidium iodide, which is characteristic of necrosis. In contrast to induction of necrosis in S-180 cells, MAMPDM induced apoptotic cell death in EL-4 cells as evident by activation of caspase 3, fragmentation of DNA and sub-diploid DNA containing cells. CONCLUSIONS MAMPDM could induce cell death by either apoptosis or necrosis depending upon the cell type. This would be of advantage in elimination of tumor cells defective in apoptotic pathway and therefore, refractory to the conventional therapies.
Collapse
Affiliation(s)
- Amit A Deorukhkar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Orderly cell death, termed apoptosis, features a morphology that is distinct from necrotic, or accidental, cell death. As the body of literature on apoptotic cell death grows, it is difficult for practicing surgeons to stay current with the involved mechanisms and their biologic significance. METHODS A MEDLINE/PubMed literature search was conducted, followed by manual crossreferencing, to identify relevant articles published in the English language between 1972 and 2004. RESULTS Apoptosis is now known to be involved in numerous disease states. Ischemia-reperfusion injury and acute pancreatitis are but two surgical entities in which the balance of apoptotic and necrotic cell death has a profound effect on clinical outcome. Similarly, the timing and extent of apoptosis in immune cells are important factors that determine the outcome of septic patients. CONCLUSIONS As already demonstrated in animal models, further research in this field will target opportunities for therapeutic intervention, making it increasingly important for clinicians to be familiar with apoptosis and necrosis, and their roles in normal and pathologic states.
Collapse
Affiliation(s)
- Patrick McHugh
- Department of Surgery, the Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
31
|
Microglia Biology in Health and Disease. J Neuroimmune Pharmacol 2006; 1:127-37. [DOI: 10.1007/s11481-006-9015-5] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
|
32
|
Corsten MF, Hofstra L, Narula J, Reutelingsperger CPM. Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 2006; 66:1255-60. [PMID: 16452175 DOI: 10.1158/0008-5472.can-05-3000] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unveiling of the heterogeneous nature of cell death modes has compromised the long-lived consensus that cancer treatment typically kills cancer cells through apoptosis. Moreover, it implies that measures of apoptosis may be misleading indicators of treatment efficacy. Simultaneously, it has become clear that phosphatidylserine exposition, traditionally considered a hallmark of apoptosis, is also associated with most other cell death programs, rendering phosphatidylserine an attractive target for overall cell death imaging. Annexin A5 binds with strong affinity to phosphatidylserine and hence offers an interesting opportunity for visualization of aggregate cell death, thus providing a fit benchmark for in vivo monitoring of anticancer treatment. This might be of significant value for pharmacologic therapy development as well as clinical monitoring of treatment success.
Collapse
Affiliation(s)
- Maarten F Corsten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University Maastricht, P. Debyelaan 25, 6229 AD Maastricht, the Netherlands
| | | | | | | |
Collapse
|
33
|
Jakopec S, Dubravcic K, Polanc S, Kosmrlj J, Osmak M. Diazene JK-279 induces apoptosis-like cell death in human cervical carcinoma cells. Toxicol In Vitro 2006; 20:217-26. [PMID: 16061352 DOI: 10.1016/j.tiv.2005.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 04/28/2005] [Accepted: 06/15/2005] [Indexed: 02/08/2023]
Abstract
Diazene N-phenyl-2-(2-pyridinyl)diazenecarboxamide (JK-279) is a newly synthesized compound, cytotoxic for several tumor cell lines and their drug-resistant sublines. In human cervical carcinoma cells (HeLa), this compound reduced intracellular glutathione content and increased sensitivity to cisplatin. The aim of the present study was to elucidate the molecular mechanisms involved in the cytotoxic effect of diazene JK-279 on HeLa cells. Cytotoxicity was determined by the MTT method. Flow cytometry analysis showed that diazene JK-279 induces G(2)/M phase arrest, mediated by the increase in p21 expression, and accompanied by an alteration in the expression of survivin. The highest concentration of JK-279 altered nuclear morphology in intact cells, showing "apoptosis-like" features. No cleavage of procaspase-3, procaspase-9 and PARP, or altered expression of apoptotic proteins Bcl-2 and Bax were detected. At the same time, PS externalization and internucleosomal DNA cleavage were observed. Partial necrosis was detected as well. Our results demonstrate that cytotoxicity of diazene JK-279 is mostly the consequence of caspase-independent cell death, which is in some aspects "apoptosis-like". Taking into account the multiplicity of mechanisms used by cancer cells to prevent apoptosis, the drugs (like diazene JK-279) that would activate alternative cell death pathways could provide a useful tool for new types of cancer therapy.
Collapse
Affiliation(s)
- S Jakopec
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
34
|
Proskuryakov SY, Gabai VL, Konoplyannikov AG, Zamulaeva IA, Kolesnikova AI. Immunology of Apoptosis and Necrosis. BIOCHEMISTRY (MOSCOW) 2005; 70:1310-20. [PMID: 16417452 DOI: 10.1007/s10541-005-0263-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A complex of reactions regulating the number of cells in organs and tissues under normal and pathologic conditions is one of the most important systems of multicellular organisms. In this system, which controls both cell proliferation and clearance, clearance has been given special attention during the last three decades. Some stages of the clearance are known (the choice of "unwanted" cells, their destruction not affecting the surrounding tissue, and, finally, removal of the corpses), and undeniable progress has been achieved in the understanding of the second stage mechanisms, whereas mechanisms of elimination per se of cells or their fragments still continue to be terra incognita. The clearance of such cells is mainly determined by different components of natural and adaptive immunity: phagocytes, complement, opsonins, antigen-presenting cells, etc. Recently specific "danger signals", such as hydrolases, DNA, heat shock proteins, and other potential immunogens released by cells during their elimination have been discovered. Entering the extracellular space, these signals induce inflammation and injury of the surrounding tissues, i.e., autoimmune reactions. Heat shock proteins, in addition to chaperon activity, act as signaling, costimulating, and antigen-carrying molecules in the interactions of dying cells and the immune system.
Collapse
Affiliation(s)
- S Ya Proskuryakov
- Medical Radiological Research Center, Russian Academy of Medical Sciences, Obninsk, 249036, Russia.
| | | | | | | | | |
Collapse
|
35
|
Hagge DA, Ray NA, Krahenbuhl JL, Adams LB. An in vitro model for the lepromatous leprosy granuloma: fate of Mycobacterium leprae from target macrophages after interaction with normal and activated effector macrophages. THE JOURNAL OF IMMUNOLOGY 2004; 172:7771-9. [PMID: 15187161 DOI: 10.4049/jimmunol.172.12.7771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lepromatous leprosy granuloma is a dynamic entity requiring a steady influx of macrophages (Mphi) for its maintenance. We have developed an in vitro model to study the fate of Mycobacterium leprae in a LL lesion, with and without immunotherapeutic intervention. Target cells, consisting of granuloma Mphi harvested from the footpads of M. leprae-infected athymic nu/nu mice, were cocultured with normal or IFN-gamma-activated (ACT) effector Mphi. The bacilli were recovered and assessed for viability by radiorespirometry. M. leprae recovered from target Mphi possessed high metabolic activity, indicating a viable state in this uncultivable organism. M. leprae recovered from target Mphi incubated with normal effector Mphi exhibited significantly higher metabolism. In contrast, bacilli recovered from target Mphi cocultured with ACT effector Mphi displayed a markedly decreased metabolic activity. Inhibition by ACT Mphi required an E:T ratio of at least 5:1, a coculture incubation period of 3-5 days, and the production of reactive nitrogen intermediates, but not reactive oxygen intermediates. Neither IFN-gamma nor TNF-alpha were required during the cocultivation period. However, cell-to-cell contact between the target and effector Mphi was necessary for augmentation of M. leprae metabolism by normal effector Mphi as well as for inhibition of M. leprae by ACT effector Mphi. Conventional fluorescence microscopy and confocal fluorescence microscopy revealed that the bacilli from the target Mphi were acquired by the effector Mphi. Thus, the state of Mphi infiltrating the granuloma may markedly affect the viability of M. leprae residing in Mphi in the lepromatous lesion.
Collapse
Affiliation(s)
- Deanna A Hagge
- National Hansen's Disease Programs, Laboratory Research Branch, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
36
|
Walsh CM, Luhrs KA, Arechiga AF. The "fuzzy logic" of the death-inducing signaling complex in lymphocytes. J Clin Immunol 2004; 23:333-53. [PMID: 14601642 DOI: 10.1023/a:1025313415487] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Receptors belonging to the tumor necrosis factor receptor family have long been thought to play an important role in the regulation of immunity. Although this family is composed of a large number of surface receptors that potentiate myriad functions in vivo, a subset is known to directly convey apoptotic signals. One such molecule belonging to this subset is CD95. Ligation of CD95 instigates the formation of a complex known as the "death-inducing signaling complex" or DISC, which is composed of molecules including FADD (Fas associated with death domain) and RIP (receptor-interacting kinase), as well as procaspases-8 and -10, and a caspase-8-like molecule that lacks proteolytic activity called c-FLIP. Although the DISC was initially thought to serve an exclusively proapoptotic role, humans and mice with defects in various components of this complex demonstrate a variety of developmental and hematopoietic defects that are not apparently due to aberrant apoptosis. These findings paint a far more complex picture of the numerous components of the DISC, and provide evidence that these complexes serve nonapoptotic functions. Herein, we summarize the experimental evidence challenging the notion that the DISC imparts an exclusively apoptotic function and provide hypotheses to account for these alternative roles. Rather than operating as a binary system, we propose that the DISCs formed around various DRs transduce signals leading to a variety of cellular fates.
Collapse
Affiliation(s)
- Craig M Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
| | | | | |
Collapse
|
37
|
Hegde M, Roscoe J, Cala P, Gorin F. Amiloride kills malignant glioma cells independent of its inhibition of the sodium-hydrogen exchanger. J Pharmacol Exp Ther 2004; 310:67-74. [PMID: 15010500 DOI: 10.1124/jpet.103.065029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we demonstrated that malignant glioma cell lines have increased intracellular pH (pHi) as a result of increased activities of the type I sodium/hydrogen exchanger (NHE1). This alkalotic pHi of 7.2 to 7.4 is favorable for augmented glycolysis, DNA synthesis, and cell cycle progression. Conversely, reductions in pHi have been associated with reduced rates of proliferation in transformed cell types. The effects of reducing pHi directly and by NHE1 inhibition on human malignant glioma cells were systematically compared with those on primary rat astrocytes. Neither cariporide, nor direct acidification to pHi 6.9 altered the proliferative rates or viabilities of human U87 or U118 malignant glioma cell lines. However, amiloride significantly impaired glioma cell proliferation and viability while not affecting astrocytes at concentrations (500 microM) that exceeded its inhibition of NHE1 in glioma cells (IC50 = 17 microM). Preventing a reduction of pHi did not alter the drug's antiproliferative and cytotoxic effects on glioma cells. These findings indicated that amiloride's cytotoxic effects on glioma cells are independent of its ability to inhibit NHE1 or to reduce intracellular pHi. The amiloride derivative 2,4 dichlorobenzamil (DCB) inhibits the sodium-calcium exchanger (NCX) and was both antiproliferative and cytotoxic to glioma cells at low doses (20 microM). By contrast, KB-R7943 [(2-[2-[4-nitrobenzyloxy]phenyl]ethyl)-isothioureamethanesulfonate] preferentially blocks sodium-dependent calcium influx by NCX (reverse mode) and was nontoxic to glioma cells. It is proposed that DCB (20 microM) and amiloride (500 microM) impair calcium efflux by NCX, leading to elevations of intracellular calcium that initiate a morphologically necrotic, predominantly caspase-independent glioma cell death.
Collapse
Affiliation(s)
- Manu Hegde
- Department of Neurology, School of Medicine, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
38
|
Hirt UA, Leist M. Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 2004; 10:1156-64. [PMID: 14502239 DOI: 10.1038/sj.cdd.4401286] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In pathological situations, different modes of cell death are observed, and information on the role and uptake of nonapoptotic corpses is scarce. Here, we modeled two distinct forms of death in human Jurkat T cells treated with staurosporine: classical apoptosis under normal culture conditions and programmed death with necrotic morphology under ATP-depleting conditions (necPCD). When offered to phagocytes, both types of cell corpses (but not heat-killed unscheduled necrotic cells) reduced the release of the proinflammatory cytokine TNF from the macrophages. The necPCD cells were efficiently engulfed by macrophages and microglia, and from mixtures of necPCD and apoptotic cells macrophages preferentially engulfed the necrotic cells. Using a newly developed assay, we demonstrated that phosphatidylserine is translocated to the surface of such necrotic cells. We demonstrate that this can occur independently of calcium signals, and that surface phosphatidylserine is essential for the uptake of necrotic cells by both human macrophages and murine microglia.
Collapse
Affiliation(s)
- U A Hirt
- Faculty of Biology, University of Konstanz, X911, D-78457 Konstanz, Germany
| | | |
Collapse
|
39
|
Brouckaert G, Kalai M, Krysko DV, Saelens X, Vercammen D, Ndlovu MN, Ndlovu 'M, Haegeman G, D'Herde K, Vandenabeele P. Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production. Mol Biol Cell 2003; 15:1089-100. [PMID: 14668480 PMCID: PMC363082 DOI: 10.1091/mbc.e03-09-0668] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Apoptotic cells are cleared by phagocytosis during development, homeostasis, and pathology. However, it is still unclear how necrotic cells are removed. We compared the phagocytic uptake by macrophages of variants of L929sA murine fibrosarcoma cells induced to die by tumor necrosis factor-induced necrosis or by Fas-mediated apoptosis. We show that apoptotic and necrotic cells are recognized and phagocytosed by macrophages, whereas living cells are not. In both cases, phagocytosis occurred through a phosphatidylserine-dependent mechanism, suggesting that externalization of phosphatidylserine is a general trigger for clearance by macrophages. However, uptake of apoptotic cells was more efficient both quantitatively and kinetically than phagocytosis of necrotic cells. Electron microscopy showed clear morphological differences in the mechanisms used by macrophages to engulf necrotic and apoptotic cells. Apoptotic cells were taken up as condensed membrane-bound particles of various sizes rather than as whole cells, whereas necrotic cells were internalized only as small cellular particles after loss of membrane integrity. Uptake of neither apoptotic nor necrotic L929 cells by macrophages modulated the expression of proinflammatory cytokines by the phagocytes.
Collapse
Affiliation(s)
- Greet Brouckaert
- Molecular Signalling and Cell Death Unit, Department of Molecular Biomedical Research, VIB, Ghent University, Ghent Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Okada M, Adachi S, Imai T, Watanabe KI, Toyokuni SY, Ueno M, Zervos AS, Kroemer G, Nakahata T. A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 2003; 103:2299-307. [PMID: 14645012 DOI: 10.1182/blood-2003-05-1605] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL-positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate-induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate-treated BCR-ABL-positive human leukemic cells. Moreover, zVAD-fmk-preincubated, imatinib mesylate-treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.
Collapse
Affiliation(s)
- Masayuki Okada
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chan A, Seguin R, Magnus T, Papadimitriou C, Toyka KV, Antel JP, Gold R. Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 2003; 43:231-42. [PMID: 12898702 DOI: 10.1002/glia.10258] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis of autoaggressive T-cells in the CNS is an effective, noninflammatory mechanism for the resolution of T-cell infiltrates, contributing to clinical recovery in T-cell-mediated neuroinflammatory diseases. The clearance of apoptotic leukocytes by tissue-specific phagocytes is critical in the resolution of the inflammatory infiltrate and leads to a profound downregulation of phagocyte immune functions. Adult human microglia from surgically removed normal brain tissue was used in a standardized, light-microscopic in vitro phagocytosis assay of apoptotic autologous peripheral blood-derived mononuclear cells (MNCs). Microglia from five different patients had a high capacity for the uptake of apoptotic MNCs in contrast to nonapoptotic target cells with the phagocytosis rate for nonapoptotic MNCs amounting to only 61.6% of the apoptotic MNCs. A newly described phosphatidylserine receptor, critical in the phagocytosis of apoptotic cells by macrophages, is also expressed at similar levels on human microglia. The effects of the therapeutically used immunomodulatory agent interferon-beta (IFNbeta) were investigated using Lewis rat microglia and apoptotic, encephalitogenic, myelin basic protein-specific autologous T-cells. Also, rat microglia had a high capacity to phagocytose apoptotic T-cells specifically. IFNbeta increased the phagocytosis of apoptotic T-cells to 36.8% above the untreated controls. The enhanced phagocytic activity was selective for apoptotic T-cells and was not mediated by increased IL-10 secretion. Apoptotic inflammatory cells may be efficiently and rapidly removed by microglial cells in the autoimmune-inflamed human CNS. The in vitro increase of phagocytosis by IFNbeta merits further investigations whether this mechanism could also be therapeutically exploited.
Collapse
Affiliation(s)
- Andrew Chan
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Rami A, Sims J, Botez G, Winckler J. Spatial resolution of phospholipid scramblase 1 (PLSCR1), caspase-3 activation and DNA-fragmentation in the human hippocampus after cerebral ischemia. Neurochem Int 2003; 43:79-87. [PMID: 12605885 DOI: 10.1016/s0197-0186(02)00194-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reports on non-neural cells have shown that enhanced activity of the Ca(2+)-dependent/ATP-independent phospholipid scramblase (PLSCR1) is, at least in part, responsible for surface exposure of phosphatidylserine and the collapse of plasma membrane asymmetry in injured or apoptotic cells. To shed some light on mechanisms with a potential to lead to apoptotic death of human neurones following ischemic/hypoxic injury, we examined the immunoreactivity of hippocampal neurones for PLSCR1, caspase-3, cytochrome c and DNA-fragmentation in 22 individuals with clinically symptomatic cerebral ischemia after cardiac arrest or severe hypotension. WE FOUND: (1) significant differences in the percentage of PLSCR1-immunoreactive neurones between controls and short survivors; statistically strong differences between the frequency of immunoreactive neurones among the subfields studied with lowest levels in the CA3; preferential distribution of immunoreactive neurones in controls within the regio entorhinalis, subfield CA1, and hilum. Additionally, these areas exhibited staining of fibre bundles which probably correspond to perforant path, alvear path and collateral's of Schaffer, (2) caspase-3 was upregulated in a region-specific manner with marked activation in the selectively vulnerable hippocampal areas, (3) cytochrome c was redistributed, (4) DNA-fragmentation represented by scattered TUNEL-positive cells increased predominantly during the first 3 days after ischemia, and particularly in the regions of greatest susceptibility to hypoxic injury. This study presents the first evidence that PLSCR1, and probably remodelling of plasma membrane phospholipids (PL), plays a role in ischemic injury in the human hippocampus.
Collapse
Affiliation(s)
- A Rami
- Anatomisches Institut III, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
43
|
Abstract
T lymphocyte death is essential for proper function of the immune system. During the decline of an immune response, most of the activated T cells die. Cell death is also responsible for eliminating autoreactive lymphocytes. Although recent studies have focused on caspase-dependent apoptotic signals, much evidence now shows that caspase- independent, necrotic cell death pathways are as important. An understanding of the molecular control of these alternative pathways is beginning to emerge. Damage of organelles including mitochondria, endoplasmic reticulum or lysozymes, leading to an increase in calcium and reactive oxygen species and the release of effector proteins, is frequently involved in caspase-independent cell death.
Collapse
Affiliation(s)
- Marja Jäättelä
- Apoptosis Laboratory, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
44
|
Chang S, Popowich Y, Greco RS, Haimovich B. Neutrophil survival on biomaterials is determined by surface topography. J Vasc Surg 2003; 37:1082-90. [PMID: 12756358 DOI: 10.1067/mva.2003.160] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Cardiovascular device-centered infections are a major cause of hospital morbidity, mortality, and expense. Caused by opportunistic bacteria, this phenomenon is thought to arise because of a defect in neutrophil bacterial killing. We have shown that neutrophils that adhere to polystyrene remain viable, whereas neutrophils that adhere to the vascular biomaterials expanded polytetrafluoroethylene (ePTFE) and Dacron undergo a rapid nonapoptotic death. This study was designed to test the hypothesis that surface topography is a determinant of the nonapoptotic death response of neutrophils to biomaterials. METHODS We took advantage of the ease with which a polystyrene surface can be manipulated to examine the effect of surface topography on neutrophil viability. Neutrophils were exposed to smooth or roughened polystyrene surfaces both in vivo and in vitro. Changes in cell membrane permeability and production of reactive oxygen species by individual cells were monitored with fluorescent dyes. RESULTS Host cells and isolated human neutrophils died rapidly after adhesion to roughened polystyrene. Neutrophils adherent to roughened surfaces produced more reactive oxygen intermediates than those adherent to smooth surfaces and were first to die. The cell death response precipitated by expanded polytetrafluoroethylene, Dacron, or the roughened surfaces was significantly reduced with treatment of the neutrophils with catalase, diphenylene iodonium, or the src kinase inhibitor PP2 before adhesion. CONCLUSIONS Neutrophil adhesion to roughened materials triggers rapid production of reactive oxygen species and precipitates a nonapoptotic cell death. Understanding the material properties that trigger these responses is essential to development of the next generation of implantable biomaterials.
Collapse
Affiliation(s)
- Susan Chang
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | | | |
Collapse
|
45
|
Liu CY, Takemasa A, Liles WC, Goodman RB, Jonas M, Rosen H, Chi E, Winn RK, Harlan JM, Chuang PI. Broad-spectrum caspase inhibition paradoxically augments cell death in TNF-alpha -stimulated neutrophils. Blood 2003; 101:295-304. [PMID: 12393619 DOI: 10.1182/blood-2001-12-0266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is increasingly clear that there are caspase-dependent and -independent mechanisms for the execution of cell death and that the utilization of these mechanisms is stimulus- and cell type-dependent. Intriguingly, broad-spectrum caspase inhibition enhances death receptor agonist-induced cell death in a few transformed cell lines. Endogenously produced oxidants are causally linked to necroticlike cell death in these instances. We report here that broad-spectrum caspase inhibitors effectively attenuated apoptosis induced in human neutrophils by incubation with agonistic anti-Fas antibody or by coincubation with tumor necrosis factor-alpha (TNF-alpha) and cycloheximide ex vivo. In contrast, the same caspase inhibitors could augment cell death upon stimulation by TNF-alpha alone during the 6-hour time course examined. Caspase inhibitor-sensitized, TNF-alpha-stimulated, dying neutrophils exhibit apoptoticlike and necroticlike features. This occurred without apparent alteration in nuclear factor-kappaB (NF-kappaB) activation. Nevertheless, intracellular oxidant production was enhanced and sustained in caspase inhibitor-sensitized, TNF-alpha-stimulated neutrophils obtained from healthy subjects. However, despite reduced or absent intracellular oxidant production following TNF-alpha stimulation, cell death was also augmented in neutrophils isolated from patients with chronic granulomatous disease incubated with a caspase inhibitor and TNF-alpha. These results demonstrate that, in human neutrophils, TNF-alpha induces a caspase-independent but protein synthesis-dependent cell death signal. Furthermore, they suggest that TNF-alpha activates a caspase-dependent pathway that negatively regulates reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity.
Collapse
Affiliation(s)
- Chien-Ying Liu
- Department of Medicine, Pathology, and Surgery, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Davidson WF, Haudenschild C, Kwon J, Williams MS. T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6218-30. [PMID: 12444127 DOI: 10.4049/jimmunol.169.11.6218] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.
Collapse
Affiliation(s)
- Wendy F Davidson
- Department of Immunology, Holland Laboratory, American Red Cross, Rockville, MD 20855, USA.
| | | | | | | |
Collapse
|
47
|
Willermain F, Caspers-Velu L, Nowak B, Stordeur P, Mosselmans R, Salmon I, Velu T, Bruyns C. Retinal pigment epithelial cells phagocytosis of T lymphocytes: possible implication in the immune privilege of the eye. Br J Ophthalmol 2002; 86:1417-21. [PMID: 12446378 PMCID: PMC1771383 DOI: 10.1136/bjo.86.12.1417] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM To investigate the capability of retinal pigment epithelium (RPE) cells to phagocytose T lymphocytes and to further analyse the immunobiological consequences of this phagocytosis. METHODS Human RPE cells pretreated or not by cytochalasin, a phagocytosis inhibitor, were co-cultured with T lymphocytes for different time points. Phagocytosis was investigated by optic microscopy, electron microscopy, and flow cytometry. T cell proliferation was measured by (3)H thymidine incorporation. RPE interleukin 1beta mRNA expression was quantified by real time PCR. RESULTS RPE cells phagocytose apoptotic and non-apoptotic T lymphocytes, in a time dependent manner. This is an active process mediated through actin polymerisation, blocked by cytochalasin E treatment. Inhibition of RPE cell phagocytosis capabilities within RPE-T cell co-cultures led to an increase of lectin induced T cell proliferation and an upregulation of interleukin 1beta mRNA expression in RPE cells. CONCLUSIONS It is postulated that T lymphocyte phagocytosis by RPE cells might, by decreasing the total number of T lymphocytes, removing apoptotic lymphocytes, and downregulating the expression of IL-1beta, participate in vivo in the induction and maintenance of the immune privilege of the eye, preventing the development of intraocular inflammation.
Collapse
Affiliation(s)
- F Willermain
- Interdisciplinary Research Institute (IRIBHN), Université Libre de Bruxelles, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ferraro-Peyret C, Quemeneur L, Flacher M, Revillard JP, Genestier L. Caspase-independent phosphatidylserine exposure during apoptosis of primary T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4805-10. [PMID: 12391190 DOI: 10.4049/jimmunol.169.9.4805] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure of phosphatidylserine (PS) on the outer leaflet of the plasma membrane is a key feature of apoptosis. As the signals underlying these phenomena are unknown, it is generally assumed that PS exposure is a consequence of caspase activation, another hallmark of apoptosis. In this study we investigated the role of caspases in PS externalization during apoptosis of activated PBL triggered by drugs (etoposide, staurosporine), CD95 engagement, or IL-2 withdrawal. Anti-CD95 mAb induces a rapid activation of caspases, followed by PS exposure and mitochondrial transmembrane potential (DeltaPsim) disruption. In contrast, etoposide (ETO), staurosporine (STS), or IL-2 withdrawal triggers concomitant caspase activation, PS exposure, and DeltaPsim disruption. Such kinetics suggest that PS exposure could be independent of caspase activation. As expected, in activated PBL treated by anti-CD95 mAb, the pan-caspase inhibitor Cbz-Val-Ala-Asp(OMe)-fluoromethylketone and the caspase-8 inhibitor Cbz-Leu-Glu-Thr-Asp(OMe)-fluoromethylketone, but not the caspase-9 inhibitor Cbz-Leu-Glu-His-Asp(OMe)-fluoromethylketone, inhibit PS externalization and DeltaPsim disruption. Surprisingly, during apoptosis induced by ETO, STS, or IL-2 withdrawal, none of those caspase inhibitors prevents PS externalization or DeltaPsim disruption, whereas they all inhibit DNA fragmentation as well as the morphological features of nuclear apoptosis. In Jurkat and H9 T cell lines, as opposed to activated PBL, PS exposure is inhibited by Cbz-Val-Ala-Asp(OMe)-fluoromethylketone during apoptosis induced by CD95 engagement, ETO, or STS. Thus, caspase-independent PS exposure occurs in primary T cells during apoptosis induced by stimuli that do not trigger death receptors.
Collapse
Affiliation(s)
- Carole Ferraro-Peyret
- Laboratoire d'Immunopharmacologie, Institut National de la Santé et de la Recherche Médicale, Unité 503, Centre d'Etudes et de Recherche en Virologie et Immunologie, Lyon, France
| | | | | | | | | |
Collapse
|
49
|
Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL, Sarfati M. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood 2002; 100:2882-90. [PMID: 12351399 DOI: 10.1182/blood-2001-12-0217] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dying cells, apoptotic or necrotic, are swiftly eliminated by professional phagocytes. We previously reported that CD47 engagement by CD47 mAb or thrombospondin induced caspase-independent cell death of chronic lymphocytic leukemic B cells (B-CLL). Here we show that human immature dendritic cells (iDCs) phagocytosed the CD47 mAb-killed leukemic cells in the absence of caspases 3, 7, 8, and 9 activation in the malignant lymphocytes. Yet the dead cells displayed the cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, and decreased mitochondrial transmembrane potential (DeltaPsim). CD47 mAb-induced cell death also occurred in normal resting and activated lymphocytes, with B-CLL cells demonstrating the highest susceptibility. Importantly, iDCs and CD34(+) progenitors were resistant. Structure-function studies in cell lines transfected with various CD47 chimeras demonstrated that killing exclusively required the extracellular and transmembrane domains of the CD47 molecule. Cytochalasin D, an inhibitor of actin polymerization, and antimycin A, an inhibitor of mitochondrial electron transfer, completely suppressed CD47-induced phosphatidylserine exposure. Interestingly, CD47 ligation failed to induce cell death in mononuclear cells isolated from Wiskott-Aldrich syndrome (WAS) patients, suggesting the involvement of Cdc42/WAS protein (WASP) signaling pathway. We propose that CD47-induced caspase-independent cell death be mediated by cytoskeleton reorganization. This form of cell death may be relevant to maintenance of homeostasis and as such might be explored for the development of future therapeutic approaches in lymphoid malignancies.
Collapse
Affiliation(s)
- Véronique Mateo
- Centre de Recherche du Centre Hospitalier Université Montreal, Laboratoire d' Immunorégulation, Université de Montréal, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.
Collapse
Affiliation(s)
- Eric H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|