1
|
Eriksson M, Nylén S, Grönvik KO. Passive immunization of mice with IgY anti-H5N1 protects against experimental influenza virus infection and allows development of protective immunity. Vaccine 2024; 42:126133. [PMID: 39019655 DOI: 10.1016/j.vaccine.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Influenza virus contributes substantially to the global human and animal disease burden. To protect individuals against disease, strategies are needed to minimize the time an individual is at risk of developing disease symptoms. Passive immunization using avian IgY antibodies can protect individuals against a variety of pathogens, including influenza virus. Yet the effect of IgY administration on generation of protective immunity is largely unknown. To address the effect of passive immunization on the host immune response development, adult or aged, male and female C57BL/6NCrl mice received chicken IgY anti-H5N1, normal IgY or PBS intranasally four hours before, and 20 hours after intranasal infection with H1N1 influenza A virus (PR8). The mice receiving cross-reactive IgY anti-H5N1 were protected from disease and developed influenza virus-specific memory T cells similar to control-treated mice. When re-challenged with PR8 35 days post primary infection IgY anti-H5N1-treated mice were fully protected. Moreover, when challenged with heterologous H3N2 influenza A virus (X-31) or with PR8 three months post infection the mice were protected against severe disease and death, albeit a slight transient weight loss was noted. The results show that passive immunization with IgY anti-H5N1 is safe and protects mice against disease induced by influenza virus without inhibiting development of protective immunity after virus exposure. This indicate that passive immunization can be used as prophylactic therapy in combination with immunization to prevent disease.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden.
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Kjell-Olov Grönvik
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Uppsala Immunobiology Lab, 752 37 Uppsala, Sweden.
| |
Collapse
|
2
|
Heil L, Jewell S, Lines JL, Garvy BA. The Altered Neonatal CD8 + T Cell Immunodominance Hierarchy during Influenza Virus Infection Impacts Peptide Vaccination. Viruses 2024; 16:1271. [PMID: 39205245 PMCID: PMC11359775 DOI: 10.3390/v16081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells frequently respond differently than adult cells. We sought to understand CD8+ T cell specificity and immunodominance during neonatal influenza infection and how any differences from the adult hierarchy might impact peptide vaccine effectiveness. Neonatal C57BL/6 mice displayed an altered CD8+ T cell immunodominance hierarchy during influenza infection, preferentially responding to an epitope in the influenza protein PA rather than the co-dominant adult response to NP and PA. Heterosubtypic infections in mice first infected as pups also displayed altered immunodominance and reduced protection compared to mice first infected as adults. Adoptive transfer of influenza-infected bone-marrow-derived dendritic cells promoted an NP-specific CD8+ T cell response in influenza-virus-infected pups and increased viral clearance. Finally, pups responded to PA (224-233), but not NP (366-374) during peptide vaccination. PA (224-233)-vaccinated mice were not protected during viral challenge. Epitope usage should be considered when designing vaccines that target T cells when the intended patient population includes infants and adults.
Collapse
Affiliation(s)
- Luke Heil
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
| | - Samantha Jewell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Physical and Life Sciences, Nevada State University, Henderson, NV 89002, USA
| | - J. Louise Lines
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Beth A. Garvy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Division of Infectious Diseases, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Lanfermeijer J, van de Ven K, Hendriks M, van Dijken H, Lenz S, Vos M, Borghans JAM, van Baarle D, de Jonge J. The Memory-CD8+-T-Cell Response to Conserved Influenza Virus Epitopes in Mice Is Not Influenced by Time Since Previous Infection. Vaccines (Basel) 2024; 12:419. [PMID: 38675801 PMCID: PMC11054904 DOI: 10.3390/vaccines12040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- AstraZeneca, 2594 AV Den Haag, The Netherlands
| | - Koen van de Ven
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- DICA (Dutch Institute for Clinical Auditing), 2333 AA Leiden, The Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Deventer Ziekenhuis, 7416 SE Deventer, The Netherlands
| | - Harry van Dijken
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Stefanie Lenz
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Virology & Immunology Research, Department Medical Microbiology and Infection Prevention, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Jørgen de Jonge
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
4
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
6
|
Broad-Based Influenza-Specific CD8 + T Cell Response without the Typical Immunodominance Hierarchy and Its Potential Implication. Viruses 2021; 13:v13061080. [PMID: 34198851 PMCID: PMC8229067 DOI: 10.3390/v13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Syngeneic murine systems have pre-fixed MHC, making them an imperfect model for investigating the impact of MHC polymorphism on immunodominance in influenza A virus (IAV) infections. To date, there are few studies focusing on MHC allelic differences and its impact on immunodominance even though it is well documented that an individual’s HLA plays a significant role in determining immunodominance hierarchy. Here, we describe a broad-based CD8+ T cell response in a healthy individual to IAV infection rather than a typical immunodominance hierarchy. We used a systematic antigen screen approach combined with epitope prediction to study such a broad CD8+ T cell response to IAV infection. We show CD8+ T cell responses to nine IAV proteins and identify their minimal epitope sequences. These epitopes are restricted to HLA-B*44:03, HLA-A*24:02 and HLA-A*33:03 and seven out of the nine epitopes are novel (NP319–330# (known and demonstrated minimal epitope positions are subscripted; otherwise, amino acid positions are shown as normal text (for example NP 319–330 or NP 313–330)), M1124–134, M27–15, NA337–346, PB239–49, HA445–453 and NS1195–203). Additionally, most of these novel epitopes are highly conserved among H1N1 and H3N2 strains that circulated in Australia and other parts of the world.
Collapse
|
7
|
CD8 + T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nat Commun 2021; 12:2931. [PMID: 34006841 PMCID: PMC8132304 DOI: 10.1038/s41467-021-23212-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.
Collapse
|
8
|
Sng XYX, Li J, Zareie P, Assmus LM, Lee JKC, Jones CM, Turner SJ, Daley SR, Quinn KM, La Gruta NL. The Impact of MHC Class I Dose on Development and Maintenance of the Polyclonal Naive CD8+ T Cell Repertoire. THE JOURNAL OF IMMUNOLOGY 2020; 204:3108-3116. [DOI: 10.4049/jimmunol.2000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
|
9
|
Li X, Zhang L, Liu Y, Ma L, Zhang N, Xia C. Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem 2020; 295:5292-5306. [PMID: 32152225 PMCID: PMC7170506 DOI: 10.1074/jbc.ra120.012713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell-mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I-β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV-PA123-130 We determined the structure of the BF2*1501-PA123-130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123-130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123-130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV-PA123-130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123-130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100094, People's Republic of China.
| |
Collapse
|
10
|
Di Carluccio AR, Triffon CF, Chen W. Perpetual complexity: predicting human CD8 + T-cell responses to pathogenic peptides. Immunol Cell Biol 2018; 96:358-369. [PMID: 29424002 DOI: 10.1111/imcb.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/17/2023]
Abstract
The accurate prediction of human CD8+ T-cell epitopes has great potential clinical and translational implications in the context of infection, cancer and autoimmunity. Prediction algorithms have traditionally focused on calculated peptide affinity for the binding groove of MHC-I. However, over the years it has become increasingly clear that the ultimate T-cell recognition of MHC-I-bound peptides is governed by many contributing factors within the complex antigen presentation pathway. Recent advances in next-generation sequencing and immunnopeptidomics have increased the precision of HLA-I sub-allele classification, and have led to the discovery of peptide processing events and individual allele-specific binding preferences. Here, we review some of the discoveries that initiated the development of peptide prediction algorithms, and outline some of the current available online tools for CD8+ T-cell epitope prediction.
Collapse
Affiliation(s)
- Anthony R Di Carluccio
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Cristina F Triffon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Carey AJ, Gracias DT, Thayer JL, Boesteanu AC, Kumova OK, Mueller YM, Hope JL, Fraietta JA, van Zessen DBH, Katsikis PD. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:2602-13. [PMID: 26873987 DOI: 10.4049/jimmunol.1502126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRβ high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential Vβ family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type A virus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different Vβ gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA(257-264)-specific (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment.
Collapse
Affiliation(s)
- Alison J Carey
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102; Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102;
| | - Donald T Gracias
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jillian L Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Alina C Boesteanu
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ogan K Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yvonne M Mueller
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jennifer L Hope
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David B H van Zessen
- Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; Bioinformatics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Peter D Katsikis
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
12
|
Ziraldo C, Gong C, Kirschner DE, Linderman JJ. Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Front Microbiol 2016; 6:1477. [PMID: 26779136 PMCID: PMC4701940 DOI: 10.3389/fmicb.2015.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. Given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.
Collapse
Affiliation(s)
- Cordelia Ziraldo
- Department of Chemical Engineering, University of Michigan, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA
| | - Chang Gong
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann ArborMI, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jennifer J Linderman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
13
|
Cukalac T, Kan WT, Dash P, Guan J, Quinn KM, Gras S, Thomas PG, La Gruta NL. Paired TCRαβ analysis of virus-specific CD8(+) T cells exposes diversity in a previously defined 'narrow' repertoire. Immunol Cell Biol 2015; 93:804-14. [PMID: 25804828 DOI: 10.1038/icb.2015.44] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
T-cell receptor (TCR) usage has an important role in determining the outcome of CD8(+) cytotoxic T-lymphocyte responses to viruses and other pathogens. However, the characterization of TCR usage from which such conclusions are drawn is based on exclusive analysis of either the TCRα chain or, more commonly, the TCRβ chain. Here, we have used a multiplexed reverse transcription-PCR protocol to analyse the CDR3 regions of both TCRα and β chains from single naive or immune epitope-specific cells to provide a comprehensive picture of epitope-specific TCR usage and selection into the immune response. Analysis of TCR repertoires specific for three influenza-derived epitopes (D(b)NP(366), D(b)PA(224) and D(b)PB1-F2(62)) showed preferential usage of particular TCRαβ proteins in the immune repertoire relative to the naive repertoire, in some cases, resulting in a complete shift in TRBV preference or CDR3 length, and restricted repertoire diversity. The NP(366)-specific TCRαβ repertoire, previously defined as clonally restricted based on TCRβ analysis, was similarly diverse as the PA(224)- and PB1-F2(62)-specific repertoires. Intriguingly, preferred TCR characteristics (variable gene usage, CDR3 length and junctional gene usage) appeared to be able to confer specificity either independently or in concert with one another, depending on the epitope specificity. These data have implications for established correlations between the nature of the TCR repertoire and response outcomes after infection, and suggest that analysis of a subset of cells or a single TCR chain does not accurately depict the nature of the antigen-specific TCRαβ repertoire.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Wan-Ting Kan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Pradyot Dash
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Guan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Clemens EB, Doherty PC, La Gruta NL, Turner SJ. Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR α- and β-chain diversity in the face of peptide-MHC class I specificity. THE JOURNAL OF IMMUNOLOGY 2014; 194:898-910. [PMID: 25535284 DOI: 10.4049/jimmunol.1401792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR β-chains, rather than the combined TCRαβ heterodimers that confer specificity. Hence, the importance of complementary α- and β-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαβ pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or β-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαβ combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and β-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαβ heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αβ pairing confers optimal T cell responsiveness to Ag.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
15
|
Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol 2014; 88:11034-44. [PMID: 25056892 DOI: 10.1128/jvi.01505-14] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus (SARS-CoV) caused an acute human respiratory illness with high morbidity and mortality in 2002-2003. Several studies have demonstrated the role of neutralizing antibodies induced by the spike (S) glycoprotein in protecting susceptible hosts from lethal infection. However, the anti-SARS-CoV antibody response is short-lived in patients who have recovered from SARS, making it critical to develop additional vaccine strategies. SARS-CoV-specific memory CD8 T cells persisted for up to 6 years after SARS-CoV infection, a time at which memory B cells and antivirus antibodies were undetectable in individuals who had recovered from SARS. In this study, we assessed the ability of virus-specific memory CD8 T cells to mediate protection against infection in the absence of SARS-CoV-specific memory CD4 T or B cells. We demonstrate that memory CD8 T cells specific for a single immunodominant epitope (S436 or S525) substantially protected 8- to 10-month-old mice from lethal SARS-CoV infection. Intravenous immunization with peptide-loaded dendritic cells (DCs) followed by intranasal boosting with recombinant vaccinia virus (rVV) encoding S436 or S525 resulted in accumulation of virus-specific memory CD8 T cells in bronchoalveolar lavage fluid (BAL), lungs, and spleen. Upon challenge with a lethal dose of SARS-CoV, virus-specific memory CD8 T cells efficiently produced multiple effector cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin 2 [IL-2]) and cytolytic molecules (granzyme B) and reduced lung viral loads. Overall, our results show that SARS-CoV-specific memory CD8 T cells protect susceptible hosts from lethal SARS-CoV infection, but they also suggest that SARS-CoV-specific CD4 T cell and antibody responses are necessary for complete protection. IMPORTANCE Virus-specific CD8 T cells are required for pathogen clearance following primary SARS-CoV infection. However, the role of SARS-CoV-specific memory CD8 T cells in mediating protection after SARS-CoV challenge has not been previously investigated. In this study, using a prime-boost immunization approach, we showed that virus-specific CD8 T cells protect susceptible 8- to 10-month-old mice from lethal SARS-CoV challenge. Thus, future vaccines against emerging coronaviruses should emphasize the generation of a memory CD8 T cell response for optimal protection.
Collapse
|
16
|
León B, Ballesteros-Tato A, Randall TD, Lund FE. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. ACTA ACUST UNITED AC 2014; 211:1637-55. [PMID: 25002751 PMCID: PMC4113940 DOI: 10.1084/jem.20131692] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antibodies can regulate the quality and functionality of a subset of antiviral CD8+ T cell memory responses to influenza by promoting sustained DC antigen presentation during the contraction phase of primary responses. The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response.
Collapse
Affiliation(s)
- Beatriz León
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - André Ballesteros-Tato
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Troy D Randall
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Frances E Lund
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
17
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Sckisel GD, Tietze JK, Zamora AE, Hsiao HH, Priest SO, Wilkins DEC, Lanier LL, Blazar BR, Baumgarth N, Murphy WJ. Influenza infection results in local expansion of memory CD8(+) T cells with antigen non-specific phenotype and function. Clin Exp Immunol 2014; 175:79-91. [PMID: 23937663 DOI: 10.1111/cei.12186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 12/30/2022] Open
Abstract
Primary viral infections induce activation of CD8(+) T cells responsible for effective resistance. We sought to characterize the nature of the CD8(+) T cell expansion observed after primary viral infection with influenza. Infection of naive mice with different strains of influenza resulted in the rapid expansion of memory CD8(+) T cells exhibiting a unique bystander phenotype with significant up-regulation of natural killer group 2D (NKG2D), but not CD25, on the CD44(high) CD8(+) T cells, suggesting an antigen non-specific phenotype. We further confirmed the non-specificity of this phenotype on ovalbumin-specific (OT-I) CD8(+) T cells, which are not specific to influenza. These non-specific CD8(+) T cells also displayed increased lytic capabilities and were observed primarily in the lung. Thus, influenza infection was shown to induce a rapid, antigen non-specific memory T cell expansion which is restricted to the specific site of inflammation. In contrast, CD8(+) T cells of a similar phenotype could be observed in other organs following administration of systemic agonistic anti-CD40 and interleukin-2 immunotherapy, demonstrating that bystander expansion in multiple sites is possible depending on whether the nature of activation is either acute or systemic. Finally, intranasal blockade of NKG2D resulted in a significant increase in viral replication early during the course of infection, suggesting that NKG2D is a critical mediator of anti-influenza responses prior to the initiation of adaptive immunity. These results characterize further the local bystander expansion of tissue-resident, memory CD8(+) T cells which, due to their early induction, may play an important NKG2D-mediated, antigen non-specific role during the early stages of viral infection.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunol Cell Biol 2014; 91:184-94. [PMID: 23399741 DOI: 10.1038/icb.2012.78] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza A virus causes annual epidemics and sporadic pandemics, resulting in significant morbidity and mortality worldwide. Vaccines are currently available; however, they induce a non-strain-cross protective humoral immune response directed against the rapidly mutating surface glycoproteins, and thus need to be updated annually. As T cells are directed against more conserved internal influenza proteins, a T-cell-based vaccine has the potential to induce long-lasting and cross-strain protective CD8(+) T-cell immunity, and in that way minimize the severity of influenza infection. However, to rationally design such vaccines, we need to identify immunogenic T-cell regions within the most antigenic viral proteins. In this study, we have used a systematic approach to identify immunodominant peptides in HLA-A2-negative donors. A broad range of CD8(+) T-cell responses were observed and 6/7 donors had an immunodominant response against the relatively conserved internal nucleoprotein (NP). Dissecting the minimal epitope regions within the immunogenic NP led to the identification of six novel immunodominant epitopes, which include a 12-mer and an 8-mer peptides. The majority of immunodominant epitopes was clustered within the carboxyl terminal 2/3 of the NP protein and were highly conserved. We also subjected NP to three common computer algorithms for epitope prediction and found that most of the novel epitopes would not have been predicted. Our study emphasizes the importance of using a systematic approach to identify immunodominant CD8(+) T-cell responses and suggests that the epitope-rich regions within NP present a promising target for the T-cell-mediated multi-strain influenza vaccine.
Collapse
|
20
|
Akram A, Inman RD. Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection. Eur J Immunol 2013; 43:3254-67. [DOI: 10.1002/eji.201343597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/11/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Akram
- Division of Genetics and Development; Toronto Western Research Institute; Toronto Ontario Canada
- Department of Immunology; Faculty of Medicine; Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - Robert D. Inman
- Department of Medicine; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
21
|
Nayak JL, Alam S, Sant AJ. Cutting edge: Heterosubtypic influenza infection antagonizes elicitation of immunological reactivity to hemagglutinin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1001-5. [PMID: 23794632 PMCID: PMC6728918 DOI: 10.4049/jimmunol.1203520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza-specific immunity in humans is unique because there are repeated exposures to viral strains containing genetically conserved epitopes recruiting memory CD4 T cells and novel epitopes stimulating naive CD4 T cells, possibly resulting in competition between memory and naive lymphocytes. In this study, we evaluated the effect of this competition on CD4 T cell and B cell response specificity using a murine model of sequential influenza infection. We found striking and selective decreases in CD4 T cell reactivity to nonconserved hemagglutinin (HA) epitopes following secondary influenza infection. Surprisingly, this shift in CD4 T cell specificity was associated with dramatic decreases in HA-specific Ab. These results suggest that repeated exposure to influenza viruses and vaccines containing conserved internal proteins may have unintended and negative consequences on the ability to induce HA-specific Ab to novel pandemic strains of influenza. These finding could have important implications on pandemic influenza preparedness strategies.
Collapse
Affiliation(s)
- Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, 601 Elmwood Ave, Box 690, Rochester, NY 14642
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| |
Collapse
|
22
|
Karnowski A, Chevrier S, Belz GT, Mount A, Emslie D, D'Costa K, Tarlinton DM, Kallies A, Corcoran LM. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. ACTA ACUST UNITED AC 2012; 209:2049-64. [PMID: 23045607 PMCID: PMC3478936 DOI: 10.1084/jem.20111504] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional activator Oct2 and cofactor OBF-1 regulate B cell IL-6 to induce T cell production of IL-21, to support Tfh cell development in antiviral immunity. A strong humoral response to infection requires the collaboration of several hematopoietic cell types that communicate via antigen presentation, surface coreceptors and their ligands, and secreted factors. The proinflammatory cytokine IL-6 has been shown to promote the differentiation of activated CD4+ T cells into T follicular helper cells (TFH cells) during an immune response. TFH cells collaborate with B cells in the formation of germinal centers (GCs) during T cell–dependent antibody responses, in part through secretion of critical cytokines such as IL-21. In this study, we demonstrate that loss of either IL-6 or IL-21 has marginal effects on the generation of TFH cells and on the formation of GCs during the response to acute viral infection. However, mice lacking both IL-6 and IL-21 were unable to generate a robust TFH cell–dependent immune response. We found that IL-6 production in follicular B cells in the draining lymph node was an important early event during the antiviral response and that B cell–derived IL-6 was necessary and sufficient to induce IL-21 from CD4+ T cells in vitro and to support TFH cell development in vivo. Finally, the transcriptional activator Oct2 and its cofactor OBF-1 were identified as regulators of Il6 expression in B cells.
Collapse
Affiliation(s)
- Alex Karnowski
- Molecular Immunology Division and 2 Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nayak JL, Sant AJ. Loss in CD4 T-cell responses to multiple epitopes in influenza due to expression of one additional MHC class II molecule in the host. Immunology 2012; 136:425-36. [PMID: 22747522 DOI: 10.1111/j.1365-2567.2012.03599.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An understanding of factors controlling CD4 T-cell immunodominance is needed to pursue CD4 T-cell epitope-driven vaccine design, yet our understanding of this in humans is limited by the complexity of potential MHC class II molecule expression. In the studies described here, we took advantage of genetically restricted, well-defined mouse strains to better understand the effect of increasing MHC class II molecule diversity on the CD4 T-cell repertoire and the resulting anti-influenza immunodominance hierarchy. Interferon-γ ELISPOT assays were implemented to directly quantify CD4 T-cell responses to I-A(b) and I-A(s) restricted peptide epitopes following primary influenza virus infection in parental and F(1) hybrid strains. We found striking and asymmetric declines in the magnitude of many peptide-specific responses in F(1) animals. These declines could not be accounted for by the lower surface density of MHC class II on the cell or by antigen-presenting cells failing to stimulate T cells with lower avidity T-cell receptors. Given the large diversity of MHC class II expressed in humans, these findings have important implications for the rational design of peptide-based vaccines that are based on the premise that CD4 T-cell epitope specificity can be predicted by a simple cataloguing of an individual's MHC class II genotype.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
24
|
Horby P, Nguyen NY, Dunstan SJ, Baillie JK. The role of host genetics in susceptibility to influenza: a systematic review. PLoS One 2012; 7:e33180. [PMID: 22438897 PMCID: PMC3305291 DOI: 10.1371/journal.pone.0033180] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/06/2012] [Indexed: 12/24/2022] Open
Abstract
Background The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion The fundamental question “Is susceptibility to severe influenza in humans heritable?” remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.
Collapse
Affiliation(s)
- Peter Horby
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
| | | | | | | |
Collapse
|
25
|
Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response. J Virol 2011; 86:2817-25. [PMID: 22205730 DOI: 10.1128/jvi.05685-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Foxp3(+) CD4(+) regulatory T cells (Tregs) represent a highly suppressive T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, although the role of these cells in acute viral infections is poorly understood. The present study sought to examine the induction of Foxp3(+) CD4(+) Tregs in a nonlethal murine model of pulmonary viral infection by the use of the prototypical respiratory virus influenza A. We establish that influenza A virus infection results in a robust Foxp3(+) CD4(+) T cell response and that regulatory T cell induction at the site of inflammation precedes the effector T cell response. Induced Foxp3(+) CD4(+) T cells are highly suppressive ex vivo, demonstrating that influenza virus-induced Foxp3(+) CD4(+) T cells are phenotypically regulatory. Influenza A virus-induced regulatory T cells proliferate vigorously in response to influenza virus antigen, are disseminated throughout the site of infection and primary and secondary lymphoid organs, and retain Foxp3 expression in vitro, suggesting that acute viral infection is capable of inducing a foreign-antigen-specific Treg response. The ability of influenza virus-induced regulatory T cells to suppress antigen-specific CD4(+) and CD8(+) T cell proliferation and cytokine production correlates closely to their ability to respond to influenza virus antigens, suggesting that virus-induced Tregs are capable of attenuating effector responses in an antigen-dependent manner. Collectively, these data demonstrate that primary acute viral infection is capable of inducing a robust, antigen-responsive, and suppressive regulatory T cell response.
Collapse
|
26
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|
27
|
Day EB, Charlton KL, La Gruta NL, Doherty PC, Turner SJ. Effect of MHC class I diversification on influenza epitope-specific CD8+ T cell precursor frequency and subsequent effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6319-28. [PMID: 21536802 PMCID: PMC3103778 DOI: 10.4049/jimmunol.1000883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Influenza A virus/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Kinetics
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- E Bridie Day
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
28
|
Liu J, Zhang S, Tan S, Zheng B, Gao GF. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp Biol Med (Maywood) 2011; 236:253-67. [PMID: 21330360 DOI: 10.1258/ebm.2010.010278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immunogenic T-cell epitopes have a central role in the cellular immunity against pathogens and tumors. However, in the early stage of cellular immunity studies, it was complicated and time-consuming to identify and characterize T-cell epitopes. Currently, the epitope screening is experiencing renewed enthusiasm due to advances in novel techniques and theories. Moreover, the application of T-cell epitope-based diagnoses for tuberculosis and new data on epitope-based vaccine development have also revived the field. There is a growing knowledge on the emphasis of epitope-stimulated T-cell immune responses in the elimination of pathogens and tumors. In this review, we outline the significance of the identification and characterization of T-cell epitopes. We also summarize the methods and strategies for epitope definition and, more importantly, address the relevance of cytotoxic T-lymphocyte epitopes to clinical diagnoses, therapy and vaccine development.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Nayak JL, Richards KA, Chaves FA, Sant AJ. Analyses of the specificity of CD4 T cells during the primary immune response to influenza virus reveals dramatic MHC-linked asymmetries in reactivity to individual viral proteins. Viral Immunol 2010; 23:169-80. [PMID: 20373997 DOI: 10.1089/vim.2009.0099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza is a contagious, acute respiratory disease that is a major cause of morbidity and mortality throughout the world. CD4 T cells play an important role in the immune response to this pathogen through the secretion of antiviral cytokines, and by providing help to CD8 T cells and B cells to promote the development of immunological memory and neutralizing antibody responses. Despite these well-defined roles in the anti-influenza response, our understanding of CD4 T-cell diversity and specificity remains limited. In the study reported here, overlapping peptides representing 5 different influenza viral proteins were used in EliSpot assays to enumerate and identify the specificity of anti-influenza CD4 T cells directly ex vivo following infection of mice with influenza virus, using two strains that express unrelated MHC class II molecules. These experiments evaluated whether the reactivity of CD4 T cells generally tracked with particular influenza proteins, or whether MHC preferences were the predominant factor dictating anti-CD4 T-cell specificity in the primary immune response. We made the unexpected discovery that the distribution of CD4 T-cell specificities for different influenza proteins varied significantly depending on the single class II molecule expressed in vivo. In SJL mice, the majority of epitopes were specific for the HA protein, while the NP protein dominated the response in C57BL/10 mice. Given the diversity of human MHC class II molecules, these findings have important implications for the ability to rationally design a vaccine that will generate a specific CD4 T-cell immune response that is effective across diverse human populations.
Collapse
Affiliation(s)
- Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, and AaB Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
30
|
Valkenburg SA, Gras S, Guillonneau C, La Gruta NL, Thomas PG, Purcell AW, Rossjohn J, Doherty PC, Turner SJ, Kedzierska K. Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. PLoS Pathog 2010; 6:e1001039. [PMID: 20711359 PMCID: PMC2920842 DOI: 10.1371/journal.ppat.1001039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022] Open
Abstract
Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8+ T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP336–374 peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specific cross-reactive T cell responses. The engineered virus induced a diminished CD8+ T cell response and selected a narrowed T cell receptor (TCR) repertoire within two Vβ regions (Vβ8.3 and Vβ9). This can be partially explained by the H-2DbNPN3A structure that showed a loss of several contacts between the NPN3A peptide and H-2Db, including a contact with His155, a position known to play an important role in mediating TCR-pMHC-I interactions. Despite these differences, common cross-reactive TCRs were detected in both the naïve and immune NPN3A-specific TCR repertoires. However, while the NPN3A epitope primes memory T-cells that give an equivalent recall response to the mutant or wild-type (wt) virus, both are markedly lower than wt->wt challenge. Such decreased CD8+ responses elicited after heterologous challenge resulted in delayed viral clearance from the infected lung. Furthermore, mice first exposed to the wt virus give a poor, low avidity response following secondary infection with the mutant. Thus, the protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depend on peptide-MHC-I structural interactions and functional avidity. Our study does not support vaccine strategies that include immunization against commonly selected cross-reactive variants with mutations at partially-solvent exposed residues that have characteristics comparable to NPN3A. Introduction of a new influenza strain into human circulation leads to a rapid global spread of the virus due to minimal antibody immunity. Established T-cell immunity towards conserved viral regions provides some protection against influenza and promotes rapid recovery. However, influenza viruses mutate to escape the protective immunity. We found that established T cell immunity can recognise influenza mutants with variations at positions that are partially involved in T cell recognition. However, an initial priming with the mutated variant decreases recognition of the original parental virus. This finding results from a markedly lower functional quality and limited structural interactions of the mutant. In terms of possible vaccination strategies for rapidly changing viruses or tumours, it appears that priming with cross-reactive mutants that display such characteristics would be of no benefit as the same level of T cell immunity against such mutants can be elicited by exposure to the original virus.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Stephanie Gras
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Nicole L. La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
31
|
Irvine K, Bennink J. Factors influencing immunodominance hierarchies in TCD8+ -mediated antiviral responses. Expert Rev Clin Immunol 2010; 2:135-47. [PMID: 20477094 DOI: 10.1586/1744666x.2.1.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors. Major roles are played by peptide binding affinity, T-cell repertoire, and antigen processing and presentation. While the bulk of our information comes from mouse model systems, an increasing number of human studies suggest that immunodominance will be even more complicated. This review outlines current knowledge of T(CD8+ )immunodominance to viral antigens and discusses the relevance and importance of a thorough understanding for the rational design of vaccines that elicit effective T(CD8+) responses.
Collapse
Affiliation(s)
- Kari Irvine
- National Institute for Allergy & Infectious Diseases, Cell Biology Section/Viral Immunology Section, Laboratory of Viral Diseases, Room 209, Building 44 Center Drive, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
32
|
La Gruta NL, Rothwell WT, Cukalac T, Swan NG, Valkenburg SA, Kedzierska K, Thomas PG, Doherty PC, Turner SJ. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest 2010; 120:1885-94. [PMID: 20440073 DOI: 10.1172/jci41538] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/10/2010] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses to viral infection are characterized by the emergence of dominant and subdominant CTL populations. The immunodominance hierarchies of these populations are highly reproducible for any given spectrum of virus-induced peptide-MHCI complexes and are likely determined by multiple factors. Recent studies demonstrate a direct correlation between naive epitope-specific CD8+ T cell precursor (CTLp) frequency and the magnitude of the response after antigen challenge. Thus, the number of available precursors in the naive pool has emerged as a key predictor of immunodominance. In contrast to this, we report here no consistent relationship between CTLp frequency and the subsequent magnitude of the immune response for 4 influenza virus-derived epitopes following intranasal infection of mice with influenza A virus. Rather, the characteristic, antigen-driven T cell immunodominance hierarchy was determined by the extent of recruitment from the available pool of epitope-specific precursors and the duration of their continued expansion over the course of the infection. These findings suggest possibilities for enhancing protective immune memory by maximizing both the size and diversity of typically subdominant T cell responses through rational vaccine design.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Keeping the memory of influenza viruses. ACTA ACUST UNITED AC 2010; 58:e79-86. [DOI: 10.1016/j.patbio.2010.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 01/08/2023]
|
34
|
Flesch IEA, Woo WP, Wang Y, Panchanathan V, Wong YC, La Gruta NL, Cukalac T, Tscharke DC. Altered CD8(+) T cell immunodominance after vaccinia virus infection and the naive repertoire in inbred and F(1) mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:45-55. [PMID: 19949110 DOI: 10.4049/jimmunol.0900999] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of CD8(+) T cell immunodominance after primary virus infection of F(1) mice compared with their inbred parents have generally concluded that no dramatic changes occur. In this study, we revisit this issue using vaccinia virus (VACV), which has a large genome, a recently defined immunodominance hierarchy in mice, and is a candidate vector for vaccines. We found that immunogenicity of VACV peptides defined using inbred mice was highly variable in F(1) progeny: some peptides were equally immunogenic in F(1) and inbred, whereas others elicited responses that were reduced by >90% in F(1) mice. Furthermore, the dominance of a peptide in the relevant inbred parent did not predict whether it would be poorly immunogenic in F(1) mice. This result held using F(1) hybrids of MHC-congenic mice, suggesting that MHC differences alone were responsible. It was also extended to foreign epitopes expressed by an rVACV vaccine. F(1) mice were less able to mount responses to the poorly immunogenic peptides when used as a sole immunogen, ruling out immunodomination. In addition, conserved TCR Vbeta usage between inbred and F(1) mice did not always correlate with strong responses in F(1) mice. However, direct estimation of naive precursor numbers showed that these were reduced in F(1) compared with inbred mice for specificities that were poorly immunogenic in the hybrids. These data have implications for our understanding of the extent to which MHC diversity alters the range of epitopes that are immunogenic in outbred populations.
Collapse
Affiliation(s)
- Inge E A Flesch
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lico C, Mancini C, Italiani P, Betti C, Boraschi D, Benvenuto E, Baschieri S. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine 2009; 27:5069-76. [PMID: 19563889 DOI: 10.1016/j.vaccine.2009.06.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Plant viruses can be genetically modified to produce chimeric virus particles (CVPs) carrying heterologous peptides. The efficacy of plant-produced CVPs in inducing antibody responses specific to the displayed peptide has been extensively demonstrated. To determine if plants can be used to produce CVPs able to activate peptide-specific major histocompatibility complex (MHC) class I-restricted CD8+ T cells, potato virus X (PVX) has been engineered to display the H-2D(b)-restricted epitope ASNENMETM of influenza A virus nucleoprotein (NP). Engineering criteria were devised to comply not only with plant virus genetic stability and infectivity but also with antigen processing rules. The immunological properties of different doses of endotoxin-free preparations of CVPs or unmodified PVX have been evaluated by s.c. immunizing C57BL/6J mice and testing at different time intervals splenocyte responses by interferon gamma (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay. These experiments demonstrated that CVPs activate ASNENMTEM-specific CD8+ T cells. Remarkably, the best response was achieved without adjuvant co-delivery. These results represent the proof of concept that well-designed plant virus carriers of epitopes produced in plant can reasonably be used into peptide vaccine formulations aimed to activate cell-mediated immune responses.
Collapse
|
36
|
Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009; 87:300-8. [PMID: 19308073 DOI: 10.1038/icb.2009.16] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our approach to vaccination against influenza is unique. For no other pathogen do we construct and produce a new vaccine every year in the face of uncertainty about the strains that will be circulating when it is used. The huge global cooperative effort that underpins this process reflects our awareness of the need to control this major pathogen. Moreover, the threat of devastation by a pandemic due to a newly emerging viral subtype has triggered an intense effort to improve and accelerate the production of vaccines for use if a pandemic arises. However, type A influenza viruses responsible for seasonal epidemics and those with the potential to cause a pandemic share amino acid sequences that form the targets of cytotoxic T lymphocytes (CTL). CTL activated by currently circulating viruses, therefore, offer a possible means to limit the impact of infection with future variant seasonal strains and even new subtypes. This review examines how cross-protective CTL can be exploited to improve influenza vaccination and issues that need to be considered when attempting to induce this type of immunity. We discuss the role of CTL responses in viral control and review the current knowledge relating to specificity and longevity of memory CD8(+) T cells, how vaccine antigen can be loaded into antigen-presenting cells to prime these responses and factors influencing the class of response induced. Application of these principles to the next generation of influenza vaccines should lead to much greater control of infection.
Collapse
|
37
|
Lay MDH, Zhang L, Ribeiro RM, Mueller SN, Belz GT, Davenport MP. Kinetics of major histocompatibility class I antigen presentation in acute infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:902-11. [PMID: 19124733 DOI: 10.4049/jimmunol.182.2.902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ag presentation within the regional lymph node is crucial for the initiation of CD8+ T cell responses following viral infection. The magnitude and quality of the CD8+ T cell response are regulated by the interplay between the size of the APC population and duration of Ag presentation. To understand how these parameters are finely regulated during an immune response, we have investigated the dynamics of Ag presentation in influenza A virus and HSV-1 infection. In both infections, APC production was calculated to occur over the first few days of infection, after which there was slow exponential decay over a period of up to 2 wk. This production rate is most likely determined by the Ag availability and recruitment and/or maturation rate of dendritic cells. APC production was found to closely parallel lymph node cell recruitment in both infections. This was greatest in the first 6 h of infection for HSV and over the second and third day for influenza. In HSV infection, the peak production also coincides with peak viral levels. By contrast, in influenza infection, APC production ceased between the third and fourth day despite the presence of high levels of virus until 5 days after infection. These analyses demonstrate that two quite different self-limiting infections generate the APC necessary to drive T cell responses early in infection at different rates. Understanding how such contrasting kinetics of Ag presentation impacts on the growth and size of developing protective T cell populations has important implications for the design of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Matthew D H Lay
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Jenkins MR, La Gruta NL, Doherty PC, Trapani JA, Turner SJ, Waterhouse NJ. Visualizing CTL activity for different CD8+ effector T cells supports the idea that lower TCR/epitope avidity may be advantageous for target cell killing. Cell Death Differ 2009; 16:537-42. [PMID: 19136939 DOI: 10.1038/cdd.2008.176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Time-lapse video microscopy allows analysis of the interaction between individual CTLs and adherent peptide-pulsed targets, from contact, to lymphocyte detachment, APC rounding, phosphatidylserine exposure and finally loss of plasma membrane integrity characteristic of end-stage apoptosis. Using in vitro-stimulated effectors specific for the ovalbumin K(b)OVA(257) (OT-I) and influenza A virus D(b)NP(366) and D(b)PA(224) epitopes, no significant correlation was found between the duration of CTL contact and the time to phosphatidylserine exposure or loss of membrane integrity. Furthermore, there were minimal indications that transgenic T cells specific for the K(b)OVA(257) epitope (TCR) diversity had any effect. However, when the analysis was repeated with D(b)NP(366) and D(b)PA(224)-specific CTLs recovered directly from the lungs of mice with influenza pneumonia, the lower avidity D(b)NP(366)-specific set was found to elute much more quickly. Shorter contact time may allow individual CTLs to lyse more targets, suggesting that lower TCR/epitope avidity may be more beneficial than higher epitope avidity for cell-mediated immunity.
Collapse
Affiliation(s)
- M R Jenkins
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Kotturi MF, Scott I, Wolfe T, Peters B, Sidney J, Cheroutre H, von Herrath MG, Buchmeier MJ, Grey H, Sette A. Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2124-33. [PMID: 18641351 PMCID: PMC3319690 DOI: 10.4049/jimmunol.181.3.2124] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The primary CD8(+) T cell response of C57BL/6J mice against the 28 known epitopes of lymphocytic choriomeningitis virus (LCMV) is associated with a clear immunodominance hierarchy whose mechanism has yet to be defined. To evaluate the role of epitope competition in immunodominance, we manipulated the number of CD8(+) T cell epitopes that could be recognized during LCMV infection. Decreasing epitope numbers, using a viral variant lacking dominant epitopes or C57BL/6J mice lacking H-2K(b), resulted in minor response increases for the remaining epitopes and no new epitopes being recognized. Increasing epitope numbers by using F(1) hybrid mice, delivery by recombinant vaccinia virus, or epitope delivery as a pool in IFA maintained the overall response pattern; however, changes in the hierarchy did become apparent. MHC binding affinity of these epitopes was measured and was found to not strictly predict the hierarchy since in several cases similarly high binding affinities were associated with differences in immunodominance. In these instances the naive CD8(+) T cell precursor frequency, directly measured by tetramer staining, correlated with the response hierarchy seen after LCMV infection. Finally, we investigated an escape mutant of the dominant GP33-41 epitope that elicited a weak response following LCMV variant virus infection. Strikingly, dominance loss likely reflects a substantial reduction in frequencies of naive precursors specific for this epitope. Thus, our results indicate that an intrinsic property of the epitope (MHC binding affinity) and an intrinsic property of the host (naive precursor frequency) jointly dictate the immunodominance hierarchy of CD8(+) T cell responses.
Collapse
Affiliation(s)
- Maya F. Kotturi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Iain Scott
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tom Wolfe
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Matthias G. von Herrath
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Michael J. Buchmeier
- Department of Molecular Biology and Biochemistry and Department of Community and Environmental Medicine, University of California, Irvine, CA 92697
| | - Howard Grey
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
40
|
Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr Opin Biotechnol 2008; 18:529-36. [PMID: 18083548 DOI: 10.1016/j.copbio.2007.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 10/30/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Since influenza A viruses of the H5N1 subtype continue to circulate in wild and domestic birds and cause an ever increasing number of human cases, it is feared that H5N1 viruses may cause the next influenza pandemic. Therefore, there is considerable interest in the development of vaccines that confer protection against infections with these viruses or ideally, protection against influenza viruses of different subtypes. For the development of broad-protective vaccines the induction of virus-specific cytotoxic T lymphocytes (CTL) may be an important target, since it has been demonstrated that CTL contribute to protective immunity and are largely directed to epitopes shared by influenza viruses of various subtypes. In the present paper, the possibility to develop (cross-reactive) CTL-inducing vaccines is discussed.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Erasmus Medical Center, Department of Virology, Rotterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. ACTA ACUST UNITED AC 2008; 205:711-23. [PMID: 18332179 PMCID: PMC2275391 DOI: 10.1084/jem.20071140] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A diverse T cell repertoire is essential for a vigorous immune response to new infections, and decreasing repertoire diversity has been implicated in the age-associated decline in CD8 T cell immunity. In this study, using the well-characterized mouse influenza virus model, we show that although comparable numbers of CD8 T cells are elicited in the lung and lung airways of young and aged mice after de novo infection, a majority of aged mice exhibit profound shifts in epitope immunodominance and restricted diversity in the TCR repertoire of responding cells. A preferential decline in reactivity to viral epitopes with a low naive precursor frequency was observed, in some cases leading to “holes” in the T cell repertoire. These effects were also seen in young thymectomized mice, consistent with the role of the thymus in maintaining naive repertoire diversity. Furthermore, a decline in repertoire diversity generally correlated with impaired responses to heterosubtypic challenge. This study formally demonstrates in a mouse infection model that naturally occurring contraction of the naive T cell repertoire can result in impaired CD8 T cell responses to known immunodominant epitopes and decline in heterosubtypic immunity. These observations have important implications for the design of vaccine strategies for the elderly.
Collapse
Affiliation(s)
- Eric J Yager
- The Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2008; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
43
|
Denton AE, Doherty PC, Turner SJ, La Gruta NL. IL-18, but not IL-12, is required for optimal cytokine production by influenza virus-specific CD8+ T cells. Eur J Immunol 2007; 37:368-75. [PMID: 17219365 DOI: 10.1002/eji.200636766] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potent innate cytokines IL-12 and IL-18 are considered to be important antigen-independent mediators of IFN-gamma production by NK cells and T lymphocytes. The present analysis addresses the physiological role of IL-12 and IL-18 in the generation of virus-specific CD8+ T cells. Both wt C57BL/6J (B6) mice and mice with disrupted IL-12p40 (IL-12p40(-/-)) or IL-18 (IL-18(-/-)) genes were infected with an influenza A virus and the characteristics of the resultant epitope-specific CD8+ T cell responses were compared. While IL-12 appeared to have no notable effect on either virus growth or on CD8+ T cell response profiles, the absence of IL-18 was associated with delayed virus clearance from the lung and, despite normal numbers, a significantly reduced production of IFN-gamma, TNF-alpha, and IL-2 by epitope-specific CD8+ T cells. While this cytokine phenotype was broadly maintained in IL-12p40/IL-18 double-knockout mice, no evidence was seen for any additive effect. Together, our results suggest that IL-18, but not IL-12, induces optimal, antigen-specific production of key cytokines by CD8+ T cells for the efficient clearance of influenza virus from the lungs of infected mice.
Collapse
Affiliation(s)
- Alice E Denton
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
44
|
Stambas J, Doherty PC, Turner SJ. An in vivo cytotoxicity threshold for influenza A virus-specific effector and memory CD8(+) T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:1285-92. [PMID: 17237374 DOI: 10.4049/jimmunol.178.3.1285] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza A virus infection of C57BL/6 (B6) mice is characterized by prominent CD8(+) T cell responses to H2D(b) complexed with peptides from the viral nucleoprotein (NP(366), ASNENMETM) and acid polymerase (PA(224), SSLENFRAYV). An in vivo cytotoxicity assay that depends on the adoptive transfer of peptide-pulsed, syngeneic targets was used in this study to quantitate the cytotoxic potential of D(b)NP(366)- and D(b)PA(224)-specific acute and memory CD8(+) T cells following primary or secondary virus challenge. Both T cell populations displayed equivalent levels of in vivo effector function when comparable numbers were transferred into naive B6 hosts. Cytotoxic activity following primary infection clearly correlated with the frequency of tetramer-stained CD8(+) T cells. This relationship looked, however, to be less direct following secondary exposure, partly because the numbers of CD8(+)D(b)NP(366)(+) T cells were greatly in excess. However, calculating the in vivo E:T ratios indicated that in vivo lysis, like many other biological functions, is threshold dependent. Furthermore, the capacity to eliminate peptide-pulsed targets was independent of the differentiation state (i.e., primary or secondary effectors) and was comparable for the two T cell specificities that were analyzed. These experiments provide insights that may be of value for adoptive immunotherapy, where careful consideration of both the activation state and the number of effector cells is required.
Collapse
Affiliation(s)
- John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | | | | |
Collapse
|
45
|
Cesson V, Stirnemann K, Robert B, Luescher I, Filleron T, Corradin G, Mach JP, Donda A. Active antiviral T-lymphocyte response can be redirected against tumor cells by antitumor antibody x MHC/viral peptide conjugates. Clin Cancer Res 2007; 12:7422-30. [PMID: 17189415 DOI: 10.1158/1078-0432.ccr-06-1862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Carcinoembryonic Antigen/chemistry
- Carcinoembryonic Antigen/immunology
- Carcinoma/immunology
- Carcinoma/metabolism
- Carcinoma/therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/therapy
- Glycoproteins/immunology
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Immunization/methods
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/therapeutic use
- Immunoglobulin Fab Fragments/biosynthesis
- Immunoglobulin Fab Fragments/therapeutic use
- Immunotherapy/methods
- Influenza A virus/immunology
- Lymphocytic choriomeningitis virus/immunology
- Major Histocompatibility Complex/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Viral Core Proteins/immunology
- Viral Proteins/immunology
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Valérie Cesson
- Department of Biochemistry, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
La Gruta NL, Doherty PC, Turner SJ. A correlation between function and selected measures of T cell avidity in influenza virus-specific CD8+ T cell responses. Eur J Immunol 2007; 36:2951-9. [PMID: 17072910 DOI: 10.1002/eji.200636390] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Activation of mature CD8+ T cells requires recognition, via the T cell receptor (TCR), of peptide + MHC (pMHC) complexes with an avidity that exceeds a designated threshold. Multiple indicators of T cell avidity have been described that provide unique information on the characteristics of T cell interactions. However, these indicators are routinely used in isolation, and, consequently, little is known about correlations between these measures or which measure, if any, correlates with the quality of the T cell response. Following influenza virus infection of C57BL/6J mice, we analyzed the relative avidities of five epitope-specific CD8+ T cell populations using five different measures. We demonstrated that the quality of CD8+ T cell responses, in terms of cytokine profiles, correlates with TCR dissociation rate and CD8 dependence, but not with the sensitivity to tetramer binding or peptide stimulation. Thus, we propose that, despite significant differences in TCR dissociation rate, the stimulation threshold of influenza-specific CD8+ T cell populations may be equivalent due to compensatory mechanisms largely provided by the CD8 coreceptor. Furthermore, this study shows that different indicators of avidity do not necessarily provide similar information and should be used in combination to obtain an overall picture of the characteristics of TCR binding.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
47
|
Pang KC, Sanders MT, Monaco JJ, Doherty PC, Turner SJ, Chen W. Immunoproteasome subunit deficiencies impact differentially on two immunodominant influenza virus-specific CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2007; 177:7680-8. [PMID: 17114438 DOI: 10.4049/jimmunol.177.11.7680] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primary CD8+ T cell (T(CD8+)) responses to viruses are directed toward multiple Ags and shaped by both the level of Ag presentation and the underlying Ag-specific T(CD8+) repertoire. The relative importance of these factors in deciding the hierarchy of T(CD8+) responses and how they are influenced by the immunoproteasome are not well understood. Using an influenza infection model in mice deficient in various immunoproteasome subunits, we observe that Ag presentation and T(CD8+) repertoire are altered in an epitope-specific and immunoproteasome subunit-dependent manner. More importantly, we find that the level of Ag presentation and the extent of the underlying repertoire can work either alone or in concert to determine definitively the magnitude of the individual T(CD8+) responses and hence the overall T(CD8+) hierarchy. Together, these results provide a clearer understanding of how immunodominance hierarchies are established.
Collapse
Affiliation(s)
- Ken C Pang
- T Cell Laboratory, Melbourne Centre for Clinical Sciences, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6:883-94. [PMID: 17110956 DOI: 10.1038/nri1977] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
49
|
Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 2006; 25:533-43. [PMID: 17046682 DOI: 10.1016/j.immuni.2006.09.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral CD8(+) T cells respond to only a minute fraction of the potential peptide determinants encoded by viral genomes. Immunogenic determinants can be ordered into highly reproducible hierarchies based on the magnitude of cognate CD8(+) T cell responses. Until recently, this phenomenon, termed immunodominance, was largely defined and characterized in model systems utilizing a few strains of inbred mice infected with a handful of viruses with limited coding capacity. Here, I review work that has extended immunodominance studies to viruses of greater complexity and to the real world of human antiviral immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| |
Collapse
|
50
|
Kedzierska K, Day EB, Pi J, Heard SB, Doherty PC, Turner SJ, Perlman S. Quantification of Repertoire Diversity of Influenza-Specific Epitopes with Predominant Public or Private TCR Usage. THE JOURNAL OF IMMUNOLOGY 2006; 177:6705-12. [PMID: 17082583 DOI: 10.4049/jimmunol.177.10.6705] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The H-2Db-restricted CD8 T cell immune response to influenza A is directed at two well-described epitopes, nucleoprotein 366 (NP366) and acid polymerase 224 (PA224). The responses to the two epitopes are very different. The epitope NP366-specific response is dominated by TCR clonotypes that are public (shared by most mice), whereas the epitope PA224-specific response is private (unique within each infected animal). In addition to being public, the NP366-specific response is dominated by a few clonotypes, when T cell clonotypes expressing the Vbeta8.3 element are analyzed. Herein, we show that this response is similarly public when the NP366+Vbeta4+ CD8 T cell response is analyzed. Furthermore, to determine whether these features resulted in differences in total TCR diversity in the NP366+ and PA224+ responses, we quantified the number of different CD8 T clonotypes responding to each epitope. We calculated that 50-550 clonotypes recognized each epitope in individual mice. Thus, although the character of the response to the two epitopes appeared to be different (private and diverse vs public and dominated by a few clonotypes), similar numbers of precursor cells responded to both epitopes and this number was of similar magnitude to that previously reported for other viral CD8 T cell epitopes. Therefore, even in CD8 T cell responses that appear to be oligoclonotypic, the total response is highly diverse.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Line
- Clone Cells
- Dogs
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/metabolism
- Female
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/immunology
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Murine hepatitis virus/immunology
- Nucleocapsid Proteins
- Nucleoproteins/immunology
- RNA-Binding Proteins/immunology
- RNA-Dependent RNA Polymerase/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Parkeville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|