1
|
Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, Betel D, Kang SW, Jang HJ, Hellmann MD, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 2024; 42:1202-1216.e8. [PMID: 38906155 PMCID: PMC11413804 DOI: 10.1016/j.ccell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Tumor-specific CD8+ T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4+ T cells can be enlisted to overcome CD8+ T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8+ and CD4+ T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4+ T cells must engage with CD8+ T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8+ T cell cytotoxicity and cancer cell elimination. When intratumoral triad formation is disrupted, tumors progress despite equal numbers of tumor-specific CD8+ and CD4+ T cells. In patients with pleural mesothelioma treated with ICB, triads are associated with clinical responses. Thus, CD4+ T cells and triads are required for CD8+ T cell cytotoxicity during the effector phase and tumor elimination.
Collapse
Affiliation(s)
| | - Edison Chiu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Thoracic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Espinosa-Carrasco G, Scrivo A, Zumbo P, Dave A, Betel D, Hellmann M, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for adoptive T cell therapy-mediated elimination of solid tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547423. [PMID: 37461721 PMCID: PMC10349998 DOI: 10.1101/2023.07.03.547423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tumor-reactive CD8 T cells found in cancer patients are frequently dysfunctional, unable to halt tumor growth. Adoptive T cell transfer (ACT), the administration of large numbers of in vitro-generated cytolytic tumor-reactive CD8 T cells, is an important cancer immune therapy being pursued. However, a limitation of ACT is that transferred CD8 T cells often rapidly lose effector function, and despite exciting results in certain malignancies, few ACT clinical trials have shown responses in solid tumors. Here, we developed preclinical cancer mouse models to investigate if and how tumor-specific CD4 T cells can be enlisted to overcome CD8 T cell dysfunction in the setting of ACT. In situ confocal microscopy of color-coded cancer cells, tumor-specific CD8 and CD4 T cells, and antigen presenting cells (APC), combined with functional studies, revealed that the spatial positioning and interactions of CD8 and CD4 T cells, but not their numbers, dictates ACT efficacy and anti-tumor responses. We uncover a new role of antigen-specific CD4 T cells in addition to the known requirement for CD4 T cells during priming/activation of naïve CD8 T cells. CD4 T cells must co-engage with CD8 T cells and APC cross-presenting CD8- and CD4-tumor antigens during the effector phase, forming a three-cell-cluster (triad), to license CD8 T cell cytotoxicity and mediate cancer cell elimination. Triad formation transcriptionally and epigenetically reprogram CD8 T cells, prevent T cell dysfunction/exhaustion, and ultimately lead to the elimination of large established tumors and confer long-term protection from recurrence. When intratumoral triad formation was disrupted, adoptively transferred CD8 T cells could not be reprogrammed, and tumors progressed despite equal numbers of tumor-infiltrating CD8 and CD4 T cells. Strikingly, the formation of CD4 T cell::CD8 T cell::APC triads in tumors of patients with lung cancers treated with immune checkpoint blockade was associated with clinical responses, but not CD4::APC dyads or overall numbers of CD8 or CD4 T cells, demonstrating the importance of triads in non-ACT settings in humans. Our work uncovers intratumoral triads as a key requirement for anti-tumor immunity and a new role for CD4 T cells in CD8 T cell cytotoxicity and cancer cell eradication.
Collapse
Affiliation(s)
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
3
|
Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA. Cell Rep 2022; 41:111485. [DOI: 10.1016/j.celrep.2022.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
|
4
|
Liu AW, Wei AZ, Maniar AB, Carvajal RD. Tebentafusp in Advanced Uveal Melanoma: Proof of Principal for the Efficacy of T-Cell Receptor Therapeutics and Bispecifics in Solid Tumors. Expert Opin Biol Ther 2022; 22:997-1004. [DOI: 10.1080/14712598.2022.2031970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Rataj F, Kraus FBT, Chaloupka M, Grassmann S, Heise C, Cadilha BL, Duewell P, Endres S, Kobold S. PD1-CD28 Fusion Protein Enables CD4+ T Cell Help for Adoptive T Cell Therapy in Models of Pancreatic Cancer and Non-hodgkin Lymphoma. Front Immunol 2018; 9:1955. [PMID: 30214445 PMCID: PMC6125378 DOI: 10.3389/fimmu.2018.01955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Interaction of the programmed death receptor 1 (PD-1) and its ligand, PD-L1, suppresses T cell activity and permits tumors to evade T cell-mediated immune surveillance. We have recently demonstrated that antigen-specific CD8+ T cells transduced with a PD1-CD28 fusion protein are protected from PD-1-mediated inhibition. We have now investigated the potential of PD1-CD28 fusion protein-transduced CD4+ T cells alone or in combination with CD8+ T cells for immunotherapy of pancreatic cancer and non-Hodgkin lymphoma. Methods: OVA-specific CD4+ and CD8+ were retrovirally transduced with the PD1-CD28 fusion protein. Cytokine release, proliferation, cytotoxic activity, and phenotype of transduced T cells were assessed in the context of Panc02-OVA (murine pancreatic cancer model) and E.G7-PD-L1 (murine T cell lymphoma model) cells. Results: Stimulation of PD1-CD28 fusion protein-transduced CD4+ T cells with anti-CD3 and recombinant PD-L1 induced specific T cell activation, as measured by IFN-y release and T cell proliferation. Coculture with Panc02-OVA or E.G7-PD-L1 tumor cells also led to specific activation of CD4+ T cells. Cytokine release and T cell proliferation was most effective when tumor cells simultaneously encountered genetically engineered CD4+ and CD8+ T cells. Synergy between both cell populations was also observed for specific tumor cell lysis. T cell cytotoxicity was mediated via granzyme B release and mediated enhanced tumor control in vivo. Transduced CD4+ and CD8+ T cells in co-culture with tumor cells developed a predominant central memory phenotype over time. Different ratios of CD4+ and CD8+ transduced T cells led to a significant increase of IFN-y and IL-2 secretion positively correlating with CD4+ T cell numbers used. Mechanistically, IL-2 and MHC-I were central to the synergistic activity of CD4+ and CD8+ T cells, since neutralization of IL-2 prevented the crosstalk between these cell populations. Conclusion: PD1-CD28 fusion protein-transduced CD4+ T cells significantly improved anti-tumoral effect of fusion protein-transduced CD8+ T cells. Thus, our results indicate that PD1-CD28 fusion protein-transduced CD4+ T cells have the potential to overcome the PD-1-PD-L1 immunosuppressive axis in pancreatic cancer and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian B T Kraus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Chaloupka
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Simon Grassmann
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Member of the German Center for Lung Research (DZL), Munich, Germany.,German Cancer Research Center (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
6
|
Boudousquie C, Bossi G, Hurst JM, Rygiel KA, Jakobsen BK, Hassan NJ. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 + and CD4 + T cells. Immunology 2017. [PMID: 28640942 PMCID: PMC5629433 DOI: 10.1111/imm.12779] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.
Collapse
|
7
|
CTLA4-CD28 chimera gene modification of T cells enhances the therapeutic efficacy of donor lymphocyte infusion for hematological malignancy. Exp Mol Med 2017; 49:e360. [PMID: 28751785 PMCID: PMC5565951 DOI: 10.1038/emm.2017.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Donor lymphocyte infusion (DLI) followed by hematopoietic stem cell transplantation has served as an effective prevention/treatment modality against the relapse of some hematologic tumors, such as chronic myeloid leukemia (CML). However, the therapeutic efficacies of DLI for other types of leukemia, including acute lymphocytic leukemia (ALL), have been limited thus far. Therefore, we examined whether increasing the reactivity of donor T cells by gene modification could enhance the therapeutic efficacy of DLI in a murine model of ALL. When a CTLA4-CD28 chimera gene (CTC28) in which the intracellular signaling domain of CTLA4 was replaced with the CD28 signaling domain was introduced into CD4 and CD8 T cells in DLI, the graft-versus-tumor (GVT) effect was significantly increased. This effect was correlated with an increased expansion of donor CD8 T cells in vivo, and the depletion of CD8 T cells abolished this effect. The CD8 T cell expansion and the enhanced GVT effect were dependent on the transduction of both CD4 and CD8 T cells with CTC28, which emphasizes the role of dual modification in this therapeutic effect. The CTC28-transduced T cells that expanded in vivo also exhibited enhanced functionality. Although the potentiation of the GVT effect mediated by the CTC28 gene modification of T cells was accompanied by an increase of graft-versus-host disease (GVHD), the GVHD was not lethal and was mitigated by treatment with IL-10 gene-modified third-party mesenchymal stem cells. Thus, the combined genetic modification of CD4 and CD8 donor T cells with CTC28 could be a promising strategy for enhancing the therapeutic efficacy of DLI.
Collapse
|
8
|
Haworth KG, Ironside C, Norgaard ZK, Obenza WM, Adair JE, Kiem HP. In Vivo Murine-Matured Human CD3 + Cells as a Preclinical Model for T Cell-Based Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017. [PMID: 28649577 PMCID: PMC5470556 DOI: 10.1016/j.omtm.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adoptive cellular immunotherapy is a promising and powerful method for the treatment of a broad range of malignant and infectious diseases. Although the concept of cellular immunotherapy was originally proposed in the 1990s, it has not seen successful clinical application until recent years. Despite significant progress in creating engineered receptors against both malignant and viral epitopes, no efficient preclinical animal models exist for rapidly testing and directly comparing these engineered receptors. The use of matured human T cells in mice usually leads to graft-versus-host disease (GvHD), which severely limits the effectiveness of such studies. Alternatively, adult apheresis CD34+ cells engraft in neonatal non-obese diabetic (NOD)-severe combined immunodeficiency (SCID)-common γ chain–/– (NSG) mice and lead to the development of CD3+ T cells in peripheral circulation. We demonstrate that these in vivo murine-matured autologous CD3+ T cells from humans (MATCH) can be collected from the mice, engineered with lentiviral vectors, reinfused into the mice, and detected in multiple lymphoid compartments at stable levels over 50 days after injection. Unlike autologous CD3+ cells collected from human donors, these MATCH mice did not exhibit GvHD after T cell administration. This novel mouse model offers the opportunity to screen different immunotherapy-based treatments in a preclinical setting.
Collapse
Affiliation(s)
- Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Christina Ironside
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Zachary K Norgaard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Willimark M Obenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Arina A, Karrison T, Galka E, Schreiber K, Weichselbaum RR, Schreiber H. Transfer of Allogeneic CD4+ T Cells Rescues CD8+ T Cells in Anti-PD-L1-Resistant Tumors Leading to Tumor Eradication. Cancer Immunol Res 2017; 5:127-136. [PMID: 28077434 DOI: 10.1158/2326-6066.cir-16-0293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T-cell-mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the "exhaustion" markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD-1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. Cancer Immunol Res; 5(2); 127-36. ©2017 AACR.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Pathology, The University of Chicago, Chicago, Illinois.
| | - Theodore Karrison
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | - Eva Galka
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8 + T-cells favoring anti-tumor immunity. J Neuroimmunol 2017; 303:99-107. [PMID: 28077213 DOI: 10.1016/j.jneuroim.2016.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022]
Abstract
Dendritic cells (DCs) display the unique ability for cross-presenting antigens to CD8+ T-cells, promoting their differentiation into cytotoxic T-lymphocytes (CTLs), which play a pivotal role in anti-tumor immunity. Emerging evidence points to dopamine receptor D3 (D3R) as a key regulator of immunity. Accordingly, we studied how D3R regulates DCs function in anti-tumor immunity. The results show that D3R-deficiency in DCs enhanced expansion of CTLs in vivo and induced stronger anti-tumor immunity. Co-culture experiments indicated that D3R-inhibition in DCs potentiated antigen cross-presentation and CTLs activation. Our findings suggest that D3R in DCs constitutes a new therapeutic target to strengthen anti-tumor immunity.
Collapse
|
11
|
Identification of Melanoma-reactive CD4+ T-Cell Subsets From Human Melanoma Draining Lymph Nodes. J Immunother 2016; 39:15-26. [PMID: 26641258 DOI: 10.1097/cji.0000000000000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our laboratory has previously demonstrated that melanoma draining lymph node (MDLN) samples from stage III patients contained both CD4 and CD8 T cells that can be readily expanded to mediate tumor cell apoptosis in vitro and improve survival in mice bearing human melanoma xenografts. In this study, we investigated whether MDLN T cells contain melanoma-reactive CD4 T-cell compartment and what they are. To test this, we performed multiparametric (11-color and 6-color) fluorescence-activated cell sorting analyses to monitor phenotypic and functional property of CD4 T cells in response to melanoma cell antigen reexposure. Our results have demonstrated that the antigen reexposure could result in a generation of CD4CCR7CD62LCD27 T-cell subsets with various effector cell-like properties. Within the CD4CCR7CD62LCD27 T-cell compartment, in response to antigen reexposure, some of the cells expressed significantly upregulated CD40L and/or CXCR5, and some of them expressed significantly upregulated interleukin-2 and/or tumor necrosis factor-α. This may suggest the existence of melanoma-reactive CD4 "effector-precursor" cells within the expanded MDLN cells and their differentiation into various effector lineages in response to antigen restimulation. Recent clinical trials have demonstrated that effective adoptive cellular immunotherapy maybe enhanced by antigen-specific CD4 T cells. Therefore, results of this study may significantly benefit innovative design of +adoptive cellular immunotherapy that can potentially mediate enhanced and durable clinical responses.
Collapse
|
12
|
CD4 T cell knockout does not protect against kidney injury and worsens cancer. J Mol Med (Berl) 2015; 94:443-55. [PMID: 26620676 DOI: 10.1007/s00109-015-1366-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Most previous studies of cisplatin-induced acute kidney injury (AKI) have been in models of acute, high-dose cisplatin administration that leads to mortality in non-tumor-bearing mice. The aim of the study was to determine whether CD4 T cell knockout protects against AKI and cancer in a clinically relevant model of low-dose cisplatin-induced AKI in mice with cancer. Kidney function, serum neutrophil gelatinase-associated lipocalin (NGAL), acute tubular necrosis (ATN), and tubular apoptosis score were the same in wild-type and CD4 -/- mice with AKI. The lack of protection against AKI in CD4 -/- mice was associated with an increase in extracellular signal-regulated kinase (ERK), p38, CXCL1, and TNF-α, mediators of AKI and fibrosis, in both cisplatin-treated CD4 -/- mice and wild-type mice. The lack of protection was independent of the presence of cancer or not. Tumor size was double, and cisplatin had an impaired therapeutic effect on the tumors in CD4 -/- vs. wild-type mice. Mice depleted of CD4 T cells using the GK1.5 antibody were not protected against AKI and had larger tumors and lesser response to cisplatin. In summary, in a clinically relevant model of cisplatin-induced AKI in mice with cancer, (1) CD4 -/- mice were not protected against AKI; (2) ERK, p38, CXCL1, and TNF-α, known mediators of AKI, and interstitial fibrosis were increased in CD4 -/- kidneys; and (3) CD4 -/- mice had faster tumor growth and an impaired therapeutic effect of cisplatin on the tumors. The data warns against the use of CD4 T cell inhibition to attenuate cisplatin-induced AKI in patients with cancer. KEY MESSAGE A clinically relevant low-dose cisplatin model of AKI in mice with cancer was used. CD4 -/- mice were not functionally or histologically protected against AKI. CD4 -/- mice had faster tumor growth. CD4 -/- mice had an impaired therapeutic effect of cisplatin on the tumors. Mice depleted of CD4 T cells were not protected against AKI and had larger tumors.
Collapse
|
13
|
Feng Z, Puri S, Moudgil T, Wood W, Hoyt CC, Wang C, Urba WJ, Curti BD, Bifulco CB, Fox BA. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer 2015; 3:47. [PMID: 26500776 PMCID: PMC4617712 DOI: 10.1186/s40425-015-0091-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background Adoptive T cell therapy (ACT) has shown great promise in melanoma, with over 50 % response rate in patients where autologous tumor-reactive tumor-infiltrating lymphocytes (TIL) can be cultured and expanded. A major limitation of ACT is the inability to generate or expand autologous tumor-reactive TIL in 25–45 % of patients tested. Methods that successfully identify tumors that are not suitable for TIL generation by standard methods would eliminate the costs of fruitless expansion and enable these patients to receive alternate therapy immediately. Methods Multispectral fluorescent immunohistochemistry with a panel including CD3, CD8, FoxP3, CD163, PD-L1 was used to analyze the tumor microenvironment in 17 patients with melanoma among our 36-patient cohort to predict successful TIL generation. Additionally, we compared tumor fragments and enzymatic digestion of tumor samples for efficiency in generating tumor-reactive TIL. Results Tumor-reactive TIL were generated from 21/36 (58 %) of melanomas and for 12/13 (92 %) tumors where both enzymatic and fragment methods were compared. TIL generation was successful in 10/13 enzymatic preparations and in 10/13 fragment cultures; combination of both methods resulted in successful generation of autologous tumor-reactive TIL in 12/13 patients. In 17 patients for whom tissue blocks were available, IHC analysis identified that while the presence of CD8+ T cells alone was insufficient to predict successful TIL generation, the CD8+ to FoxP3+ ratio was predictive with a positive-predictive value (PPV) of 91 % and negative-predictive value (NPV) of 86 %. Incorporation of CD163+ macrophage numbers and CD8:PD-L1 ratio did not improve the PPV. However, the NPV could be improved to 100 % by including the ratio of CD8+:PD-L1+ expressing cells. Conclusion This is the first study to apply 7-color multispectral immunohistochemistry to analyze the immune environment of tumors from patients with melanoma. Assessment of the data using unsupervised hierarchical clustering identified tumors from which we were unable to generate TIL. If substantiated, this immune profile could be applied to select patients for TIL generation. Additionally, this biomarker profile may also indicate a pre-existing immune response, and serve as a predictive biomarker of patients who will respond to checkpoint blockade. We postulate that expanding the spectrum of inhibitory cells and molecules assessed using this technique could guide combination immunotherapy treatments and improve response rates. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0091-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zipei Feng
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA.,Departments of Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Sachin Puri
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA
| | - Tarsem Moudgil
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA
| | - William Wood
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA
| | | | | | - Walter J Urba
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA
| | - Brendan D Curti
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA
| | - Carlo B Bifulco
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA.,Department of, Providence Portland Regional Laboratory, Portland, OR USA
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR 97213 USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR USA.,UbiVac, Portland, OR USA
| |
Collapse
|
14
|
Sangthawan D, Phungrassami T, Sinkitjarurnchai W. Effects of Zinc Sulfate Supplementation on Cell-Mediated Immune Response in Head and Neck Cancer Patients Treated with Radiation Therapy. Nutr Cancer 2015; 67:449-56. [DOI: 10.1080/01635581.2015.1004735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Duangjai Sangthawan
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Temsak Phungrassami
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Wattana Sinkitjarurnchai
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
15
|
Omabe M, Ahmed S, Sami A, Xie Y, Tao M, Xiang J. HER2-Specific Vaccines for HER2-Positive Breast Cancer Immunotherapy. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Mahnke K, Skorokhod A, Grabbe S, Enk AH. Opening a niche for therapy: local lymphodepletion helps the immune system to fight melanoma. J Invest Dermatol 2014; 134:1794-1796. [PMID: 24924759 DOI: 10.1038/jid.2014.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this issue, Fujiwara et al. report that local ablation of CD4+ T cells in a murine B16 melanoma model, together with concomitant activation of the immune system by OX40L, leads to complete rejection of the melanomas. Rejection was driven mainly by CD8+ T cells, which infiltrated the melanomas and secreted sizeable amounts of IFN-γ. However, CD8+ T-cell infiltration also caused the recruitment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Although these cells did not prevent the rejection of the melanomas, in clinical settings the long-term repopulation of tumors by MDSCs may counteract successful treatment. Thus, local ablation of CD4+ leukocytes may improve anti-melanoma therapies in humans, but at the same time MDSC levels in the tumor cells have to be kept in check to ensure treatment success.
Collapse
Affiliation(s)
- Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - Alexander Skorokhod
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Stefan Grabbe
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Dermatology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander H Enk
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Monjazeb AM, Tietze JK, Grossenbacher SK, Hsiao HH, Zamora AE, Mirsoian A, Koehn B, Blazar BR, Weiss JM, Wiltrout RH, Sckisel GD, Murphy WJ. Bystander activation and anti-tumor effects of CD8+ T cells following Interleukin-2 based immunotherapy is independent of CD4+ T cell help. PLoS One 2014; 9:e102709. [PMID: 25119341 PMCID: PMC4131875 DOI: 10.1371/journal.pone.0102709] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.
Collapse
Affiliation(s)
- Arta M. Monjazeb
- Department of Radiation Oncology School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Julia K. Tietze
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Steven K. Grossenbacher
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Hui-Hua Hsiao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Anthony E. Zamora
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, Massachusetts, United States of America
| | - Jonathan M. Weiss
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Robert H. Wiltrout
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Gail D. Sckisel
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, United States of America
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kim HS, Kang D, Moon MH, Kim HJ. Identification of pancreatic cancer-associated tumor antigen from HSP-enriched tumor lysate-pulsed human dendritic cells. Yonsei Med J 2014; 55:1014-27. [PMID: 24954332 PMCID: PMC4075362 DOI: 10.3349/ymj.2014.55.4.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Vaccine strategies utilizing dendritic cells (DCs) to elicit anti-tumor immunity are the subject of intense research. Although we have shown that DCs pulsed with heat-treated tumor lysate (HTL) induced more potent anti-tumor immunity than DCs pulsed with conventional tumor lysate (TL), the underlying molecular mechanism is unclear. In order to explore the molecular basis of this approach and to identify potential antigenic peptides from pancreatic cancer, we analyzed and compared the major histocompatibility complex (MHC) ligands derived from TL- and HTL-pulsed dendritic cells by mass spectrophotometry. MATERIALS AND METHODS Human monocyte-derived dendritic cells were pulsed with TL or HTL prior to maturation induction. To delineate differences of MHC-bound peptide repertoire eluted from DCs pulsed with TL or HTL, nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS) was employed. RESULTS HTL, but not TL, significantly induced DC function, assessed by phenotypic maturation, allostimulation capacity and IFN-γ secretion by stimulated allogeneic T cells. DCs pulsed with TL or HTL displayed pancreas or pancreatic cancer-related peptides in context of MHC class I and II molecules. Some of the identified peptides had not been previously reported as expressed in pancreatic cancer or cancer of other tissue types. CONCLUSION Our partial lists of MHC-associated peptides revealed the differences between peptide profiles eluted from HTL-and TL-loaded DCs, implying that induced heat shock proteins in HTL chaperone tumor-derived peptides enhanced their delivery to DCs and promoted cross-presentation by DC. These findings may aid in identifying novel tumor antigens or biomarkers and in designing future vaccination strategies.
Collapse
Affiliation(s)
- Han-Soo Kim
- Innovative Cell and Gene Therapy Center, International St. Mary's Hospital, Incheon, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, Korea
| | | | - Hyung Jik Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
19
|
Yu M, Niu ZM, Wei YQ. Effective Response of the Peritoneum Microenvironment to Peritoneal and Systemic Metastasis from Colorectal Carcinoma. Asian Pac J Cancer Prev 2013; 14:7289-94. [DOI: 10.7314/apjcp.2013.14.12.7289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Church SE, Jensen SM, Antony PA, Restifo NP, Fox BA. Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells. Eur J Immunol 2013; 44:69-79. [PMID: 24114780 PMCID: PMC4283993 DOI: 10.1002/eji.201343718] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/31/2013] [Accepted: 09/23/2013] [Indexed: 01/25/2023]
Abstract
Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor-specific CD4(+) T cells enhance CD8(+) T-cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase-related protein 1-specific CD4(+) transgenic T cells-CD4(+) T cells and pmel-CD8(+) T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8(+) T cells with tumor-specific cytokine expression. When combined with CD4(+) T cells, transfer of total (naïve and effector) or effector CD8(+) T cells were highly effective, suggesting CD4(+) T cells can help mediate therapeutic effects by maintaining function of activated CD8(+) T cells. In addition, CD4(+) T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8(+) T cells recovered from mice treated with both CD8(+) and CD4(+) T cells had decreased expression of PD-1 and PD-1-blockade enhanced the therapeutic efficacy of pmel-CD8 alone, suggesting that CD4(+) T cells help reduce CD8(+) T-cell exhaustion. These data support combining immunotherapies that elicit both tumor-specific CD4(+) and CD8(+) T cells for treatment of patients with cancer.
Collapse
Affiliation(s)
- Sarah E Church
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
21
|
Shimato S, Maier LM, Maier R, Bruce JN, Anderson RCE, Anderson DE. Profound tumor-specific Th2 bias in patients with malignant glioma. BMC Cancer 2012. [PMID: 23186108 PMCID: PMC3537750 DOI: 10.1186/1471-2407-12-561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Vaccination against tumor-associated antigens is one promising approach to immunotherapy against malignant gliomas. While previous vaccine efforts have focused exclusively on HLA class I-restricted peptides, class II-restricted peptides are necessary to induce CD4+ helper T cells and sustain effective anti-tumor immunity. In this report we investigated the ability of five candidate peptide epitopes derived from glioma-associated antigens MAGE and IL-13 receptor α2 to detect and characterize CD4+ helper T cell responses in the peripheral blood of patients with malignant gliomas. Methods Primary T cell responses were determined by stimulating freshly isolated PBMCs from patients with primary glioblastoma (GBM) (n = 8), recurrent GBM (n = 5), meningioma (n = 7), and healthy controls (n = 6) with each candidate peptide, as well as anti-CD3 monoclonal antibody (mAb) and an immunodominant peptide epitope derived from myelin basic protein (MBP) serving as positive and negative controls, respectively. ELISA was used to measure IFN-γ and IL-5 levels, and the ratio of IFN-γ/IL-5 was used to determine whether the response had a predominant Th1 or Th2 bias. Results We demonstrate that novel HLA Class-II restricted MAGE-A3 and IL-13Rα2 peptides can detect T cell responses in patients with GBMs as well as in healthy subjects. Stimulation with a variety of peptide antigens over-expressed by gliomas is associated with a profound reduction in the IFN-γ/IL-5 ratio in GBM patients relative to healthy subjects. This bias is more pronounced in patients with recurrent GBMs. Conclusions Therapeutic vaccine strategies to shift tumor antigen-specific T cell response to a more immunostimulatory Th1 bias may be needed for immunotherapeutic trials to be more successful clinically.
Collapse
Affiliation(s)
- Shinji Shimato
- Department of Neurosurgery, Gabriele Bartoli Brain Tumor Research Laboratory, Columbia University, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
22
|
Aarntzen EHJG, Schreibelt G, Bol K, Lesterhuis WJ, Croockewit AJ, de Wilt JHW, van Rossum MM, Blokx WAM, Jacobs JFM, Duiveman-de Boer T, Schuurhuis DH, Mus R, Thielemans K, de Vries IJM, Figdor CG, Punt CJA, Adema GJ. Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 2012; 18:5460-70. [PMID: 22896657 DOI: 10.1158/1078-0432.ccr-11-3368] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Electroporation of dendritic cells (DC) with mRNA encoding tumor-associated antigens (TAA) has multiple advantages compared to peptide loading. We investigated the immunologic and clinical responses to vaccination with mRNA-electroporated DC in stage III and IV melanoma patients. EXPERIMENTAL DESIGN Twenty-six stage III HLA*02:01 melanoma patients scheduled for radical lymph node dissection (stage III) and 19 melanoma patients with irresectable locoregional or distant metastatic disease (referred to as stage IV) were included. Monocyte-derived DC, electroporated with mRNA encoding gp100 and tyrosinase, were pulsed with keyhole limpet hemocyanin and administered intranodally. TAA-specific T-cell responses were monitored in blood and skin-test infiltrating lymphocyte (SKIL) cultures. RESULTS Comparable numbers of vaccine-induced CD8(+) and/or CD4(+) TAA-specific T-cell responses were detected in SKIL cultures; 17/26 stage III patients and 11/19 stage IV patients. Strikingly, in this population, TAA-specific CD8(+) T cells that recognize multiple epitopes and produce elevated levels of IFNγ upon antigenic challenge in vitro, were significantly more often observed in stage III patients; 15/17 versus 3/11 stage IV patients, P = 0.0033. In stage IV patients, one mixed and one partial response were documented. The presence or absence of IFNγ-producing TAA-specific CD8(+) T cells in stage IV patients was associated with marked difference in median overall survival of 24.1 months versus 11.0 months, respectively. CONCLUSION Vaccination with mRNA-electroporated DC induces a broad repertoire of IFNγ producing TAA-specific CD8(+) and CD4(+) T-cell responses, particularly in stage III melanoma patients.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nguyen-Hoai T, Baldenhofer G, Ahmed MS, Pham-Duc M, Gries M, Lipp M, Dörken B, Pezzutto A, Westermann J. CCL19 (ELC) improves TH1-polarized immune responses and protective immunity in a murine Her2/neu DNA vaccination model. J Gene Med 2012; 14:128-37. [PMID: 22228591 DOI: 10.1002/jgm.1651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA vaccination is an attractive approach for tumor vaccination because plasmid DNA (pDNA) can be used as a 'general vaccine' across major histocompatibility complex barriers. Coexpression of immunomodulatory molecules can help to amplify the immunogenicity of DNA vaccines. CCL19 (ELC) is a CC chemokine with immunoregulatory properties, binding to the chemokine receptor CCR7 that is expressed on dendritic cells (DCs) and T cells. In vivo, CCL19 is a key regulator for the interactions between DCs and T cells in regional lymph nodes. METHODS pDNA encoding Her2/neu and CCL19 was used as an intramuscular vaccine. Vaccination was performed in BALB/c mice, which were subsequently challenged with syngeneic Her2/neu(+) tumor cells. Groups of mice were immunized with pDNA(Her2/neu) plus pDNA(CCL19), pDNA(Her2/neu) plus pDNA(CCL19) plus pDNA(GM-CSF), pDNA(Her2/neu) plus pDNA(GM-CSF), pDNA(Her2/neu), pDNA(CCL19), pDNA(GM-CSF) or mock vector. Tumor protection by the vaccine and immune responses were monitored. RESULTS Coadministration of pDNA(Her2/neu) and pDNA(CCL19) led to substantial improvement of tumor protection by the vaccine and induced a TH1-polarized, Her2/neu-specific immune response. Forty-seven days after the tumor challenge, 58% of the mice coinjected with pDNA(Her2/neu) and pDNA(CCL19) remained tumor-free compared to 22% after vaccination with pDNA(Her2/neu) alone. Additional administration of pDNA(GM-CSF) led to further improvement of tumor protection and an amplification of Her2/neu-specific immune responses. CONCLUSIONS CCL19 is able to induce a TH-1 polarization of the anti-Her2/neu immune response, which can be further amplified by granulocyte macrophage-colony-stimulating factor (GM-CSF). Clinical use of a pDNA(Her2/neu-CCL19 ± GM-CSF) vaccine might be promising in Her2/neu + breast cancer in the clinical situation of minimal residual disease.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Department of Hematology, Oncology and Tumor Immunology, Charité-, University Medicine Berlin, Campus Berlin-Buch and Campus Virchow-Klinikum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jensen SM, Twitty CG, Maston LD, Antony PA, Lim M, Hu HM, Petrausch U, Restifo NP, Fox BA. Increased frequency of suppressive regulatory T cells and T cell-mediated antigen loss results in murine melanoma recurrence. THE JOURNAL OF IMMUNOLOGY 2012; 189:767-76. [PMID: 22723522 DOI: 10.4049/jimmunol.1103822] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Therapeutic treatment of large established tumors using immunotherapy has yielded few promising results. We investigated whether adoptive transfer of tumor-specific CD8(+) T cells, together with tumor-specific CD4(+) T cells, would mediate regression of large established B16BL6-D5 melanomas in lymphopenic Rag1(-/-) recipients devoid of regulatory T cells. The combined adoptive transfer of subtherapeutic doses of both TRP1-specific TCR transgenic Rag1(-/-) CD4(+) T cells and gp100-specific TCR transgenic Rag1(-/-) CD8(+) T cells into lymphopenic recipients, who received vaccination, led to regression of large (100-400 mm(2)) melanomas. The same treatment strategy was ineffective in lymphoreplete wild-type mice. Twenty-five percent of mice (15/59) had tumors recur (15-180 d postregression). Recurrent tumors were depigmented and had decreased expression of gp100, the epitope targeted by the CD8(+) T cells. Mice with recurrent melanoma had increased CD4(+)Foxp3(+) TRP1-specific T cells compared with mice that did not show evidence of disease. Importantly, splenocytes from mice with recurrent tumor were able to suppress the in vivo therapeutic efficacy of splenocytes from tumor-free mice. These data demonstrate that large established tumors can be treated by a combination of tumor-specific CD8(+) and CD4(+) T cells. Additionally, recurrent tumors exhibited decreased Ag expression, which was accompanied by conversion of the therapeutic tumor-specific CD4(+) T cell population to a Foxp3(+)CD4(+) regulatory T cell population.
Collapse
Affiliation(s)
- Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anticancer immune response in a patient with advanced cancer. But what is the evidence to support the "more-is-better" approach of multiple vaccinations? Because we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anticancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Because few large trials include immunologic monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at 1 or more times following the first vaccine, was performed. In some studies, there is convincing evidence that repeated administration of a specific vaccine can augment the immune response to antigens contained in the vaccine. In other settings, multiple vaccinations can significantly reduce the immune response to 1 or more targets. Results from 3 large adjuvant vaccine studies support the potential detrimental effect of multiple vaccinations as clinical outcomes in the control arms were significantly better than that for treatment groups. Recent research has provided insights into mechanisms that are likely responsible for the reduced responses in the studies noted above, but supporting evidence from clinical specimens is generally lacking. Interpretation of these results is further complicated by the possibility that the dominant immune response may evolve to recognize epitopes not present in the vaccine. Nonetheless, the Food and Drug Administration approval of the first therapeutic cancer vaccine and recent developments from preclinical models and clinical trials provide a substantial basis for optimism and a critical evaluation of cancer vaccine strategies.
Collapse
Affiliation(s)
- Sarah E Church
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Twitty CG, Jensen SM, Hu HM, Fox BA. Tumor-derived autophagosome vaccine: induction of cross-protective immune responses against short-lived proteins through a p62-dependent mechanism. Clin Cancer Res 2011; 17:6467-81. [PMID: 21810919 DOI: 10.1158/1078-0432.ccr-11-0812] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Tumor-specific antigens of 3-methylcholanthrene (MCA)-induced sarcomas were defined by the narrow immune responses they elicited, which uniquely rejected the homologous tumor, with no cross-reactions between independently derived syngeneic MCA-induced tumors. This study examines whether an autophagosome-enriched vaccine derived from bortezomib-treated sarcomas can elicit an immune response that cross-reacts with other unique sarcomas. EXPERIMENTAL DESIGN Mice were vaccinated with either MCA-induced sarcomas or autophagosomes derived from those tumors and later challenged with either homologous or nonhomologous sarcomas. In addition, 293 cells expressing a model antigen were used to understand the necessity of short-lived proteins (SLiP) in this novel vaccine. These findings were then tested in the sarcoma model. Autophagosomes were characterized by Western blotting and fluorescent microscopy, and their ability to generate immune responses was assessed in vitro by carboxyfluorescein succinimidyl ester dilution of antigen-specific T cells and in vivo by monitoring tumor growth. RESULTS In contrast to a whole-cell tumor vaccine, autophagosomes isolated from MCA-induced sarcomas treated with a proteasome inhibitor prime T cells that cross-react with different sarcomas and protect a significant proportion of vaccinated hosts from a nonhomologous tumor challenge. Ubiquitinated SLiPs, which are stabilized by proteasome blockade and delivered to autophagosomes in a p62/sequestosome-dependent fashion, are a critical component of the autophagosome vaccine, as their depletion limits vaccine efficacy. CONCLUSION This work suggests that common short-lived tumor-specific antigens, not physiologically available for cross-presentation, can be sequestered in autophagosomes by p62 and used as a vaccine to elicit cross-protection against independently derived sarcomas.
Collapse
Affiliation(s)
- Christopher G Twitty
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | | | | | | |
Collapse
|
27
|
He A, Zhang W, Xu K, Wang J, Yang Y, Chao X. Anti-tumor immune responses in immune-reconstituted mice injected with a tumor vaccine. Med Oncol 2011; 29:2261-9. [PMID: 21761245 DOI: 10.1007/s12032-011-0024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/30/2011] [Indexed: 11/27/2022]
Abstract
Homeostasis-driven proliferation of T cells is an important means of reconstituting T-cell-dependent immunity after lymphodepletion regimens, such as chemotherapy or radiotherapy. Immune-reconstituted mice that receive a tumor vaccine mount more efficient anti-tumor immune responses compared with control mice. In the present study, we evaluated the anti-tumor immune responses in immune-reconstituted mice vaccinated with inactivated leukemia cells and explored the mechanisms underlying these immune responses. Test C57BL/6 mice were lymphodepleted by irradiation and immune-reconstituted with naïve mouse spleen lymphocytes. Mice were then injected with an inactivated FBL-3 tumor cell vaccine and challenged with FBL-3 tumor cells. Anti-tumor responses were evaluated by determining the rate of tumor formation, latency, tumor size, interferon gamma levels, and macrophage and CTL cytotoxicities. When challenged with tumor cells, immune-reconstituted, vaccinated mice exhibited a significantly lower mortality, smaller average tumor volume, and a significantly longer mean survival time. They had more robust cellular immunity, reflected by higher levels of INF-γ production and higher macrophage- and CTL-mediated cytotoxicities. Our results suggest that immune reconstitution enhanced the anti-tumor immune responses in mice injected with a tumor vaccine via generation of CTLs. These results have important implications for immunotherapy used for leukemia.
Collapse
Affiliation(s)
- Aili He
- Department of Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
28
|
Labarriere N, Khammari A, Lang F, Dreno B. Is antigen specificity the key to efficient adoptive T-cell therapy? Immunotherapy 2011; 3:495-505. [DOI: 10.2217/imt.11.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Adoptive transfer of T cells remains a promising approach in melanoma. Initial clinical trials performed with polyclonal tumor-infiltrating lymphocyte gave limited clinical results. Nonetheless, encouraging results have been reported in adjuvant setting (stage III melanoma), and when tumor-infiltrating lymphocytes were associated with lymphodepleting regimens. Specificity of adoptive cell therapy has been achieved with the infusion of antigen specific cytotoxic T-lymphocyte clones, associated with some clinical responses. Antigen specificity can also be obtained by the allogeneic transfer of high-avidity T-cell receptors into autologous T cells. We propose an alternative strategy based on the selection of antigen-specific T cells with magnetic beads coated with HLA–peptide multimers. Future improvements of adoptive melanoma immunotherapy may be achieved by its association with other therapeutic strategies such as targeted therapy against signaling pathways.
Collapse
Affiliation(s)
- Nathalie Labarriere
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
| | - Amir Khammari
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Centre Hospitalo-Universitaire de Nantes, Unit of Skin Cancer, F-44093 Nantes, France
| | - Francois Lang
- Unite Mixte de Recherche Institut National de la Sante et de la Recherche Medicale, Unite 892, Centre de Recherche en Canerologie Nantes-Angers, F-44007 Nantes, France
- Université de Nantes, Unite de Formation et de Recherche des Sciences Pharmaceutiques, F-44093 Nantes, France
| | | |
Collapse
|
29
|
Schietinger A, Philip M, Liu RB, Schreiber K, Schreiber H. Bystander killing of cancer requires the cooperation of CD4(+) and CD8(+) T cells during the effector phase. ACTA ACUST UNITED AC 2010; 207:2469-77. [PMID: 20921286 PMCID: PMC2964573 DOI: 10.1084/jem.20092450] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Killing of nonmalignant stroma requires cooperation between CD4+ and CD8+ T cells during the effector phase in the tumor microenvironment. Cancers frequently evade cytotoxic T lymphocyte–mediated destruction through loss or down-regulation of tumor antigens and antigen-presenting major histocompatibility complex molecules. Therefore, we have concentrated our efforts on immunological strategies that destroy nonmalignant stromal cells essential for the survival and growth of cancer cells. In this study, we developed a non–T cell receptor transgenic, immunocompetent tumor model to determine whether tumor-bearing hosts’ own immune systems could eliminate cancer cells through stromal targeting and what role CD4+ T cells play alongside CD8+ T cells in this process. We found that aggressive cancers could be eradicated by T cell targeting of tumor stroma. However, successful elimination required the cooperation of CD4+ and CD8+ T cells not only during the induction phase but also during the effector phase in the tumor microenvironment, implying a new role for CD4+ T cells that has not been previously described. Our study demonstrates the potential of stromal targeting as a cancer immunotherapy and suggests that successful anticancer strategies must facilitate cooperation between CD4+ and CD8+ T cells at the right times and the right places.
Collapse
Affiliation(s)
- Andrea Schietinger
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
30
|
Yin W, He Q, Hu Z, Chen Z, Qifeng M, Zhichun S, Zhihui Q, Xiaoxia N, Li J, Gao J. A novel therapeutic vaccine of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic cancer. Vaccine 2010; 28:4937-44. [PMID: 20653081 DOI: 10.1016/j.vaccine.2010.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel therapeutic vaccine against prostate cancer was developed by simultaneous immobilization of streptavidin-tagged bioactive GM-CSF and TNFalpha on the biotinylated surface of 30% ethanol-fixed RM-1 prostatic cancer cells. This study showed that the GM-CSF/TNFalpha-doubly surface-modified vaccine significantly extended the survival in the orthotopic model of RM-1 prostate cancer, and was superior to single GM-CSF- or TNFalpha-surface-modified vaccine. Moreover, the splenocytes from the GM-CSF/TNFalpha-vaccine-treated mice showed the most potent cytotoxicity on RM-1 cells and the highest production of RM-1-specific IFNgamma. In addition, more CD4+ and CD8+ T cells infiltrated into the tumor sites in the GM-CSF/TNFalpha-vaccine-treated mice than in the GM-CSF- or TNFalpha-vaccine-treated mice. Therefore, our study demonstrated that the efficacy of RM-1 prostate cancer cell vaccine could be improved by conjugating both GM-CSF and TNFalpha simultaneously on the surface of cancer cells, and that this modification thus has a potential translational significance.
Collapse
Affiliation(s)
- Weihua Yin
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karlsson M, Lindberg K, Karlén P, Ost A, Thörn M, Winqvist O, Eberhardson M. Evidence for immunosurveillance in intestinal premalignant lesions. Scand J Immunol 2010; 71:362-8. [PMID: 20500687 DOI: 10.1111/j.1365-3083.2010.02377.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immunosurveillance theory argues that the immune system recognizes tumour-specific antigens expressed by transformed cells, which results in the destruction of cancer precursors before they become clinically manifest. As a model for the development of cancer, we set out to study premalignant lesions and immune responses in sentinel lymph nodes from patients with long-standing ulcerative colitis and progression of mucosal dysplasia. Mesenteric lymph nodes draining dysplastic and normal intestinal segments were identified by sentinel node technique during surgery in 13 patients with ulcerative colitis who were subjected to colectomy because of intestinal dysplasia. T cells were extracted from the lymph nodes and analysed by flow cytometry, and lymphocyte proliferation assays were set up in the presence of extracts from dysplastic and normal intestinal mucosa. Increase in CD4/CD8 ratio was observed in sentinel lymph nodes draining dysplastic epithelium compared to normal mucosa. The increase in CD4(+) T cells in relation to CD8(+) T cells correlated with the degree of dysplasia reflected by a significant increase in the ratio against low-grade dysplasia compared to indefinite dysplastic lesions. The T-cell response was specific to antigens from dysplastic epithelial lining as seen in proliferation assays. The observation suggests an important surveillance role for the immune system against premalignant intestinal lesions in patients with long-standing ulcerative colitis.
Collapse
Affiliation(s)
- M Karlsson
- Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
IL-4 suppresses very late antigen-4 expression which is required for therapeutic Th1 T-cell trafficking into tumors. J Immunother 2010; 32:793-802. [PMID: 19752754 DOI: 10.1097/cji.0b013e3181acec1e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Murine CD4 T cells cultured under type 1 polarizing conditions selectively express significantly higher levels of the very late antigen (VLA)-4 and VLA-6 integrins when compared with T cells cultured under type 2 or nonpolarizing (type 0) conditions. This difference appears due to the action of interleukin (IL)-4, as loss of VLA-4/-6 expression on Th cells was prevented by inclusion of neutralizing anti-IL-4 mAb during the initial culture period. We also observed that CD4 T cells deficient in Stat6, a critical component of the IL-4R signaling cascade, retained high levels of VLA-4 and VLA-6 expression, regardless of IL-4 status in the culture conditions. When applied to committed Th1 cells, rIL-4 readily inhibited VLA-4 and VLA-6 expression to levels observed for Th2 cells, without altering the type 1 functional status of these cells. Conversely, low levels of VLA-4/VLA-6 expressed by committed Th2 cells could not be resurrected by culture in the presence of the Th1-kines IL-12p70 and interferon-gamma. Predictably, among the Th populations evaluated, Th1 cells alone adhered efficiently to, and were costimulated by, plate-bound VCAM-1 and laminin in a VLA-4-dependent or VLA-6-dependent manner, respectively. Finally, adoptive-transferred Th1 (but not Th2) cells developed from OT-II mice were uniquely competent to traffick into OVA M05 melanoma lesions in vivo, thereby enhancing the therapeutic benefits associated with cotransferred OVA-specific type 1 CD8 (OT-I) cells. These data suggest that treatment strategies capable of sustaining/enhancing VLA-4/VLA-6 expression on Th1 effector cells may yield improved clinical efficacy in the cancer setting.
Collapse
|
33
|
Poehlein CH, Haley DP, Walker EB, Fox BA. Depletion of tumor-induced Treg prior to reconstitution rescues enhanced priming of tumor-specific, therapeutic effector T cells in lymphopenic hosts. Eur J Immunol 2010; 39:3121-33. [PMID: 19839008 DOI: 10.1002/eji.200939453] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We reported previously that vaccination of reconstituted, lymphopenic mice resulted in a higher frequency of tumor-specific effector T cells with therapeutic activity than vaccination of normal mice. Here, we show that lymphopenic mice reconstituted with spleen cells from tumor-bearing mice (TBM), a situation that resembles the clinical condition, failed to generate tumor-specific T cells with therapeutic efficacy. However, depletion of CD25(+) Treg from the spleen cells of TBM restored tumor-specific priming and therapeutic efficacy. Adding back TBM CD25(+) Treg to CD25(-) naïve and TBM donor T cells prior to reconstitution confirmed their suppressive role. CD25(+) Treg from TBM prevented priming of tumor-specific T cells since subsequent depletion of CD4(+) T cells did not restore therapeutic efficacy. This effect may not be antigen-specific as three histologically distinct tumors generated CD25(+) Treg that could suppress the T-cell immune response to a melanoma vaccine. Importantly, since ex vivo depletion of CD25(+) Treg from TBM spleen cells prior to reconstitution and vaccination fully restored the generation of therapeutic effector T cells, even in animals with established tumor burden, we have initiated a translational clinical trial of this strategy in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Christian H Poehlein
- Laboratory of Molecular and Tumor Immunology, Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | | | | | | |
Collapse
|
34
|
LaCelle MG, Jensen SM, Fox BA. Partial CD4 depletion reduces regulatory T cells induced by multiple vaccinations and restores therapeutic efficacy. Clin Cancer Res 2009; 15:6881-90. [PMID: 19903784 DOI: 10.1158/1078-0432.ccr-09-1113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE A single vaccination of intact or reconstituted-lymphopenic mice (RLM) with a granulocyte macrophage colony-stimulating factor-secreting B16BL6-D5 melanoma cell line induces protective antitumor immunity and T cells that mediate the regression of established melanoma in adoptive immunotherapy studies. We wanted to study if multiple vaccinations during immune reconstitution of the lymphopenic host would maintain a potent antitumor immune response. EXPERIMENTAL DESIGN RLM were vaccinated multiple times over a 40-day period. Spleens were isolated from these mice, activated in vitro, and adoptively transferred into mice bearing 3-day experimental pulmonary metastases. RESULTS Multiple vaccinations, rather than boosting the immune response, significantly reduced therapeutic efficacy of adoptive immunotherapy and were associated with an increased frequency and absolute number of CD3+CD4+Foxp3+ T regulatory (T(reg)) cells. Anti-CD4 administration reduced the absolute number of T(reg) cells 9-fold. Effector T-cells generated from anti-CD4-treated mice were significantly (P < 0.0001) more therapeutic in adoptive transfer studies than T cells from multiply vaccinated animals with a full complement of CD4+ cells. CONCLUSION These results suggest that CD4+ T(reg) cells limit the efficacy of multiple vaccinations and that timed partial depletion of CD4+ T cells may reduce suppression and "tip-the-balance" in favor of therapeutic antitumor immunity. The recent failure of large phase III cancer vaccine clinical trials, wherein patients received multiple vaccines, underscores the potential clinical relevance of these findings.
Collapse
Affiliation(s)
- Michael G LaCelle
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
35
|
Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic TReg cell subpopulations that result in increased ovarian cancer patient survival. Clin Immunol 2009; 133:333-52. [PMID: 19762283 DOI: 10.1016/j.clim.2009.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/13/2009] [Accepted: 08/11/2009] [Indexed: 12/20/2022]
Abstract
Adoptive T cell immunotherapy using autologous lymphocytes is a viable treatment for patients with cancer and requires participation of Ag-specific CD4 and CD8 T cells. Here, we assessed the immunotherapeutic effects of autologous MUC1 peptide-stimulated CD4(+) effector cells following adoptive transfer in patients with ovarian cancer. Using MUC1 peptide and IL-2 for ex vivo CD4(+)/Th1 effector cell generation, we show that three monthly treatment cycles of peripheral blood T cell restimulation and intraperitoneal re-infusion selectively modulated endogenous T cell-mediated immune responses that correlated with diminished serum CA125 tumor marker levels and enhanced patient survival. One patient remains disease-free, another patient survived long-term for nearly 16 months with recurrent disease and two patients expired within 3-5 months following final infusion. Although PBL from all patients showed elevated MUC1 cytolytic activity following therapy, such responses did not correlate with therapeutic efficacy. Long-term survivors showed elevated levels of systemic memory (CD45RO) and naïve (CD45RA) CD3/CD4/CD25(+) T cells when compared to that of pre-treatment levels and similarly treated short-term survivors. Such cells co-expressed different levels of Foxp3 and CTLA-4 that resulted in progressively lower systemic Foxp3/CTLA-4 memory T cell ratios that further correlated with disease-free survival. Lastly, these patients showed elevated levels of MUC1-specific T cells expressing the CCR5 and CCR1 chemokine receptors and the chemokine CCL4 associated with Th1 cell differentiation/memory. We suggest that effective immunotherapy with autologous MUC1-stimulated CD4(+) effector cells induces differential levels of systemic "Ag-experienced" and "Ag-inexperienced" CD4/CD25(+) TReg cell subpopulations that influence long-term tumor immunity in ovarian cancer patients.
Collapse
|
36
|
A phase 1/2 study of autologous neuroblastoma tumor cells genetically modified to secrete IL-2 in patients with high-risk neuroblastoma. J Immunother 2009; 31:812-9. [PMID: 18833006 DOI: 10.1097/cji.0b013e3181869893] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autologous neuroblastoma (NB) tumor cells modified to secrete interleukin (IL)-2 (auto-IL-2) can be safely given to patients with advanced neuroblastoma and generate antitumor immune responses. As the benefits of tumor immunization may be greater in patients with minimal residual disease and thus rely on surrogate markers such as immune responses to measure effect, we studied the frequency of immune changes associated with vaccination. Thirteen patients (8 in first remission and 5 after treatment for recurrent NB) received 5 to 8 subcutaneous injections of auto-IL-2 at 0.3 x 10 cells/kg. The vaccine was well tolerated. Injection site biopsies revealed increased cellularity caused by infiltration of CD4 and CD8 lymphocytes, eosinophils, and dendritic cells. Enzyme-linked immunosorbent spot assays for interferon-gamma and IL-5 demonstrated that vaccination produced a rise in circulating CD4 and CD8 T cells responsive to stimulation by autologous tumor cells. Median event-free survival was 22 months for patients in first remission and 3 months for all others. Four patients treated in first remission remain alive and 3 without disease recurrence.
Collapse
|
37
|
Liu L, Deng H, Wang Y, Chen P, Yang Y, Yang H, Chen X, Chen L, Zhu W, Liang S, Yang J, Qian Z, Li J, Wen Y, Kan B, Mao Y, Zhao X, Wei Y. A novel strategy for tumour therapy combining cell apoptosis and active immunity induced by caspy2, a zebrafish caspase. J Cell Mol Med 2009; 13:2271-2281. [PMID: 19220579 DOI: 10.1111/j.1582-4934.2009.00693.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caspy2, a zebrafish protease, is an active caspase for inducing apoptosis in mammalian cells. To investigate whether caspy2-mediated apoptosis could be used in cancer therapy, its cDNA was amplified and cloned into eukaryotic expression vector pcDNA3.1(+). The recombinant plasmid was mixed with cationic liposome and introduced into various tumour cell lines in vitro. Our data showed that caspy2 induced remarkable apoptosis of cancer cells in vitro. Treatment of mice-bearing CT26 colon carcinoma or MethA fibrosarcoma with intratumoral injection of liposome-caspy2 plasmid complex resulted in substantial killing of neoplastic cells and long-term survivors. Apoptotic cells were widely distributed in caspy2-treated tumour tissue. Infiltration of CD8(+) T lymphocyte was also observed apparently in the tumour tissue after the treatment with caspy2. Tumour-specific major histocompatibility complex (MHC) class I-dependent CD8(+) cytotoxic T lymphocyte activity was found by means of (51)Cr release assay. In MethA model, the mice acquired a long-time protective immunity against the parental tumour cell re-challenge. These results indicated that caspy2 can act as both apoptosis inducer and immune response initiator, which may account for its extraordinary antitumour effect. Furthermore, in vivo depletion of CD8(+) T lymphocytes could completely abrogate the antitumour immune activity, whereas the depletion of CD4(+) cells showed partial abrogation. In this study, we developed a novel anticancer strategy that combines both induction of apoptosis and immune response in mice-bearing tumours with a single caspy2 gene. This approach may provide an important way for treatment of cancer.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Ping Chen
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Yang Yang
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Wen Zhu
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Jiong Li
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Yanjun Wen
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Bin Kan
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Yongqiu Mao
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Xia Zhao
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital and College of Life Science, Sichuan University, Chengdu, Sichuan, The People's Republic of China
| |
Collapse
|
38
|
Lin JM, Li B, Rimmer E, VanRoey M, Jooss K. Enhancement of the anti-tumor efficacy of a GM-CSF-secreting tumor cell immunotherapy in preclinical models by cytosine arabinoside. Exp Hematol 2008; 36:319-28. [PMID: 18279719 DOI: 10.1016/j.exphem.2007.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is a highly malignant neoplasm responsible for nearly 10,000 cancer-related deaths annually in the United States. Treatment options for elderly patients with AML remain limited. Standard regimens using cytarabine (cytosine arabinoside [AraC]), a nucleotide analogue, result in significant toxicity with poor overall response. Combination of a cytotoxic chemotherapy and tumor-specific immunotherapy has the potential to improve overall efficacy by inducing an anti-tumor immune response against minimal residual disease. The studies reported here were performed to evaluate the therapeutic benefit of combining a granulocyte macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapy with AraC treatment. MATERIALS AND METHODS C57Bl/6 mice were challenged with C1498-luc cells intravenously and evaluated by in vivo imaging throughout the study to monitor the systemic progression of the tumor. Individual animals were euthanized when in vivo total photon counts exceeded 5 x 10(8) and/or when they were in poor clinical condition. Cytotoxicity assay was performed to evaluate effector function and flow cytometry was used for phenotyping of splenocytes from experimental animals. RESULTS Administration of GM-CSF-secreting tumor cell immunotherapy during AraC -induced cytopenia enhanced the anti-tumor efficacy of the immunotherapy, resulting in prolonged survival. AraC treatment did not negatively impact antigen-specific T-cell activation elicited by the immunotherapy and surviving animals treated with the combination demonstrated strong tumor-specific memory responses. CONCLUSION GM-CSF-secreting tumor cell immunotherapy in combination with AraC prolongs survival of tumor-bearing mice, with a median survival time of 61 days observed in mice treated with AraC alone and 90% of mice treated with the combination therapy still alive by day 150.
Collapse
Affiliation(s)
- Jian Min Lin
- Department of Preclinical Oncology, Cell Genesys Inc, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang W, Liu J, Wu Y, Xiao F, Wang Y, Wang R, Yang H, Wang G, Yang J, Deng H, Li J, Wen Y, Wei Y. Immunotherapy of hepatocellular carcinoma with a vaccine based on xenogeneic homologous alpha fetoprotein in mice. Biochem Biophys Res Commun 2008; 376:10-4. [PMID: 18725206 DOI: 10.1016/j.bbrc.2008.08.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 02/08/2023]
Abstract
alpha-Fetoprotein (AFP) is a diagnostic marker for the presence of hepatocellular carcinoma, and a potential target for immunotherapy. Unfortunately, the immunity to AFP is presumably difficult to elicit because of immune tolerance acquired during the development of immune system. In the present study, we used AFP as a model antigen to explore the feasibility of the immunotherapy of AFP-positive liver cancer by the breaking of immune tolerance against AFP in a cross-reaction between the xenogeneic homologues and self molecules. Recombinant rat AFP was prepared as a vaccine, and mouse AFP was prepared as a control. Immunized with rat AFP was effective at protective and therapeutic antitumor immunity in hepatocellular carcinoma model in mice. Both humoral and cellular immune responses may be responsible for the antitumor activity against AFP-positive tumor cells, and no marked side effects were observed in the immunized mice. Thus, our study may provide an effective vaccine strategy for the treatment of AFP-positive hepatocellular carcinoma, and may be of importance to further exploration of the breaking of immune tolerance to self molecules.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Gao Xin Qu Ke Yuan 4th Road No. 1, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dondji B, Deak E, Goldsmith-Pestana K, Perez-Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon-Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania. Eur J Immunol 2008; 38:706-19. [PMID: 18286565 DOI: 10.1002/eji.200737660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).
Collapse
Affiliation(s)
- Blaise Dondji
- Department of Epidemiology & Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ueda R, Kinoshita E, Ito R, Kawase T, Kawakami Y, Toda M. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with a glioma antigen, SOX6. Int J Cancer 2008; 122:2274-9. [PMID: 18224680 DOI: 10.1002/ijc.23366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported identifying SOX6 as a glioma antigen by serological screening using a testis cDNA library. Its preferential expression and frequent IgG responses in glioma patients indicate that SOX6 may be a useful target for immunotherapy. To examine whether cytotoxic T-lymphocyte (CTL) responses specific for SOX6 to destroy glioma can be generated in vivo, we treated glioma-bearing mice by vaccination with a plasmid DNA encoding murine full-length SOX6 protein. Following SOX6-DNA vaccination, CTLs specific for SOX6-expressing glioma cells were induced, while normal autologous-cells that had restrictedly expressed SOX6 during embryogenesis were not destroyed. Furthermore, DNA vaccination with SOX6 exerted protective and therapeutic antitumor responses in the glioma-bearing mice. This antitumor activity was abrogated by the depletion of CD4 positive T cells and/or CD8 positive T cells. These results suggest that the SOX6 protein has multiple CTL and helper epitopes to induce antitumor activity and the effectiveness of SOX6-DNA vaccine for the prevention and treatment of glioma.
Collapse
Affiliation(s)
- Ryo Ueda
- Neuroimmunology Research Group, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Zhong J, Hadis U, De Kluyver R, Leggatt GR, Fernando GJP, Frazer IH. TLR7 stimulation augments T effector-mediated rejection of skin expressing neo-self antigen in keratinocytes. Eur J Immunol 2008; 38:73-81. [PMID: 18157820 DOI: 10.1002/eji.200737599] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunotherapy generally fails to induce tumour regression in spontaneously arising tumours. Failure is attributed to both tumour-related factors and an ineffective immune response. As a model of tumour immunotherapy, without the confounding effects of potential tumour-determined mechanisms of immune evasion, we studied the requirements for rejection of skin grafts expressing a neo-self antigen in somatic cells and not in antigen-presenting cells. When antigen expression was restricted to somatic cells, both CD4(+) and CD8(+) effector cells were required for graft rejection. Although freshly placed grafts were spontaneously rejected, healed grafts established under the cover of T cell depletion were not rejected even after T cell numbers recovered to a level where freshly placed grafts on the same animal were rejected, suggesting that healed skin grafts expressing a neo-self antigen only in somatic cells could not be rejected by primed recipients with functional effector T cells. Local TLR7 ligation induced inflammatory responses and rejection of healed grafts exposed to the TLR agonist but did not induce rejection of untreated healed grafts on the same animal. Thus, local pro-inflammatory signalling via TLR7 can promote effector T cell function against skin cells displaying their nominal antigen.
Collapse
Affiliation(s)
- Jie Zhong
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Increased Susceptibility to Immune Destruction of B16BL6 Tumor Cells Engineered to Express a Novel Pro-Smac Fusion Protein. J Immunother 2008; 31:43-51. [DOI: 10.1097/cji.0b013e318158fd16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Winter H, van den Engel NK, Rüttinger D, Schmidt J, Schiller M, Poehlein CH, Löhe F, Fox BA, Jauch KW, Hatz RA, Hu HM. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines. J Transl Med 2007; 5:56. [PMID: 18001476 PMCID: PMC2203985 DOI: 10.1186/1479-5876-5-56] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 11/14/2007] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5) melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-gamma or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. METHODS These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN), were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-gamma or TNF-alpha was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO) was determined using GRIES reagent. RESULTS We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1alpha and MIP-1beta following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-gamma or TNF-alpha, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC), MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin-deficient (PKO) effector T cells induced macrophages to secrete nitric oxide (NO), providing an additional effector mechanism for T cell-mediated tumor regression. CONCLUSION These data suggest two possible sources for chemokine secretion that stimulates macrophage recruitment to the site of tumor metastases. Both appear to be initiated by T cell recognition of specific antigen, but one is dependent on the tumor cells to produce the chemokines that recruit macrophages.
Collapse
Affiliation(s)
- Hauke Winter
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | | | - Dominik Rüttinger
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Jürgen Schmidt
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Matthias Schiller
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Christian H Poehlein
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| | - Florian Löhe
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Bernard A Fox
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
- Departments of Molecular Microbiology and Immunology; Environmental and Biomolecular Systems and OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Karl-Walter Jauch
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Rudolf A Hatz
- Department of Surgery, LMU Munich, Klinikum Grosshadern 81377 Munich, Germany
| | - Hong-Ming Hu
- Department of Radiation Oncology and OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
- Laboratory of Tumor Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA
| |
Collapse
|
45
|
Zimmermann VS, Casati A, Schiering C, Caserta S, Hess Michelini R, Basso V, Mondino A. Tumors Hamper the Immunogenic Competence of CD4+T Cell-Directed Dendritic Cell Vaccination. THE JOURNAL OF IMMUNOLOGY 2007; 179:2899-909. [PMID: 17709504 DOI: 10.4049/jimmunol.179.5.2899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells loaded with tumor-derived peptides induce protective CTL responses and are under evaluation in clinical trails. We report in this study that prophylactic administration of dendritic cells loaded with a MHC class II-restricted peptide derived from a model tumor Ag (Leishmania receptor for activated C kinase (LACK)) confers protection against LACK-expressing TS/A tumors, whereas therapeutic vaccination fails to cure tumor-bearing mice. Although CD4+ T cell-directed dendritic cell vaccination primed effector-like (CD44(high)CD62L(low), IL-2(+), IFN-gamma(+)) and central memory-like lymphocytes (CD44(high)CD62L(high), only IL-2(+)) in tumor-free mice, this was not the case in tumor-bearing animals in which both priming and persistence of CD4+ T cell memory were suppressed. Suppression was specific for the tumor-associated Ag LACK, and did not depend on CD25+ T cells. Because T cell help is needed for protective immunity, we speculate that the ability of tumors to limit vaccine-induced CD4+ T cell memory could provide a partial explanation for the limited efficacy of current strategies.
Collapse
Affiliation(s)
- Valérie S Zimmermann
- Cancer Immunotherapy and Gene Therapy Program, Department of Biotechnology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Webster WS, Thompson RH, Harris KJ, Frigola X, Kuntz S, Inman BA, Dong H. Targeting Molecular and Cellular Inhibitory Mechanisms for Improvement of Antitumor Memory Responses Reactivated by Tumor Cell Vaccine. THE JOURNAL OF IMMUNOLOGY 2007; 179:2860-9. [PMID: 17709500 DOI: 10.4049/jimmunol.179.5.2860] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.
Collapse
Affiliation(s)
- W Scott Webster
- Department of Urology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The transfusion of lymphocytes, referred to as adoptive T cell therapy, is being tested for the treatment of cancer and chronic infections. Adoptive T cell therapy has the potential to enhance antitumor immunity, augment vaccine efficacy, and limit graft-versus-host disease. This form of personalized medicine is now in various early- and late-stage clinical trials. These trials are currently testing strategies to infuse tumor-infiltrating lymphocytes, CTLs, Th cells, and Tregs. Improved molecular biology techniques have also increased enthusiasm and feasibility for testing genetically engineered T cells. The current status of the field and prospects for clinical translation are reviewed herein.
Collapse
Affiliation(s)
- Carl H June
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
48
|
Ding ZY, Wu Y, Luo Y, Su JM, Li Q, Zhang XW, Liu JY, He QM, Yang L, Tian L, Zhao X, Deng HX, Wen YJ, Li J, Kang B, Wei YQ. Mannan-modified adenovirus as a vaccine to induce antitumor immunity. Gene Ther 2007; 14:657-63. [PMID: 17287861 DOI: 10.1038/sj.gt.3302893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor vaccine is a useful strategy for cancer therapy. However, priming of the immune system requires the relevant antigen to be presented by antigen-presenting cells (APCs). Here, we employed telomerase reverse transcriptase as a model antigen to explore the feasibility of using mannan-modified adenovirus as a tumor vaccine. We found that tumor immunogene therapy with the vaccine was effective at protective antitumor immunity in mice. The antigen-specific cytotoxic T lymphocytes were found in in vitro cytotoxicity assay. The elevation of the killing activity could be abrogated by anti-CD8 or anti-major histocompatibility complex-I antibodies. Adoptive transfer of purified CD8+ cells, and CD4+ cells to a less extent, was effective at antitumor activity. In vivo antitumor activity could be abrogated by depleting CD4+ T lymphocytes. A possible explanation for the antitumor effects may be the antigen was transferred to APCs in the presence of mannan. These observations provide insights into the design of novel vaccine strategies and might be important for the future application of antigens identified in other diseases.
Collapse
Affiliation(s)
- Z-Y Ding
- Department of Oncology, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, Naka T, Ishida K, Primus FJ, Yamaue H. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer 2007; 120:585-93. [PMID: 17096339 DOI: 10.1002/ijc.22298] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study was designed to determine whether the vaccination of genetically modified dendritic cells (DCs) simultaneously expressing carcinoembryonic antigen (CEA), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 12 (IL-12) can overcome the peripheral T-cell tolerance to CEA and thereby elicit a therapeutic response in CEA transgenic mice. CEA transgenic mice were immunized once by subcutaneous injection with DCs adenovirally transduced with CEA and T helper-type 1 cytokine genes. The cytotoxic activity of spleen cells against CEA-expressing tumors, MC38-CEA, in the mice immunized with DCs expressing CEA (DC-AxCACEA) was higher than that in those immunized with DCs-AxCALacZ (p < 0.0001), and was augmented by the cotransduction with the GM-CSF/IL-12 gene (p < 0.05). The vaccination with DC-AxCACEA/GM-CSF/IL-12 could elicit a more potent therapeutic immunity than the vaccination with DC-AxCACEA in subcutaneous tumor models (p < 0.0001), and 4 of 5 mice showed a complete eradication of the subcutaneous tumors in these vaccination groups. Even in a large tumor model, this vaccination therapy completely eliminated the subcutaneous tumors in all mice. This antitumor activity mostly vanished with the depletion of CD8(+) T cells and NK cells in vivo and was completely abrogated with the depletion of CD4(+) T cells. A histopathological examination showed no evidence of an autoimmune reaction. No other adverse effects were observed. This vaccination strategy resulted in the generation of highly efficient therapeutic immune responses against MC38-CEA in the absence of autoimmune responses and demonstrated no adverse effects, and may therefore be useful for future clinical applications as a cancer vaccine therapy.
Collapse
Affiliation(s)
- Toshiyasu Ojima
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li N, Qin H, Li X, Zhou C, Wang D, Ma W, Lin C, Zhang Y, Wang S, Zhang S. Potent systemic antitumor immunity induced by vaccination with chemotactic-prostate tumor associated antigen gene-modified tumor cell and blockade of B7-H1. J Clin Immunol 2006; 27:117-30. [PMID: 17180470 DOI: 10.1007/s10875-006-9053-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/27/2006] [Indexed: 01/22/2023]
Abstract
We previously reported that several DNA fragments from human prostate-specific membrane antigen (hPSM), mouse prostatic acid phosphatase (mPAP), and human prostate-specific antigen (hPSA) genes were selected and fused to create a novel hPSM-mPAP-hPSA fusion gene (named 3P gene), and human secondary lymphoid tissue chemokine (SLC), 3P, and human IgG Fc genes were inserted into pcDNA3.1 to construct a DNA vaccine, designated pSLC-3P-Fc. In this report, to establish a more efficient treatment for immunotherapy against prostate cancer, the construct was transfected into B16F10 to generate gene-modified tumor cell vaccine (named B16F10-SLC-3P-Fc). In poorly immunogenic B16F10 mouse melanoma model, the immunization with B16F10-SLC-3P-Fc resulted in a strong antitumor response and 50% of tumor-bearing mice achieved long-term survival (>120 days). In vivo depletion of lymphocytes indicated that CD8(+) T cells were involved in the direct tumor killing, whereas CD4(+) T lymphocytes were required for the induction of CD8(+) CTL response in B16F10-SLC-3P-Fc-immunized mice. Splenocytes from B16F10-SLC-3P-Fc-immunized mice specifically recognized and lysed PSM, PAP, PSA, and 3P expressing tumor cells. The combined therapy of B16F10-SLC-3P-Fc plus anti-B7-H1 MAbs further enhanced the immune response. Rechallenge experiment showed that a persistent memory response was successfully induced by the combined therapy. These observations suggest pSLC-3P-Fc-modified tumor cells could serve as a vaccine against prostate cancer, and the therapy combined with anti-B7-H1 MAbs further enhanced the antitumor immune response.
Collapse
MESH Headings
- Acid Phosphatase
- Animals
- Antigen Presentation/immunology
- Antigens, CD/immunology
- Antigens, Neoplasm/immunology
- Antigens, Surface/immunology
- B7-H1 Antigen
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Chemokines/immunology
- Chemotaxis, Leukocyte/immunology
- Cytotoxicity, Immunologic
- Dendritic Cells/immunology
- Humans
- Immunotherapy/methods
- Injections, Subcutaneous
- Male
- Mice
- Mice, Inbred C57BL
- Prostate-Specific Antigen/immunology
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Protein Tyrosine Phosphatases/immunology
- Survival Rate
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Ning Li
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|