1
|
Luna A, Chou K, Wragg KM, Worley MJ, Paruchuri N, Zhou X, Blin MG, Moore BB, Salmon M, Goldstein DR, Deng JC. Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice. Aging Cell 2025; 24:e14437. [PMID: 39754380 PMCID: PMC11984683 DOI: 10.1111/acel.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice. Here, we tested if the aged mice survival or weight loss IAV infections could be improved using three different senolytic regimens. We found that neither dasatinib plus quercetin, fisetin, nor ABT-263 improved outcomes. Furthermore, both dasatanib plus quercetin and fisetin treatments further suppressed immune infiltration than aging alone. Additionally, our data show that the short-term senolytic agents do not reduce senescent markers in our aged mouse model. These findings suggest that acute senolytic treatments do not universally reverse aging related immune phenotype against all respiratory viral infections.
Collapse
Affiliation(s)
- Adrian Luna
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Kai‐Neng Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathleen M. Wragg
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew J. Worley
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nikhil Paruchuri
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofeng Zhou
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel G. Blin
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Veterans Affairs Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| |
Collapse
|
2
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
3
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
4
|
Lam JH, Baumgarth N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses. Nat Commun 2023; 14:3979. [PMID: 37407556 DOI: 10.1038/s41467-023-39734-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Extrafollicular plasmablast responses (EFRs) are considered to generate antibodies of low affinity that offer little protection from infections. Paradoxically, high avidity antigen-B cell receptor engagement is thought to be the main driver of B cell differentiation, whether in EFRs or slower-developing germinal centers (GCs). Here we show that influenza infection rapidly induces EFRs, generating protective antibodies via Toll-like receptor (TLR)-mediated mechanisms that are both B cell intrinsic and extrinsic. B cell-intrinsic TLR signals support antigen-stimulated B cell survival, clonal expansion, and the differentiation of B cells via induction of IRF4, the master regulator of B cell differentiation, through activation of NF-kB c-Rel. Provision of sustained TLR4 stimulation after immunization shifts the fate of virus-specific B cells towards EFRs instead of GCs, prompting rapid antibody production and improving their protective capacity over antigen/alum administration alone. Thus, inflammatory signals act as B cell fate-determinants for the rapid generation of protective antiviral extrafollicular responses.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, University of California Davis, Davis, USA
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, USA.
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA.
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA.
- W. Harry Feinstone Dept Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, E4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Nguyen TQ, Rollon R, Choi YK. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021; 13:1011. [PMID: 34071367 PMCID: PMC8228315 DOI: 10.3390/v13061011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model-including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates-for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.
Collapse
Affiliation(s)
- Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
6
|
Bhattacharyya ND, Counoupas C, Daniel L, Zhang G, Cook SJ, Cootes TA, Stifter SA, Bowen DG, Triccas JA, Bertolino P, Britton WJ, Feng CG. TCR Affinity Controls the Dynamics but Not the Functional Specification of the Antimycobacterial CD4 + T Cell Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2875-2887. [PMID: 34049970 DOI: 10.4049/jimmunol.2001271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
The quality of T cell responses depends on the lymphocytes' ability to undergo clonal expansion, acquire effector functions, and traffic to the site of infection. Although TCR signal strength is thought to dominantly shape the T cell response, by using TCR transgenic CD4+ T cells with different peptide:MHC binding affinity, we reveal that TCR affinity does not control Th1 effector function acquisition or the functional output of individual effectors following mycobacterial infection in mice. Rather, TCR affinity calibrates the rate of cell division to synchronize the distinct processes of T cell proliferation, differentiation, and trafficking. By timing cell division-dependent IL-12R expression, TCR affinity controls when T cells become receptive to Th1-imprinting IL-12 signals, determining the emergence and magnitude of the Th1 effector pool. These findings reveal a distinct yet cooperative role for IL-12 and TCR binding affinity in Th1 differentiation and suggest that the temporal activation of clones with different TCR affinity is a major strategy to coordinate immune surveillance against persistent pathogens.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Lina Daniel
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Guoliang Zhang
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Stuart J Cook
- Immune Imaging Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Taylor A Cootes
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sebastian A Stifter
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - David G Bowen
- Liver Immunology Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; and
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick Bertolino
- Liver Immunology Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; and
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; .,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Lack of B Lymphocytes Enhances CD8 T Cell-Mediated Resistance against Respiratory Viral Infection but Compromises Memory Cell Formation. J Virol 2020; 94:JVI.01877-19. [PMID: 31723023 DOI: 10.1128/jvi.01877-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/20/2022] Open
Abstract
Following a respiratory virus infection, CXCR3hi CX3CR1lo and CXCR3lo CX3CR1hi CD8 T cells localize to different compartments within the lung and play an important role in host resistance, but mechanisms governing their optimal generation are poorly defined. We serendipitously found that B cell-deficient (μMT-/-) mice were highly resistant to lethal infection with a virulent poxvirus strain and that depletion of CD8 T cells rendered these mice susceptible to infection. B cells were not required for the expansion of virus-specific CD8 T cells, but a greater proportion of activated CD8 T cells acquired an effector-like CXCR3lo CX3CR1hi phenotype in the absence of B cells. After recovery from infection, CD8 T cells in μMT-/- mice contracted normally but failed to survive and seed the memory cell pool in both the lungs and spleen. These findings reveal a previously unappreciated role for B cells in regulating the balance between CD8 T cell-mediated resistance against respiratory viral infection and memory cell development.IMPORTANCE B cells play critical role in host resistance against many respiratory viral infections. However, the role of B cells beyond antibody-producing cells is less well defined. In this study, we made a surprising observation that mice lacking B cells were more resistant to respiratory infection with vaccinia virus than wild-type mice. This enhanced resistance was mediated by CD8 T cells because when we depleted CD8 T cells in B cell-deficient mice, these mice were unable to survive the infection. Interestingly, CD8 T cells in B cell-deficient mice were skewed more toward effector phenotype and less toward memory phenotype, which resulted in severely compromised memory CD8 T cell development. Thus, our study shows a novel role of B cells as regulators of CD8 T cell-mediated host resistance and memory CD8 T cell formation during respiratory viral infection.
Collapse
|
9
|
Lam JH, Baumgarth N. The Multifaceted B Cell Response to Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:351-359. [PMID: 30617116 PMCID: PMC6327962 DOI: 10.4049/jimmunol.1801208] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Protection from yearly recurring, highly acute infections with a pathogen that rapidly and continuously evades previously induced protective neutralizing Abs, as seen during seasonal influenza virus infections, can be expected to require a B cell response that is too highly variable, able to adapt rapidly, and able to reduce morbidity and death when sterile immunity cannot be garnered quickly enough. As we outline in this Brief Review, the influenza-specific B cell response is exactly that: it is multifaceted, involves both innate-like and conventional B cells, provides early and later immune protection, employs B cells with distinct BCR repertoires and distinct modes of activation, and continuously adapts to the ever-changing virus while enhancing overall protection. A formidable response to a formidable pathogen.
Collapse
Affiliation(s)
- Jonathan H Lam
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616;
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
10
|
The impact of aging on CD4 + T cell responses to influenza infection. Biogerontology 2018; 19:437-446. [PMID: 29616390 PMCID: PMC6170716 DOI: 10.1007/s10522-018-9754-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
CD4+ T cells are important for generating high quality and robust immune responses to influenza infection. Immunosenescence that occurs with aging, however, compromises the ability of CD4+ T cells to differentiate into functional subsets resulting in a multitude of dysregulated responses namely, delayed viral clearance and prolonged inflammation leading to increased pathology. Current research employing animal models and human subjects has provided new insights into the description and mechanisms of age-related CD4+ T cell changes. In this review, we will discuss the consequences of aging on CD4+ T cell differentiation and function and how this influences the initial CD4+ T cell effector responses to influenza infection. Understanding these age-related alterations will aid in the pharmacological development of therapeutic treatments and improved vaccination strategies for the vulnerable elderly population.
Collapse
|
11
|
Liu Q, Zhou S, Fan C, Huang W, Li Q, Liu S, Wu X, Li B, Wang Y. Biodistribution and residence time of adenovector serotype 5 in normal and immunodeficient mice and rats detected with bioluminescent imaging. Sci Rep 2017; 7:3597. [PMID: 28620164 PMCID: PMC5472566 DOI: 10.1038/s41598-017-03852-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
As concerns increase about adenovirus type 5 (Ad5) being a safe gene transfer vector, it is important to evaluate its distribution, residence time, and possible toxicity in immunodeficient populations. To characterize the potential risk associated with different Ad5 vector delivery modes, we used immunocompetent and immunodeficient Rag2 -/- animals to establish mouse and rat models that could be monitored with bioluminescent imaging following intramuscular or intravascular infection with an engineered replication-incompetent Ad5 virus carrying the firefly luciferase gene (Ad5-Fluc). The Ad5 vector was less well-tolerated by Rag2 -/- animals than by wildtype ones, with delayed residence time, wider virus dissemination, less weight gain, and relatively severe pathological changes. In intravascularly Ad5-Fluc-infected Rag2 -/- mice, systemic virus dissemination extended from the abdomen to the limbs and head on day 9 post-infection. Additionally, significant increases in plasma TNF-α and IFN-γ, which may be important factors in the heightened immunopathology in the liver and brain, were detected in the Rag2 -/- mice 30 days after intravascular delivery. The Ad5 vector was better tolerated after intramuscular delivery than after intravascular delivery. Ad5-Fluc/Rag2 -/- mice and rats can be used as reliable models of an immunodeficient population in which to evaluate the safety of Ad5-vectored vaccines or gene therapy products.
Collapse
Affiliation(s)
- Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Baowen Li
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
12
|
Zarnitsyna VI, Handel A, McMaster SR, Hayward SL, Kohlmeier JE, Antia R. Mathematical Model Reveals the Role of Memory CD8 T Cell Populations in Recall Responses to Influenza. Front Immunol 2016; 7:165. [PMID: 27242779 PMCID: PMC4861172 DOI: 10.3389/fimmu.2016.00165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
The current influenza vaccine provides narrow protection against the strains included in the vaccine, and needs to be reformulated every few years in response to the constantly evolving new strains. Novel approaches are directed toward developing vaccines that provide broader protection by targeting B and T cell epitopes that are conserved between different strains of the virus. In this paper, we focus on developing mathematical models to explore the CD8 T cell responses to influenza, how they can be boosted, and the conditions under which they contribute to protection. Our models suggest that the interplay between spatial heterogeneity (with the virus infecting the respiratory tract and the immune response being generated in the secondary lymphoid organs) and T cell differentiation (with proliferation occurring in the lymphoid organs giving rise to a subpopulation of resident T cells in the respiratory tract) is the key to understand the dynamics of protection afforded by the CD8 T cell response to influenza. Our results suggest that the time lag for the generation of resident T cells in the respiratory tract and their rate of decay following infection are the key factors that limit the efficacy of CD8 T cell responses. The models predict that an increase in the level of central memory T cells leads to a gradual decrease in the viral load, and, in contrast, there is a sharper protection threshold for the relationship between the size of the population of resident T cells and protection. The models also suggest that repeated natural influenza infections cause the number of central memory CD8 T cells and the peak number of resident memory CD8 T cells to reach their plateaus, and while the former is maintained, the latter decays with time since the most recent infection.
Collapse
Affiliation(s)
- Veronika I Zarnitsyna
- Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, GA , USA
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia , Athens, GA , USA
| | - Sean R McMaster
- Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, GA , USA
| | - Sarah L Hayward
- Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, GA , USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, GA , USA
| | - Rustom Antia
- Department of Biology, Emory University , Atlanta, GA , USA
| |
Collapse
|
13
|
Lethal coinfection of influenza virus and Streptococcus pneumoniae lowers antibody response to influenza virus in lung and reduces numbers of germinal center B cells, T follicular helper cells, and plasma cells in mediastinal lymph Node. J Virol 2014; 89:2013-23. [PMID: 25428873 DOI: 10.1128/jvi.02455-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Secondary Streptococcus pneumoniae infection after influenza is a significant clinical complication resulting in morbidity and sometimes mortality. Prior influenza virus infection has been demonstrated to impair the macrophage and neutrophil response to the subsequent pneumococcal infection. In contrast, how a secondary pneumococcal infection after influenza can affect the adaptive immune response to the initial influenza virus infection is less well understood. Therefore, this study focuses on how secondary pneumococcal infection after influenza may impact the humoral immune response to the initial influenza virus infection in a lethal coinfection mouse model. Compared to mice infected with influenza virus alone, mice coinfected with influenza virus followed by pneumococcus had significant body weight loss and 100% mortality. In the lung, lethal coinfection significantly increased virus titers and bacterial cell counts and decreased the level of virus-specific IgG, IgM, and IgA, as well as the number of B cells, CD4 T cells, and plasma cells. Lethal coinfection significantly reduced the size and weight of spleen, as well as the number of B cells along the follicular developmental lineage. In mediastinal lymph nodes, lethal coinfection significantly decreased germinal center B cells, T follicular helper cells, and plasma cells. Adoptive transfer of influenza virus-specific immune serum to coinfected mice improved survival, suggesting the protective functions of anti-influenza virus antibodies. In conclusion, coinfection reduced the B cell response to influenza virus. This study helps us to understand the modulation of the B cell response to influenza virus during a lethal coinfection. IMPORTANCE Secondary pneumococcal infection after influenza virus infection is an important clinical issue that often results in excess mortality. Since antibodies are key mediators of protection, this study aims to examine the antibody response to influenza virus and demonstrates that lethal coinfection reduced the B cell response to influenza virus. This study helps to highlight the complexity of the modulation of the B cell response in the context of coinfection.
Collapse
|
14
|
Coinfection with Streptococcus pneumoniae modulates the B cell response to influenza virus. J Virol 2014; 88:11995-2005. [PMID: 25100838 DOI: 10.1128/jvi.01833-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pathogen-specific antibodies (Abs) protect against respiratory infection with influenza A virus (IAV) and Streptococcus pneumoniae and are the basis of effective vaccines. Sequential or overlapping coinfections with both pathogens are common, yet the impact of coinfection on the generation and maintenance of Ab responses is largely unknown. We report here that the B cell response to IAV is altered in mice coinfected with IAV and S. pneumoniae and that this response differs, depending on the order of pathogen exposure. In mice exposed to S. pneumoniae prior to IAV, the initial virus-specific germinal center (GC) B cell response is significantly enhanced in the lung-draining mediastinal lymph node and spleen, and there is an increase in CD4(+) T follicular helper (TFH) cell numbers. In contrast, secondary S. pneumoniae infection exaggerates early antiviral antibody-secreting cell formation, and at later times, levels of GCs, TFH cells, and antiviral serum IgG are elevated. Mice exposed to S. pneumoniae prior to IAV do not maintain the initially robust GC response in secondary lymphoid organs and exhibit reduced antiviral serum IgG with diminished virus neutralization activity a month after infection. Our data suggest that the history of pathogen exposures can critically affect the generation of protective antiviral Abs and may partially explain the differential susceptibility to and disease outcomes from IAV infection in humans. Importance: Respiratory tract coinfections, specifically those involving influenza A viruses and Streptococcus pneumoniae, remain a top global health burden. We sought to determine how S. pneumoniae coinfection modulates the B cell immune response to influenza virus since antibodies are key mediators of protection.
Collapse
|
15
|
Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci 2014; 97:412-21. [PMID: 25000875 DOI: 10.1016/j.rvsc.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system.
Collapse
Affiliation(s)
- M Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - K Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - I Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - C Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Z Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
16
|
Deng N, Weaver JM, Mosmann TR. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFNγ- Thpp cells. PLoS One 2014; 9:e95986. [PMID: 24788814 PMCID: PMC4006810 DOI: 10.1371/journal.pone.0095986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.
Collapse
Affiliation(s)
- Nan Deng
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jason M. Weaver
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Epstein SL. Control of influenza virus infection by immunity to conserved viral features. Expert Rev Anti Infect Ther 2014; 1:627-38. [PMID: 15482160 DOI: 10.1586/14787210.1.4.627] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza has circulated among humans for centuries and kills more people than many newly emerging diseases. The present methods for control of influenza are not adequate, especially for dealing with a pandemic. In the face of a rapidly spreading outbreak, a race to isolate the virus and prepare a vaccine would probably not succeed in time to avoid great losses. Thus, additional anti-infection strategies are needed. Broad cross-protection against widely divergent influenza A subtypes is readily achieved in animals by several means of immunization. How does cross-protection work in animals, and can we apply what we have learned about it to induce broad cross-protection in humans?
Collapse
Affiliation(s)
- Suzanne L Epstein
- Laboratory of Immunology and Developmental Biology, Division of Cellular and Gene Therapies, HFM-730, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, USA.
| |
Collapse
|
18
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
19
|
Seah SGK, Brady JL, Carrington EM, Ng WC, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Lew AM, Zhan Y. Influenza-induced, helper-independent CD8+ T cell responses use CD40 costimulation at the late phase of the primary response. J Leukoc Biol 2012; 93:145-54. [PMID: 23108101 DOI: 10.1189/jlb.0612266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper-dependent pathway of priming CD8(+) T cells involves "licensing" of DCs by CD40L on CD4(+) T cells. The helper-independent ("helpless") pathways elicited by many viruses, including influenza, are less widely understood. We have postulated that CD40L can be up-regulated on DCs by such viruses, and this promotes priming of CD8(+) T cells via CD40. Most studies on costimulation have been performed in the presence of CD4(+) T cells, and so the role of CD40L costimulation under helpless circumstances has not been fully elucidated. Here, we investigated such a role for CD40L using CD40L KO mice. Although the number of influenza-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells, it was markedly decreased in the absence of CD40L. Proliferation (the number of CD44(+)BrdU(+) influenza-specific CD8(+) T cells) in the primary response was diminished in CD40L KO mice at Day 8 but not at Day 5 after infection. MLR studies indicated that CD40L expression on DCs was critical for CD8(+) T cell activation. Adoptive transfer of CD40 KO CD8(+) T cells compared with WT cells confirmed that CD40 on such cells was critical for the generation of primary anti-influenza CD8(+) T cell responses. The late effect also corresponded with the late expression of CD40 by influenza-specific CD8(+) T cells. We suggest that costimulation via CD40L on DCs and CD40 on CD8(+) T cells is important in optimizing primary CD8(+) T cell responses during influenza infection.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 2012; 11:349-66. [PMID: 22380826 DOI: 10.1586/erv.11.192] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AS03 is an Adjuvant System composed of α-tocopherol, squalene and polysorbate 80 in an oil-in-water emulsion. In various nonclinical and clinical studies, high levels of antigen-specific antibodies were obtained after administration of an AS03-adjuvanted vaccine, permitting antigen-sparing strategies. AS03 has been shown to enhance the vaccine antigen-specific adaptive response by activating the innate immune system locally and by increasing antigen uptake and presentation in draining lymph nodes, a process that is modulated by the presence of α-tocopherol in AS03. In nonclinical models of the AS03-adjuvanted prepandemic H5N1 influenza vaccine, increased levels of anti-influenza antibody afforded protection against disease and against virus replication of influenza strains homologous and heterologous to the vaccine strain. By incorporating AS03 in the pandemic H1N1/2009 vaccine, vaccine immunogenicity was increased compared with nonadjuvanted H1N1 vaccines. High H1N1/2009/AS03 vaccine effectiveness was demonstrated in several assessments in multiple populations. Altogether, the nonclinical and clinical data illustrate the ability of AS03 to induce superior adaptive responses against the vaccine antigen, principally in terms of antibody levels and immune memory. In general, these results support the concept of Adjuvant Systems as a plausible approach to develop new effective vaccines.
Collapse
|
21
|
Seah SGK, Carrington EM, Ng WC, Belz GT, Brady JL, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Zhan Y, Lew AM. Unlike CD4+ T-cell help, CD28 costimulation is necessary for effective primary CD8+ T-cell influenza-specific immunity. Eur J Immunol 2012; 42:1744-54. [PMID: 22585421 DOI: 10.1002/eji.201142211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/30/2012] [Accepted: 03/23/2012] [Indexed: 11/06/2022]
Abstract
The importance of costimulation on CD4(+) T cells has been well documented. However, primary CTLs against many infections including influenza can be generated in the absence of CD4(+) T-cell help. The role of costimulation under such "helpless" circumstances is not fully elucidated. Here, we investigated such a role for CD28 using CTLA4Ig transgenic (Tg) mice. To ensure valid comparison across the genotypes, we showed that all mice had similar naïve precursor frequencies and similar peak viral loads. In the absence of help, viral clearance was significantly reduced in CTLA4Ig Tg mice compared with WT mice. CD44(+) BrdU(+) influenza-specific CD8(+) T cells were diminished in CTLA4Ig Tg mice at days 5 and 8 postinfection. Adoptive transfer of ovalbumin-specific transgenic CD8(+) T cells (OT-I)-I cells into WT or CTLA4Ig Tg mice revealed that loss of CD28 costimulation resulted in impairment in OT-I cell division. As shown previously, neither viral clearance nor the generation of influenza-specific CD8(+) T cells was affected by the absence of CD4(+) T cells alone. In contrast, both were markedly impaired by CD28 blockade of "helpless" CD8(+) T cells. We suggest that direct CD28 costimulation of CD8(+) T cells is more critical in their priming during primary influenza infection than previously appreciated.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Giles BM, Bissel SJ, DeAlmeida DR, Wiley CA, Ross TM. Antibody breadth and protective efficacy are increased by vaccination with computationally optimized hemagglutinin but not with polyvalent hemagglutinin-based H5N1 virus-like particle vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:128-39. [PMID: 22190399 PMCID: PMC3272934 DOI: 10.1128/cvi.05533-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
One of the challenges for developing an H5N1 influenza vaccine is the diversity of antigenically distinct isolates within this subtype. Previously, our group described a novel hemagglutinin (HA) derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA, when used as an immunogen, elicits a broad antibody response against H5N1 isolates from different clades. In this report, the immune responses elicited by the COBRA HA virus-like particle (VLP) vaccine were compared to responses elicited by a mixture of VLPs expressing representative HA molecules from clade 2.1, 2.2, and 2.3 primary H5N1 isolates (polyvalent). The COBRA HA VLP vaccine elicited higher-titer antibodies to a panel of H5N1 HA proteins than did the other VLPs. Both COBRA and polyvalent vaccines protected vaccinated mice and ferrets from experimental infection with highly lethal H5N1 influenza viruses, but COBRA-vaccinated animals had decreased viral replication, less inflammation in the lungs of mice, and reduced virus recovery in ferret nasal washes. Both vaccines had similar cellular responses postchallenge, indicating that higher-titer serum antibodies likely restrict the duration of viral replication. Furthermore, passively transferred immune serum from the COBRA HA VLP-vaccinated mice protected recipient animals more efficiently than immune serum from polyvalent-vaccinated mice. This is the first report comparing these two vaccine strategies. The single COBRA HA antigen elicited a broader antibody response and reduced morbidity and viral titers more effectively than a polyvalent mixture of primary H5N1 HA antigens.
Collapse
Affiliation(s)
- Brendan M. Giles
- Center for Vaccine Research
- Graduate Program in Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie J. Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Clayton A. Wiley
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted M. Ross
- Center for Vaccine Research
- Department of Microbiology and Molecular Genetics
- Graduate Program in Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Wolf AI, Mozdzanowska K, Quinn WJ, Metzgar M, Williams KL, Caton AJ, Meffre E, Bram RJ, Erickson LD, Allman D, Cancro MP, Erikson J. Protective antiviral antibody responses in a mouse model of influenza virus infection require TACI. J Clin Invest 2011; 121:3954-64. [PMID: 21881204 DOI: 10.1172/jci57362] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022] Open
Abstract
Antiviral Abs, for example those produced in response to influenza virus infection, are critical for virus neutralization and defense against secondary infection. While the half-life of Abs is short, Ab titers can last a lifetime due to a subset of the Ab-secreting cells (ASCs) that is long lived. However, the mechanisms governing ASC longevity are poorly understood. Here, we have identified a critical role for extrinsic cytokine signals in the survival of respiratory tract ASCs in a mouse model of influenza infection. Irradiation of mice at various time points after influenza virus infection markedly diminished numbers of lung ASCs, suggesting that they are short-lived and require extrinsic factors in order to persist. Neutralization of the TNF superfamily cytokines B lymphocyte stimulator (BLyS; also known as BAFF) and a proliferation-inducing ligand (APRIL) reduced numbers of antiviral ASCs in the lungs and bone marrow, whereas ASCs in the spleen and lung-draining lymph node were surprisingly unaffected. Mice deficient in transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), a receptor for BLyS and APRIL, mounted an initial antiviral B cell response similar to that generated in WT mice but failed to sustain protective Ab titers in the airways and serum, leading to increased susceptibility to secondary viral challenge. These studies highlight the importance of TACI signaling for the maintenance of ASCs and protection against influenza virus infection.
Collapse
Affiliation(s)
- Amaya I Wolf
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith JH, Nagy T, Barber J, Brooks P, Tompkins SM, Tripp RA. Aerosol inoculation with a sub-lethal influenza virus leads to exacerbated morbidity and pulmonary disease pathogenesis. Viral Immunol 2011; 24:131-42. [PMID: 21449723 DOI: 10.1089/vim.2010.0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mouse model has been extensively used to investigate disease intervention approaches and correlates of immunity following influenza virus infection. The majority of studies examining cross-reactive and protective immune responses have used intranasal (IN) virus inoculation; however, infectious aerosols are a common means of transmitting influenza in the human population. In this study, IN and aerosol routes of inoculation were compared and end-points of immunity and disease pathogenesis were evaluated in mice using mouse-adapted H3N2 A/Aichi/2/68 (x31). Aerosol inoculation with sub-lethal x31 levels caused more robust infection, which was characterized by enhanced morbidity, mortality, pulmonary cell infiltration, and inflammation, compared to IN-inoculated mice, as well as higher levels of IL-6 expression in the lung. Treatment with IL-6-blocking antibodies reduced pulmonary infiltrates and lung pathology in aerosol-inoculated mice. This study shows that aerosol inoculation results in a distinctive host response and disease outcome compared to IN inoculation, and suggests a possible role for IL-6 in lung pathogenesis.
Collapse
|
25
|
Surls J, Nazarov-Stoica C, Kehl M, Casares S, Brumeanu TD. Differential effect of CD4+Foxp3+ T-regulatory cells on the B and T helper cell responses to influenza virus vaccination. Vaccine 2010; 28:7319-30. [DOI: 10.1016/j.vaccine.2010.08.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 01/16/2023]
|
26
|
Wu H, Haist V, Baumgärtner W, Schughart K. Sustained viral load and late death in Rag2-/- mice after influenza A virus infection. Virol J 2010; 7:172. [PMID: 20667098 PMCID: PMC2919473 DOI: 10.1186/1743-422x-7-172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
The importance of the adaptive immune response for secondary influenza infections and protection from a lethal challenge after vaccination has been well documented. However, some controversy still exists concerning the specific involvement of B and T cells during a primary infection. Here, we have followed the survival, weight loss, viral load and lung pathology in Rag2-/- knock-out mice after infection with influenza A virus (H1N1). Infected wild type mice initially lost weight early after infection but then cleared the virus and recovered. Rag2-/- mice, however, showed similar weight loss kinetics in the early stages after infection but weight loss continued post infection and culminated in death. In contrast to wild type mice, Rag2-/- mice were not able to clear the virus, despite an increased inflammatory response. Furthermore, they did not recruit virus-specific lymphocytes into the lung in the later stages after infection and exhibited sustained pulmonary lesions.
Collapse
Affiliation(s)
- Haiya Wu
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
27
|
Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ. Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 2010; 84:6687-98. [PMID: 20410284 PMCID: PMC2903284 DOI: 10.1128/jvi.00266-10] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/08/2010] [Indexed: 01/12/2023] Open
Abstract
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is approximately 1.2 days, and the half-life of free infectious IAV is approximately 4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is approximately 0.5 days, and the average half-life of free infectious virus is approximately 1.8 min. During the adaptive phase, model fitting confirms that CD8(+) CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.
Collapse
Affiliation(s)
- Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Joseph A. Hollenbaugh
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Martin S. Zand
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Tim R. Mosmann
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Alan S. Perelson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Hulin Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - David J. Topham
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
28
|
Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 2010; 84:9217-26. [PMID: 20592069 DOI: 10.1128/jvi.01069-10] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2(-/-) mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-gamma) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.
Collapse
|
29
|
Decman V, Laidlaw BJ, Dimenna LJ, Abdulla S, Mozdzanowska K, Erikson J, Ertl HCJ, Wherry EJ. Cell-intrinsic defects in the proliferative response of antiviral memory CD8 T cells in aged mice upon secondary infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:5151-9. [PMID: 20368274 DOI: 10.4049/jimmunol.0902063] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although previous studies have demonstrated delayed viral clearance and blunted effector T cell responses in aged mice during infection, memory CD8 T cells and especially secondary responses have received less attention. In this study, we show that modest differences in the number of memory CD8 T cells formed in aged versus young animals were associated with altered memory CD8 T cell differentiation. Aged immune mice had increased morbidity and mortality upon secondary viral challenge, suggesting changes in T cell immunity. Indeed, virus-specific memory CD8 T cells from aged mice showed substantially reduced proliferative expansion upon secondary infection using multiple challenge models. In addition, this defect in recall capacity of aged memory CD8 T cells was cell-intrinsic and persisted upon adoptive transfer into young mice. Thus, the poor proliferative potential of memory T cells and altered memory CD8 T cell differentiation could underlie age-related defects in antiviral immunity.
Collapse
Affiliation(s)
- Vilma Decman
- Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shim DH, Ko HJ, Volker G, Potter AA, Mutwiri G, Babiuk LA, Kweon MN. Efficacy of poly[di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine 2010; 28:2311-7. [DOI: 10.1016/j.vaccine.2009.12.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 02/06/2023]
|
31
|
Cytotoxic T cells are the predominant players providing cross-protective immunity induced by {gamma}-irradiated influenza A viruses. J Virol 2010; 84:4212-21. [PMID: 20164231 DOI: 10.1128/jvi.02508-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that a single dose of nonadjuvanted intranasal gamma-irradiated influenza A virus can provide robust protection in mice against both homologous and heterosubtypic challenges, including challenge with an H5N1 avian virus strain. We investigated the mechanism behind the observed cross-protection to define which arms of the adaptive immune response are involved in mediating this protection. Studies with gene knockout mice showed the cross-protective immunity to be mediated mainly by T cells and to be dependent on the cytolytic effector molecule perforin. Adoptive transfer of memory T cells from immunized mice, but not of memory B cells, protected naïve recipients against lethal heterosubtypic influenza virus challenge. Furthermore, gamma-irradiated influenza viruses induced cross-reactive Tc-cell responses but not cross-neutralizing or cross-protective antibodies. In addition, histological analysis showed reduced lung inflammation in vaccinated mice compared to that in unvaccinated controls following heterosubtypic challenge. This reduced inflammation was associated with enhanced early recruitment of T cells, both CD4(+) and CD8(+), and with early influenza virus-specific cytotoxic T-cell responses. Therefore, cross-protective immunity induced by vaccination with gamma-irradiated influenza A virus is mediated mainly by Tc-cell responses.
Collapse
|
32
|
Handel A, Longini IM, Antia R. Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 2010; 7:35-47. [PMID: 19474085 PMCID: PMC2839376 DOI: 10.1098/rsif.2009.0067] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 12/20/2022] Open
Abstract
Although the influenza A virus has been extensively studied, a quantitative understanding of the infection dynamics is still lacking. To make progress in this direction, we designed several mathematical models and compared them with data from influenza A infections of mice. We find that the immune response (IR) plays an important part in the infection dynamics. Both an innate and an adaptive IR are required to provide adequate explanation of the data. In contrast, regrowth of epithelial cells did not seem to be an important mechanism on the time scale of the infection. We also find that different model variants for both innate and adaptive responses fit the data well, indicating the need for additional data to allow further model discrimination.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
33
|
Zinckgraf JW, Sposato M, Zielinski V, Powell D, Treanor JJ, von Hofe E. Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination. Vaccine 2009; 27:5393-401. [PMID: 19596415 DOI: 10.1016/j.vaccine.2009.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 12/17/2022]
Abstract
Prophylactic immunization against influenza infection requires CD4+ T-helper cell activity for optimal humoral and cellular immunity. Currently there is one FDA approved H5N1 subvirion vaccine available, although stockpiles of this vaccine are insufficient for broad population coverage and the vaccine has only demonstrated modest immunogenicity. Specific activation of CD4+ T-helper cells using class II H5N1 HA peptide vaccines may be a useful component in immunization strategy and design. Identification of HLA class II HA epitopes was undertaken in this report by obtaining PBMCs from volunteers previously immunized with an H5N1 inactivated subvirion vaccine, followed by direct ex vivo stimulation of CD4+ T cells against different sources of potential HA class II epitopes. In the 1st round of analysis, 35 donors were tested via IFN-gamma ELISPOT using pools of overlapping HA peptides derived from the H5N1 A/Thailand/4(SP-528)/2004 virus, recombinant H5N1 (rHA) and inactivated H5N1 subvirion vaccine. In addition, a series of algorithm-predicted epitopes coupled with the Ii-Key moiety of the MHC class II-associated invariant chain for enhanced MHC class II charging were also included. Specific responses were observed for all 20 peptide pools, with 6-26% of vaccinated individuals responding to any given pool (donor response frequency) and a magnitude of response ranging from 3- to >10-fold above background levels. Responses were similarly observed with the majority of algorithm-predicted epitopes, with a donor response frequency of up to 29% and a magnitude of response ranging from 3-10-fold (11/24 peptides) to >10-fold above background (7/24 peptides). PBMCs from vaccine recipients that had detectable responses to H5N1 rHA following 1st round analysis were used in a 2nd round of testing to confirm the identity of specific peptides based on the results of the 1st screening. Sixteen individual HA peptides identified from the library elicited CD4+ T cell responses between 3- and >10-fold above background, with two peptides being recognized in 21% of recipients tested. Eight of the putative MHC class II epitopes recognized were found in regions showing partial to significant sequence homology with New Caledonia H1N1 influenza HA, while eight were unique to H5N1 HA. This is the first study to identify H5N1 HA epitope-specific T cells in vaccine recipients and offers hope for the design of a synthetic peptide vaccine to prime CD4+ T-helper cells. Such a vaccine could be used to provide at least some minimal level of H5N1 protection on its own and/or prime for a subsequent dose of a more traditional but supply-limited vaccine.
Collapse
Affiliation(s)
- John W Zinckgraf
- Antigen Express, Inc, One Innovation Drive, Worcester, MA 01605, United States
| | | | | | | | | | | |
Collapse
|
34
|
Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, Jin X, Ward BM, Miao H, Holden-Wiltse J, Perelson AS, Zand M, Wu H. Simulation and prediction of the adaptive immune response to influenza A virus infection. J Virol 2009; 83:7151-65. [PMID: 19439465 PMCID: PMC2704765 DOI: 10.1128/jvi.00098-09] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/04/2009] [Indexed: 01/08/2023] Open
Abstract
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.
Collapse
Affiliation(s)
- Ha Youn Lee
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells. PLoS One 2009; 4:e4122. [PMID: 19125202 PMCID: PMC2610492 DOI: 10.1371/journal.pone.0004122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/03/2008] [Indexed: 01/01/2023] Open
Abstract
Background A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. Methodology/Principal Findings Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. Conclusions/Significance Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.
Collapse
|
36
|
Heer AK, Harris NL, Kopf M, Marsland BJ. CD4+and CD8+T Cells Exhibit Differential Requirements for CCR7-Mediated Antigen Transport during Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2008; 181:6984-94. [DOI: 10.4049/jimmunol.181.10.6984] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Sindbis virus vectors elicit hemagglutinin-specific humoral and cellular immune responses and offer a dose-sparing strategy for vaccination. Vaccine 2008; 26:5641-8. [DOI: 10.1016/j.vaccine.2008.07.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 07/22/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
|
38
|
Abstract
Immune reconstitution following haematopoietic stem cell transplantation (SCT) is an often slow and incomplete process that leads to increased risk of infection and malignant disease. Immunization in SCT is frequently unsuccessful due to the prolonged lymphopenia, especially of CD4 T cells, seen following transplant. The transfusion of T cells, also called 'adoptive T-cell therapy', has the potential to enhance anti-tumour and overall immunity, and augment vaccine efficacy in the post-transplant setting. Recent advances in tissue culture, cellular immunology and tumour biology are guiding new approaches to adoptive T-cell therapy. This chapter will discuss the challenges that face the field before adoptive T-cell therapy can be translated into routine clinical practice.
Collapse
Affiliation(s)
- Nicole A Aqui
- Abramson Family Cancer Research Institute and the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-1416, USA.
| | | |
Collapse
|
39
|
Snook AE, Stafford BJ, Li P, Tan G, Huang L, Birbe R, Schulz S, Schnell MJ, Thakur M, Rothstein JL, Eisenlohr LC, Waldman SA. Guanylyl cyclase C-induced immunotherapeutic responses opposing tumor metastases without autoimmunity. J Natl Cancer Inst 2008; 100:950-61. [PMID: 18577748 PMCID: PMC2749952 DOI: 10.1093/jnci/djn178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/11/2008] [Accepted: 05/02/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One of the greatest impediments to cancer immunotherapy is the paucity of antigens that are tumor specific, sufficiently immunogenic, and shared among patients. Mucosa-restricted antigens that are expressed by tumor cells represent a novel class of vaccine targets that are characterized by immunologic privilege, which limits systemic tolerance to those antigens, and immunologic partitioning, which shields mucosae from systemic autoimmune responses. Here we defined the immunogenicity and antitumor efficacy of guanylyl cyclase C (GCC), a protein that is normally restricted to intestinal mucosa and universally expressed by metastatic colorectal cancer. METHODS BALB/c mice (n = 197) were immunized with recombinant GCC-expressing viral vectors before (prophylactic) or after (therapeutic) a lethal challenge of GCC-expressing mouse colon cancer cells, and antitumor efficacy was monitored by quantifying metastasis and survival. Induction of autoimmunity was monitored by histopathology. Induction of GCC-specific B-cell and CD4(+) and CD8(+) T-cell responses were determined by enzyme-linked immunosorbent assay and ELISpot, respectively. Tolerance to GCC was quantified by comparing responses in GCC-deficient (n = 45) and wild-type (n = 69) C57BL/6 mice. Statistical tests were two-sided. RESULTS Immunization with GCC-expressing viral vectors reduced the formation of metastases to liver (control vs GCC: mean = 30.4 vs 3.55 nodules, difference = 26.9 nodules, 95% confidence interval [CI] = 8.47 to 45.3 nodules; P = .008) and lung (control vs GCC: mean = 263 vs 55.7 nodules, difference = 207, 95% CI = 163 to 251; P < .001) and extended the median survival of mice with established lung metastases following therapeutic immunization (control vs GCC: 29 vs 38 days, P = .024), without autoimmunity. Antitumor efficacy reflected asymmetrical tolerance that was characterized by CD8(+) T-cell, but not CD4(+) T-cell or antibody, responses. CONCLUSIONS Immunologic partitioning together with immunologic privilege highlight the potential of mucosa-restricted antigens, particularly GCC, as therapeutic targets for metastatic cancer.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South Tenth St, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hardenberg G, van der Sluijs K, van der Poll T, Medema JP. APRIL affects antibody responses and early leukocyte infiltration, but not influenza A viral control. Mol Immunol 2008; 45:3050-8. [DOI: 10.1016/j.molimm.2008.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 12/12/2022]
|
41
|
Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice. J Virol 2008; 82:2772-83. [PMID: 18184718 DOI: 10.1128/jvi.01210-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of polymorphonuclear leukocytes (PMN) in protection in the early phase and recovery in the late phase of influenza A virus infection was investigated by the depletion of PMN in, and passive transfer of anti-influenza virus antiserum to, mice with pulmonary infections. The depletion of PMN in normal mice by treatment with monoclonal antibody RB6-8C5 both increased the mortality rate and pulmonary virus titers from the early to the late phase after infection and delayed virus elimination in the late phase. The passive transfer of the antiserum to normal mice before or after infection abolished pulmonary virus propagation in the early phase, during 3 days, or rapidly decreased high virus titers in the plateau phase, on days 3 to 5, as well as accelerated virus elimination in the late phase, on day 7, after infection, respectively. The passive transfer of the antiserum to PMN-depleted mice could neither prevent the more rapid virus propagation in the early phase, diminish the higher virus titers in the plateau phase, nor accelerate the markedly delayed virus elimination in the late phase after infection in comparison to those for controls. The antibody responses to the virus began to increase on day 7 after infection in normal and PMN-depleted mice. The prevention of virus replication, cytotoxic activity in virus-infected cell cultures, and phagocytosis of the virus in vitro by PMN were all augmented in the presence of the antiserum. These results indicate that PMN play an essential role in virus elimination in both protection against and recovery from infection, in cooperation with the antibody response.
Collapse
|
42
|
Baumgarth N, Choi YS, Rothaeusler K, Yang Y, Herzenberg LA. B cell lineage contributions to antiviral host responses. Curr Top Microbiol Immunol 2008; 319:41-61. [PMID: 18080414 DOI: 10.1007/978-3-540-73900-5_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B cell responses are a major immune protective mechanism induced against a large variety of pathogens. Technical advances over the last decade, particularly in the isolation and characterization of B cell subsets by multicolor flow cytometry, have demonstrated the multifaceted nature of pathogen-induced B cell responses. In addition to participation by the major follicular B cell population, three B cell subsets are now recognized as key contributors to pathogen-induced host defenses: marginal zone (MZ) B cells, B-1a and B-1b cells. Each of these subsets seems to require unique activation signals and to react with distinct response patterns. Here we provide a brief review of the main developmental and functional features of these B cell subsets. Furthermore, we outline our current understanding of how each subset contributes to the humoral response to influenza virus infection and what regulates their differential responses. Understanding of the multilayered nature of the humoral responses to infectious agents and the complex innate immune signals that shape pathogen-specific humoral responses are likely at the heart of enhancing our ability to induce appropriate and long-lasting humoral responses for prophylaxis and therapy.
Collapse
Affiliation(s)
- N Baumgarth
- Center for Comparative Medicine, University of California, Davis, County Rd 98 & Hutchison Drive, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
43
|
Nguyen HH, Zemlin M, Ivanov II, Andrasi J, Zemlin C, Vu HL, Schelonka R, Schroeder HW, Mestecky J. Heterosubtypic immunity to influenza A virus infection requires a properly diversified antibody repertoire. J Virol 2007; 81:9331-8. [PMID: 17567700 PMCID: PMC1951409 DOI: 10.1128/jvi.00751-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterosubtypic immunity (HSI) is defined as cross-protection to infection with an influenza A virus serotype other than the one used for primary infection. Although HSI has been thought to be mediated by serotype cross-reactive cytotoxic T lymphocytes (CTL) that recognize conserved epitopes of structural proteins, recent studies suggest that antibodies (Abs) may make a significant contribution. In this study, we provide further evidence for the role of Abs in HSI using transgenic mice lacking terminal deoxyribonucleotidyltransferase (TdT), which adds N nucleotides to V-D and D-J junctions of the complementary determining region 3 (CDR3) (TdT(-/-)) and mice with altered Ab repertoires due to replacement of the complete locus of heavy chain diversity segments (D(H)) with an altered D(H) segment (namely, Delta D-iD). Both types of mice failed to generate complete HSI, although they were able to mount protective immunity to a homologous challenge. Lower levels of virus-specific antibodies along with more severely impaired HSI were observed in TdT(-/-) mice compared to those in Delta D-iD mice, while CTL activity remained unchanged in both types of mice. These findings indicate that a properly diversified antibody repertoire is required for HSI and that N addition by TdT is a more effective mechanism in the induction of a properly diversified antibody repertoire and, therefore, complete HSI. The results suggest that the diversity of the antibody repertoire as determined by the composition of the D region of HCDR3 and by N addition are among the mechanisms selected for in evolution to create a favorable environment to resolve infections with mutated viruses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Body Weight
- Cross Reactions
- DNA Nucleotidylexotransferase/deficiency
- Disease Models, Animal
- Humans
- Immunoglobulin Heavy Chains/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Sequence Deletion
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Huan H Nguyen
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:2182-91. [PMID: 17277123 DOI: 10.4049/jimmunol.178.4.2182] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza is a ssRNA virus that has been responsible for widespread morbidity and mortality; however, the innate immunological mechanisms that drive the adaptive anti-influenza immune response in vivo are yet to be fully elucidated. TLRs are pattern recognition receptors that bind evolutionarily conserved pathogen-associated molecular patterns, induce dendritic cell maturation, and consequently aid the development of effective immune responses. We have examined the role of TLRs in driving effective T and B cell responses against influenza virus. We found TLR3 and its associated adapter molecule, Toll/IL-R domain-containing adaptor-inducing IFN-beta, did not play a role in the development of CD4(+) or CD8(+) T cell responses against influenza virus, nor did they influence influenza-specific B cell responses. Surprisingly, TLR7 and MyD88 also played negligible roles in T cell activation and effector function upon infection with influenza virus; however, their signaling was critical for regulating anti-influenza B cell Ab isotype switching. The induction of appropriate anti-influenza humoral responses involved stimulation of TLRs on B cells directly and TLR-induced production of IFN-alpha, which acted to reduce IgG1 and increase IgG2a/c class switching. Notably, direct TLR signaling on B cells or T cell help through the CD40-CD40L interaction was sufficient to support B cell proliferation and IgG1 production, whereas IFN-alpha was critical for fine-tuning the nature of the isotype switch. Taken together, these data reveal that TLR signaling is not required for anti-influenza T cell responses, but through both direct and indirect means orchestrates appropriate anti-influenza B cell responses.
Collapse
Affiliation(s)
- Alex K Heer
- Institute of Integrative Biology, Molecular Biomedicine, Swiss Federal Institute of Technology, Zürich-Schlieren, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. THE JOURNAL OF IMMUNOLOGY 2006; 177:2888-98. [PMID: 16920924 DOI: 10.4049/jimmunol.177.5.2888] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.
Collapse
Affiliation(s)
- Deborah M Brown
- Trudeau Institute, Saranac Lake, NY 12983, USA. dbrown@trudeauinstitute
| | | | | | | |
Collapse
|
46
|
Yu H, Huang H, Xiang J, Babiuk LA, van Drunen Littel-van den Hurk S. Dendritic cells pulsed with hepatitis C virus NS3 protein induce immune responses and protection from infection with recombinant vaccinia virus expressing NS3. J Gen Virol 2006; 87:1-10. [PMID: 16361412 DOI: 10.1099/vir.0.81423-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with Hepatitis C virus (HCV) pose a serious health problem worldwide. In this study, the hypothesis that adoptive transfer of dendritic cells (DCs) pulsed with HCV NS3 protein and matured with an oligodeoxynucleotide (ODN) containing CpG motifs (CpG) ex vivo would initiate potent HCV-specific protective immune responses in vivo was tested. NS3 protein was efficiently transduced into DCs and treatment of DCs with CpG ODN induced phenotypic maturation and specifically increased the expression of CD40. DCs matured with CpG ODN produced higher interleukin 12 levels and a stronger allogeneic T-cell response compared with untreated DCs. Notably, there were no differences between NS3-pulsed DCs and DCs pulsed with a control protein with respect to phenotype, cytokine production or mixed lymphocyte reaction, indicating that transduction with NS3 protein did not impair DC functions. Compared with the untreated NS3-pulsed DCs, the NS3-pulsed DCs matured with CpG ODN induced stronger cellular immune responses including enhanced cytotoxicity, higher interferon-gamma production and stronger lymphocyte proliferation. Upon challenge with a recombinant vaccinia virus expressing NS3, all mice immunized with NS3-pulsed DCs showed a significant reduction in vaccinia virus titres when compared with mock-immunized mice. However, the NS3-pulsed DCs matured with CpG ODN induced higher levels of protection compared with the untreated NS3-pulsed DCs. These data are the first to show that NS3-pulsed DCs induce specific immune responses and provide protection from viral challenge, and also demonstrate that CpG ODNs, which have a proven safety profile, would be useful in the development of DC vaccines.
Collapse
Affiliation(s)
- Hong Yu
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Hui Huang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Jim Xiang
- Department of Oncology, Research Unit, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, SK, Canada S7N 0W0
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | | |
Collapse
|
47
|
Lee BO, Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Makris M, Sprague F, Lund FE, Randall TD. CD4 T cell-independent antibody response promotes resolution of primary influenza infection and helps to prevent reinfection. THE JOURNAL OF IMMUNOLOGY 2005; 175:5827-38. [PMID: 16237075 DOI: 10.4049/jimmunol.175.9.5827] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is generally believed that the production of influenza-specific IgG in response to viral infection is dependent on CD4 T cells. However, we previously observed that CD40-deficient mice generate influenza-specific IgG during a primary infection, suggesting that influenza infection may elicit IgG responses independently of CD4 T cell help. In the present study, we tested this hypothesis and show that mice lacking CD40 or CD4 T cells produce detectable titers of influenza-specific IgG and recover from influenza infection in a manner similar to that of normal mice. In contrast, mice completely lacking B cells succumb to influenza infection, despite the presence of large numbers of functional influenza-specific CD8 effector cells in the lungs. Consistent with the characteristics of a T-independent Ab response, long-lived influenza-specific plasma cells are not found in the bone marrow of CD40-/- and class II-/- mice, and influenza-specific IgG titers wane within 60 days postinfection. However, despite the short-lived IgG response, CD40-/- and class II-/- mice are completely protected from challenge infection with the same virus administered within 30 days. This protection is mediated primarily by B cells and Ab, as influenza-immune CD40-/- and class II-/- mice were still resistant to challenge infection when T cells were depleted. These data demonstrate that T cell-independent influenza-specific Ab promotes the resolution of primary influenza infection and helps to prevent reinfection.
Collapse
Affiliation(s)
- Byung O Lee
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Marsland BJ, Nembrini C, Schmitz N, Abel B, Krautwald S, Bachmann MF, Kopf M. Innate signals compensate for the absence of PKC-{theta} during in vivo CD8(+) T cell effector and memory responses. Proc Natl Acad Sci U S A 2005; 102:14374-9. [PMID: 16186501 PMCID: PMC1242314 DOI: 10.1073/pnas.0506250102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKC- is central to T-helper (Th) 2 cell differentiation and effector function; however, its importance for antiviral effector, and in particular memory CD8(+) T cell responses, remains unclear. We have investigated the role of PKC- during in vivo and in vitro responses against influenza virus, lymphocytic choriomeningitis virus, vaccinia virus, and replication-deficient virus-like particles. In the absence of PKC-, antiviral CD8(+) T cells presented an unresponsive phenotype in vitro, which could be restored with exogenous IL-2 or by Toll-like receptor ligand-activated dendritic cells. In striking contrast, PKC- appeared to be superfluous for in vivo antiviral responses irrespective of whether the virus infected systemically, was localized to the lung, or did not replicate. In addition, CD8(+) CCR7-effector memory responses were normal in PKC--deficient mice, both in lymphoid and peripheral tissues. Our data show that increased activation signals delivered in vivo by highly activated dendritic cells, as present during viral infections, overcome the requirement for PKC- during CD8(+) T cell antiviral responses.
Collapse
Affiliation(s)
- Benjamin J Marsland
- Molecular Biomedicine, Swiss Federal Institute of Technology, Wagistrasse 27, CH-8952 Zürich-Schlieren, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W. Roles of CD4+ T-cell-independent and -dependent antibody responses in the control of influenza virus infection: evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J Virol 2005; 79:5943-51. [PMID: 15857980 PMCID: PMC1091716 DOI: 10.1128/jvi.79.10.5943-5951.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that B cells make a significant contribution to the resolution of influenza virus infection. To determine how B cells participate in the control of the infection, we transferred intact, major histocompatibility complex class II (MHC-II)-negative or B-cell receptor (BCR)-transgenic spleen cells into B-cell-deficient and CD8(+) T-cell-depleted muMT mice, termed muMT(-8), and tested them for ability to recover from infection. muMT(-8) mice that received no spleen cells invariably succumbed to the infection within 20 days, indicating that CD4(+) T-cell activities had no significant therapeutic activity on their own; in fact, they were harmful and decreased survival time. Interestingly, however, they became beneficial in the presence of antiviral antibody (Ab). Injection of MHC-II((-/-)) spleen cells, which can provide CD4(+) T-cell-independent (TI) but not T-cell-dependent (TD) activities, delayed mortality but only rarely resulted in clearance of the infection. By contrast, 80% of muMT(-8) mice injected with normal spleen cells survived and resolved the infection. Transfer of BCR-transgenic spleen cells, which contained approximately 10 times fewer virus-specific precursor B cells than normal spleen cells, had no significant impact on the course of the infection. Taken together, the results suggest that B cells contribute to the control of the infection mainly through production of virus-specific Abs and that the TD Ab response is therapeutically more effective than the TI response. In addition, CD4(+) T cells appear to contribute, apart from promoting the TD Ab response, by improving the therapeutic activity of Ab-mediated effector mechanisms.
Collapse
|
50
|
Zhan Y, Brown LE, Deliyannis G, Seah S, Wijburg OL, Price J, Strugnell RA, O'Connell PJ, Lew AM. Responses against complex antigens in various models of CD4 T-cell deficiency: surprises from an anti-CD4 antibody transgenic mouse. Immunol Res 2005; 30:1-14. [PMID: 15258307 DOI: 10.1385/ir:30:1:001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The most common models of CD4 T-cell deficiency are mice exogenously injected with anti-CD4 antibody (Ab), CD4 knockout (CD4-/-) and major histocompatibility complex (MHC) class II knockout (class II-/-) mice. We recently described the anti-CD4 Ab transgenic mouse (GK) as an improved CD4 cell-deficient model. This review compares this new GK mouse model with the widely available class II-/- and CD4-/- mice, when exposed to complex antigens (foreign grafts and during bacterial or viral infection). We highlight here the cytometric and functional differences (including Ab isotype, viral or bacterial clearance, and graft survival) among these CD4 cell-deficient models. For example, whereas grafts are generally rejected in class II-/- and CD4-/- mice as quickly as in wild-type mice, they survive longer in GK mice. Also, CD4-/- mice produce IgG against both simple model and complex antigens, but class II-/- and GK mice produce small amounts of IgG2a against complex antigens but not simple model antigens. These differences harbinger the caveats in the use of these various mice.
Collapse
Affiliation(s)
- Yifan Zhan
- Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|