1
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Driver JP, de Carvalho Madrid DM, Gu W, Artiaga BL, Richt JA. Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Front Immunol 2020; 11:2172. [PMID: 33193296 PMCID: PMC7606973 DOI: 10.3389/fimmu.2020.02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV prevention and control. However, the efficacy of IAV vaccines is often suboptimal because of insufficient cross-protection among different IAV genotypes and subtypes as well as the inability to keep up with the rapid molecular evolution of IAV strains. Much attention is focused on improving IAV vaccine efficiency using adjuvants, which are substances that can modulate and enhance immune responses to co-administered antigens. The current review is focused on a non-traditional approach of adjuvanting IAV vaccines by therapeutically targeting the immunomodulatory functions of a rare population of innate-like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the innate and adaptive immune systems and are capable of stimulating a wide array of immune cells that enhance vaccine-mediated immune responses. Here we discuss the factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well as the obstacles that must be overcome before this novel adjuvant approach can be considered for human or veterinary use.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L Artiaga
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jürgen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Yang G, Artiaga BL, Lomelino CL, Jayaprakash AD, Sachidanandam R, Mckenna R, Driver JP. Next Generation Sequencing of the Pig αβ TCR Repertoire Identifies the Porcine Invariant NKT Cell Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1981-1991. [PMID: 30777925 PMCID: PMC6606045 DOI: 10.4049/jimmunol.1801171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Swine represent the only livestock with an established invariant NKT (iNKT) cell-CD1d system. In this study, we exploited the fact that pig iNKT cells can be purified using a mouse CD1d tetramer reagent to establish their TCR repertoire by next generation sequencing. CD1d tetramer-positive pig cells predominantly expressed an invariant Vα-Jα rearrangement, without nontemplate nucleotide diversity, homologous to the Vα24-Jα18 and Vα14-Jα18 rearrangements of human and murine iNKT cells. The coexpressed β-chain used a Vβ segment homologous to the semivariant Vβ11 and Vβ8.2 segments of human and murine iNKT cell receptors. Molecular modeling found that contacts within CD1d and CDR1α that underlie fine specificity differences between mouse and human iNKT cells are conserved between pigs and humans, indicating that the response of porcine and human iNKT cells to CD1d-restricted Ags may be similar. Accordingly, pigs, which are an important species for diverse fields of biomedical research, may be useful for developing human-based iNKT cell therapies for cancer, infectious diseases, and other disorders. Our study also sequenced the expressed TCR repertoire of conventional porcine αβ T cells, which identified 48 Vα, 50 Jα, 18 Vβ, and 18 Jβ sequences, most of which correspond to human gene segments. These findings provide information on the αβ TCR usage of pigs, which is understudied and deserves further attention.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Bianca L Artiaga
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | | | - Ravi Sachidanandam
- Girihlet Inc., Oakland, CA 94609; and
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Mckenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
4
|
Yang G, Driver JP, Van Kaer L. The Role of Autophagy in iNKT Cell Development. Front Immunol 2018; 9:2653. [PMID: 30487800 PMCID: PMC6246678 DOI: 10.3389/fimmu.2018.02653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that express an invariant T cell receptor (TCR) α-chain and recognize self and foreign glycolipid antigens. They can rapidly respond to agonist activation and stimulate an extensive array of immune responses. Thymic development and function of iNKT cells are regulated by many different cellular processes, including autophagy, a self-degradation mechanism. In this mini review, we discuss the current understanding of how autophagy regulates iNKT cell development and effector lineage differentiation. Importantly, we propose that iNKT cell development is tightly controlled by metabolic reprogramming.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
5
|
Yang G, Richt JA, Driver JP. Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective. Int J Mol Sci 2017; 19:68. [PMID: 29280974 PMCID: PMC5796018 DOI: 10.3390/ijms19010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/20/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an "innate-like" T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these cells to enhance human vaccines against a wide range of microbial pathogens. However, long overlooked is the potential to harness iNKT cell antigens as vaccine adjuvants for domestic animal species that express the iNKT cell-CD1d system. In this review, we discuss the prospect of targeting porcine iNKT cells as a strategy to enhance the efficiency of swine influenza vaccines. In addition, we compare the phenotype and tissue distribution of porcine iNKT cells. Finally, we discuss the challenges that must be overcome before iNKT cell agonists can be contemplated for veterinary use in livestock.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS 66502, USA.
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
6
|
Yang G, Artiaga BL, Lewis ST, Driver JP. Characterizing porcine invariant natural killer T cells: A comparative study with NK cells and T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:343-351. [PMID: 28694168 DOI: 10.1016/j.dci.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 05/10/2023]
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that share phenotypic characteristics of both NK and conventional T cells (Tconv). Although iNKT cells have been well characterized in mice and humans, functional CD1d and CD1d-restricted iNKT cells are not universally expressed in mammals. Swine express iNKT cells that can be detected using α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. In the present study, we characterized iNKT cells from the blood, spleen, lymph node, lung and liver of commercial mixed-breed pigs, and compared their phenotype to NK cells and Tconv. The principal findings are that pig iNKT cells are CD8α and CD44 positive and CD11b and Nkp46 negative. Most are also negative for the CD4 co-receptor, which is used to distinguish functionally distinct mouse and human iNKT cells subsets. The frequency of IFN-γ-producing CD8αbright iNKT cells was 3-4-fold higher than CD8αdull iNKT cells, suggesting that CD8α expression identifies iNKT cells with a unique functional role in immune responses. Finally, large variability was detected among pigs in interactions between iNKT cells and monocytes when iNKT cells were activated with α-GalCer, which raises a cautionary note about manipulating iNKT cells for immunotherapy. Collectively, our study provides important phenotypic and functional information about porcine iNKT cells that will be useful for understanding how iNKT cells contribute to immune responses in swine, with potential implications for human health.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Bianca L Artiaga
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Sarah T Lewis
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Nishioka Y, Yamaguchi M, Kawakami A, Munehiro M, Masuda S, Tomaru U, Ishizu A. Type II Natural Killer T Cells that Recognize Sterol Carrier Protein 2 Are Implicated in Vascular Inflammation in the Rat Model of Systemic Connective Tissue Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:176-186. [PMID: 27863214 DOI: 10.1016/j.ajpath.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022]
Abstract
We previously generated a rat model that developed systemic connective tissue diseases, including synovitis, myositis, and small-vessel vasculitis (SVV), and established a vascular endothelial cell-reactive T-cell clone, VASC-1, from the model. VASC-1 was determined to be a type II natural killer T-cell clone. In this study, we attempted to identify the antigen recognized by VASC-1. The monkey-derived cell line COS-7 was used because VASC-1 does not bind naturally to COS-7, although the amino acid sequences are well conserved between monkey CD1d and rat CD1d. We generated 98 COS-7 clones transfected with miscellaneous rat cDNA and screened them for VASC-1 binding. Consequently, we found one clone, 4D2, which could bind to VASC-1. Sequencing identified the rat cDNA introduced into 4D2 as sterol carrier protein 2 (SCP2). When VASC-1 was co-cultured with SCP2 knockdown rat vascular endothelial cells, VASC-1 binding was reduced significantly. Moreover, we designed a series of rat SCP2 peptides and introduced them into COS-7 cells. On the basis of VASC-1 binding and proliferation, we revealed that the peptide rSCP2518-532 included the epitope recognized by VASC-1. Furthermore, immunization with rSCP2518-532 accelerated the development of SVV in the rat model. The collective findings suggest that type II natural killer T cells reactive with autologous SCP2 are implicated in vascular inflammation in the rat model.
Collapse
Affiliation(s)
- Yusuke Nishioka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Madoka Yamaguchi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ai Kawakami
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maya Munehiro
- Undergraduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Kinebuchi M, Matsuura A, Kiyono T, Nomura Y, Kimura S. Diagnostic copper imaging of Menkes disease by synchrotron radiation-generated X-ray fluorescence analysis. Sci Rep 2016; 6:33247. [PMID: 27629586 PMCID: PMC5024095 DOI: 10.1038/srep33247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu) is an indispensable metal for normal development and function of humans, especially in central nervous system (CNS). However, its redox activity requires accurate Cu transport system. ATP7A, a main Cu(2+) transporting-ATPase, is necessary to efflux Cu across the plasma membrane and synthesize cuproenzymes. Menkes disease (MD) is caused by mutations in ATP7A gene. Clinically, MD is Cu deficiency syndrome and is treated with Cu-histidine injections soon after definite diagnosis. But outcome of the most remains poor. To estimate the standard therapy, Cu distribution in the treated classic MD patients is analyzed by synchrotron-generated X-ray fluorescence technique (SR-XRF), which identifies and quantifies an individual atom up to at subcellular level of resolution with wide detection area. SR-XRF analysis newly reveals that Cu exists in spinal cord parenchyma and flows out via venous and lymph systems. By systemic analysis, excess Cu is detected in the proximal tubular cells of the kidney, the mucosal epithelial cells of the intestine, and the lymph and venous systems. The current study suggests that the standard therapy supply almost enough Cu for patient tissues. But given Cu passes through the tissues to venous and lymph systems, or accumulate in the cells responsible for Cu absorption.
Collapse
Affiliation(s)
- Miyuki Kinebuchi
- Department of Molecular Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Matsuura
- Department of Molecular Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tohru Kiyono
- National Cancer Center Research Institute, 5-1-1Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yumiko Nomura
- Aomori City Public Health Center, 19-13 Tsukuda 2-chome, Aomori City, Aomori, 030-0962, Japan
| | - Sachiko Kimura
- Hokkaido Medical Center for Child Health and Rehabilitation, 240-6 Kanayama 1-jo 1-chome, Teine-ku, Sapporo, Hokkaido, 006-0041, Japan
| |
Collapse
|
9
|
Fichtner AS, Paletta D, Starick L, Schumann RF, Niewiesk S, Herrmann T. Function and expression of CD1d and invariant natural killer T-cell receptor in the cotton rat (Sigmodon hispidus). Immunology 2015; 146:618-29. [PMID: 26346465 DOI: 10.1111/imm.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022] Open
Abstract
The cotton rat (Sigmodon hispidus) belongs to the rodent family of Cricetidae and provides a powerful model to study the pathogenesis of human respiratory viruses and measles virus. Recent studies in other rodent models have suggested a role for invariant natural killer T (iNKT) cells in antiviral immunity and vaccination against respiratory virus infections. Using new experimental tools, we provide the first evidence for a functional CD1d cell molecule (crCD1d) and iNKT T-cell receptor in cotton rats. The crCD1d cDNA sequence was identified and crCD1d transductants showed that monoclonal antibody WTH-2 stains crCD1d as efficiently as mouse or rat CD1d. The expression of crCD1d was clearly weaker for thymocytes and B cells, and higher for T cells, which is different to what is found in murine species. The antigen-presenting capacity of crCD1d was demonstrated with crCD1d-immunoglobulin dimers loaded with the glycolipid PBS57, which bound iNKT T-cell receptors. Evidence for functional cotton rat iNKT cells was provided by detection of interferon-γ and interleukin-4 in cultures of splenocytes stimulated with PBS57 and α-galactosylceramide and by specific staining of about 0·2% of splenocytes with PBS57-loaded crCD1d dimers. Canonical AV14/AJ18 rearrangements were identified and found to contain multiple members of the AV14 (AV11) family. One of them was expressed and found to bind CD1d dimers. In summary, these data provide the first evidence for functional CD1d molecules and iNKT T-cell receptors in cotton rats and provide the tools to analyse them both in the cotton rat model of infectious diseases.
Collapse
Affiliation(s)
| | - Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Paletta D, Fichtner AS, Hahn AM, Starick L, Beyersdorf N, Monzon-Casanova E, Mueller TD, Herrmann T. The hypervariable region 4 (HV4) and position 93 of the α chain modulate CD1d-glycolipid binding of iNKT TCRs. Eur J Immunol 2015; 45:2122-33. [PMID: 25900449 DOI: 10.1002/eji.201545534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/08/2022]
Abstract
TCRs of invariant NKT (iNKT) cells bind α-galactosylceramide (αGC) loaded CD1d in a highly conserved fashion and show a characteristic TCR gene usage: An "invariant" α chain with a canonical AV14/AJ18 rearrangement in mice (AV24/AJ18 in humans) is paired with β chains containing characteristic Vβ segments. In the rat, a multimember AV14 gene family increases the variability within this system. This study characterizes CD1d binding of rat AV14 gene segments in TCR transductants as well as CD1d binding and iNKT TCR expression of expanded polyclonal F344 rat iNKT populations. It defines an important role of position 93 at the V-J transition for TCR avidity and species cross-reactivity of the rat iNKT TCR. Furthermore, for the first time we identified variability within the fourth hypervariable loop (HV4) of the α chain as a modulator of CD1d:αGC binding in rat and mouse. Additionally, we confirmed the importance of the CDR2β for CD1d:αGC binding, but also show that the CDR3β may even have opposite effects on binding depending on the pairing α chain. Altogether, we characterized naturally occurring sources of variability for the iNKT TCR and speculate that they rather level than increase the largely germline encoded differences of iNKT TCR ligand avidity.
Collapse
Affiliation(s)
- Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Anne Maria Hahn
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Iinuma C, Waki M, Kawakami A, Yamaguchi M, Tomaru U, Sasaki N, Masuda S, Matsui Y, Iwasaki S, Baba T, Kasahara M, Yoshiki T, Paletta D, Herrmann T, Ishizu A. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis. Int Immunol 2014; 27:105-14. [PMID: 25239132 DOI: 10.1093/intimm/dxu088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.
Collapse
Affiliation(s)
- Chihiro Iinuma
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Masashi Waki
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Ai Kawakami
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Madoka Yamaguchi
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Naomi Sasaki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Sakiko Masuda
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Yuki Matsui
- Division of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| | - Sari Iwasaki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Tomohisa Baba
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan Present address: Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa 9201192, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Takashi Yoshiki
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan
| | - Daniel Paletta
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Akihiro Ishizu
- Division of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo 0600812, Japan
| |
Collapse
|
12
|
Edholm ES, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 2014; 71:4763-80. [PMID: 25117267 DOI: 10.1007/s00018-014-1701-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | |
Collapse
|
13
|
Arsenović-Ranin N, Perišic M, Bufan B, Stojić-Vukanić Z, Pilipović I, Kosec D, Leposavić G. Ovarian hormone withdrawal in prepubertal developmental stage does not prevent thymic involution in rats. Exp Biol Med (Maywood) 2013; 238:641-57. [PMID: 23918876 DOI: 10.1177/1535370213489475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study was undertaken to assess the effects of ovarian hormone withdrawal in prepubertal age on thymopoiesis in 2- (young) and 11-month-old (middle-aged) rats. In ovariectomized (Ox) rats, irrespective of age, thymic weight and cellularity were greater than in age-matched controls, but the values of both parameters exhibited the age-related decline. In addition, although thymopoietic efficiency was increased in both groups of Ox rats when compared with age-matched controls, thymopoiesis exhibited the age-related decline mirrored in the lower numbers of both CD4+ and CD8+ recent thymic emigrants in peripheral blood. This reflected the prethymic changes affecting bone marrow progenitor generation/entry and the thymic alterations encompassing the impaired progenitor progression through early pre-T-cell receptor developmental stages (defined by CD45RC/CD2 expression) and, possibly, a more pronounced decrease in the proliferation of the most mature thymocytes. Apart from the changes at thymocyte level, in Ox rats the age-related alterations in thymic stroma (substantiated in a prominent loss of thymic epithelial cells) were registered. Ovariectomy-induced changes in thymic lymphoid and epithelial component, most probably, influenced each other leading to the increase in thymic expression of interleukin-6 and interleukin-7 mRNAs along with time after ovariectomy. Collectively, the study showed that the withdrawal of ovarian hormones in prepubertal age increases the efficiency of thymopoiesis in young adult rats, but does not prevent decline in thymopoiesis occurring with age.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
14
|
Shimokawa T, Nabeka H, Yamamiya K, Wakisaka H, Takeuchi T, Kobayashi N, Matsuda S. Distribution of prosaposin in rat lymphatic tissues. Cell Tissue Res 2013; 352:685-93. [PMID: 23420452 DOI: 10.1007/s00441-013-1575-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Prosaposin (PSAP) is as a trophic factor and an activator protein for sphingolipid hydrolase in lysosomes. We generated a specific antibody to PSAP and examined the spatiotemporal distribution of PSAP-immunoreactive (PSAP-IR) cells in the lymphatic tissues of Wistar rats. Immunoblots of tissue homogenates separated electrophoretically showed a single band for PSAP in brain but two bands in spleen. PSAP-IR cells were distributed in both the red and white pulp of the spleen, in both the cortex and medulla of the thymus and in mesenteric lymph nodes. Many PSAP-IR cells were found in the dome portion of Peyer's patches and the number of PSAP-IR cells increased with the age of the rat. To identify the PSAP-IR cells, double- and triple-immunostainings were performed with antibodies against PSAP, CD68 and CD1d. The large number of double- and triple-positive cells suggested that antigen-presenting cells contained much PSAP in these lymphatic tissues. Intense expression of PSAP mRNA, examined by in situ hybridisation, was observed in the red pulp and corona of the spleen. In rats, the PSAP gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without the insertion. We examined the expression patterns of the alternative splicing forms of PSAP mRNA in the spleen. The presence of both types of mRNA (Pro+9 and Pro+0) indicated that the spleen contains various types of prosaposin-producing and/or secreting cells. These findings suggest diverse functions for PSAP in the immune system.
Collapse
Affiliation(s)
- Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Monzon-Casanova E, Paletta D, Starick L, Müller I, Sant'Angelo DB, Pyz E, Herrmann T. Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. Eur J Immunol 2012; 43:404-15. [PMID: 23165932 DOI: 10.1002/eji.201242565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/29/2012] [Accepted: 11/14/2012] [Indexed: 12/18/2022]
Abstract
iNKT cells are a particular lymphocyte population with potent immunomodulatory capa-city; by promoting or suppressing immune responses against infections, tumors, and autoimmunity, iNKT cells are a promising target for immunotherapy. The hallmark of iNKT cells is the expression of a semiinvariant TCR (with an invariant α-chain comprising AV14 and AJ18 gene segments), which recognizes glycolipids presented by CD1d. Here, we identified iNKT cells for the first time in the rat using rat CD1d-dimers and PLZF staining. Importantly, in terms of frequencies (1.05% ± 0.52 SD of all intrahepatic αβ T cells), coreceptor expression and in vitro expansion features, iNKT cells from F344 inbred rats more closely resemble human iNKT cells than their mouse counterparts. In contrast, in LEW inbred rats, which are often used as models for organ-specific autoimmune diseases, iNKT cell numbers are near or below the detection limit. Interestingly, the usage of members of the rat AV14 gene family differed between F344 and LEW inbred rats. In conclusion, the similarities between F344 rat and human iNKT cells and the nearly absent iNKT cells in LEW rats make the rat a promising animal model for the study of iNKT cell-based therapies and of iNKT-cell biology.
Collapse
Affiliation(s)
- Elisa Monzon-Casanova
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Greenaway HY, Ng B, Price DA, Douek DC, Davenport MP, Venturi V. NKT and MAIT invariant TCRα sequences can be produced efficiently by VJ gene recombination. Immunobiology 2012; 218:213-24. [PMID: 22647874 DOI: 10.1016/j.imbio.2012.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/28/2012] [Accepted: 04/24/2012] [Indexed: 01/21/2023]
Abstract
Semi-invariant T cell receptors (TCRs) found on natural killer T (NKT) and mucosal-associated invariant T (MAIT) cells are characterized by the use of invariant variable (V) and joining (J) gene combinations in the TCR α-chain, as well as ubiquitous canonical TCRα amino acid sequences that are dominant in many individuals and similar across species. That they are so prevalent indicates that they occupy an important niche within the immune system. However, these TCRs are produced by a largely random gene recombination process, which seems a risky approach for the immune system to acquire these innate-like cells. We surveyed studies reporting NKT and MAIT TCRα sequences for six and four different species, respectively. Although the germline nature of the canonical human and mouse NKT and mouse MAIT TCRα sequences and an overlap of nucleotides between the mouse MAIT-related Vα and Jα genes have been noted in previous studies, in this study we demonstrate that, for all reported species, the canonical TCRα amino acid sequences can be encoded by at least one germline-derived nucleotide sequence. Moreover, these nucleotide sequences can utilize an overlap between the Vα and Jα genes in their production, which enables them to be produced by a large variety of recombination mechanisms. We investigated the role of these TCRα features in the production of the canonical NKT and MAIT TCRα sequences. In computer simulations of a random recombination process involving the invariant NKT and MAIT TCRα gene combinations for each species, the canonical NKT and MAIT TCRα sequences were the first or second most generated of all sequences with the CDR3α length restrictions associated with NKT and MAIT cells. These results suggest that the immune machinery enables the canonical NKT and MAIT TCRα sequences to be produced with great efficiency through the process of convergent recombination, ensuring their prevalence across individuals and species.
Collapse
Affiliation(s)
- Hui Yee Greenaway
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Monzon-Casanova E, Steiniger B, Schweigle S, Clemen H, Zdzieblo D, Starick L, Müller I, Wang CR, Rhost S, Cardell S, Pyz E, Herrmann T. CD1d expression in paneth cells and rat exocrine pancreas revealed by novel monoclonal antibodies which differentially affect NKT cell activation. PLoS One 2010; 5. [PMID: 20927351 PMCID: PMC2948036 DOI: 10.1371/journal.pone.0013089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/30/2010] [Indexed: 12/21/2022] Open
Abstract
Background CD1d is a nonpolymorphic MHC class I-like molecule which presents nonpeptide ligands, e.g. glycolipids, to NKT cells. These cells are known to have multiple effects on innate and adaptive immune responses and on the development of pathological conditions. In order to analyze CD1d expression and function in the rat, the first rat CD1d-specific monoclonal antibodies (mAbs) were generated. Methodology/Principal Findings Two mAbs, WTH-1 and WTH-2, were generated which bound equally well to cell surface-expressed rat and mouse CD1d. Their non-overlapping epitopes were mapped to the CD1d heavy chain. Flow cytometry and immunohistological analyses revealed a nearly identical degree and pattern of CD1d expression for hematopoieitic cells of both species. Notable is also the detection of CD1d protein in mouse and rat Paneth cells as well as the extremely high CD1d expression in acinar exocrine cells of the rat pancreas and the expression of CD4 on rat marginal zone B cells. Both mAbs blocked α-galactosylceramide recognition by primary rat and mouse NKT cells. Interestingly, the two mAbs differed in their impact on the activation of various autoreactive T cell hybridomas, including the XV19.2 hybridoma whose activation was enhanced by the WTH-1 mAb. Conclusions/Significance The two novel monoclonal antibodies described in this study, allowed the analysis of CD1d expression and CD1d-restricted T cell responses in the rat for the first time. Moreover, they provided new insights into mechanisms of CD1d-restricted antigen recognition. While CD1d expression by hematopoietic cells of mice and rats was extremely similar, CD1d protein was detected at not yet described sites of non-lymphatic tissues such as the rat exocrine pancreas and Paneth cells. The latter is of special relevance given the recently reported defects of Paneth cells in CD1d−/− mice, which resulted in an altered composition of the gut flora.
Collapse
Affiliation(s)
- Elisa Monzon-Casanova
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Birte Steiniger
- Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Schweigle
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Holger Clemen
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ingrid Müller
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Sara Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Goteborg, Goteborg, Sweden
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Goteborg, Goteborg, Sweden
| | - Elwira Pyz
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Stojić-Vukanić Z, Rauski A, Kosec D, Radojević K, Pilipović I, Leposavić G. Dysregulation of T-cell development in adrenal glucocorticoid-deprived rats. Exp Biol Med (Maywood) 2009; 234:1067-74. [PMID: 19546352 DOI: 10.3181/0902-rm-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A number of different experimental approaches have been used to elucidate the impact of basal levels of adrenal gland-derived glucocorticoids (GCs) on T cell development, and thereby T cell-mediated immune responses. However, the relevance of the adrenal GCs to T cell development is still far from clear. This study was undertaken to explore the relevance of basal levels of GCs to T cell differentiation/maturation. Eight days post-adrenalectomy in adult male rats the thymocyte yield, apoptotic and proliferative rate and the relationship amongst major thymocyte subsets, as defined by TCRalphabeta/CD4/CD8 expression, were examined using flow cytometry. Adrenal GC deprivation decreased thymocyte apoptosis and altered the kinetics of T cell differentiation/maturation. In the adrenalectomized rats there was increased thymic hypercellularity and an over-representation of the CD4+CD8+ double positive (DP) TCRalphabeta(low) cells entering selection, as well as increased numbers of their DP TCRalphabeta(-) immediate precursors. These changes were accompanied with under-representation of the postselected DP TCRalphabeta(high) and the most mature CD4-CD8+ and, particularly, CD4+CD8- single positive (SP) TCRalphabeta(high) cells. This data suggests that withdrawal of adrenal GCs produces alterations in the thymocyte selection processes, possibly affecting the diversity of functional T cell repertoire and generation of potentially self-reactive cells as indicated by the reduced proportion and number of CD4-CD8- double negative TCRalphabeta(high) cells. In addition, it indicates that GCs influence the post-selection maturation of thymocytes and plays a regulatory role in controlling the ratio of mature CD4+CD8-/CD4-CD8+ SP TCRalphabeta(high) cells.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
19
|
Leposavić G, Perisić M, Kosec D, Arsenović-Ranin N, Radojević K, Stojić-Vukanić Z, Pilipović I. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. Brain Behav Immun 2009; 23:294-304. [PMID: 19028560 DOI: 10.1016/j.bbi.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/19/2008] [Accepted: 11/02/2008] [Indexed: 12/27/2022] Open
Abstract
Exposure of female rodents to testosterone in the critical neonatal period produces defeminization/masculinization of the hypothalamo-pituitary-gonadal (HPG) axis, i.e. neonatal androgenization and postpones axis maturation. To address the hypothesis that HPG axis signaling is involved in the programming of thymic maturation/involution and sexual differentiation we studied the impact of neonatal androgenization on thymic cellularity, development of effector and regulatory T cells, and phenotypic characteristics of peripheral blood T lymphocytes in adult rats. A single injection of testosterone on postnatal day 2 postponed thymic maturation/involution as revealed by organ hypercellularity, increased cellularity of the most mature (CD4+CD8- and CD4-CD8+) TCRalphabeta(high) thymocyte and both recent thymic emigrant (RTE) subsets and caused phenotypic defeminization/masculinization of thymic (decreased CD4+CD8-TCRalphabeta(high)/CD4-CD8+TCRalphabeta(high) cell ratio) and peripheral blood T-cell compartments (decreased CD4+RTE/CD8+RTE and CD4+/CD8+ cell ratio). In addition, neonatal androgenization increased the relative and absolute numbers of both CD4+CD25+Foxp3+ and natural killer (NK) regulatory T cells in peripheral blood. These findings, in conjunction with thymocyte overexpression of Thy-1 that is assumed to reduce negative selection affecting self-reactive cell generation, suggest a new relationship between self-reactive and regulatory T cells. In conclusion, our study provides additional evidence for a role of HPG signals (i.e. sex steroids and gonadotropins) in programming the kinetics of thymic maturation/involution and in establishing immunological sexual dimorphism.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre Branislav Janković, Institute of Virology, Vaccines and Sera Torlak, 458 Vojvode Stepe, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The CD1 family of antigen-presenting molecules consists of five members, CD1a to e. Of these molecules CD1d has been the subject of much interest over the past 10 years following the discovery that this molecule presents antigens to a group of T cells known as invariant natural killer T cells (iNKT). iNKT cells carry an invariant T cell receptor which contains homologous gene segments in mouse and man. iNKT cells are positively selected in the thymus in the same manner as major histocompatibility complex restricted T cells, except iNKT cells require CD1d to be presented by thymocytes rather than epithelial cells. Once in peripheral organs, iNKT cells appear to play multiple roles in host defence against pathogens and cancer. If the numbers of iNKT cells are not correctly regulated it can result in autoimmune disorders, such as diabetes. The ligands for iNKT cells have been the subject of much research but identifying physiologically relevant candidate ligands for positive selection or activation has proved technically very challenging. This is largely due to the fact that the ligands for iNKT cells are lipids. The lipid ligands for thymic selection and some of those involved in peripheral activation are self-derived. Glycosphingolipids are suggested to be the class of lipid for iNKT cell thymic development. For peripheral activation it appears multiple classes of self-derived lipids may play a role, in addition to pathogen-derived lipids. This review will cover essential background to iNKT cell and CD1d biology with emphasis on the candidate iNKT cell ligands proposed to date.
Collapse
Affiliation(s)
- Anneliese O Speak
- Department of Pharmacology, University of Oxford, and Weatherall Institute of Molecular Medicine, Tumour Immunology Group, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
21
|
Huang YC, Hung SW, Jan TR, Liao KW, Cheng CH, Wang YS, Chu RM. CD5-low expression lymphocytes in canine peripheral blood show characteristics of natural killer cells. J Leukoc Biol 2008; 84:1501-10. [PMID: 18708592 DOI: 10.1189/jlb.0408255] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
NK cell markers and receptors have been discovered in many mammalian species, such as humans, mice, rats, pigs, and cows. However, there is still a lack of information concerning NK cell markers or receptors in canines. We have discovered that canine CD5-low density (CD5lo) cells in PBL are closely associated with NK cell characteristics. CD5lo cells comprised 14.9 +/- 6.68% of the total PBL. A high proportion of the CD5lo cell population expressed CD3 (96.6%), CD8alpha (77.7%), CD8beta (53%), alpha/beta TCR (83%), and CD11/18 (80%), but the expression of gamma/delta TCR (6.5%), CD4 (10.6%), and CD21 (2.4%) was low. CD5lo cells were larger than CD5-high density (CD5hi) cells. Light and electron microscopy revealed numerous large cytoplasmic granules in CD5lo cells, especially after IL-2 stimulation, which was in contrast to CD5hi, in which intracytoplasmic granules were not frequently seen. After IL-2 stimulation, CD5lo cells had significantly stronger NK cytotoxicity than CD5hi cells. CD5lo cells had much higher mRNA levels for NKG2D, CD16, CD94, CD160, perforin, and granzyme than CD5hi. Following IL-2 stimulation, CD5lo cells had significantly higher mRNA levels of NKp30, NKp44, CD16, and CD94 than CD5hi cells. In addition, IL-2-stimulated, CD5lo-depleted PBL showed a loss of NK cytotoxicity. CD5lo cells also showed significantly lower antigen-specific cytotoxic T cell activity as compared with CD5hi cells. Taken together, the CD5lo subset in canine PBL is closely related to canine NK cells, and CD5lo can be used as a phenotypic marker for an IL-2-dependent canine NK cell enrichment.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Animal Cancer Research Center, Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Marín-Gallén S, Pérez-Cano FJ, Castell M, Castellote C, Franch A. Intestinal intraepithelial NK and NKT cell ontogeny in Lewis rats. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1405-1408. [PMID: 18638501 DOI: 10.1016/j.dci.2008.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/06/2008] [Accepted: 06/23/2008] [Indexed: 05/26/2023]
Abstract
Natural killer T (NKT) cells have been described in the liver and spleen of adult rats, but their presence and function in other tissues and in early life remains uncertain. This study was designed to determine the proportion of NK cells and NKT cells among small intestine intraepithelial (IE) lymphocytes in suckling rats and adult animals by flow cytometry. Very few intestinal IE-NKT cells (NKR-P1A+ TCRalphabeta+) were present in adult rats ( approximately 1%), but a high proportion of this population was found during early life ( approximately 40% of IE lymphocytes in 9-day-old rats), with a marked age-decreasing pattern. Most of these cells presented the CD8alphabeta+ phenotype. Intestinal IE-NK cells (NKR-P1A+ TCRalphabeta-) were also present in a relatively high proportion during the suckling period ( approximately 30% of IE lymphocytes). Thus, a predominance of both NK and NKT cell subpopulations in small intestine epithelium is characteristic in the early life of rats and may have a protective role during the suckling period.
Collapse
Affiliation(s)
- Silvia Marín-Gallén
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Kinyanjui MW, Tamaoka M, Fixman ED. T-helper type 2-dependent early recruitment of antigen non-specific CD4+ T cells in experimental asthma. Clin Exp Allergy 2007; 37:1455-66. [PMID: 17883725 DOI: 10.1111/j.1365-2222.2007.02794.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Following antigen challenge, adoptively transferred antigen-specific CD4(+) T cells induce allergic airway inflammation, comprised primarily of an increase in lymphocytes and eosinophils. OBJECTIVE Our goal was to better understand the contribution of the GATA-3 transcription factor to the ability of adoptively transferred T cells to induce airway inflammation in the Brown Norway rat model of adoptively transferred asthma. METHODS We transduced antigen-stimulated CD4+ T cells with recombinant retroviruses encoding enhanced green fluorescent protein (EGFP) only or EGFP and the GATA-3 transcription factor. Each population of transduced cells was adoptively transferred to naïve recipients that were then challenged with antigen. Airway inflammatory responses were then quantified. RESULTS Our data indicate that T cells transduced with retroviruses encoding GATA-3 expressed high levels of GATA-3 protein as well as T-helper type 2 cytokines. Following adoptive transfer and airway antigen challenge, these gene-modified T cells induced robust inflammatory responses in the lungs and draining lymph nodes. Increased numbers of total inflammatory cells and eosinophils were recovered in the bronchoalveolar lavage fluid (BALF). In addition, the number of antigen non-specific CD4+ T cells recovered in the BALF as well as the lung and draining lymph nodes was enhanced in recipients of GATA-3 overexpressing T cells following antigen challenge. Nevertheless, the transduced CD4+ T cells comprised only a small percentage of the population of CD4+ T cells infiltrating the lung and were not detectable at all in the draining lymph nodes. CONCLUSION These data provide evidence that GATA-3 plays a significant role in the ability of antigen-specific T cells to amplify allergic inflammatory responses in vivo by promoting the recruitment of endogenous antigen non-specific T cells to the lung.
Collapse
Affiliation(s)
- M W Kinyanjui
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
24
|
Abstract
Recognized more than a decade ago, NKT cells differentiate from mainstream thymic precursors through instructive signals emanating during TCR engagement by CD1d-expressing cortical thymocytes. Their semi-invariant alphabeta TCRs recognize isoglobotrihexosylceramide, a mammalian glycosphingolipid, as well as microbial alpha-glycuronylceramides found in the cell wall of Gram-negative, lipopolysaccharide-negative bacteria. This dual recognition of self and microbial ligands underlies innate-like antimicrobial functions mediated by CD40L induction and massive Th1 and Th2 cytokine and chemokine release. Through reciprocal activation of NKT cells and dendritic cells, synthetic NKT ligands constitute promising new vaccine adjuvants. NKT cells also regulate a range of immunopathological conditions, but the mechanisms and the ligands involved remain unknown. NKT cell biology has emerged as a new field of research at the frontier between innate and adaptive immunity, providing a powerful model to study fundamental aspects of the cell and structural biology of glycolipid trafficking, processing, and recognition.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antigen Presentation/immunology
- Antigens, Bacterial/immunology
- Antigens, CD1/immunology
- Antigens, CD1d
- Autoantigens/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/pharmacology
- CD40 Ligand/immunology
- Chemokines/immunology
- Dendritic Cells/immunology
- Globosides/immunology
- Glucosylceramides/immunology
- Gram-Negative Bacteria/immunology
- Gram-Negative Bacterial Infections/immunology
- Humans
- Immunity, Innate
- Killer Cells, Natural/immunology
- Lymphocyte Activation/immunology
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
- Trihexosylceramides/immunology
Collapse
Affiliation(s)
- Albert Bendelac
- Howard Hughes Medical Institute, Committee on Immunology, Department of Pathology University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
25
|
Itakura S, Asari S, Rawson J, Ito T, Todorov I, Liu CP, Sasaki N, Kandeel F, Mullen Y. Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHD in the rat. Am J Transplant 2007; 7:336-46. [PMID: 17283484 DOI: 10.1111/j.1600-6143.2006.01643.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Induction of hematopoietic chimerism and subsequent donor-specific immune tolerance via bone marrow transplantation is an ideal approach for islet transplantation to treat type-1 diabetes. We examined the potential of mesenchymal stem cells (MSCs) in the induction of chimerism and islet allograft tolerance without the incidence of graft-versus-host disease (GVHD). Streptozotocin-diabetic rats received a conditioning regimen consisting of antilymphocyte serum and 5 Gy total body irradiation, followed by an intraportal co-infusion of allogeneic MSCs, bone marrow cells (BMCs) and islets. Although all the recipients rejected the islets initially, half of them developed stable mixed chimerism and donor-specific immune tolerance, shown by the engraftment of donor skin and second-set islet transplants and acute rejection of a third-party skin. The engraftment of the primary islet allografts with stable chimerism was achieved by the addition of a 2-week peritransplant administration of 15-deoxyspergualin (DSG). Without MSCs, none of the recipients treated with DSG developed chimerism or reversal of diabetes. GVHD was not observed in any of the recipients infused with MSCs (0/15), whereas it occurred in 4/11 recipients without MSCs. These results indicate a potential use of MSCs for induction of hematopoietic chimerism and subsequent immune tolerance in clinical islet transplantation.
Collapse
Affiliation(s)
- S Itakura
- Southern California Islet Cell Resource Center, Department of Diabetes, Endocrinology and Metabolism, Duarte, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pyz E, Naidenko O, Miyake S, Yamamura T, Berberich I, Cardell S, Kronenberg M, Herrmann T. The Complementarity Determining Region 2 of BV8S2 (Vβ8.2) Contributes to Antigen Recognition by Rat Invariant NKT Cell TCR. THE JOURNAL OF IMMUNOLOGY 2006; 176:7447-55. [PMID: 16751390 DOI: 10.4049/jimmunol.176.12.7447] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT cells (iNKT cells) are characterized by a semi-invariant TCR comprising an invariant alpha-chain paired with beta-chains with limited BV gene usage which are specific for complexes of CD1d and glycolipid Ags like alpha-galactosylceramide (alpha-GalCer). iNKT cells can be visualized with alpha-GalCer-loaded CD1d tetramers, and the binding of mouse CD1d tetramers to mouse as well as to human iNKT cells suggests a high degree of conservation in recognition of glycolipid Ags between species. Surprisingly, mouse CD1d tetramers failed to stain a discrete cell population among F344/Crl rat liver lymphocytes, although comprised iNKT cells are indicated by IL-4 and IFN-gamma secretion after alpha-GalCer stimulation. The arising hypothesis that rat iNKT TCR recognizes alpha-GalCer only if presented by syngeneic CD1d was then tested with the help of newly generated rat and mouse iNKT TCR-transduced cell lines. Cells expressing mouse iNKT TCR reacted to alpha-GalCer presented by rat or mouse CD1d and efficiently bound alpha-GalCer-loaded mouse CD1d tetramers. In contrast, cells expressing rat iNKT TCR responded only to alpha-GalCer presented by syngeneic CD1d and bound mouse CD1d tetramers only poorly or not at all. Finally, CD1d-dependent alpha-GalCer reactivity and binding of mouse CD1d tetramers was tested for cells expressing iNKT TCR comprising either rat or mouse AV14 (Valpha14) alpha-chains and wild-type or mutated BV8S2 (Vbeta8.2) beta-chains. The results confirmed the need of syngeneic CD1d as restriction element for rat iNKT TCR and identified the CDR2 of BV8S2 as an essential site for ligand recognition by iNKT TCR.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Cell Line
- Cells, Cultured
- Galactosylceramides/administration & dosage
- Galactosylceramides/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/cytology
- Liver/immunology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Protein Binding/genetics
- Protein Binding/immunology
- Rats
- Rats, Inbred F344
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Species Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Elwira Pyz
- Institute for Virology and Immunobiology, Würzburg University, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Obara H, Nagasaki K, Hsieh CL, Ogura Y, Esquivel CO, Martinez OM, Krams SM. IFN-gamma, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses. Am J Transplant 2005; 5:2094-103. [PMID: 16095488 PMCID: PMC1473982 DOI: 10.1111/j.1600-6143.2005.00995.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of NK cells following solid organ transplantation remains unclear. We examined NK cells in acute allograft rejection using a high responder model (DA-->Lewis) of rat orthotopic liver transplantation. Recipient-derived NK cells infiltrated liver allografts early after transplantation. Since chemokines are important in the trafficking of cells to areas of inflammation, we determined the intragraft expression of chemokines known to attract NK cells. CCL3 was significantly increased in allografts at 6 h post-transplant as compared to syngeneic grafts whereas CCL2 and CXCL10 were elevated in both syngeneic and allogeneic grafts. CXCL10 and CX3CL1 were significantly upregulated in allografts by day 3 post-transplant as compared to syngeneic grafts suggesting a role for these chemokines in the recruitment of effector cells to allografts. Graft-infiltrating NK cells were shown to be a major source of IFN-gamma, and IFN-gamma levels in the serum were markedly increased, specifically in allograft recipients, by day 3 post-transplant. Accordingly, in the absence of NK cells the levels of IFN-gamma were significantly decreased. Furthermore, graft survival was significantly prolonged. These data suggest that IFN-gamma-producing NK cells are an important link between the innate and adaptive immune responses early after transplantation.
Collapse
MESH Headings
- Animals
- Chemokine CCL2/metabolism
- Chemokine CCL3
- Chemokine CCL4
- Chemokine CX3CL1
- Chemokine CXCL10
- Chemokines/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CX3C/metabolism
- Chemokines, CXC/metabolism
- Cytokines/metabolism
- Densitometry
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Graft Rejection
- Immune System
- Immunity, Innate
- Inflammation
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Liver Transplantation/methods
- Macrophage Inflammatory Proteins/biosynthesis
- Membrane Proteins/metabolism
- Models, Biological
- Rats
- Rats, Inbred Lew
- Ribonucleases/metabolism
- Time Factors
- Transplantation Immunology
- Transplantation, Homologous
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Hideaki Obara
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Kazuhito Nagasaki
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Christine L. Hsieh
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Yasuhiro Ogura
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Carlos O. Esquivel
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Olivia M. Martinez
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
| | - Sheri M. Krams
- Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492
- Address correspondence and reprint requests to: Dr. Sheri M. Krams, Transplant Immunobiology Laboratory, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P313, MC: 5492, Stanford, CA 94305-5492., Phone: (650) 498-6246, Fax: (650) 498-6250, email address:
| |
Collapse
|
28
|
Muñoz L, Albillos A, Nieto M, Reyes E, Lledó L, Monserrat J, Sanz E, de la Hera A, Alvarez-Mon M. Mesenteric Th1 polarization and monocyte TNF-alpha production: first steps to systemic inflammation in rats with cirrhosis. Hepatology 2005; 42:411-9. [PMID: 16025514 DOI: 10.1002/hep.20799] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A systemic inflammatory state with increased circulating tumor necrosis factor alpha (TNF-alpha) has been related to the bacterial infection susceptibility and hemodynamic derangement of patients with cirrhosis. We compared the activation status of immune cell subpopulations defined by 4-color cytometry in mesenteric and peripheral lymph nodes and blood of rats with CCl(4)-cirrhosis to define the immune response initiation site, the T-cell and monocyte contribution to pro-inflammatory cytokine production, as well as the pathogenic role of enteric bacteria in the cirrhosis immune response. Th1 cells and monocytes were expanded in the mesenteric nodes (P < .001) and blood (P < .001) of rats with cirrhosis, and activated to produce interferon gamma (P < .0001) and TNF-alpha (P < .0001), respectively. The greater numbers of recently activated CD134(+) Th cells in mesenteric nodes compared with blood, the correlation between their numbers in mesenteric nodes and blood (r = 0.66, P < .001), and the expansion of activated CD45RC(-) Th cells, which are unable to re-enter lymph nodes, in mesenteric nodes but not in blood or axillary nodes points to mesenteric nodes as the origin site of activated Th cells. Abrogation of bacterial translocation by bowel decontamination reduced the number of activated Th cells and monocytes, and normalized interferon gamma production by Th cells and TNF-alpha production by monocytes in mesenteric nodes and blood, respectively. In conclusion, in cirrhosis, enteric bacteria start off an orchestrated immune response cascade in mesenteric nodes involving Th1 polarization and monocyte activation to TNF-alpha production. Later, the recirculation of these activated effector immune cells into blood promotes systemic inflammation.
Collapse
Affiliation(s)
- Leticia Muñoz
- Laboratorio de Enfermedades del Sistema Inmune, Unidad I+D Asociada al Centro Nacional de Biotecnología (CSIC), Departamento de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kinebuchi M, Matsuura A, Ohya K, Abo W, Kitazawa J. Contribution of Va24Vb11 natural killer T cells in Wilsonian hepatitis. Clin Exp Immunol 2005; 139:144-51. [PMID: 15606625 PMCID: PMC1809266 DOI: 10.1111/j.1365-2249.2005.02664.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. There is no evidence that the WD patient's immune system attacks copper accumulated hepatocytes. Here we describe that the frequency and absolute number of Valpha24+Vbeta11+ natural killer T (NKT) cells were significantly increased in 3 cases of WD, whereas those of CD3+CD161+ NKT cells were within the normal range. Patients no. 1 and 2 had a presymptomatic form of WD. Their tissue specimens showed pathological changes of mild degeneration of hepatocytes with a few infiltrating mononuclear cells and a low degree of fatty change. Patient no. 3 displayed fulminant hepatitis with Coombs-negative haemolytic anaemia. The tissue specimens of patient no. 3 showed macronodular cirrhosis with thick fibrosis, inflammatory infiltrates and spotty necrosis. Human Valpha24+Vbeta11+ NKT cells are almost equal to CD1d-restricted NKT cells. Therefore we investigated CD1d-restricted NKT cells in the LEC rat as an animal model of WD. In LEC rats before hepatitis onset, the number and phenotype of liver NKT cells were normal. At about 4 months of age all LEC rats developed acute hepatitis accompanied by acute jaundice, and CD161high NKT cells developed in their livers. CD161highalphabetaTCRbright NKT cells developed in some of them. Their hepatitis was severe. CD161highalphabetaTCRbright NKT cells expressed an invariant rat Valpha14-Jalpha281 chain, which is CD1d-restricted. Furthermore, liver lymphocytes in the acute jaundiced LEC rats with CD161highalphabetaTCRbright NKT cells had significant and CD1d-specific cytotoxic activity.
Collapse
Affiliation(s)
- M Kinebuchi
- Department of Pathology, School of Medicine, Fujita Health University, Toyoake, Japan.
| | | | | | | | | |
Collapse
|
30
|
Vykhovanets EV, Resnick MI, Marengo SR. THE HEALTHY RAT PROSTATE CONTAINS HIGH LEVELS OF NATURAL KILLER-LIKE CELLS AND UNIQUE SUBSETS OF CD4
+
HELPER-INDUCER T CELLS: IMPLICATIONS FOR PROSTATITIS. J Urol 2005; 173:1004-10. [PMID: 15711366 DOI: 10.1097/01.ju.0000149130.06055.f2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Chronic nonbacterial prostatitis spontaneously develops in aged Lewis and Wistar rats but not in Sprague-Dawley rats. We report the unique profile of lymphocyte subsets present in the healthy Sprague-Dawley rat prostate. MATERIALS AND METHODS We compared enzymatic and mechanical methods of intraprostatic lymphocyte isolation in healthy 8 to 10-week-old Sprague-Dawley rats. Mechanical isolation was chosen because of its superior preservation of surface antigens. Intraprostatic lymphocyte subsets were analyzed by flow cytometry. RESULTS Levels of prostatic alphabetaTCR+ T cells were similar and levels of prostatic B cells were decreased 5 to 10-fold compared with those found in other tissues (p </=0.005). Unexpectedly two-thirds of the total prostatic lymphocytes expressed the natural killer (NK) marker CD161a+. They were divided equally between NK (CD161a+alphabetaTCR) and NKT (CD161a+alphabetaTCR+) cells. Of prostatic CD161a+ cells 50% to 60% were also CD8+. Levels of NKT cells were dramatically lower in other tissues (p </=0.005) and they never accounted for more than 8% of total lymphocytes. The prostate contained lower levels of CD4+ T cells than all tissues except the liver (p </=0.005) and higher levels of CD8+ T cells than any other tissue studied (p </=0.05), resulting in an inverted CD4-to-CD8 ratio. CD45RC+CD4+alphabetaTCR+ T cells and CD161a+CD4+alphabetaTCR+ NKT cells were elevated in the prostate (p </=0.02). CONCLUSIONS The healthy rat prostate contains an unusually high proportion of NK and NKT cells. The balance between the CD45RC+CD4+alphabetaTCR+ T cells, which initiate the cell mediated immune response, and CD4+ NKT cells, which can suppress autoimmunity, may be a key in understanding the resistance of Sprague-Dawley rats to chronic nonbacterial prostatitis.
Collapse
Affiliation(s)
- Eugene V Vykhovanets
- Jim and Eilleen Dicke Research Laboratory, Department of Urology, School of Medicine, Case Western Reserve University-University Hospitals of Cleveland, Cleveland, Ohio 44106-4931, USA
| | | | | |
Collapse
|
31
|
Van Kaer L. alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 2005; 5:31-42. [PMID: 15630427 DOI: 10.1038/nri1531] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autoimmune responses are normally kept in check by immune-tolerance mechanisms, which include regulatory T cells. In recent years, research has focused on the role of a subset of natural killer T (NKT) cells - invariant NKT (iNKT) cells, which are a population of glycolipid-reactive regulatory T cells - in controlling autoimmune responses. Because iNKT cells strongly react with a marine-sponge-derived glycolipid, alpha-galactosylceramide (alpha-GalCer), it has been possible to specifically target and track these cells. As I discuss here, although preclinical studies have shown considerable promise for the development of treatment with alpha-GalCer as a therapeutic modality for autoimmune diseases, several obstacles need to be overcome before moving alpha-GalCer therapy from the bench to the bedside.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, Tennessee 37232, USA.
| |
Collapse
|
32
|
Prell C, Konstantopoulos N, Heinzelmann B, Frankenberger B, Reinhardt D, Schendel DJ, Krauss-Etschmann S. Frequency of Valpha24+CD161+ natural killer T cells and invariant TCRAV24-AJ18 transcripts in atopic and non-atopic individuals. Immunobiology 2004; 208:367-80. [PMID: 14748510 DOI: 10.1078/0171-2985-00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Th2 cells play a central role in type I allergies. However, the source of interleukin-4 which may lead to a Th1/Th2 imbalance is unknown. Valpha24+CD161+ Natural killer T (NKT) cells secrete high amounts of interleukin-4 and/or interferon-gamma and are assumed to participate in the initiation of Th1/Th2 immune responses. Their contribution to the development of Th2-dependent type I allergies is controversial. Our objective in this paper was to determine whether Valpha24+CD161+ NKT cells differ in atopic and non-atopic adults. Venous blood was obtained from thirteen atopic and sixteen healthy adult probands. Valpha24+CD161+ NKT cells were determined in CD4+, CD8(bright/dim) and CD4-CD8- lymphocytes by flow cytometry. At the molecular level, the amounts of T cell receptor (TCR) AV24-AJ18 transcripts were quantified with respect to TCRAV24 chain transcripts alone or to all TCR alpha chain transcripts. To detect potential inserted nucleotides in the N-region, a novel real-time PCR-based technology was applied. Both CD4+ and CD4-CD8- NKT cells were present at higher frequencies than CD8+ NKT cells in all probands. CD8(dim) NKT cell levels were lower in healthy individuals, although not statistically significantly different to the patients. Amounts of AV24-AJ18 transcripts in relation to total TCR alpha-chains and to TCRAV24 alone were equal in both proband groups. N-region diversity was detected in four clones from four different individuals, but altered the amino acid sequence in only one clone of an atopic donor. Analysis of Valpha24+CD161+ NKT cell frequencies at both the cellular and molecular levels failed to reveal significant differences in peripheral blood of atopic and non-atopic probands. If NKT cells contribute to development of type I allergies they must do so at earlier times or in other locations.
Collapse
Affiliation(s)
- Christine Prell
- Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what's in a name? Nat Rev Immunol 2004; 4:231-7. [PMID: 15039760 DOI: 10.1038/nri1309] [Citation(s) in RCA: 949] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
34
|
Saikai T, Tanaka H, Sato N, Abe S, Matsuura A. Mushroom plant workers experience a shift towards a T helper type 2 dominant state: contribution of innate immunity to spore antigen. Clin Exp Immunol 2004; 135:119-24. [PMID: 14678272 PMCID: PMC1808917 DOI: 10.1111/j.1365-2249.2004.02336.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Contemporary mushroom factories are places where there is a substantial risk of the occurrence of respiratory allergy. The aims of this investigation were to estimate its causative agents and to evaluate the contribution of innate immune response in mushroom workers who cultivate Hypsizigus marmoreus (Bunashimeji). Cross-sectional and follow-up studies were performed in the factory. We investigated CD1b, CD3, CD4, CD8, CD14, CD45RO, CD62L and CD161 expression in peripheral blood mononuclear cells (PBMC) by flow cytometry, and serum levels of interleukin (IL-2), IL-4, granulocyte-macrophage colony stimulating factor (GM-CSF), IL-13 and interferon (IFN)-gamma by enzyme-linked immunosorbent assay (ELISA). Co-culture experiments of PBMC with spore extracts were also performed. Percentages of CD1b+ monocytes, natural killer (NK), NK T and CD4+ T cells were increased in the workers compared with controls. Increases in Th2 type cells, Th2/Th1 ratio and serum IL-13 and decreased IFN-gamma were detected, indicating a Th2-biased status of the workers. The follow-up study showed that monocytes and NK cells increased soon after employment while CD4+ T, Th2 and NK T cells increased gradually as employment time lengthened. Serum precipitating antibody to the mushroom antigen could be detected at a later stage. Co-cultivation of PBMC with the spore extracts induced much higher CD1b expression, and suppressed secretion of Th1 cytokine in culture supernatants. These results indicate that the mushroom antigen contains highly immunogenic substances which stimulate PBMC into a Th2-biased in vivo status, and innate immune cells might also play a critical role in developing respiratory allergy in mushroom workers.
Collapse
Affiliation(s)
- T Saikai
- Third Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
35
|
Graf MR, Prins RM, Poulsen GA, Merchant RE. Contrasting effects of interleukin-2 secretion by rat glioma cells contingent upon anatomical location: accelerated tumorigenesis in the central nervous system and complete rejection in the periphery. J Neuroimmunol 2003; 140:49-60. [PMID: 12864971 DOI: 10.1016/s0165-5728(03)00167-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rat T9.F glioma cells were transduced with the interleukin (IL)-2 gene. Clone T9.F/IL2/#12 secreted a high level of IL-2 (15 ng/10(6) cells/48 h). Enhanced tumor progression and reduced survival was observed when T9.F/IL2/#12 cells were implanted intracranially. Subcutaneous injection of T9.F/IL2/#12 cells induced a palpable nodule, which regressed in approximately 15 days, resulting in tumor-specific protection. Lymphocytes from T9.F/IL2/#12 primed rats specifically respond to T9.F antigens but lacked cytotoxicity towards T9.F cells. Intracranial T9.F/IL2/#12 tumors were markedly infiltrated by CD4(+) and CD8(+) T cells, natural killer (NK)-T cells and myeloid progenitor cells, whereas subcutaneous T9.F/IL2/#12 tumors contained an elevated level of NK cells.
Collapse
Affiliation(s)
- Martin R Graf
- Department of Anatomy and Neurobiology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980709 MCV Station, Richmond, VA 23298-0709, USA.
| | | | | | | |
Collapse
|
36
|
Sim BC, Holmberg K, Sidobre S, Naidenko O, Niederberger N, Marine SD, Kronenberg M, Gascoigne NRJ. Surprisingly minor influence of TRAV11 (Valpha14) polymorphism on NK T-receptor mCD1/alpha-galactosylceramide binding kinetics. Immunogenetics 2003; 54:874-83. [PMID: 12671739 DOI: 10.1007/s00251-002-0532-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 11/20/2002] [Indexed: 10/25/2022]
Abstract
Defects in natural killer T (NK T) cell function and of interleukin-4 -production in SJL and NOD mice have been linked to susceptibility to autoimmune disease. As SJL and NOD mice both carry the T-cell receptor (TCR) alpha-chain locus "c" (Tcra(c)) haplotype, found in few other strains, we have attempted to determine the influence of Tcra polymorphism on NK T-cell recognition of ligand, selection, and immune responses. The majority of NK T cells use an "invariant" TRAV11J15 (previously called AV14J18 or Valpha14 Jalpha281) alpha- chain paired with either TRBV13-2, BV29, or BV1 to recognize ligands presented by mCD1 molecules, including the glycolipid alpha-galactosylceramide (alpha-GalCer). Sequencing of TRAV11 from the mouse strains B10.A (encoding the Tcra(b) haplotype), B10.A- Tcra(c), and NOD (Tcra(c)) shows that Tcra(c) has a single TRAV11 gene (TRAV11*01) and that Tcra(b) has a single expressed gene (TRAV11*02), plus a closely related pseudogene. There is no apparent difference in alpha-chain J-region usage or in the CDR3alpha sequence at the TRAV11-J15 junction between the haplotypes in TRAV11-bearing NK T cells. Using Biacore and tetramer-binding and decay assays, we have determined that the interaction between Tcra(c) TRAV11*01 NK T TCR and the mCD1/alpha-GalCer complex is slightly weaker than that of Tcra(b) (i.e., TRAV11*02) NK T TCR. These differences are minor compared with differences between agonist and antagonist ligands in other TCR systems, suggesting that it is unlikely that TCR polymorphism explains the defect in NK T cells in the autoimmune mouse strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Congenic
- Antigens, CD1/chemistry
- Antigens, CD1/metabolism
- Base Sequence
- DNA/genetics
- Galactosylceramides/metabolism
- Genes, T-Cell Receptor alpha
- Haplotypes
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Molecular Sequence Data
- Polymorphism, Genetic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Bee-Cheng Sim
- IMM1, Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
O'Sullivan NL, Skandera CA, Montgomery PC. Lymphocyte lineages at mucosal effector sites: rat salivary glands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5522-9. [PMID: 11313391 DOI: 10.4049/jimmunol.166.9.5522] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Development of T cell lineages and the role of the thymus as a source of immature T cells in parotid (PG) and submandibular salivary glands (SMG) were studied in Fischer 344 rats using the Thy-1/CD45RC/RT6 expression model. In addition, the phenotypes of salivary gland lymphocytes were compared with other conventional and extrathymic populations. PG mononuclear cells consisted of T cells (38%), B cells (29%), and NK cells (4%). SMG had 19% T cells, 7% B cells, 37% NK cells, and an unusual population of CD3(-)/RT6(+) cells. In comparison with lymph node (LN), both PG and SMG were enriched in immature (Thy-1(+)) and activated (Thy-1(-)/CD45RC(-)/RT6(-)) T cells. Unchanged percentages of Thy-1(+) T cells in PG and SMG following short-term adult thymectomy indicated that immature salivary gland T cells had an extrathymic source. In contrast, thymectomy eliminated LN recent thymic emigrants. SMG had T cells with characteristics of extrathymic populations, expressing TCRgammadelta(+) (28%), the CD8alphaalpha homodimer (11%), and NKR-P1A (66%). Many SMG T cells expressed integrin alpha(E)beta(7). PG T cells resembled those isolated from LN in respect to TCR and CD8 isoform usage, but were enriched in alpha(E)beta(7)(+) T cells and in NKT cells. Thus, salivary gland mononuclear cells are composed of a variety of subpopulations whose distributions differ between SMG and PG and are distinct from LN. These studies provide a basis for further investigation of regionalization in the mucosal immune network and are relevant to the design of vaccine regimens and intervention during pathological immune processes.
Collapse
MESH Headings
- ADP Ribose Transferases/analysis
- ADP Ribose Transferases/biosynthesis
- Aging/immunology
- Animals
- Antigens, Differentiation, T-Lymphocyte
- Antigens, Surface/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Female
- Immunophenotyping
- Integrins/biosynthesis
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Leukocyte Common Antigens/analysis
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Membrane Glycoproteins/analysis
- Membrane Glycoproteins/biosynthesis
- Mouth Mucosa/cytology
- Mouth Mucosa/immunology
- Mouth Mucosa/metabolism
- NK Cell Lectin-Like Receptor Subfamily B
- Organ Specificity/immunology
- Rats
- Rats, Inbred F344
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Immunologic/biosynthesis
- Salivary Glands/cytology
- Salivary Glands/immunology
- Salivary Glands/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thy-1 Antigens/analysis
- Thymectomy
Collapse
Affiliation(s)
- N L O'Sullivan
- Departments of. Anatomy and Cell Biology and Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|