1
|
Martora F, Tommasino N, Battista T, Potestio L, Megna M. Hidradenitis Suppurativa Cancer Risk: A Review of the Literature. Clin Cosmet Investig Dermatol 2025; 18:617-626. [PMID: 40124933 PMCID: PMC11929415 DOI: 10.2147/ccid.s512373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Background This systematic review explores the increased cancer risk in patients with hidradenitis suppurativa (HS), particularly cutaneous squamous cell carcinoma (SCC) and lymphoma. Chronic inflammation and immune dysregulation in HS are identified as key factors contributing to malignant transformation, often observed in areas of prolonged tissue damage. Objectives and Results The NOTCH signaling pathway, disrupted by smoking, plays a dual role in cancer, acting as both a tumor suppressor and a proto-oncogene depending on the context. Mutations in NOTCH and TP53 are common in SCC linked to HS, with a prevalence of 0.5% to 4.6%, predominantly in men and localized to the buttock and anogenital regions. Histological analyses suggest that malignant transformation occurs within keratinized epithelium, supported by altered cytokeratin expression. Immune dysregulation in HS-affected areas, compounded by scarring and lymphatic disruption, further exacerbates tumorigenic potential. While anti-TNF-alpha therapies have been implicated in cancer risk, conflicting evidence and meta-analyses suggest no consistent increase in non-melanoma skin cancers (NMSC). Similarly, IL-17 inhibitors show potential risks but lack robust evidence in HS-specific populations. Conclusion In conclusion, HS-associated malignancies, particularly SCC, underscore the need for further research to elucidate the mechanisms linking chronic inflammation to cancer development. Insights from such studies could guide preventative and therapeutic strategies, improving outcomes for HS patients.
Collapse
Affiliation(s)
- Fabrizio Martora
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Nello Tommasino
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Teresa Battista
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Luca Potestio
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
2
|
Abu Rached N, Rüth J, Gambichler T, Ocker L, Bechara FG. A state-of-the-art systematic review of cancer in hidradenitis suppurativa. Ann Med 2024; 56:2382372. [PMID: 39046819 PMCID: PMC11271124 DOI: 10.1080/07853890.2024.2382372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Hidradenitis suppurativa (HS) is a chronic inflammatory disease associated with an increased risk of malignancy. The aim of this systematic review was to investigate the prevalence of different malignancies in HS. METHODS This review meets the PRISMA criteria. A data-driven approach was used to conduct the research, which involved a detailed keyword search. The study considered meta-analyses, experimental studies, case-control studies, cross-sectional studies, cohort studies, and recently published cases, published in English or German. Excluded were reviews, summaries, and letters to the editor, as well as studies, which are not based on the human population. RESULTS Out of the initial 443 publications found, 25 met the inclusion criteria for this systematic review. Patients with HS have a significantly increased risk of cancer, up to 50%. Additionally, the risk of oropharyngeal, central nervous system, colorectal, prostate, vulvar and non-melanocytic skin cancers increase with the severity of HS. The likelihood of comorbid lymphoma in patients with HS is significantly higher compared to healthy controls. In severe cases of HS, malignant degeneration of lesions in the groin, perianal, perineal, and gluteal region can occur in up to 4.6% of cases. This leads to the development of cSCC, which often have a complicated course, are more refractory to treatment and associated with a poorer outcome. The pathogenic mechanisms responsible for the malignant transformation of HS are currently unknown. CONCLUSIONS Patients with HS have a higher risk of cancer compared to the general population. Untreated, long-standing HS lesions can lead to complicated malignant degeneration resulting in cutaneous squamous cell carcinoma. The mechanisms underlying this malignant degeneration are not fully understood. HS patients also have an increased risk of developing other cancers, including prostate, oral, pharyngeal and colorectal cancers of the central nervous system and lymphomas.
Collapse
Affiliation(s)
- Nessr Abu Rached
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Rüth
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Thilo Gambichler
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology and Phlebology, Christian Hospital Unna, Unna, Germany
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten/Herdecke University, Dortmund, Germany
| | - Lennart Ocker
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Falk G. Bechara
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Jung JM, Kim YJ, Chang SE, Lee MW, Won CH, Lee WJ. Cancer risks in patients with psoriasis administered biologics therapy: a nationwide population-based study. J Cancer Res Clin Oncol 2023; 149:17093-17102. [PMID: 37755577 DOI: 10.1007/s00432-023-05387-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To assess cancer risks in patients with psoriasis and the effect of TNF-α inhibitor and interleukin (IL)-12/23 inhibitor therapy on those cancer risks. METHODS Using the Korean Health Insurance Review and Assessment Service database, patients with newly diagnosed psoriasis between 2008 to 2019 were included. Standardized incidence ratios (SIRs) of overall and specific cancers were calculated in patients with psoriasis. The effect of TNF-α inhibitor and IL-12/23 inhibitor exposure on the risk of cancers was assessed by multivariable Cox regression models. RESULTS In total, 191,678 patients with psoriasis were included in this study. The overall risk of cancer was significantly higher in patients with psoriasis than in the general population (SIR, 1.12; 95% confidence interval (CI), 1.09-1.14). TNF-α inhibitor users had a significantly higher risk for overall cancer (adjusted hazard ratio (aHR), 1.41; 95% CI 1.01-1.97). In contrast, IL-12/23 inhibitor exposure had a significantly lower risk for overall cancer (aHR, 0.57; 95% CI 0.37-0.87). Among specific cancers, the risks of non-Hodgkin lymphoma (aHR, 2.98; 95% CI 1.02-8.69) were increased by TNF-α inhibitor therapy, while the risk of other cancers, including nonmelanoma skin cancer (aHR, 2.31; 95% CI 0.51-10.46), was not significantly altered by TNF-α inhibitor therapy. CONCLUSION TNF-α inhibitor therapy in psoriasis is associated with a significantly increased risk of overall cancer and lymphoma, while the risk of solid organ cancer was not affected by this therapy. The IL-12/23 inhibitor is not associated with an increased risk of any cancer.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
4
|
Bhat IA, Mir IR, Malik GH, Mir JI, Dar TA, Nisar S, Naik NA, Sabah ZU, Shah ZA. Comparative study of TNF-α and vitamin D reveals a significant role of TNF-α in NSCLC in an ethnically conserved vitamin D deficient population. Cytokine 2022; 160:156039. [DOI: 10.1016/j.cyto.2022.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
|
5
|
Zou Y, Cao C, Wang Y, Zhou Y, Yao S, Zhang L, Zheng K, Zhang H, Qin W, Qin K, Xiong H, Yuan X, Fu S, Wang Y, Xiong H. Multi-omics consensus portfolio to refine the classification of lung adenocarcinoma with prognostic stratification, tumor microenvironment, and unique sensitivity to first-line therapies. Transl Lung Cancer Res 2022; 11:2243-2260. [PMID: 36519025 PMCID: PMC9742627 DOI: 10.21037/tlcr-22-775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 09/09/2023]
Abstract
BACKGROUND Molecular classification of lung adenocarcinoma (LUAD) based on transcriptomic features has been widely studied. The complementarity of data obtained from multilayer molecular biology could help the LUAD classification via combining multi-omics information. METHODS We successfully divided samples from the The Cancer Genome Atlas (TCGA) (n=437) into four subtypes (CS1, CS2, CS3 and CS4) by 10 comprehensive multi-omics clustering methods in the "movics" R package. Meanwhile, external validation sets from different sequencing technologies proved the robustness of the grouping model. The relationship between subtypes, prognosis, molecular features, tumor microenvironment and response to first-line therapy was further analyzed. Next we used univariate Cox regression analysis and Lasso regression analysis to explore the application of biomarkers in clinical prognosis and constructed a prognostic model. RESULTS CS1 showed the worst overall survival (OS) among all four clusters, possibly related to its poor immune infiltration, higher tumor mutation and worse chromosomal stability. Patients in different subtypes differed significantly in cancer stem cell characteristics, activation of cancer-related pathways, sensitivity to chemotherapy and immunotherapy. The prognostic model showed good predictive performance. The 1-, 2- and 3-year areas under the curve of risk score were 0.779, 0.742 and 0.678, respectively. Seven genes (DKK1, TSPAN7, ID1, DLGAP5, HHIPL2, CD40 and SEMA3C) used to build the model may be potential therapeutic targets for LUAD. CONCLUSIONS Four LUAD subtypes with different molecular characteristics and clinical implications were identified successfully through bioinformatic analysis. Our results may contribute to precision medicine and inform the development of rational clinical strategies for targeted and immune therapies.
Collapse
Affiliation(s)
- Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlin Cao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Lee HM, Lee HJ, Chang JE. Inflammatory Cytokine: An Attractive Target for Cancer Treatment. Biomedicines 2022; 10:biomedicines10092116. [PMID: 36140220 PMCID: PMC9495935 DOI: 10.3390/biomedicines10092116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment.
Collapse
|
7
|
Yang Z, Liu Z, Xu J, Zhu J, Pu Y, Bao Y. Study on the physicochemical properties and immunomodulatory anti-tumor effect of the Pholiota adiposa polysaccharide. Food Funct 2022; 13:5153-5165. [PMID: 35420612 DOI: 10.1039/d1fo03628a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, the extraction, purification, physical and chemical properties, and biological activity of the Pholiota adiposa (PAP) polysaccharide were investigated. One fraction (PAP-1a) of Pholiota adiposa polysaccharides was isolated using DEAE Sepharose™ Fast Flow and Sephacryl™ S-300 High-Resolution columns. The HPLGPC results revealed that the molecular weight of PAP-1a was 16.453 kDa. PAP-1a was composed of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose and their molar % was 33.41, 0.53, 1.33, 0.07, 0.27, 5.28, 38.31, 0.83, 18.04 and 2.23, respectively. PAP-1a could activate macrophages to secrete NO and cytokines such as TNF-a, IL-6, and IL-12p70. When hepatocellular carcinoma cells (HCCs) and macrophages were co-cultured, it was observed that PAP-1a inhibited the growth of Hep-G2, Hep-3B, and Huh7 via immunoregulation. It triggered cell apoptosis by blocking the cell cycle in the G0/G1 stage. Furthermore, PAP-1a had no direct cytotoxicity against the hepatocyte cell line L02 and macrophages RAW264.7.
Collapse
Affiliation(s)
- Zhongwei Yang
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zijing Liu
- Department of Gastroenterology, The Third Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Junmo Zhu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Youwei Pu
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
8
|
Intravenous Oncolytic Vaccinia Virus Therapy Results in a Differential Immune Response between Cancer Patients. Cancers (Basel) 2022; 14:cancers14092181. [PMID: 35565310 PMCID: PMC9103071 DOI: 10.3390/cancers14092181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) have been extensively studied as an immunotherapeutic agent against a variety of cancers with some successes. Immunotherapeutic strategies, such as OVs, aim to transform an immunologically ‘cold’ tumour microenvironment into a more favourable inflammatory ‘hot’ tumour. However, it is evident that not all patients have a favourable response to treatment. Furthermore, reliable biomarkers able to predict a patient’s response to therapy have not yet been elucidated. We show evidence of a distinct immunologically exhausted profile in patients who do not respond to OV, which may pave the way for the development of predictive biomarkers leading to a more personalised approach to cancer treatment using combination therapies. Abstract Pexa-Vec is an engineered Wyeth-strain vaccinia oncolytic virus (OV), which has been tested extensively in clinical trials, demonstrating enhanced cytotoxic T cell infiltration into tumours following treatment. Favourable immune consequences to Pexa-Vec include the induction of an interferon (IFN) response, followed by inflammatory cytokine/chemokine secretion. This promotes tumour immune infiltration, innate and adaptive immune cell activation and T cell priming, culminating in targeted tumour cell killing, i.e., an immunologically ‘cold’ tumour microenvironment is transformed into a ‘hot’ tumour. However, as with all immunotherapies, not all patients respond in a uniformly favourable manner. Our study herein, shows a differential immune response by patients to intravenous Pexa-Vec therapy, whereby some patients responded to the virus in a typical and expected manner, demonstrating a significant IFN induction and subsequent peripheral immune activation. However, other patients experienced a markedly subdued immune response and appeared to exhibit an exhausted phenotype at baseline, characterised by higher baseline immune checkpoint expression and regulatory T cell (Treg) levels. This differential baseline immunological profile accurately predicted the subsequent response to Pexa-Vec and may, therefore, enable the development of predictive biomarkers for Pexa-Vec and OV therapies more widely. If confirmed in larger clinical trials, these immunological biomarkers may enable a personalised approach, whereby patients with an exhausted baseline immune profile are treated with immune checkpoint blockade, with the aim of reversing immune exhaustion, prior to or alongside OV therapy.
Collapse
|
9
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
10
|
Zuo T, Fang T, Zhang J, Yang J, Xu R, Wang Z, Deng H, Shen Q. pH-Sensitive Molecular-Switch-Containing Polymer Nanoparticle for Breast Cancer Therapy with Ferritinophagy-Cascade Ferroptosis and Tumor Immune Activation. Adv Healthc Mater 2021; 10:e2100683. [PMID: 34535975 DOI: 10.1002/adhm.202100683] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Indexed: 12/30/2022]
Abstract
Ferritin internalized into tumor cells is degraded and releases iron ions via ferritinophagy. Iron ions participate in Fenton reaction to produce reactive oxygen species for lipid peroxidation and ferroptosis. Inhibition of indoleamine-2,3-dioxygenase (IDO) decreases tryptophan elimination to induce T cells activation for tumor immunosuppression relief. The active tumor targeting nanoparticles containing ferritin and a pH-sensitive molecular-switch (FPBC@SN) are developed to utilize ferritinophagy-cascade ferroptosis and tumor immunity activation for cancer therapy. FPBC@SN disintegrates in acidic cytoplasm and releases sorafenib (SRF) and IDO inhibitor (NLG919). SRF upregulates nuclear receptor coactivator 4 (NCOA4) to induce ferritin and endogenous iron pool degradation by ferritinophagy, then obtained iron ions participate in the Fenton reaction to produce lipid peroxide (LPO). Meanwhile, SRF blocks glutathione synthesis to downregulate glutathione peroxidase 4 (GPX4) which can scavenge LPO as a different pathway from ferritinophagy to promote ferroptosis in tumor cells. NLG919 inhibits IDO to reduce tryptophan metabolism, so immunity in tumors is aroused to anti-tumor. In vitro and in vivo experiments prove FPBC@SN inhibits tumor cell growth and metastasis, indicating the potential of FPBC@SN for breast cancer therapy based on the combination of ferritinophagy-cascade ferroptosis and tumor immunity activation.
Collapse
Affiliation(s)
- Tiantian Zuo
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tianxu Fang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jun Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie Yang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Rui Xu
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhihua Wang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Huizi Deng
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qi Shen
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
11
|
Christie JD, Appel N, Canter H, Achi JG, Elliott NM, de Matos AL, Franco L, Kilbourne J, Lowe K, Rahman MM, Villa NY, Carmen J, Luna E, Blattman J, McFadden G. Systemic delivery of TNF-armed myxoma virus plus immune checkpoint inhibitor eliminates lung metastatic mouse osteosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:539-554. [PMID: 34553039 PMCID: PMC8433070 DOI: 10.1016/j.omto.2021.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model. Virus therapy efficacy against pre-seeded lung metastases was assessed after systemic infusion of either naked virus or ex vivo-loaded autologous bone marrow leukocytes or peripheral blood mononuclear cells (PBMCs). Results of this study showed that the PBMC pre-loaded strategy was the most effective at reducing tumor burden and increasing median survival time, but sequential intravenous multi-dosing with naked virus was comparably effective to a single infusion of PBMC-loaded virus. PBMC-loaded vMyx-hTNF also potentially synergized very effectively with immune checkpoint inhibitors anti-PD-1, anti-PD-L1, and anti-cytotoxic T lymphocyte associated protein 4 (CTLA-4). Finally, in addition to the pro-immune stimulation caused by unarmed MYXV, the TNF transgene of vMyx-hTNF further induced the unique expression of numerous additional cytokines associated with the innate and adaptive immune responses in this model. We conclude that systemic ex vivo virotherapy with TNF-α-armed MYXV represents a new potential strategy against lung metastatic cancers like osteosarcoma and can potentially act synergistically with established checkpoint immunotherapies.
Collapse
Affiliation(s)
- John D Christie
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Nicole Appel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Hannah Canter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Natalie M Elliott
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Ana Lemos de Matos
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Lina Franco
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA.,Oncomyx Therapeutics, Phoenix, AZ 85004, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Masmudur M Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Nancy Y Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joshua Carmen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Evelyn Luna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
12
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Patidar A, Selvaraj S, Chauhan P, Guzman CA, Ebensen T, Sarkar A, Chattopadhyay D, Saha B. Peptidoglycan-treated tumor antigen-pulsed dendritic cells impart complete resistance against tumor rechallenge. Clin Exp Immunol 2020; 201:279-288. [PMID: 32443171 DOI: 10.1111/cei.13468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Solid tumors elicit suppressive T cell responses which impair antigen-presenting cell (APC) functions. Such immune suppression results in uncontrolled tumor growth and mortality. Addressing APC dysfunction, dendritic cell (DC)-mediated anti-tumor vaccination was extensively investigated in both mice and humans. These studies never achieved full resistance to tumor relapse. Herein, we describe a repetitive RM-1 murine tumor rechallenge model for recurrence in humans. Using this newly developed model, we show that priming with tumor antigen-pulsed, Toll-like receptor (TLR)2 ligand-activated DCs elicits a host-protective anti-tumor immune response in C57BL/6 mice. Upon stimulation with the TLR2 ligand peptidoglycan (PGN), the tumor antigen-pulsed DCs induce complete resistance to repetitive tumor challenges. Intra-tumoral injection of PGN reduces tumor growth. The tumor resistance is accompanied by increased expression of interleukin (IL)-27, T-box transcription factor TBX21 (T-bet), IL-12, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, along with heightened cytotoxic T lymphocyte (CTL) functions. Mice primed four times with PGN-stimulated tumor antigen-pulsed DCs remain entirely resistant to repeat challenges with RM-1 tumor cells, suggesting complete prevention of relapse and recurrence of tumor. Adoptive transfer of T cells from these mice, which were fully protected from RM-1 rechallenge, confers anti-tumor immunity to syngeneic naive recipient mice upon RM-1 challenge. These observations indicate that PGN-activated DCs induce robust host-protective anti-tumor T cells that completely resist tumor growth and recurrence.
Collapse
Affiliation(s)
- A Patidar
- National Centre for Cell Science, Pune, India
| | - S Selvaraj
- National Centre for Cell Science, Pune, India
| | - P Chauhan
- National Centre for Cell Science, Pune, India
| | - C A Guzman
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - T Ebensen
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - A Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | | | - B Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India.,National Institute of Traditional Medicine, Belagavi, India
| |
Collapse
|
14
|
Trisomy 21 dysregulates T cell lineages toward an autoimmunity-prone state associated with interferon hyperactivity. Proc Natl Acad Sci U S A 2019; 116:24231-24241. [PMID: 31699819 PMCID: PMC6883781 DOI: 10.1073/pnas.1908129116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Triplication of human chromosome 21, or trisomy 21 (T21), causes the condition known as Down syndrome (DS). People with DS show a markedly different disease spectrum relative to typical people, being highly predisposed to conditions such as Alzheimer’s disease, while being protected from other conditions, such as most solid malignancies. Interestingly, people with DS are affected by high rates of autoimmune disorders, whereby the immune system mistakenly attacks healthy tissues. This manuscript reports an exhaustive characterization of the T cells of people with DS, demonstrating many alterations in this key immune cell type that could explain their high risk of autoimmunity. These results reveal opportunities for therapeutic intervention to modulate T cell function and improve health outcomes in DS. Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A–D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis of white blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.
Collapse
|
15
|
Ghosh S, Carmo M, Calero-Garcia M, Ricciardelli I, Bustamante Ogando JC, Blundell MP, Schambach A, Ashton-Rickardt PG, Booth C, Ehl S, Lehmberg K, Thrasher AJ, Gaspar HB. T-cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents hemophagocytic lymphohistiocytosis manifestations. J Allergy Clin Immunol 2018; 142:904-913.e3. [PMID: 29355678 PMCID: PMC6127027 DOI: 10.1016/j.jaci.2017.11.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in the perforin 1 (PRF1) gene account for up to 58% of familial hemophagocytic lymphohistiocytosis syndromes. The resulting defects in effector cell cytotoxicity lead to hypercytokinemia and hyperactivation with inflammation in various organs. OBJECTIVE We sought to determine whether autologous gene-corrected T cells can restore cytotoxic function, reduce disease activity, and prevent hemophagocytic lymphohistiocytosis (HLH) symptoms in in vivo models. METHODS We developed a gammaretroviral vector to transduce murine CD8 T cells in the Prf-/- mouse model. To verify functional correction of Prf-/- CD8 T cells in vivo, we used a lymphocytic choriomeningitis virus (LCMV) epitope-transfected murine lung carcinoma cell tumor model. Furthermore, we challenged gene-corrected and uncorrected mice with LCMV. One patient sample was transduced with a PRF1-encoding lentiviral vector to study restoration of cytotoxicity in human cells. RESULTS We demonstrated efficient engraftment and functional reconstitution of cytotoxicity after intravenous administration of gene-corrected Prf-/- CD8 T cells into Prf-/- mice. In the tumor model infusion of Prf-/- gene-corrected CD8 T cells eliminated the tumor as efficiently as transplantation of wild-type CD8 T cells. Similarly, mice reconstituted with gene-corrected Prf-/- CD8 T cells displayed complete protection from the HLH phenotype after infection with LCMV. Patients' cells showed correction of cytotoxicity in human CD8 T cells after transduction. CONCLUSION These data demonstrate the potential application of T-cell gene therapy in reconstituting cytotoxic function and protection against HLH in the setting of perforin deficiency.
Collapse
Affiliation(s)
- Sujal Ghosh
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Dusseldorf, Germany
| | - Marlene Carmo
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Miguel Calero-Garcia
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ida Ricciardelli
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Juan Carlos Bustamante Ogando
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Michael P Blundell
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Philip G Ashton-Rickardt
- Section of Immunobiology, Division of Inflammation and Immunology, Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Claire Booth
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai Lehmberg
- Department of Paediatric Haematology and Oncology, Division of Paediatric Stem Cell Transplantation and Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | - Adrian J Thrasher
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
16
|
Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs. Vaccine 2017; 35:5629-5636. [DOI: 10.1016/j.vaccine.2017.08.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 12/18/2022]
|
17
|
Yang PM, Du JL, Wang GNK, Chia JS, Hsu WB, Pu PC, Sun A, Chiang CP, Wang WB. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell-Vaccinated Mice. Integr Cancer Ther 2017; 16:319-328. [PMID: 27252074 PMCID: PMC5759942 DOI: 10.1177/1534735416651492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. METHODS The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. RESULTS THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. CONCLUSION THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy.
Collapse
Affiliation(s)
- Pei-Ming Yang
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Ling Du
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Jean-San Chia
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Bin Hsu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Ching Pu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andy Sun
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Won-Bo Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Wongsena W, Charoensuk L, Dangtakot R, Pinlaor P, Intuyod K, Pinlaor S. Melatonin suppresses eosinophils and Th17 cells in hamsters treated with a combination of human liver fluke infection and a chemical carcinogen. Pharmacol Rep 2017; 70:98-105. [PMID: 29331794 DOI: 10.1016/j.pharep.2017.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND The combination of Opisthorchis viverrini (OV) infection and chemical carcinogen induces cholangiocarcinoma (CCA) in hamsters via inflammation-mediated mechanisms. Thus, suppression of inflammatory cells at the initial stages of CCA development would be of benefit. We aimed to investigate whether IL-17-producing CD4+ T cells (Th17) and CD4+ Foxp3+ T cells (Treg) are involved in the early stages of CCA genesis and can be targeted for suppression by melatonin. METHODS Inflammation, an initial stage of CCA development, was induced in hamsters by a combination of O. viverrini infection and N-nitrosodimethylamine (NDMA) administration. Melatonin (50mg/kg) was additionally administered to one group for the 30days of the experiment. Liver tissue-resident T cells were investigated using immunostaining, western blotting, and real-time PCR. RESULTS OV+NDMA-induced CCA tissues showed significantly higher numbers of inflammatory cells, especially eosinophils, bile duct proliferation and IL-17+ cell infiltration compared to normal livers. Expression of Foxp3 was localized in the bile duct epithelial cells, and especially in the bile duct hyperplasia. Accumulation of CD4+ and IL-17+ cells and intense staining of the Foxp3+ marker were consistent with their protein levels. Infiltration of IL-17+ inflammatory cells and Foxp3+ cells, as well as increases in their transcription expression levels, were significantly lower in the melatonin-treated group. In contrast, increased CD4+ cell infiltration and TNF-α expression were also observed through melatonin treatment. CONCLUSION Melatonin exerts an immunomodulatory effect, suppressing eosinophils and Th17 cells and expression of Foxp3, but enhancing CD4+ cells and TNF-α. This suggests that melatonin may be used for CCA chemoprevention.
Collapse
Affiliation(s)
- Wachanan Wongsena
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Thailand
| | - Lakhanawan Charoensuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Thailand
| | - Rungtiwa Dangtakot
- Center of Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Porntip Pinlaor
- Center of Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Kitti Intuyod
- Biomedical Science Program, Graduate School, Khon Kaen University, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand.
| |
Collapse
|
19
|
Hosseinzadeh A, Ardebili SMM. Efficacy of Omega Fatty Acid Supplementation on mRNA Expression Level of Tumor Necrosis Factor Alpha in Patients with Gastric Adenocarcinoma. J Gastrointest Cancer 2017; 47:287-93. [PMID: 27170003 DOI: 10.1007/s12029-016-9826-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, is involved in apoptosis, cell proliferation, cell survival, and inflammation. It plays a dual role in cancer development and progression. It has been revealed that polyunsaturated fatty acids (PUFAs) modulate the production and activity of TNF family cytokines. The objective of the present study was to evaluate the effect of PUFAs on messenger RNA expression levels of TNF-α in patients with gastric adenocarcinoma. METHODS Thirty-four chemotherapy-naive patients diagnosed with gastric adenocarcinoma were randomly divided into two groups. The first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFA supplements for 3 weeks, based on treatment strategies. The gastric biopsy samples were obtained from all participants before and after treatment, and TNF-α mRNA expression levels were evaluated by quantitative real-time PCR procedure. RESULTS Our findings revealed that TNF-α mRNA expression is downregulated in group II, after receiving cisplatin and omega fatty acid supplement for 3 weeks. However, this difference is not statistically significant (p > 0.05). TNF-α mRNA expression did not show significant alteration in group I, after receiving cisplatin alone. CONCLUSIONS Taken together, we concluded that omega fatty acids reduce TNF-α expression at the mRNA level in patients with gastric adenocarcinoma. These data suggest that TNF-α may act as a potential target for the therapy of human gastric adenocarcinoma.
Collapse
Affiliation(s)
- Asghar Hosseinzadeh
- Department of Biology, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran.,Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seyed Mojtaba Mohaddes Ardebili
- Department of Biology, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Mattner J, Wirtz S. Friend or Foe? The Ambiguous Role of Innate Lymphoid Cells in Cancer Development. Trends Immunol 2017; 38:29-38. [PMID: 27810463 DOI: 10.1016/j.it.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
The development of immunotherapies represents a major advance towards the effective eradication of malignant tumors. So far, therapeutic approaches have largely focused on T lymphocytes, but the innate arm of the immune system might be similarly important. Innate lymphoid cells (ILCs) are rapidly-responding cells that are functionally analogous to diverse T cell subsets. In recent years these cells have attracted enormous attention owing to their pleiotropic effects in early host defense to infection and organ pathologies. ILCs might also represent promising targets in the context of cancer therapy because they are an innate immune cell population endowed with potent immunomodulatory properties. In this review we discuss the impact of the three ILC subsets and the signature cytokines they release on cancer development and tumor growth.
Collapse
Affiliation(s)
- Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
21
|
Atretkhany KSN, Nosenko MA, Gogoleva VS, Zvartsev RV, Qin Z, Nedospasov SA, Drutskaya MS. TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation. Front Immunol 2016; 7:147. [PMID: 27148266 PMCID: PMC4835443 DOI: 10.3389/fimmu.2016.00147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells (IMCs) that, under normal conditions, may differentiate into mature macrophages, granulocytes, and dendritic cells. However, under pathological conditions associated with inflammation, cancer, or infection, such differentiation is inhibited leading to IMC expansion. Under the influence of inflammatory cytokines, these cells become MDSCs, acquire immunosuppressive phenotype, and accumulate in the affected tissue, as well as in the periphery. Immune suppressive activity of MDSCs is partly due to upregulation of arginase 1, inducible nitric oxide synthase, and anti-inflammatory cytokines, such as IL-10 and TGF-β. These suppressive factors can enhance tumor growth by repressing T-cell-mediated anti-tumor responses. TNF is a critical factor for the induction, expansion, and suppressive activity of MDSCs. In this study, we evaluated the effects of systemic TNF ablation on tumor-induced expansion of MDSCs in vivo using TNF humanized (hTNF KI) mice. Both etanercept and infliximab treatments resulted in a delayed growth of MCA 205 fibrosarcoma in hTNF KI mice, significantly reduced tumor volume, and also resulted in less accumulated MDSCs in the blood 3 weeks after tumor cell inoculation. Thus, our study uncovers anti-tumor effects of systemic TNF ablation in vivo.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Immunology Department, Faculty of Biology, Beloszersky Institue of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Nosenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Immunology Department, Faculty of Biology, Beloszersky Institue of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Immunology Department, Faculty of Biology, Beloszersky Institue of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ruslan V Zvartsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Immunology Department, Faculty of Biology, Beloszersky Institue of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
22
|
Lebrec H, Ponce R, Preston BD, Iles J, Born TL, Hooper M. Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk. Curr Med Res Opin 2015; 31:557-74. [PMID: 25651481 DOI: 10.1185/03007995.2015.1011778] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Tumor necrosis factor (TNF) is a highly pleiotropic cytokine with multiple activities other than its originally discovered role of tumor necrosis in rodents. TNF is now understood to play a contextual role in driving either tumor elimination or promotion. Using both animal and human data, this review examines the role of TNF in cancer development and the effect of TNF and TNF inhibitors (TNFis) on malignancy risk. RESEARCH DESIGN A literature review was performed using relevant search terms for TNF and malignancy. RESULTS Although administration of TNF can cause tumor regression in specific rodent tumor models, human expression polymorphisms suggest that TNF can be a tumor-promoting cytokine, whereas blocking the TNF pathway in a variety of tumor models inhibits tumor growth. In addition to direct effects of TNF on tumors, TNF can variously affect immunity and the tumor microenvironment. Whereas TNF can promote immune surveillance designed to eliminate tumors, it can also drive chronic inflammation, autoimmunity, angiogenesis, and other processes that promote tumor initiation, growth, and spread. Key players in TNF signaling that shape this response include NF-κB and JNK, and malignant-inflammatory cell interactions, each of which may have different responses to TNF signaling. Focusing on rheumatoid arthritis (RA) patients, where clinical experience is most extensive, a review of the clinical literature shows no increased risk of overall malignancy or solid tumors such as breast and lung cancers with exposure to TNFis. Lymphoma rates are not increased with use of TNFis. Conflicting data exist regarding the risks of melanoma and nonmelanoma skin cancer. Data regarding the risk of recurrent malignancy are limited. CONCLUSIONS Overall, the available data indicate that elevated TNF is a risk factor for cancer, whereas its inhibition in RA patients is not generally associated with an increased cancer risk. In particular, TNF inhibition is not associated with cancers linked to immune suppression. A better understanding of the tumor microenvironment, molecular events underlying specific tumors, and epidemiologic studies of malignancies within specific disease indications should enable more focused pharmacovigilance studies and a better understanding of the potential risks of TNFis.
Collapse
|
23
|
The role of CD95 and CD95 ligand in cancer. Cell Death Differ 2015; 22:549-59. [PMID: 25656654 PMCID: PMC4356349 DOI: 10.1038/cdd.2015.3] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.
Collapse
|
24
|
Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer. PLoS One 2014; 9:e115945. [PMID: 25548907 PMCID: PMC4280165 DOI: 10.1371/journal.pone.0115945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/26/2014] [Indexed: 12/25/2022] Open
Abstract
In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence.
Collapse
|
25
|
Abstract
The conventional view of CD95 (Fas/APO-1) is that it is a dedicated apoptosis-inducing receptor with important functions in immune cell homeostasis and in viral and tumor defense. There is an emerging recognition, however, that CD95 also has multiple non-apoptotic activities. In the context of cancer, CD95 was shown to have tumor-promoting activities, and the concept of this new function of CD95 in cancer is gaining traction. Recently, we showed that not only is CD95 a growth promoter for cancer cells, but, paradoxically, when either CD95 or CD95 ligand (CD95L) is removed, that virtually all cancer cells die through a process we have named DICE (death induced by CD95R/L elimination). In this perspective, I outline a hypothesis regarding the physiological function of DICE, and why it may be possible to use induction of DICE to treat many, if not most, cancers.
Collapse
Affiliation(s)
- Marcus E Peter
- Northwestern University; Feinberg School of Medicine; Division Hematology/Oncology; Chicago, IL USA
| |
Collapse
|
26
|
Messina NL, Banks KM, Vidacs E, Martin BP, Long F, Christiansen AJ, Smyth MJ, Clarke CJP, Johnstone RW. Modulation of antitumour immune responses by intratumoural
Stat1
expression. Immunol Cell Biol 2013; 91:556-67. [DOI: 10.1038/icb.2013.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Nicole L Messina
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Kellie M Banks
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Eva Vidacs
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ben P Martin
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Fennella Long
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
| | - Ailsa J Christiansen
- Institute of Pharmaceutical Science, Swiss Federal Institute of Technology (ETHZ)ZurichSwitzerland
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, Queensland Institute of Medical ResearchHerstonQueenslandAustralia
- School of Medicine, University of QueenslandHerstonQueenslandAustralia
| | - Christopher J P Clarke
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Deptartment of Pathology, University of MelbourneParkvilleVictoriaAustralia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, Peter MacCallum Cancer CentreEast MelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
27
|
Choi IK, Li Y, Oh E, Kim J, Yun CO. Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-γ- and TNF-α-co-producing T cell-mediated antitumor immunity. PLoS One 2013; 8:e67512. [PMID: 23844018 PMCID: PMC3701076 DOI: 10.1371/journal.pone.0067512] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 05/23/2013] [Indexed: 12/13/2022] Open
Abstract
Cytokine immunogene therapy is a promising strategy for cancer treatment. Interleukin (IL)-12 boosts potent antitumor immunity by inducing T helper 1 cell differentiation and stimulating cytotoxic T lymphocyte and natural killer cell cytotoxicity. IL-23 has been proposed to have similar but not overlapping functions with IL-12 in inducing Th1 cell differentiation and antitumor immunity. However, the therapeutic effects of intratumoral co-expression of IL-12 and IL-23 in a cancer model have yet to be investigated. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral inoculation of oncolytic adenovirus co-expressing IL-23 and p35, RdB/IL23/p35. Intratumoral administration of RdB/IL23/p35 elicited strong antitumor effects and increased survival in a murine B16-F10 syngeneic tumor model. The levels of IL-12, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were elevated in RdB/IL23/p35-treated tumors. Moreover, the proportion of regulatory T cells was markedly decreased in mice treated with RdB/IL23/p35. Consistent with these data, mice injected with RdB/IL23/p35 showed massive infiltration of CD4+ and CD8+ T cells into the tumor as well as enhanced induction of tumor-specific immunity. Importantly, therapeutic mechanism of antitumor immunity mediated by RdB/IL23/p35 is associated with the generation and recruitment of IFN-γ- and TNF-α-co-producing T cells in tumor microenvironment. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-23 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.
Collapse
Affiliation(s)
- Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Yan Li
- Graduate Program for Nanomedical Science, Yonsei University, Seoul, Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Jaesung Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, Utah, United States of America
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
28
|
Hosono K, Yamada E, Endo H, Takahashi H, Inamori M, Hippo Y, Nakagama H, Nakajima A. Increased tumor necrosis factor receptor 1 expression in human colorectal adenomas. World J Gastroenterol 2012; 18:5360-8. [PMID: 23082052 PMCID: PMC3471104 DOI: 10.3748/wjg.v18.i38.5360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/07/2012] [Accepted: 06/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression statuses of tumor necrosis factor (TNF)-α, its receptors (TNF-R) and downstream effector molecules in human colorectal adenomas.
METHODS: We measured the serum concentrations of TNF-α and its receptors in 62 colorectal adenoma patients and 34 healthy controls. The protein expression of TNF-α, TNF-R1, TNF-R2 and downstream signals of the TNF receptors, such as c-Jun N-terminal kinase (JNK), nuclear factor-κ B and caspase-3, were also investigated in human colorectal adenomas and in normal colorectal mucosal tissues by immunohistochemistry. Immunofluorescence confocal microscopy was used to investigate the consistency of expression of TNF-R1 and phospho-JNK (p-JNK).
RESULTS: The serum levels of soluble TNF-R1 (sTNF-R1) in adenoma patients were significantly higher than in the control group (3.67 ± 0.86 ng/mL vs 1.57 ± 0.72 ng/mL, P < 0.001). Receiver operating characteristic analysis revealed the high diagnostic sensitivity of TNF-R1 measurements (AUC was 0.928) for the diagnosis of adenoma, and the best cut-off level of TNF-R1 was 2.08 ng/mL, with a sensitivity of 93.4% and a specificity of 82.4%. There were no significant differences in the serum levels of TNF-α or sTNF-R2 between the two groups. Immunohistochemistry showed high levels of TNF-R1 and p-JNK expression in the epithelial cells of adenomas. Furthermore, a high incidence of co-localization of TNF-R1 and p-JNK was identified in adenoma tissue.
CONCLUSION: TNF-R1 may be a promising biomarker of colorectal adenoma, and it may also play an important role in the very early stages of colorectal carcinogenesis.
Collapse
|
29
|
Su K, Tian Y, Wang J, Shi W, Luo D, Liu J, Tong Z, Wu J, Zhang J, Wei L. HIF-1α acts downstream of TNF-α to inhibit vasodilator-stimulated phosphoprotein expression and modulates the adhesion and proliferation of breast cancer cells. DNA Cell Biol 2012; 31:1078-87. [PMID: 22320863 DOI: 10.1089/dna.2011.1563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metastasis is the leading cause of death in breast cancer patients. Recent evidence suggests that inflammation-related cytokine tumor necrosis factor-alpha (TNF-α) is implicated in tumor invasion and metastasis, but the mechanism of its involvement remains elusive. In this study, we employed MCF-7 breast cancer cells as an experimental model to demonstrate that TNF-α inhibits breast cancer cell adhesion and cell proliferation through hypoxia inducible factor-1alpha (HIF-1α) mediated suppression of vasodilator-stimulated phosphoprotein (VASP). We observed that TNF-α treatment attenuated the adhesion and proliferation of MCF-7 cells it also dramatically increased HIF-1α expression and decreased VASP expression. Through a variety of approaches, including promoter assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP), we identified VASP as a direct target gene of HIF-1α. In addition, we confirmed that HIF-1α mediated the repression of VASP expression by TNF-α in MCF-7 cells. We also demonstrated that exogenous VASP expression or knockdown of HIF-1α relieved TNF-α induced inhibition of cell adhesion and proliferation. We identified a novel TNF-α/HIF-1α/VASP axis in which HIF-1α acts downstream of TNF-α to inhibit VASP expression and modulate the adhesion and proliferation of breast cancer cells. These data provide new insight into the potential anti-tumor effects of TNF-α.
Collapse
Affiliation(s)
- Ke Su
- Department of Pathology and Pathophysiology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova AG, Schillaci R, François JC. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS One 2012; 7:e29213. [PMID: 22235273 PMCID: PMC3250415 DOI: 10.1371/journal.pone.0029213] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 12/30/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2′-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2′-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.
Collapse
Affiliation(s)
- Tiphanie Durfort
- Institut National de la Santé et de la Recherche Médicale (INSERM) U565, Paris, France
- Centre National de la Recherche, Scientifique, UMR 7196; Muséum National d'Histoire Naturelle, Paris, France
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine - Siberian Division of Russian Academy of Sciences (SB-RAS), Novosibirsk, Russia
| | - Martín A. Rivas
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia V. Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine - Siberian Division of Russian Academy of Sciences (SB-RAS), Novosibirsk, Russia
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jean-Christophe François
- Institut National de la Santé et de la Recherche Médicale (INSERM) U565, Paris, France
- Centre National de la Recherche, Scientifique, UMR 7196; Muséum National d'Histoire Naturelle, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Fowler DW, Copier J, Wilson N, Dalgleish AG, Bodman-Smith MD. Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy. Cancer Immunol Immunother 2011; 61:535-47. [PMID: 22002242 PMCID: PMC3310139 DOI: 10.1007/s00262-011-1121-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/23/2011] [Indexed: 11/29/2022]
Abstract
Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer.
Collapse
Affiliation(s)
- Daniel W Fowler
- Department of Clinical Sciences, St. George's University of London, Cranmer Terrace, Tooting Broadway, London, SW17 0RE, UK.
| | | | | | | | | |
Collapse
|
32
|
Mazeike E, Gedvilaite A, Blohm U. Induction of insert-specific immune response in mice by hamster polyomavirus VP1 derived virus-like particles carrying LCMV GP33 CTL epitope. Virus Res 2011; 163:2-10. [PMID: 21864590 PMCID: PMC7114473 DOI: 10.1016/j.virusres.2011.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 01/12/2023]
Abstract
Hamster polyomavirus (HaPyV) major capsid protein VP1 based chimeric virus-like particles (VLPs) carrying model GP33 CTL epitope derived from Lymphocytic choriomeningitis virus (LCMV) were generated in yeast and examined for their capability to induce CTL response in mice. Chimeric VP1-GP33 VLPs were effectively processed in antigen presenting cells in vitro and in vivo and induced antigen-specific CD8+ T cell proliferation. Mice immunized only once with VP1-GP33 VLPs without adjuvant developed an effective GP33-specific memory T cell response: 70% were fully and 30% partially protected from LCMV infection. Moreover, aggressive growth of tumors expressing GP33 was significantly delayed in these mice in vivo. Therefore, HaPyV VP1-derived VLP harboring CTL epitopes are attractive vaccine candidates for the induction of insert-specific CTL immune response.
Collapse
Affiliation(s)
- Egle Mazeike
- Vilnius University, Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
33
|
Liu K. Role of apoptosis resistance in immune evasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2010; 2:399-406. [PMID: 21160903 PMCID: PMC3000453 DOI: 10.4251/wjgo.v2.i11.399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 02/05/2023] Open
Abstract
The host immune system functions as a guardian against tumor development. It has been demonstrated that cytotoxic T lymphocyte (CTL)-mediated cytotoxic pathways function to inhibit or delay human colorectal cancer development. However, the host anti-tumor immune responses also 'edit' the tumor and select for more aggressive variants, resulting in immune evasion and tumor escape. Fas is a death receptor that mediates one of the major cytotoxic effector mechanisms of the CTLs. Fas is highly expressed in normal human colon epithelial cells but is frequently silenced in colorectal carcinoma, especially in metastatic colorectal carcinoma, suggesting that loss of Fas expression and function may be an immune evasion and tumor escape mechanism. In addition, recent studies indicated that Fas also mediates cellular proliferation signaling pathways to promote tumor development. Therefore, the death receptor Fas may not only transduce death signals to suppress tumor development but also activate cellular proliferation and the migration process to promote tumor growth and progression. Thus, understanding the mechanisms by which the Fas receptor and its associated protein complex transduces the death and survival signals may identify molecular targets for the development of therapeutic strategy to enhance the Fas-mediated death signals to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Kebin Liu
- Kebin Liu, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, United States
| |
Collapse
|
34
|
Kopf M, Bachmann MF, Marsland BJ. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 2010; 9:703-18. [DOI: 10.1038/nrd2805] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Abstract
Tumour necrosis factor (TNF) is a major inflammatory cytokine that was first identified for its ability to induce rapid haemorrhagic necrosis of experimental cancers. When efforts to harness this anti-tumour activity in cancer treatments were underway, a paradoxical tumour-promoting role of TNF became apparent. Now that links between inflammation and cancer are appreciated, is TNF a target or a therapeutic in malignant disease -- or both?
Collapse
Affiliation(s)
- Frances Balkwill
- Centre for Cancer and Inflammation, Institute of Cancer, Barts, UK.
| |
Collapse
|
36
|
Mempel TR, Bauer CA. Intravital imaging of CD8+ T cell function in cancer. Clin Exp Metastasis 2008; 26:311-27. [PMID: 18665448 DOI: 10.1007/s10585-008-9196-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/14/2008] [Indexed: 12/11/2022]
Abstract
Recent technological advances in photonics are making intravital microscopy (IVM) an increasingly powerful approach for the mechanistic exploration of biological processes in the physiological context of complex native tissue environments. Direct, dynamic and multiparametric visualization of immune cell behavior in living animals at cellular and subcellular resolution has already proved its utility in auditing basic immunological concepts established through conventional approaches and has also generated new hypotheses that can conversely be complemented and refined by traditional experimental methods. The insight that outgrowing tumors must not necessarily have evaded recognition by the adaptive immune system, but can escape rejection by actively inducing a state of immunological tolerance calls for a detailed investigation of the cellular and molecular mechanisms by which the anti-cancer response is subverted. Along with molecular imaging techniques that provide dynamic information at the population level, IVM can be expected to make a critical contribution to this effort by allowing the observation of immune cell behavior in vivo at single cell-resolution. We review here how IVM-based investigation can help to clarify the role of cytotoxic T lymphocytes (CTL) in the immune response against cancer and identify the ways by which their function might be impaired through tolerogenic mechanisms.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
37
|
Zhang B, Karrison T, Rowley DA, Schreiber H. IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 2008; 118:1398-404. [PMID: 18317595 DOI: 10.1172/jci33522] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/09/2008] [Indexed: 12/27/2022] Open
Abstract
Tumors elicit antitumor immune responses, but over time they evolve and can escape immune control through various mechanisms, including the loss of the antigen to which the response is directed. The escape of antigen-loss variants (ALVs) is a major obstacle to T cell-based immunotherapy for cancer. However, cancers can be cured if both the number of CTLs and the expression of antigen are high enough to allow targeting of not only tumor cells, but also the tumor stroma. Here, we showed that IFN-gamma and TNF produced by CTLs were crucial for the elimination of established mouse tumors, including ALVs. In addition, both BM- and non-BM-derived stromal cells were required to express TNF receptors and IFN-gamma receptors for the elimination of ALVs. Although IFN-gamma and TNF were not required by CTLs for perforin-mediated killing of antigen-expressing tumor cells, the strong inference is that tumor antigen-specific CTLs must secrete IFN-gamma and TNF for destruction of tumor stroma. Therefore, bystander killing of ALVs may result from IFN-gamma and TNF acting on tumor stroma.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
38
|
Ye Z, Shi M, Chan T, Sas S, Xu S, Xiang J. Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-alpha gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors. Cancer Gene Ther 2007; 14:661-75. [PMID: 17479109 DOI: 10.1038/sj.cgt.7701039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T-cell suppression derived from tumor-secreted immunosuppressive interleukin (IL)-10 becomes a major barrier to CD8+ T-cell immunotherapy of tumors. Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine capable of activating T and dendritic cells (DCs) and counteracting IL-10-mediated DC inhibition and regulatory T-cell-mediated immune suppression. In this study, we constructed a recombinant adenovirus (MF)AdVTNF with fiber-gene modified by RGD insertion into the viral knob's H1 loop and a melanoma cell line B16(OVA/IL-10) engineered to express ovalbumin (OVA) and to secrete IL-10 (2.2 ng/ml/10(6) cells/24 h). We transfected OVA-specific CD8+ T cells with (MF)AdVTNF, and found a fivefold increase in transgene human TNF-alpha secretion (4.3 ng/ml/10(6) cells/24 h) by the engineered CD8+ T(TNF) cells transfected with (MF)AdVTNF, compared to that (0.8 ng/ml/10(6) cells/24 h) by CD8+ T cells transfected with the original AdVTNF without viral fiber modification. The engineered CD8+ T(TNF) cells exhibited enhanced cytotoxicity and elongated survival in vivo after adoptive transfer. TNF-alpha derived from both the donor CD8+ T cells and the host cells plays an important role in donor CD8+ T-cell survival in vivo after adoptive transfer. We also demonstrated that the transfected B16(OVA/IL-10) tumor cells secreting IL-10 are more resistant to in vivo CD8+ T-cell therapy than the original B16(OVA) tumor cells without IL-10 expression. Interestingly, the engineered CD8+ T(TNF) cells secreting transgene-coded TNF-alpha, but not the control CD8+ T(control) cells without any transgene expression eradicated IL-10-secreting 12-day lung micrometastasis in all 10/10 mice and IL-10-secreting solid tumors ( approximately 5 mm in diameter) in 6/10 mice. Transfer of the engineered CD8+ T(TNF) cells further induced both donor- and host-derived memory CD8+ T cells, leading to a stronger long-term antitumor immunity against the IL-10-secreting B16(OVA/IL-10) tumor cell challenges. Therefore, CD8+ T cells engineered to secrete TNF-alpha may be useful when designing strategies for adoptive T-cell therapy of solid tumors.
Collapse
Affiliation(s)
- Z Ye
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Devoogdt N, Revets H, Kindt A, Liu YQ, De Baetselier P, Ghassabeh GH. The tumor-promoting effect of TNF-alpha involves the induction of secretory leukocyte protease inhibitor. THE JOURNAL OF IMMUNOLOGY 2007; 177:8046-52. [PMID: 17114478 DOI: 10.4049/jimmunol.177.11.8046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
According to the cancer immunoediting concept, inflammatory mediators play not only a critical role in promoting host protection against cancer but also contribute to cancer cell growth and survival. TNF-alpha is a critical factor in this network. However, the mechanisms underlying the tumor-promoting effect of TNF-alpha have not been fully elucidated yet. We previously reported that in vitro culture of Lewis lung carcinoma 3LL cells with TNF-alpha-producing macrophages resulted in enhanced resistance toward TNF-alpha-mediated lysis and increased malignancy of the 3LL cells. In this study, we analyzed the effects of endogenous TNF-alpha on TNF-alpha resistance and malignant behavior in vivo of low-malignant/TNF-alpha-sensitive 3LL-S cells and cancer cells derived from 3LL-S tumors that developed in wild-type or TNF-alpha(-/-) mice. Interestingly, 3LL-S cells acquired a malignant phenotype in vivo depending on the presence of host TNF-alpha, whereas acquisition of TNF-alpha resistance was TNF-alpha-independent. This result suggested that malignancy-promoting characteristics of 3LL-S cells other than TNF-alpha resistance are influenced in vivo by TNF-alpha. We previously identified the malignancy-promoting genes, secretory leukocyte protease inhibitor (SLPI) and S100A4, as being up-regulated in 3LL-S cells upon their s.c. growth in wild-type mice. In this study, we show that SLPI, but not S100A4, was induced in 3LL-S cells both in vitro and in vivo by TNF-alpha, and that silencing of in vivo induced 3LL-S SLPI expression using RNA interference abrogated in vivo progression but did not influence TNF-alpha resistance. These data indicate that SLPI induction may be one mechanism whereby TNF-alpha acts as an endogenous tumor promoter.
Collapse
Affiliation(s)
- Nick Devoogdt
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Gebouw E, niveau 8, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Blohm U, Potthoff D, van der Kogel AJ, Pircher H. Solid tumors “melt” from the inside after successful CD8 T cell attack. Eur J Immunol 2006; 36:468-77. [PMID: 16385625 DOI: 10.1002/eji.200526175] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adoptive transfer of tumor-specific T cells represents a promising approach for cancer immunotherapy. Here, we visualized the anti-tumor response of CD8 T cells from P14 TCR-transgenic mice specific for the model antigen GP33 by immunohistology. P14 T cells, adoptively transferred into tumor-bearing hosts, induced regression of established 3LL-A9(GP33) and MCA102(GP33) tumors that express GP33 as a tumor-associated model antigen. Strikingly, the visible effects of P14 T cell attack, such as the destruction of the tumor vasculature and accumulation of granulocytes, were predominantly detected inside the tumor mass. In regressing tumors, P14 T cells were found in the intact rim zone but not in central areas that were infiltrated with granulocytes and lacked CD31(+) endothelial cells. The rim of P14 T cell-treated tumors showed an increase in vascular density and decrease in hypoxia compared to untreated tumors. Hypoxic areas of tumors are known to exhibit decreased sensitivity to radiation therapy or chemotherapy. Thus, our data also imply that adoptive transfer of tumor-specific CD8 T cells might synergize with radiation therapy or chemotherapy in the elimination of solid tumors in vivo.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Granulocytes/immunology
- Granulocytes/pathology
- Hypoxia/immunology
- Hypoxia/pathology
- Lymphocytic choriomeningitis virus/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Transgenic
- Neoplasm Transplantation
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Platelet Endothelial Cell Adhesion Molecule-1/immunology
- Radiotherapy
Collapse
Affiliation(s)
- Ulrike Blohm
- Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
41
|
Chen DS, Soen Y, Stuge TB, Lee PP, Weber JS, Brown PO, Davis MM. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2005; 2:e265. [PMID: 16162034 PMCID: PMC1216330 DOI: 10.1371/journal.pmed.0020265] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect. METHODS AND FINDINGS In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC) together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNgamma and TNFalpha did so. CONCLUSION Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome.
Collapse
Affiliation(s)
- Daniel S Chen
- 1Department of Internal Medicine/Division of Oncology, Stanford University, Stanford, California, United States of America
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Yoav Soen
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Tor B Stuge
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Peter P Lee
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Jeffrey S Weber
- 5Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Patrick O Brown
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Mark M Davis
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 6 Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
42
|
Dhabhar FS, Viswanathan K. Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory. Am J Physiol Regul Integr Comp Physiol 2005; 289:R738-44. [PMID: 15890793 DOI: 10.1152/ajpregu.00145.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It would be extremely beneficial if one could harness natural, endogenous, health-promoting defense mechanisms to fight disease and restore health. The psychophysiological stress response is the most underappreciated of nature's survival mechanisms. We show that acute stress experienced before primary immunization induces a long-lasting increase in immunity. Compared with controls, mice restrained for 2.5 h before primary immunization with keyhole limpet hemocyanin (KLH) show a significantly enhanced immune response when reexposed to KLH 9 mo later. This immunoenhancement is mediated by an increase in numbers of memory and effector helper T cells in sentinel lymph nodes at the time of primary immunization. Further analyses show that the early stress-induced increase in T cell memory may stimulate the robust increase in infiltrating lymphocyte and macrophage numbers observed months later at a novel site of antigen reexposure. Enhanced leukocyte infiltration may be driven by increased levels of the type 1 cytokines, IL-2 and IFN-gamma, and TNF-alpha, observed at the site of antigen reexposure in animals that had been stressed at the time of primary immunization. In contrast, no differences were observed in type 2 cytokines, IL-4 or IL-5. Given the importance of inducing long-lasting increases in immunologic memory during vaccination, we suggest that the neuroendocrine stress response is nature's adjuvant that could be psychologically and/or pharmacologically manipulated to safely increase vaccine efficacy. These studies introduce the novel concept that a psychophysiological stress response is nature's fundamental survival mechanism that could be therapeutically harnessed to augment immune function during vaccination, wound healing, or infection.
Collapse
Affiliation(s)
- Firdaus S Dhabhar
- Department of Oral Biology, College of Dentistry, The Ohio State University, 4179 Postle Hall, 305 West 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
43
|
Chen DS, Davis MM. Cellular immunotherapy: antigen recognition is just the beginning. ACTA ACUST UNITED AC 2005; 27:119-27. [PMID: 15834723 DOI: 10.1007/s00281-005-0200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 02/14/2005] [Indexed: 11/26/2022]
Abstract
Advances in molecular and cellular biology have illustrated both the flexibility and complexity involved in host immune responses. Understanding this response is vital to the further development of therapeutic strategies that involve manipulation of the cellular immune response to target tumors. Mobilized, tumor antigen-specific T cells, the core for most immunotherapeutic strategies, are highly regulated, and capable of a wide spectrum of functional responses. Due to differences in murine and human immunity, broad-scale immune monitoring, particularly high-throughput ex vivo analysis of human immune responses, promises to determine what comprises an effective immunotherapy. Such understanding will lead to more sophisticated clinical trials, earlier determination of efficacy and individualized protocols.
Collapse
Affiliation(s)
- Daniel S Chen
- Department of Internal Medicine, Division of Oncology, Stanford University, Stanford, California 94305-5124, USA
| | | |
Collapse
|
44
|
Chan BCL, Li Q, Chow SKY, Ching AKK, Liew CT, Lim PL, Lee KKH, Chan JYH, Chui YL. BRE enhances in vivo growth of tumor cells. Biochem Biophys Res Commun 2005; 326:268-73. [PMID: 15582573 DOI: 10.1016/j.bbrc.2004.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Indexed: 11/18/2022]
Abstract
Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation.
Collapse
Affiliation(s)
- Ben Chung-Lap Chan
- Clinical Immunology Unit and Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dobrzanski MJ, Reome JB, Hollenbaugh JA, Hylind JC, Dutton RW. Effector cell-derived lymphotoxin alpha and Fas ligand, but not perforin, promote Tc1 and Tc2 effector cell-mediated tumor therapy in established pulmonary metastases. Cancer Res 2004; 64:406-14. [PMID: 14729652 DOI: 10.1158/0008-5472.can-03-2580] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytolytic CD8(+) effector cells fall into two subpopulations based on cytokine secretion. Type 1 CD8(+) T cells (Tc1) secrete IFN-gamma, whereas type 2 CD8(+) T cells (Tc2) secrete interleukin (IL)-4 and IL-5. Although both effector cell subpopulations display Fas ligand (FasL) and tumor necrosis factor (TNF), tumor lysis is predominantly perforin dependent in vitro. Using an ovalbumin-transfected B16 lung metastasis model, we show that heightened numbers of adoptively transferred ovalbumin-specific Tc1 and Tc2 cells accumulated at the tumor site by day 2 after therapy and induced tumor regression that enhanced survival in mice with pulmonary metastases. Transfer of either TNF-alpha- or perforin-deficient Tc1 or Tc2 effector cells generated from specified gene-deficient mice showed no differences in therapeutic efficiency when compared with corresponding wild-type cells. In contrast, both Tc1 and Tc2 cells, derived from either FasL or TNF-alpha/lymphotoxin (LT) alpha double knockout mice, showed that therapeutic effects were dependent, in part, on effector cell-derived FasL or LTalpha. Six days after effector cell therapy, elevated levels of activated endogenous CD8/CD44(High) and CD4/CD44(High) T cells localized and persisted at sites of tumor growth, whereas donor cell numbers concomitantly decreased. Both Tc1 and Tc2 effector cell subpopulations induced endogenous antitumor responses that were dependent, in part, on recipient-derived IFN-gamma and TNF-alpha. However, neither effector cell-mediated therapy was dependent on recipient-derived perforin, IL-4, IL-5, or nitric oxide. Collectively, tumor antigen-specific Tc1 and Tc2 effector cell-mediated therapy is initially dependent, in part, on effector cell-derived FasL or LTalpha that may subsequently potentiate endogenous recipient-derived type 1 antitumor responses dependent on TNF-alpha and IFN-gamma.
Collapse
|
46
|
Deonarain R, Verma A, Porter ACG, Gewert DR, Platanias LC, Fish EN. Critical roles for IFN-beta in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor alpha. Proc Natl Acad Sci U S A 2003; 100:13453-8. [PMID: 14597717 PMCID: PMC263835 DOI: 10.1073/pnas.2230460100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have generated mice null for IFN-beta and report the diverse consequences of IFN-beta for both the innate and adaptive arms of immunity. Despite no abnormalities in the proportional balance of CD4 and CD8 T cell populations in the peripheral blood, thymus, and spleen of IFN-beta-/- mice, activated lymph node and splenic T lymphocytes exhibit enhanced T cell proliferation and decreased tumor necrosis factor alpha production, relative to IFN-beta+/+ mice. Notably, constitutive and induced expression of tumor necrosis factor alpha is reduced in the spleen and bone marrow (BM) macrophages, respectively, of IFN-beta-/- mice. We also observe an altered splenic architecture in IFN-beta-/- mice and a reduction in resident macrophages. We identify a potential defect in B cell maturation in IFN-beta-/- mice, associated with a decrease in B220+ve/high/CD43-ve BM-derived cells and a reduction in BP-1, IgM, and CD23 expression. Circulating IgM-, Mac-1-, and Gr-1-positive cells are also substantially decreased in IFN-beta-/- mice. The decrease in the numbers of circulating macrophages and granulocytes likely reflects defective maturation of primitive BM hematopoiesis in mice, shown by the reduction of colony-forming units, granulocyte-macrophage. We proceeded to evaluate the in vivo growth of malignant cells in the IFN-beta-/- background and give evidence that Lewis lung carcinoma-specific tumor growth is more aggressive in IFN-beta-/- mice. Taken altogether, our data suggest that, in addition to the direct growth-inhibitory effects on tumor cells, IFN-beta is required during different stages of maturation in the development of the immune system.
Collapse
Affiliation(s)
- Raj Deonarain
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada MG5 2M1
| | | | | | | | | | | |
Collapse
|
47
|
Bathe OF, Dalyot-Herman N, Malek TR. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment. BMC Cancer 2003; 3:21. [PMID: 12882650 PMCID: PMC183847 DOI: 10.1186/1471-2407-3-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 07/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS OT-I CTL were adoptively transferred to C57BL/6 mice 21-28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Nava Dalyot-Herman
- Department of Microbiology and Immunology, University of Miami School, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami School, Miami, FL, USA
| |
Collapse
|
48
|
Poehlein CH, Hu HM, Yamada J, Assmann I, Alvord WG, Urba WJ, Fox BA. TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2004-13. [PMID: 12574370 DOI: 10.4049/jimmunol.170.4.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that effector T cells (T(E)) lacking either perforin or IFN-gamma are highly effective mediators of tumor regression. To rule out compensation by either mechanism, T(E) deficient in both perforin and IFN-gamma (perforin knockout (PKO)/IFN-gamma knockout (GKO)) were generated. The adoptive transfer of PKO/GKO T(E) mediated complete tumor regression and cured wild-type animals with established pulmonary metastases of the B16BL6-D5 (D5) melanoma cell line. PKO/GKO T(E) also mediated tumor regression in D5 tumor-bearing PKO, GKO, or PKO/GKO recipients, although in PKO/GKO recipients efficacy was reduced. PKO/GKO T(E) exhibited tumor-specific TNF-alpha production and cytotoxicity in a 24-h assay, which was blocked by the soluble TNFRII-human IgG fusion protein (TNFRII:Fc). Blocking TNF in vivo by administering soluble TNFR II fusion protein (TNFRII:Fc) significantly reduced the therapeutic efficacy of PKO/GKO, but not wild-type T(E). This study identifies perforin, IFN-gamma, and TNF as a critical triad of effector molecules that characterize therapeutic antitumor T cells. These insights could be used to monitor and potentially tune the immune response to cancer vaccines.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD/administration & dosage
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Binding, Competitive/genetics
- Binding, Competitive/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/metabolism
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Perforin
- Pore Forming Cytotoxic Proteins
- Receptors, Tumor Necrosis Factor/administration & dosage
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type II
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Christian H Poehlein
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan Street, Portland, OR 97213, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Blohm U, Roth E, Brommer K, Dumrese T, Rosenthal FM, Pircher H. Lack of effector cell function and altered tetramer binding of tumor-infiltrating lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5522-30. [PMID: 12421928 DOI: 10.4049/jimmunol.169.10.5522] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor-specific CD8 T cell responses to MCA102 fibrosarcoma cells expressing the cytotoxic T cell epitope gp33 from lymphocytic choriomeningitis virus were studied. MCA102(gp33) tumors grew progressively in C57BL/6 mice, despite induction of peripheral gp33-tetramer(+) T cells that were capable of mediating antiviral protection, specific cell rejection, and concomitant tumor immunity. MCA102(gp33) tumors were infiltrated with a high number ( approximately 20%) of CD11b(+)CD11c(-) macrophage-phenotype cells that were able to cross-present the gp33 epitope to T cells. Tumor-infiltrating CD8 T cells exhibited a highly activated phenotype but lacked effector cell function. Strikingly, a significant portion of tumor-infiltrating lymphocytes expressed TCRs specific for gp33 but bound MHC tetramers only after cell purification and a 24-h resting period in vitro. The phenomenon of "tetramer-negative T cells" was not restricted to tumor-infiltrating lymphocytes from MCA102(gp33) tumors, but was also observed when Ag-specific T cells derived from an environment with high Ag load were analyzed ex vivo. Thus, using a novel tumor model, allowing us to trace tumor-specific T cells at the single cell level in vivo, we demonstrate that the tumor microenvironment is able to alter the functional activity of T cells infiltrating the tumor mass.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/biosynthesis
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- CD11b Antigen/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Division/genetics
- Cell Division/immunology
- Cell Separation
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Female
- Fibrosarcoma/immunology
- Fibrosarcoma/metabolism
- Fibrosarcoma/pathology
- Glycoproteins/biosynthesis
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Histocompatibility Antigens Class I/metabolism
- Immunity, Innate/genetics
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphocytic choriomeningitis virus/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Peptide Fragments/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Tumor Cells, Cultured
- Viral Proteins/biosynthesis
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Ulrike Blohm
- Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, Hermann-Herdfer-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Parihar R, Dierksheide J, Hu Y, Carson WE. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells. J Clin Invest 2002; 110:983-92. [PMID: 12370276 PMCID: PMC151155 DOI: 10.1172/jci15950] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The anti-tumor activity of recombinant mAb's directed against tumor cell growth receptors has generally been considered to result from direct antiproliferative effects, the induction of apoptosis, or possibly Ab-dependent cellular cytotoxicity mediated against tumor targets. However, it remains unclear to what degree these mechanisms actually aid in the clearance of Ab-coated tumor cells in vivo. We show here that NK cells secrete a distinct profile of potent immunostimulatory cytokines in response to dual stimulation with Ab-coated tumor cells and IL-12. This response could not be duplicated by costimulation with other ILs and was significantly enhanced in the presence of monocytes. Cytokine production was dependent upon synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIII) and the IL-12 receptor expressed on NK cells. Coadministration of Ab-coated tumor cells and IL-12 to BALB/c mice resulted in enhanced circulating levels of NK cell-derived cytokines with the capacity to augment anti-tumor immunity. These findings suggest that, in addition to mediating cellular cytotoxicity and apoptosis, the anti-tumor activity of mAb's might also result from activation of a potent cytokine secretion program within immune effectors capable of recognizing mAb-coated targets.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- DNA-Binding Proteins/physiology
- Female
- Humans
- Immunoglobulin G/therapeutic use
- Interferon-gamma/biosynthesis
- Interleukin-12/pharmacology
- Interleukin-12/therapeutic use
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred BALB C
- Receptor, ErbB-2/analysis
- Receptors, IgG/physiology
- Receptors, Interleukin/physiology
- Receptors, Interleukin-12
- Recombinant Proteins/pharmacology
- STAT4 Transcription Factor
- Trans-Activators/physiology
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Robin Parihar
- Department of Molecular Virology, Immunology, and Medical Genetics, The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|