1
|
Pamela RH, Minerva MR, Ernesto CMM, Manuel MAJ, Norberto SE, Francisco AH, de la Torre Silvia MD, Angélica RL, Elva JH, Carlos NEJ, Sara O, Juan XC, Ariadnna CC, Paula FA, José AG. Is the vIL-10 Protein from Cytomegalovirus Associated with the Potential Development of Acute Lymphoblastic Leukemia? Viruses 2025; 17:435. [PMID: 40143362 PMCID: PMC11945621 DOI: 10.3390/v17030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles human interleukin-10 (IL-10) in structure. Research has explored the involvement of human cytomegalovirus (hCMV) in the pathogenesis of ALL. However, the limited characterization of its latent-phase proteins restricts a full understanding of the relationship between hCMV infection and leukemia progression. Studies have shown that hCMV induces an inflammatory response during infection, marked by the release of cytokines and chemokines. Inflammation may, therefore, play a role in how hCMV contributes to oncogenesis in pediatric ALL, possibly mediated by latent viral proteins. The classification of a virus as oncogenic is based on its alignment with cancer's established hallmarks. Viruses can manipulate host cellular mechanisms, causing dysregulated cell proliferation, evasion of apoptosis, and genomic instability. These processes lead to mutations, chromosomal abnormalities, and chronic inflammation, all of which are vital for carcinogenesis. This study aims to investigate the role of vIL-10 during the latent phase of hCMV as a potential factor in leukemia development.
Collapse
Affiliation(s)
- Ruvalcaba-Hernández Pamela
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mata-Rocha Minerva
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
| | | | - Mejía-Aranguré Juan Manuel
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sánchez-Escobar Norberto
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
- Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico
| | - Arenas-Huertero Francisco
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Melchor-Doncel de la Torre Silvia
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Rangel-López Angélica
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Jiménez-Hernández Elva
- Departamento de Oncología, Hospital Pediátrico Moctezuma SEDESA, Universidad Autónoma Metropolitana, Mexico City 09769, Mexico;
| | - Nuñez-Enriquez Juan Carlos
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ochoa Sara
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Xicohtencatl-Cortes Juan
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Cruz-Córdova Ariadnna
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | | | - Arellano-Galindo José
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Centro Interdisciplinario de Ciencias de la Salud Unidad Milpa Alta Instituto Politécnico Nacional, Mexico City 12000, Mexico
| |
Collapse
|
2
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Nayak I, Biondo R, Stewart WC, Fulton RJ, Möker N, Zhang C, Khakoo SI, Das J. Modeling the response to interleukin-21 to inform natural killer cell immunotherapy. Immunol Cell Biol 2025; 103:192-212. [PMID: 39865344 PMCID: PMC11792776 DOI: 10.1111/imcb.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/28/2025]
Abstract
Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity. We integrated functional assays for NK cells cultured in a variety of cytokine combinations with mathematical modeling using feature selection and mechanistic regression models. Our regression model successfully predicts NK cell proliferation for different cytokine combinations and indicates synergy of activated STATs and NF-κB transcription factors between priming and post-priming phases. The use of IL-21 in solution in the priming of NK cell culture resulted in an improved NK cell proliferation, without compromising cytotoxicity potential or interferon gamma secretion against hepatocellular carcinoma cell lines. Our work provides an integrative framework for interrogating NK cell proliferation and activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOHUSA
| | - Rosalba Biondo
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | | | - Rebecca J Fulton
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KGBergisch GladbachGermany
| | | | - Salim I Khakoo
- School of Clinical and Experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOHUSA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOHUSA
- The Biophysics Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
4
|
Brisotto G, Dhibi R, Dal Col J, Muraro E. Evaluation of NF-kB Nuclear Translocation in Natural Killer Cells by Imaging Multispectral Flow Cytometry as a Marker of Anticancer Immune Activation. Methods Mol Biol 2025; 2930:65-78. [PMID: 40402448 DOI: 10.1007/978-1-0716-4558-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Innate immunity has a potent antitumor function and occurs as the first line of defense in cancer immunosurveillance. Natural killer (NK) cells are one of the most important effectors of innate immunity and exert their cytotoxic activity as a result of signals mediated by activating and inhibitory receptors able to recognize ligands on cancer cells. Of note, NK cells play a pivotal role in the efficacy of anticancer therapies, as those employing monoclonal antibodies, by mediating antibody-dependent cell cytotoxicity. Additionally, some types of chemotherapeutics, such as taxanes, can modulate NK cell function. Thus, evaluating the activation state of NK cells is crucially useful for both monitoring the response to therapy and optimizing therapeutic strategies for improving patient's outcome.NK cell function is usually assessed by flow cytometry assays evaluating markers like perforin and granzyme or cytotoxic activity, which, however, represent late end point measures of NK cell activation. In this context, NF-kB represents an important mediator of pro-inflammatory gene expression in several immune cells, including NK cells. Upon activation, the NF-kB p65 subunit translocates from the cytoplasm to the nucleus and promotes the transcription of various genes, as those encoding for perforin, granzyme, and interferon-gamma. Therefore, assessing the nuclear translocation of this transcription factor represents a valuable strategy to study the triggering of immune effectors. In this chapter, we describe an imaging multispectral flow cytometry assay able to evaluate the nuclear translocation of the NF-kB p65 in NK cells as a marker of anticancer immune activation.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Raja Dhibi
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
5
|
Cheng J, Wang D, Geng M, Zheng Y, Cao Y, Liu S, Zhang J, Yang J, Wei X. Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109975. [PMID: 39427837 DOI: 10.1016/j.fsi.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shurong Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Cen B, Wei J, Wang D, DuBois RN. Peroxisome Proliferator-Activated Receptor δ Suppresses the Cytotoxicity of CD8+ T Cells by Inhibiting RelA DNA-Binding Activity. CANCER RESEARCH COMMUNICATIONS 2024; 4:2673-2684. [PMID: 39292167 PMCID: PMC11471967 DOI: 10.1158/2767-9764.crc-24-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The molecular mechanisms regulating CD8+ cytotoxic T lymphocytes (CTL) are not fully understood. Here, we show that the peroxisome proliferator-activated receptor δ (PPARδ) suppresses CTL cytotoxicity by inhibiting RelA DNA binding. Treatment of ApcMin/+ mice with the PPARδ agonist GW501516 reduced the activation of normal and tumor-associated intestinal CD8+ T cells and increased intestinal adenoma burden. PPARδ knockout or knockdown in CTLs increased their cytotoxicity against colorectal cancer cells, whereas overexpression of PPARδ or agonist treatment decreased it. Correspondingly, perforin, granzyme B, and IFNγ protein and mRNA levels were higher in PPARδ knockout or knockdown CTLs and lower in PPARδ overexpressing or agonist-treated CTLs. Mechanistically, we found that PPARδ binds to RelA, interfering with RelA-p50 heterodimer formation in the nucleus, thereby inhibiting its DNA binding in CTLs. Thus, PPARδ is a critical regulator of CTL effector function. Significance: Here, we provide the first direct evidence that PPARδ plays a critical role in suppressing the immune response against tumors by downregulating RelA DNA-binding activity. This results in decreased expression of perforin, granzyme B, and IFNγ. Thus, PPARδ may serve as a valuable target for developing future cancer immunotherapies.
Collapse
Affiliation(s)
- Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
8
|
Pan D, Wang Q, Shen A, Qi Z, Zheng C, Hu B. When DNA damage responses meet tumor immunity: From mechanism to therapeutic opportunity. Int J Cancer 2024; 155:384-399. [PMID: 38655783 DOI: 10.1002/ijc.34954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
DNA damage is a prevalent phenomenon in the context of cancer progression. Evidence suggests that DNA damage responses (DDR) are pivotal in overcoming tumor immune evasion. Alternatively, traditional radiotherapy and chemotherapy operate by inducing DNA damage, consequently stimulating the immune system to target tumors. The intricate interplay between signaling pathways involved in DDR and immune activation underscores the significance of considering both factors in developing improved immunotherapies. By delving deeper into the mechanisms underlying immune activation brought on by DNA damage, it becomes possible to identify novel treatment approaches that boost the anticancer immune response while minimizing undesirable side effects. This review explores the mechanisms behind DNA damage-induced antitumor immune responses, the importance of DNA damage in antitumor immunity, and potential therapeutic approaches for cancer immunotherapy targeting DDR. Additionally, we discuss the challenges of combination therapy and strategies for integrating DNA damage-targeting therapies with current cancer immunotherapy. In summary, this review highlights the critical role of DNA damage in tumor immunology, underscoring the potential of DDR inhibitors as promising therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qi Wang
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Qi
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Decker JT, Hall MS, Nanua D, Orbach SM, Roy J, Angadi A, Caton J, Hesse L, Jeruss JS, Shea LD. Dynamic Transcriptional Programs During Single NK Cell Killing: Connecting Form to Function in Cellular Immunotherapy. Cell Mol Bioeng 2024; 17:177-188. [PMID: 39050513 PMCID: PMC11263395 DOI: 10.1007/s12195-024-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Natural killer (NK) cell-based therapies are a promising new method for treating indolent cancer, however engineering new therapies is complex and progress towards therapy for solid tumors is slow. New methods for determining the underlying intracellular signaling driving the killing phenotype would significantly improve this progress. Methods We combined single-cell RNA sequencing with live cell imaging of a model system of NK cell killing to correlate transcriptomic data with functional output. A model of NK cell activity, the NK-92 cell line killing of HeLa cervical cancer cells, was used for these studies. NK cell killing activity was observed by microscopy during co-culture with target HeLa cells and killing activity subsequently manually mapped based on NK cell location and Annexin V expression. NK cells from this culture system were profiled by single-cell RNA sequencing using the 10× Genomics platform, and transcription factor activity inferred using the Viper and DoRothEA R packages. Luminescent microscopy of reporter constructs in the NK cells was then used to correlate activity of inferred transcriptional activity with killing activity. Results NK cells had heterogeneous killing activity during 10 h of culture with target HeLa cells. Analysis of the single cell sequencing data identified Nuclear Factor Kappa B (NF-κB), Signal Transducer and Activator of Transcription 1 (STAT1) and MYC activity as potential drivers of NK cell functional phenotype in our model system. Live cell imaging of the transcription factor activity found NF-κB activity was significantly correlated with past killing activity. No correlation was observed between STAT1 or MYC activity and NK cell killing. Conclusions Combining luminescent microscopy of transcription factor activity with single-cell RNA sequencing is an effective means of assigning functional phenotypes to inferred transcriptomics data. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00812-3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109 USA
| | - Matthew S. Hall
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Devak Nanua
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Jyotirmoy Roy
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Amogh Angadi
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Julianna Caton
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Lauren Hesse
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109 USA
| |
Collapse
|
10
|
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH, Byun JS, Kim DY. Non-Coding RNAs as Potential Targets for Diagnosis and Treatment of Oral Lichen Planus: A Narrative Review. Biomolecules 2023; 13:1646. [PMID: 38002328 PMCID: PMC10669845 DOI: 10.3390/biom13111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is characterized by the infiltration of T cells into the oral mucosa, causing the apoptosis of basal keratinocytes. OLP is a multifactorial disease of unknown etiology and is not solely caused by the malfunction of a single key gene but rather by various intracellular and extracellular factors. Non-coding RNAs play a critical role in immunological homeostasis and inflammatory response and are found in all cell types and bodily fluids, and their expression is closely regulated to preserve normal physiologies. The dysregulation of non-coding RNAs may be highly implicated in the onset and progression of diverse inflammatory disorders, including OLP. This narrative review summarizes the role of non-coding RNAs in molecular and cellular changes in the oral epithelium during OLP pathogenesis.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Chan Ho Park
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
11
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Kim J, Phan MTT, Hwang I, Park J, Cho D. Comparison of the different anti-CD16 antibody clones in the activation and expansion of peripheral blood NK cells. Sci Rep 2023; 13:9493. [PMID: 37302991 DOI: 10.1038/s41598-023-36200-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Natural killer (NK) cells are promising tool for cancer treatment. Methods have been developed for large-scale NK cell expansion, including feeder cell-based methods or methods involving stimulation with NK cell activating signals, such as anti-CD16 antibodies. Different clones of anti-CD16 antibodies are available; however, a comprehensive comparison of their differential effects on inducing NK cell activation and expansion has not been conducted among these various clones under the same experimental conditions. Herein, we found that the NK cell expansion rate differed depending on the various anti-CD16 antibodies (CB16, 3G8, B73.1, and MEM-154) coated on microbeads when stimulated with genetically engineered feeder cells, K562‑membrane-bound IL‑18, and mbIL‑21 (K562‑mbIL‑18/-21). Only the CB16 clone combination caused enhanced NK cell expansion over K562‑mbIL‑18/-21 stimulation alone with similar NK cell functionality. Treatment with the CB16 clone once on the initial day of NK cell expansion was sufficient to maximize the combination effect. Overall, we developed a more enhanced NK expansion system by merging a feeder to effectively stimulate CD16 with the CB16 clone.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Minh-Trang Thi Phan
- Falcuty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | | | - Jeehun Park
- Soft Foundry Institute, Seoul National University, Seoul, Korea.
| | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
13
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
14
|
Zhang W, Sun X, Shi X, Qi X, Shang S, Lin H. Subacute Cadmium Exposure Induces Necroptosis in Swine Lung via Influencing Th1/Th2 Balance. Biol Trace Elem Res 2023; 201:220-228. [PMID: 35118606 DOI: 10.1007/s12011-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) is a type of toxic substance, which widely exists in nature. However, the effect of Cd exposure on the toxicity of swine lungs and its underlying mechanism involved have not yet been reported. In our study, we divided swine into two groups, including a control group (C group) and Cd-exposed group. Swine in the C group were fed a basic diet, whereas swine in the Cd group were fed a 20 mg Cd/kg diet. Immunofluorescence, qRT-PCR, western blot analysis, and H&E staining were performed to detect necroptosis-related indicators. Our results found that after Cd exposure, Th1/Th2 imbalance occurred, miR-181-5p was down-regulated, TNF-α expression was increased, and the NF-κB/NLRP3 and JAK/STAT pathways and RIPK1/RIPK3/MLKL axis were activated. Furthermore, histopathological examination showed necrosis in swine lung after Cd exposure. Together, the above-mentioned results indicate that subacute Cd exposure is closely linked with necroptosis in swine lung. Our study provided evidence that Cd may act through miR-181-5p/TNF-α to induce necroptosis in swine lung. The findings of this study supplement the toxicological study of Cd and provide a reference for comparative medicine.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shaoqian Shang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
15
|
Tserunyan V, Finley SD. Computational analysis of 4-1BB-induced NFκB signaling suggests improvements to CAR cell design. Cell Commun Signal 2022; 20:129. [PMID: 36028884 PMCID: PMC9413922 DOI: 10.1186/s12964-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-expressing cells are a powerful modality of adoptive cell therapy against cancer. The potency of signaling events initiated upon antigen binding depends on the costimulatory domain within the structure of the CAR. One such costimulatory domain is 4-1BB, which affects cellular response via the NFκB pathway. However, the quantitative aspects of 4-1BB-induced NFκB signaling are not fully understood. METHODS We developed an ordinary differential equation-based mathematical model representing canonical NFκB signaling activated by CD19scFv-4-1BB. After a global sensitivity analysis on model parameters, we ran Monte Carlo simulations of cell population-wide variability in NFκB signaling and quantified the mutual information between the extracellular signal and different levels of the NFκB signal transduction pathway. RESULTS In response to a wide range of antigen concentrations, the magnitude of the transient peak in NFκB nuclear concentration varies significantly, while the timing of this peak is relatively consistent. Global sensitivity analysis showed that the model is robust to variations in parameters, and thus, its quantitative predictions would remain applicable to a broad range of parameter values. The model predicts that overexpressing NEMO and disabling IKKβ deactivation can increase the mutual information between antigen levels and NFκB activation. CONCLUSIONS Our modeling predictions provide actionable insights to guide CAR development. Particularly, we propose specific manipulations to the NFκB signal transduction pathway that can fine-tune the response of CD19scFv-4-1BB cells to the antigen concentrations they are likely to encounter. Video Abstract.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Hai Y, Hong Y, Yang Y. miR-1258 Enhances the Anti-Tumor Effect of Liver Cancer Natural Killer (NK) Cells by Stimulating Toll-Liker Receptor (TLR)7/8 to Promote Natural Killer (NK)-Dendritic Cell (DC) Interaction. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TLR7/8 agonists are immunomodulators for treating skin cancer or virus infections. miR-1258 can activate TLR7/8. This study aims to explore the role of TLR7/8 agonists and miR-1258 in activating liver cancer NK cells. NK cells and DC cells were treated with TLR7/8 agonists R837, ssRNA40
and miR-1258 followed by analysis of hepatocellular carcinoma (HCC) cell behaviors in vivo and in vitro. TLR7/8 agonist miR-1258 activated NKs and promoted DCs maturation. In addition, DCs also assisted NKs to function and enhance the anti-HCC immune responses. The interaction
of DCs with NK cells stimulated by TLR7/8 agonist miR-1258 can significantly inhibit tumor development and metastasis in mice HCC model. TLR7 or TLR8 agonists, especially miR-1258, promoted DCs-NKs interaction by promoting the secretion of related cytokines and cell/cell contact, which increased
anti-tumor activity of NKs and promoted DC-NK cells to inhibit the growth of HCC cells. In conclusion, miR-1258 simultaneously stimulates the expression of TLR7/8, and promotes NK-DC cells to inhibit the growth of HCC cells, providing a theoretical basis for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuedong Hai
- Department of Emergency Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yu Hong
- Department of Imaging Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yuzhu Yang
- Department of Emergency Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| |
Collapse
|
17
|
Canaria DA, Clare MG, Yan B, Campbell CB, Ismaio ZA, Anderson NL, Park S, Dent AL, Kazemian M, Olson MR. IL-1β promotes IL-9-producing Th cell differentiation in IL-2-limiting conditions through the inhibition of BCL6. Front Immunol 2022; 13:1032618. [PMID: 36389679 PMCID: PMC9663844 DOI: 10.3389/fimmu.2022.1032618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
IL-9-producing CD4+ T helper cells, termed Th9 cells, differentiate from naïve precursor cells in response to a combination of cytokine and cell surface receptor signals that are elevated in inflamed tissues. After differentiation, Th9 cells accumulate in these tissues where they exacerbate allergic and intestinal disease or enhance anti-parasite and anti-tumor immunity. Previous work indicates that the differentiation of Th9 cells requires the inflammatory cytokines IL-4 and TGF-β and is also dependent of the T cell growth factor IL-2. While the roles of IL-4 and TGF-β-mediated signaling are relatively well understood, how IL-2 signaling contributes to Th9 cell differentiation outside of directly inducing the Il9 locus remains less clear. We show here that murine Th9 cells that differentiate in IL-2-limiting conditions exhibit reduced IL-9 production, diminished NF-kB activation and a reduced NF-kB-associated transcriptional signature, suggesting that IL-2 signaling is required for optimal NF-kB activation in Th9 cells. Interestingly, both IL-9 production and the NF-kB transcriptional signature could be rescued by addition of the NF-kB-activating cytokine IL-1β to IL-2-limiting cultures. IL-1β was unique among NF-kB-activating factors in its ability to rescue Th9 differentiation as IL-2 deprived Th9 cells selectively induced IL-1R expression and IL-1β/IL-1R1 signaling enhanced the sensitivity of Th9 cells to limiting amounts of IL-2 by suppressing expression of the Th9 inhibitory factor BCL6. These data shed new light on the intertwined nature of IL-2 and NF-kB signaling pathways in differentiating Th cells and elucidate the potential mechanisms that promote Th9 inflammatory function in IL-2-limiting conditions.
Collapse
Affiliation(s)
- D Alejandro Canaria
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Maia G Clare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Charlotte B Campbell
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zachariah A Ismaio
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nicole L Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
18
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
The Role of Exosomes and Their Applications in Cancer. Int J Mol Sci 2021; 22:ijms222212204. [PMID: 34830085 PMCID: PMC8622108 DOI: 10.3390/ijms222212204] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are very small extracellular vesicles secreted by multiple cell types and are extensively distributed in various biological fluids. Recent research indicated that exosomes can participate in regulating the tumor microenvironment and impacting tumor proliferation and progression. Due to the extensive enrollment in cancer development, exosomes have become a focus of the search for a new therapeutic method for cancer. Exosomes can be utilized for the therapeutic delivery of small molecules, proteins and RNAs to target cancer cells with a high efficiency. Exosome-carried proteins, lipids and nucleic acids are being tested as promising biomarkers for cancer diagnosis and prognosis, even as potential treatment targets for cancer. Moreover, different sources of exosomes exhibit multiple performances in cancer applications. In this review, we elaborate on the specific mechanism by which exosomes affect the communication between tumors and the microenvironment and state the therapeutic and diagnostic applications of exosomes in cancers.
Collapse
|
20
|
Makowska A, Lelabi N, Nothbaum C, Shen L, Busson P, Tran TTB, Eble M, Kontny U. Radiotherapy Combined with PD-1 Inhibition Increases NK Cell Cytotoxicity towards Nasopharyngeal Carcinoma Cells. Cells 2021; 10:2458. [PMID: 34572108 PMCID: PMC8470143 DOI: 10.3390/cells10092458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) in endemic regions and younger patients is characterized by a prominent lymphomononuclear infiltration. Radiation is the principal therapeutic modality for patients with NPC. Recent data suggest that the efficacy of radiotherapy in various cancers can be augmented when combined with immune checkpoint blockade. Here, we investigate the effect of radiotherapy on the killing of NPC cells by Natural Killer (NK) cells. METHODS NPC cell lines and a patient-derived xenograft were exposed to NK cells in the context of radiotherapy. Cytotoxicity was measured using the calcein-release assay. The contribution of the PD-L1/PD-1 checkpoint and signaling pathways to killing were analyzed using specific inhibitors. RESULTS Radiotherapy sensitized NPC cells to NK cell killing and upregulated expression of PD-1 ligand (PD-L1) in NPC cells and PD-1 receptor (PD-1) in NK cells. Blocking of the PD-L1/PD-1 checkpoint further increased the killing of NPC cells by NK cells in the context of radiotherapy. CONCLUSION Radiation boosts the killing of NPC cells by NK cells. Killing can be further augmented by blockade of the PD-L1/PD-1 checkpoint. The combination of radiotherapy with PD-L1/PD-1 checkpoint blockade could therefore increase the efficacy of radiotherapy in NPC tumors.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Nora Lelabi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Christina Nothbaum
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Pierre Busson
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Tram Thi Bao Tran
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany;
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| |
Collapse
|
21
|
Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A 2021; 118:e2100225118. [PMID: 33785602 PMCID: PMC8040795 DOI: 10.1073/pnas.2100225118] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The induction of type I interferons through the transcription factor interferon regulatory factor 3 (IRF3) is considered a major outcome of stimulator of interferon genes (STING) activation that drives immune responses against DNA viruses and tumors. However, STING activation can also trigger other downstream pathways such as nuclear factor κB (NF-κB) signaling and autophagy, and the roles of interferon (IFN)-independent functions of STING in infectious diseases or cancer are not well understood. Here, we generated a STING mouse strain with a mutation (S365A) that disrupts IRF3 binding and therefore type I interferon induction but not NF-κB activation or autophagy induction. We also generated STING mice with mutations that disrupt the recruitment of TANK-binding kinase 1 (TBK1), which is important for both IRF3 and NF-κB activation but not autophagy induction (L373A or ∆CTT, which lacks the C-terminal tail). The STING-S365A mutant mice, but not L373A or ∆CTT mice, were still resistant to herpes simplex virus 1 (HSV-1) infections and mounted an antitumor response after cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) treatment despite the absence of STING-induced interferons. These results demonstrate that STING can function independently of type I interferons and autophagy, and that TBK1 recruitment to STING is essential for antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Minghao Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Yan Fang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148;
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
22
|
Li C, Palanisamy S, Talapphet N, Cho M, You S. Preparation and characterization of folic acid conjugated sulfated polysaccharides on NK cell activation and cellular uptake in HeLa cells. Carbohydr Polym 2021; 254:117250. [PMID: 33357846 DOI: 10.1016/j.carbpol.2020.117250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022]
Abstract
In this study, the sulfated polysaccharide (SP) of Codium fragile was conjugated to folic acid (SP-FA). FT-IR and 1H NMR techniques revealed the occurrence of esterification reaction between the hydroxyl group of SP and the γ-carboxyl group of FA that confirming the SP-FA conjugation. SP and SP-FA did not show any direct toxicity on NK cells and HeLa cells. However, the treatment of SP and SP-FA enhance the NK cells cytotoxicity against HeLa cells by the upregulation of IFN-γ, TNF-α, perforin, and Granzyme-B. Moreover, NK cells activation was stimulated through NF-кB and MAPK pathways. The binding capacity studies exposed the targeting ability of HeLa cells by folate receptor (FR) which was assessed by a confocal quantitative image cytometer analysis. These results indicate that SP-FA could be used as selective drug delivery systems for targeting FR-overexpressed cancer cells with less toxicity.
Collapse
Affiliation(s)
- ChangSheng Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-720, Republic of Korea
| | - Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - MyoungLae Cho
- National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-720, Republic of Korea.
| |
Collapse
|
23
|
Lalle G, Twardowski J, Grinberg-Bleyer Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021; 10:355. [PMID: 33572260 PMCID: PMC7914614 DOI: 10.3390/cells10020355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of immunotherapies has definitely proven the tight relationship between malignant and immune cells, its impact on cancer outcome and its therapeutic potential. In this context, it is undoubtedly critical to decipher the transcriptional regulation of these complex interactions. Following early observations demonstrating the roles of NF-κB in cancer initiation and progression, a series of studies converge to establish NF-κB as a master regulator of immune responses to cancer. Importantly, NF-κB is a family of transcriptional activators and repressors that can act at different stages of cancer immunity. In this review, we provide an overview of the selective cell-intrinsic contributions of NF-κB to the distinct cell types that compose the tumor immune environment. We also propose a new view of NF-κB targeting drugs as a new class of immunotherapies for cancer.
Collapse
Affiliation(s)
| | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (G.L.); (J.T.)
| |
Collapse
|
24
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
25
|
Chu Y, Nayyar G, Kham Su N, Rosenblum JM, Soon-Shiong P, Lee J, Safrit JT, Barth M, Lee D, Cairo MS. Novel cytokine-antibody fusion protein, N-820, to enhance the functions of ex vivo expanded natural killer cells against Burkitt lymphoma. J Immunother Cancer 2020; 8:jitc-2020-001238. [PMID: 33109629 PMCID: PMC7592258 DOI: 10.1136/jitc-2020-001238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of patients with relapsed or progressive B cell (CD20+) non-Hodgkin's lymphoma (B-NHL), including Burkitt lymphoma (BL), is dismal due to chemoradiotherapy resistance. Novel therapeutic strategies are urgently needed. N-820 is a fusion protein of N-803 (formerly known as ALT-803) to four single-chains of rituximab. This agent has tri-specific binding activity to CD20 and enhanced antibody-dependent cell-mediated cytotoxicity. METHODS We investigated the anti-tumor combinatorial effects of N-820 with ex vivo expanded peripheral blood natural killer (exPBNK) cells against rituximab-sensitive and rituximab-resistant CD20+ BL in vitro using cytoxicity assays and in vivo using human BL xenografted NOD/SCID/IL2rγnull (NSG) mice. We also investigated the cytokines/chemokines/growth factors released using ELISA and multiplex assay. Gene expression changes were examined using real-time PCR arrays. RESULTS N-820 significantly enhanced the expression of NK activating receptors (p<0.001) and the proliferation of exPBNK cells with enhanced Ki67 expression and Stat5 phosphorylation (p<0.001). N-820 significantly enhanced the secretion of cytokines, chemokines, and growth factors including GM-CSF, RANTES, MIP-1B (p<0.001) from exPBNK cells as compared with the combination of rituximab+N-803. Importantly, N-820 significantly enhanced in vitro cytotoxicity (p<0.001) of exPBNK with enhanced granzyme B and IFN-γ release (p<0.001) against BL. Gene expression profiles in exPBNK stimulated by N-820+Raji-2R showed enhanced transcription of CXCL9, CXCL1, CSF2, CSF3, GZMB, and IFNG. Moreover, N-820 combined with exPBNK significantly inhibited rituximab-resistant BL growth (p<0.05) and extended the survival (p<0.05) of BL xenografted NSG mice. CONCLUSIONS Our results provide the rationale for the development of a clinical trial of N-820 alone or in combination with endogenous or ex vivo expanded NK cells in patients with CD20+ B-NHL failing prior rituximab containing chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Nang Kham Su
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - John Lee
- ImmunityBio, Inc, Culver City, California, USA
| | | | - Matthew Barth
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Dean Lee
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
26
|
Maucourant C, Filipovic I, Ponzetta A, Aleman S, Cornillet M, Hertwig L, Strunz B, Lentini A, Reinius B, Brownlie D, Cuapio A, Ask EH, Hull RM, Haroun-Izquierdo A, Schaffer M, Klingström J, Folkesson E, Buggert M, Sandberg JK, Eriksson LI, Rooyackers O, Ljunggren HG, Malmberg KJ, Michaëlsson J, Marquardt N, Hammer Q, Strålin K, Björkström NK. Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol 2020; 5:eabd6832. [PMID: 32826343 PMCID: PMC7665314 DOI: 10.1126/sciimmunol.abd6832] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Understanding innate immune responses in COVID-19 is important to decipher mechanisms of host responses and interpret disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections but might also contribute to immunopathology. Using 28-color flow cytometry, we here reveal strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients. This pattern was mirrored in scRNA-seq signatures of NK cells in bronchoalveolar lavage from COVID-19 patients. Unsupervised high-dimensional analysis of peripheral blood NK cells furthermore identified distinct NK cell immunotypes that were linked to disease severity. Hallmarks of these immunotypes were high expression of perforin, NKG2C, and Ksp37, reflecting increased presence of adaptive NK cells in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed across COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This study provides a detailed map of the NK cell activation landscape in COVID-19 disease.
Collapse
Affiliation(s)
- Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eivind Heggernes Ask
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of .Oslo, Oslo, Norway
| | - Ryan M Hull
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alvaro Haroun-Izquierdo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Schaffer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elin Folkesson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Department of Physiology and Pharmacology, Section for Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department Clinical Interventions and Technology CLINTEC, Division for Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of .Oslo, Oslo, Norway
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Chen J, Liu X, Zeng Z, Li J, Luo Y, Sun W, Gong Y, Zhang J, Wu Q, Xie C. Immunomodulation of NK Cells by Ionizing Radiation. Front Oncol 2020; 10:874. [PMID: 32612950 PMCID: PMC7308459 DOI: 10.3389/fonc.2020.00874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells play a critical role in the antitumor immunity. Ionizing radiation (IR) has a pronounced effect on modifying NK cell biology, while the molecular mechanisms remain elusive. In this review, we briefly introduce the anti-tumor activity of NK cells and summarize the impact of IR on NK cells both directly and indirectly. On one hand, low-dose ionizing radiation (LDIR) activates NK functions while high-dose ionizing radiation (HDIR) is likely to partially impair NK functions, which can be reversed by interleukin (IL)-2 pretreatment. On the other hand, NK functions may be adjusted by other immune cells and the alternated malignant cell immunogenicity under the settings of IR. Various immune cells, such as the tumor-associated macrophage (TAM), dendritic cell (DC), regulatory T cell (Treg), myeloid-derived suppressor cell (MDSC), and tumor exhibited ligands, such as the natural killer group 2 member D ligand (NKG2DL), natural cytotoxicity receptors (NCR) ligand, TNF-related apoptosis-inducing ligand-receptor (TRAIL-R), and FAS, have been involved in this process. Better understanding the molecular basis is a promising way in which to augment NK-cell-based antitumor immunity in combination with IR.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Czauderna C, Castven D, Mahn FL, Marquardt JU. Context-Dependent Role of NF-κB Signaling in Primary Liver Cancer-from Tumor Development to Therapeutic Implications. Cancers (Basel) 2019; 11:cancers11081053. [PMID: 31349670 PMCID: PMC6721782 DOI: 10.3390/cancers11081053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory cell death is a major risk factor for the development of diverse cancers including liver cancer. Herein, disruption of the hepatic microenvironment as well as the immune cell composition are major determinants of malignant transformation and progression in hepatocellular carcinomas (HCC). Considerable research efforts have focused on the identification of predisposing factors that promote induction of an oncogenic field effect within the inflammatory liver microenvironment. Among the most prominent factors involved in this so-called inflammation-fibrosis-cancer axis is the NF-κB pathway. The dominant role of this pathway for malignant transformation and progression in HCC is well documented. Pathway activation is significantly linked to poor prognostic traits as well as stemness characteristics, which places modulation of NF-κB signaling in the focus of therapeutic interventions. However, it is well recognized that the mechanistic importance of the pathway for HCC is highly context and cell type dependent. While constitutive pathway activation in an inflammatory etiological background can significantly promote HCC development and progression, absence of NF-κB signaling in differentiated liver cells also significantly enhances liver cancer development. Thus, therapeutic targeting of NF-κB as well as associated family members may not only exert beneficial effects but also negatively impact viability of healthy hepatocytes and/or cholangiocytes, respectively. The review presented here aims to decipher the complexity and paradoxical functions of NF-κB signaling in primary liver and non-parenchymal cells, as well as the induced molecular alterations that drive HCC development and progression with a particular focus on (immune-) therapeutic interventions.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Friederike L Mahn
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
29
|
Wan M, Ning B, Spiegel S, Lyon CJ, Hu TY. Tumor-derived exosomes (TDEs): How to avoid the sting in the tail. Med Res Rev 2019; 40:385-412. [PMID: 31318078 PMCID: PMC6917833 DOI: 10.1002/med.21623] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023]
Abstract
Exosomes are abundantly secreted extracellular vesicles that accumulate in the circulation and are of great interest for disease diagnosis and evaluation since their contents reflects the phenotype of their cell of origin. Tumor‐derived exosomes (TDEs) are of particular interest for cancer diagnosis and therapy, since most tumor demonstrate highly elevated exosome secretion rates and provide specific information about the genotype of a tumor and its response to treatment. TDEs also contain regulatory factors that can alter the phenotypes of local and distant tissue sites and alter immune cell functions to promote tumor progression. The abundance, information content, regulatory potential, in vivo half‐life, and physical durability of exosomes suggest that TDEs may represent a superior source of diagnostic biomarkers and treatment targets than other materials currently under investigation. This review will summarize current information on mechanisms that may differentially regulate TDE biogenesis, TDE effects on the immune system that promote tumor survival, growth, and metastasis, and new approaches understudy to counteract or utilize TDE properties in cancer therapies.
Collapse
Affiliation(s)
- MeiHua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bo Ning
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sarah Spiegel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Christopher J Lyon
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Tony Y Hu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona.,Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
30
|
|
31
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
32
|
Park YH. The nuclear factor-kappa B pathway and response to treatment in breast cancer. Pharmacogenomics 2017; 18:1697-1709. [PMID: 29182047 DOI: 10.2217/pgs-2017-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) pathway is known to contribute to critical signaling in cancer biology, including breast cancer, through promotion of proliferation, angiogenesis, metastasis, tumor progression, inflammation and cell survival. In this review, in vivo and in vitro studies of the NF-κB pathway in breast cancer are discussed, focusing on DNA damage and the epithelial-mesenchymal transition associated with breast cancer stem cell properties. The relationships between NF-κB signaling and conventional cancer treatments in terms of response to chemo- and radiotherapy will also be discussed. Then contribution and involvement of immune system in the NF-κB pathway will be covered. Furthermore, the future perspective of NF-κB targeting as an innovative strategy to overcome refractory breast cancer, including recent updates on out-receptor activator of NF-κB (RANKing), will be covered.
Collapse
Affiliation(s)
- Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| |
Collapse
|
33
|
Lee HR, Son CH, Koh EK, Bae JH, Kang CD, Yang K, Park YS. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 2017; 7:11075. [PMID: 28894091 PMCID: PMC5593981 DOI: 10.1038/s41598-017-09259-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are considered a promising strategy for cancer treatment. Various methods for large-scale NK cell expansion have been developed, but they should guarantee that no viable cells are mixed with the expanded NK cells because most methods involve cancer cells or genetically modified cells as feeder cells. We used an anti-CD16 monoclonal antibody (mAb) and irradiated autologous peripheral blood mononuclear cells (PBMCs) (IrAPs) to provide a suitable environment (activating receptor-ligand interactions) for the NK cell expansion. This method more potently expanded NK cells, and the final product was composed of highly purified NK cells with lesser T-cell contamination. The expanded NK cells showed greater upregulation of various activation receptors, CD107a, and secreted larger amounts of interferon gamma. IrAPs expressed NKG2D ligands and CD48, and coengagement of CD16 with NKG2D and 2B4 caused potent NK cell activation and proliferation. The expanded NK cells were cytotoxic toward various cancer cells in vitro and in vivo. Moreover, irradiation or a chemotherapeutic drug further enhanced this antitumor effect. Therefore, we developed an effective in vitro culture method for large-scale expansion of highly purified cytotoxic NK cells with potent antitumor activity using IrAPs instead of cancer cell-based feeder cells.
Collapse
Affiliation(s)
- Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Kwangmo Yang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| |
Collapse
|
34
|
Evaluation of the Functional Capacity of NK Cells of Melanoma Patients in an In Vitro Model of NK Cell Contact with K562 and FemX Tumor Cell Lines. J Membr Biol 2017; 250:507-516. [DOI: 10.1007/s00232-017-9977-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
|
35
|
Wang R, Sun Y, Yin Q, Xie H, Li W, Wang C, Guo J, Hao Y, Tao R, Jia Z. The effects of metronidazole on Cytochrome P450 Activity and Expression in rats after acute exposure to high altitude of 4300m. Biomed Pharmacother 2017; 85:296-302. [DOI: 10.1016/j.biopha.2016.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
|
36
|
Xu J, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:64-87. [PMID: 27211261 DOI: 10.1016/j.fsi.2016.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary proteins on the growth, disease resistance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila and mortalities were recorded for 14 days. The results indicated that optimal dietary protein levels: increased the production of antibacterial components, up-regulated anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, c-Rel, IκB kinase β, IκB kinase γ and eIF4E-binding proteins 2 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that optimal dietary protein level could enhance fish intestinal immune barrier function; up-regulated the mRNA levels of tight junction complexes, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and NF-E2-related factor 2, and increased the activities and mRNA levels of antioxidant enzymes, whereas down-regulated myosin light chain kinase, cysteinyl aspartic acid-protease 2, 3, 7, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, p38 mitogen-activated protein kinase, c-Jun N-terminal protein kinase and Kelch-like-ECH-associated protein 1b mRNA levels, and decreased reactive oxygen species, malondialdehyde and protein carbonyl contents in three intestinal segments of young grass carp (P < 0.05), indicating that optimal dietary protein level could improve fish intestinal physical barrier function. Finally, the optimal dietary protein levels for the growth performance (PWG) and against enteritis morbidity of young grass carp were estimated to be 286.82 g kg(-1) diet (250.66 g digestible protein kg(-1) diet) and 292.10 g kg(-1) diet (255.47 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
37
|
PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells. Mediators Inflamm 2016; 2016:9605253. [PMID: 27413259 PMCID: PMC4931085 DOI: 10.1155/2016/9605253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.
Collapse
|
38
|
D'Ignazio L, Bandarra D, Rocha S. NF-κB and HIF crosstalk in immune responses. FEBS J 2015; 283:413-24. [PMID: 26513405 PMCID: PMC4864946 DOI: 10.1111/febs.13578] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022]
Abstract
Hypoxia and inflammation have been associated with a number of pathological conditions, in particular inflammatory diseases. While hypoxia is mainly associated with the activation of hypoxia‐inducible factors (HIFs), inflammation activates the family of transcription factor called nuclear factor‐kappa B (NF‐κB). An extensive crosstalk between these two main molecular players involved in hypoxia and inflammation has been demonstrated. This crosstalk includes common activating stimuli, shared regulators and targets. In this review, we discuss the current understanding of the role of NF‐κB and HIF in the context of the immune response. We review the crosstalk between HIF and NF‐κB in the control of the immune response in different immune cell types including macrophages, neutrophils and B and T cells. Furthermore the importance of the molecular crosstalk between HIFs and NF‐κB for a variety of medical conditions will be discussed.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| |
Collapse
|
39
|
Zhou Z, Yu X, Zhang J, Tian Z, Zhang C. TLR7/8 agonists promote NK-DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma. Cancer Lett 2015; 369:298-306. [PMID: 26433159 DOI: 10.1016/j.canlet.2015.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide and the third leading cause of cancer death. Immunotherapy is considered a promising treatment with the aim to boost or arouse HCC-specific immune responses. TLR7 and TLR8 agonists are effective immunomodulators and have been applied topically for the treatment of certain skin tumors and viral infections. Here, we explored the role of TLR7 and TLR8 agonists on the activation of dendritic cells (DCs) and natural killer (NK) cells. We demonstrated that these agonists could directly activate NK cells, promoting the maturation of immature DCs. Meanwhile, DCs also assisted in the function of NK cells, resulting in enhanced anti-tumor immune responses to HCC. Importantly, the combination therapy with NK cells stimulated with DCs and TLR7/8 agonist Gardiquimod (GDQ) significantly suppresses the growth of human HepG2 liver carcinoma xenografts. This study provides a new immunotherapeutic approach for human HCC based on DC-NK cross-talk and also suggests that TLR7 and/or TLR8 agonists, particularly GDQ, may serve as potent innate and adaptive immune response immunomodulators in tumor therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xin Yu
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Cai Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
40
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
41
|
Thiery J, Lieberman J. Perforin: a key pore-forming protein for immune control of viruses and cancer. Subcell Biochem 2014; 80:197-220. [PMID: 24798013 DOI: 10.1007/978-94-017-8881-6_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perforin (PFN) is the key pore-forming molecule in the cytotoxic granules of immune killer cells. Expressed only in killer cells, PFN is the rate-limiting molecule for cytotoxic function, delivering the death-inducing granule serine proteases (granzymes) into target cells marked for immune elimination. In this chapter we describe our current understanding of how PFN accomplishes this task. We discuss where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage, how it is released, how it delivers Granzymes into target cells and the consequences of PFN deficiency.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM U753, University Paris Sud and Gustave Roussy Cancer Campus, Villejuif, France,
| | | |
Collapse
|
42
|
Differential expression of proteins in naïve and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J Proteomics 2013; 91:151-163. [PMID: 23806757 DOI: 10.1016/j.jprot.2013.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and increasing NK cell activity, little is known about the alterations in the global NK cell proteome following IL-2 activation. To compare the proteomes of naïve and IL-2-activated primary NK cells and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve and IL-2-activated NK cells from healthy donors, the proteins were trypsinized and the resulting peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2 regulated proteins revealed potential targets for future investigation of IL-2 signaling in human primary NK cells. A pathway analysis was performed and revealed several pathways that were not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway, integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway and Wnt signaling pathway. BIOLOGICAL SIGNIFICANCE The development and functional activity of natural killer (NK) cells is regulated by interleukin (IL)-2 which stimulates the proliferation of NK cells and increases NK cell activity. With the development of IL-2-based immunotherapeutic strategies that rely on the IL-2-mediated activation of NK cells to target human cancers, it is important to understand the global molecular events triggered by IL-2 in human NK cells. The differentially expressed proteins in human primary NK cells following IL-2 activation identified in this study confirmed the activation of JAK-STAT signaling pathway and cell proliferation by IL-2 as expected, but also led to the discovery and identification of other factors that are potentially important in IL-2 signaling. These new factors warrant further investigation on their potential roles in modulating NK cell biology. The results from this study suggest that the activation of NK cells by IL-2 is a dynamic process through which proteins with various functions are regulated. Such findings will be important for the elucidation of molecular pathways involved in IL-2 signaling in NK cells and provide new targets for future studies in NK cell biology.
Collapse
|
43
|
Murata T, Iwata S, Siddiquey MNA, Kanazawa T, Goshima F, Kawashima D, Kimura H, Tsurumi T. Heat shock protein 90 inhibitors repress latent membrane protein 1 (LMP1) expression and proliferation of Epstein-Barr virus-positive natural killer cell lymphoma. PLoS One 2013; 8:e63566. [PMID: 23658841 PMCID: PMC3643901 DOI: 10.1371/journal.pone.0063566] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/03/2013] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) LMP1 is a major oncoprotein expressed in latent infection. It functions as a TNFR family member and constitutively activates cellular signals, such as NFκB, MAPK, JAK/STAT and AKT. We here screened small molecule inhibitors and isolated HSP90 inhibitors, Radicicol and 17-AAG, as candidates that suppress LMP1 expression and cell proliferation not only in EBV-positive SNK6 Natural Killer (NK) cell lymphoma cells, but also in B and T cells. Tumor formation in immuno-defficient NOD/Shi-scid/IL-2Rγnull (NOG) mice was also retarded. These results suggest that HSP90 inhibitors can be alternative treatments for patients with EBV-positive malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Benzoquinones/chemistry
- Benzoquinones/pharmacology
- Cell Proliferation/drug effects
- Epstein-Barr Virus Infections/drug therapy
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/pathology
- Gene Expression Regulation
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/immunology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Immunocompromised Host
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lactams, Macrocyclic/chemistry
- Lactams, Macrocyclic/pharmacology
- Lymphoma/drug therapy
- Lymphoma/genetics
- Lymphoma/immunology
- Lymphoma/pathology
- Macrolides/chemistry
- Macrolides/pharmacology
- Mice
- Mice, Inbred NOD
- Neoplasms, Experimental
- Signal Transduction
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Burden/drug effects
- Viral Matrix Proteins/antagonists & inhibitors
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Seiko Iwata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Tetsuhiro Kanazawa
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Kawashima
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- * E-mail: (TT); (HK)
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- * E-mail: (TT); (HK)
| |
Collapse
|
44
|
Falkenberg VR, Whistler T, Murray JR, Unger ER, Rajeevan MS. Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome. GENETICS & EPIGENETICS 2013; 5:1-9. [PMID: 25512702 PMCID: PMC4222335 DOI: 10.4137/geg.s10944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perforin (PRF1) is essential for immune surveillance and studies report decreased perforin in chronic fatigue syndrome (CFS), an illness potentially associated with stress and/or infection. We hypothesize that stress can influence regulation of PRF1 expression, and that this regulation will differ between CFS and non-fatigued (NF) controls. We used the Trier Social Stress Test (TSST) as a standardized acute psychosocial stress, and evaluated its effect on PRF1 expression and methylation in CFS (n = 34) compared with NF (n = 47) participants. During the TSST, natural killer (NK) cells increased significantly in both CFS (P = <0.0001) and NF subjects (P = <0.0001). Unlike previous reports, there was no significant difference in PRF1 expression at baseline or during TSST between CFS and NF. However, whole blood PRF1 expression increased 1.6 fold during the TSST in both CFS (P = 0.0003) and NF (P = <0.0001). Further, the peak response immediately following the TSST was lower in CFS compared with NF (P = 0.04). In addition, at 1.5 hours post TSST, PRF1 expression was elevated in CFS compared with NF (whole blood, P = 0.06; PBMC, P = 0.02). Methylation of seven CpG sites in the methylation sensitive region of the PRF1 promoter ranged from 38%–79% with no significant differences between CFS and NF. Although, the average baseline methylation of all seven CpG sites did not differ between CFS and NF groups, it showed a significant negative correlation with PRF1 expression at all TSST time points in both CFS (r = −0.56, P = <0.0001) and NF (r = −0.38, P = <0.0001). Among participants with high average methylation (≥65%), PRF1 expression was significantly lower in CFS than NF subjects immediately following TSST. These findings suggest methylation could be an important epigenetic determinant of inter-individual differences in PRF1 expression and that the differences in PRF1 expression and methylation between CFS and NF in the acute stress response require further investigation.
Collapse
Affiliation(s)
- Virginia R Falkenberg
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Toni Whistler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janna R Murray
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mangalathu S Rajeevan
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
45
|
Lai HC, Chang CJ, Yang CH, Hsu YJ, Chen CC, Lin CS, Tsai YH, Huang TT, Ojcius DM, Tsai YH, Lu CC. Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol 2012; 92:807-14. [PMID: 22802446 DOI: 10.1189/jlb.0112024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The natural compound 2,3-BTD has diverse physiological effects in a range of organisms, including acting as a detoxifying product of liver alcohol metabolism in humans and ameliorating endotoxin-induced acute lung injury in rats. In this study, we reveal that 2,3-BTD enhances NK cell cytotoxic activity in human pNK cells and NK92 cells. Treatment of NK cells with 2,3-BTD increased perforin expression in a dose-dependent manner. This was accompanied by elevated JNK and ERK1/2 MAPK activities and enhanced expression of NKG2D/NCRs, upstream signaling molecules of the MAPK pathways. The 2,3-BTD effect was inhibited by pretreatment with inhibitors of JNK (SP) or ERK1/2 (PD) or by depleting NKG2D/NCRs or JNK1 or ERK2 with siRNA. These results indicate that 2,3-BTD activates NK cell cytotoxicity by NKG2D/NCR pathways and represent the first report of the 2,3-BTD effect on activation of innate immunity cells.
Collapse
Affiliation(s)
- Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamashita J, Iwamura C, Mitsumori K, Hosokawa H, Sasaki T, Takahashi M, Tanaka H, Kaneko K, Hanazawa A, Watanabe Y, Shinoda K, Tumes D, Motohashi S, Nakayama T. Murine Schnurri-2 controls natural killer cell function and lymphoma development. Leuk Lymphoma 2011; 53:479-86. [PMID: 21936769 DOI: 10.3109/10428194.2011.625099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Schnurri (Shn)-2 is a large zinc finger-containing protein implicated in cell growth, signal transduction and lymphocyte development. Here, we report that Shn-2-deficient (Shn-2(-/-)) mice develop CD3-positive lymphoma spontaneously. In Shn-2(-/-) mice, we observed decreased cytotoxicity of natural killer (NK) cells accompanied by decreased expression of perforin and granzyme-B. In addition, phosphorylation of signal transducer and activator of transcription (STAT) 5 was reduced in Shn-2(-/-) NK cells, while phosphorylation of STAT3 and protein expression of nuclear factor-κB p65 subunit were enhanced in Shn-2(-/-) NK cells. Moreover, cell-surface expression of activation molecules such as CD27, CD69 and CD122 were decreased on Shn-2(-/-) NK cells. Thus, Shn-2 is considered to play an important role in the activation and function of NK cells and the development of T cell lymphoma in vivo.
Collapse
Affiliation(s)
- Junji Yamashita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Penafuerte C, Bautista-Lopez N, Bouchentouf M, Birman E, Forner K, Galipeau J. Novel TGF-β Antagonist Inhibits Tumor Growth and Angiogenesis by Inducing IL-2 Receptor-Driven STAT1 Activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6933-44. [DOI: 10.4049/jimmunol.1003816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Ussat S, Scherer G, Fazio J, Beetz S, Kabelitz D, Adam-Klages S. Human NK cells require caspases for activation-induced proliferation and cytokine release but not for cytotoxicity. Scand J Immunol 2011; 72:388-95. [PMID: 21039733 DOI: 10.1111/j.1365-3083.2010.02449.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural killer (NK) cells are innate immune cells involved in antiviral defence and tumour surveillance. To fulfil these tasks, NK cells make use of two major effector functions, cytokine and chemokine release and cytotoxicity. In addition, NK cells proliferate in response to cytokines such as IL-2. NK cells possess a large array of activating and inhibitory receptors and their activation demands a complex crosstalk between those receptors. The signalling pathways leading to NK-cell activation are a field of intensive research. The first clue for signal specificity was provided by studies showing that a pathway leading to NF-κB activation selectively induces cytokine release, but is dispensable for cytotoxicity. Here, we demonstrate that in human NK cells caspase activity is required for the upregulation of select activation markers and IFN-γ and TNF production, but not for cytotoxicity. Interestingly, caspases have previously been linked in T cells to the same mechanism of NF-κB induction that is active in NK cells. Moreover, we provide evidence that caspases are involved in IL-2-induced proliferation. Thus, our data provide the basis for a novel approach using caspase inhibitors to generate cytotoxic NK cells, while simultaneously suppressing cytokine release.
Collapse
Affiliation(s)
- S Ussat
- Institut für Immunologie, Christian-Albrechts-Universität Kiel, Michaelisstrasse 5, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Chan KK, Shen L, Au WY, Yuen HF, Wong KY, Guo T, Wong ML, Shimizu N, Tsuchiyama J, Kwong YL, Liang RH, Srivastava G. Interleukin-2 induces NF-kappaB activation through BCL10 and affects its subcellular localization in natural killer lymphoma cells. J Pathol 2010; 221:164-74. [PMID: 20235165 DOI: 10.1002/path.2699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deregulation of nuclear factor (NF)-kappaB signalling is common in cancers and is essential for tumourigenesis. Constitutive NF-kappaB activation in extranodal natural killer (NK)-cell lymphoma, nasal type (ENKL) is known to be associated with aberrant nuclear translocation of BCL10. Here we investigated the mechanisms leading to NF-kappaB activation and BCL10 nuclear localization in ENKLs. Given that ENKLs are dependent on T-cell-derived interleukin-2 (IL2) for cytotoxicity and proliferation, we investigated whether IL2 modulates NF-kappaB activation and BCL10 subcellular localization in ENKLs. In the present study, IL2-activated NK lymphoma cells were found to induce NF-kappaB activation via the PI3K/Akt pathway, leading to an increase in the entry of G(2)/M phase and concomitant transcription of NF-kappaB-responsive genes. We also found that BCL10, a key mediator of NF-kappaB signalling, participates in the cytokine receptor-induced activation of NF-kappaB. Knockdown of BCL10 expression resulted in deficient NF-kappaB signalling, whereas Akt activation was unaffected. Our results suggest that BCL10 plays a role downstream of Akt in the IL2-triggered NF-kappaB signalling pathway. Moreover, the addition of IL2 to NK cells led to aberrant nuclear translocation of BCL10, which is a pathological feature of ENKLs. We further show that BCL10 can bind to BCL3, a transcriptional co-activator and nuclear protein. Up-regulation of BCL3 expression was observed in response to IL2. Similar to BCL10, the expression and nuclear translocation of BCL3 were induced by IL2 in an Akt-dependent manner. The nuclear translocation of BCL10 was also dependent on BCL3 because silencing BCL3 by RNA interference abrogated this translocation. We identified a critical role for BCL10 in the cytokine receptor-induced NF-kappaB signalling pathway, which is essential for NK cell activation. We also revealed the underlying mechanism that controls BCL10 nuclear translocation in NK cells. Our findings provide insight into a molecular network within the NF-kappaB signalling pathway that promotes the pathogenesis of NK cell lymphomas.
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Feng X, Yan J, Wang Y, Zierath JR, Nordenskjöld M, Henter JI, Fadeel B, Zheng C. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and natural killer (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol 2010; 47:2388-96. [PMID: 20542572 DOI: 10.1016/j.molimm.2010.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/05/2010] [Indexed: 11/29/2022]
Abstract
Bortezomib, a potent 26S proteasome inhibitor, is approved for the treatment of multiple myeloma (MM) and clinical trials are under way to evaluate its efficacy in other malignant diseases. However, cytotoxic effects of bortezomib on immune-competent cells have also been observed. In this study, we show that bortezomib downregulates cell surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on primary human interleukin (IL)-2-activated natural killer (NK) cells. Pharmacological inhibition of the transcription factor, NF-kappaB also profoundly decreased TRAIL expression, suggesting that NF-kappaB is involved in the regulation of TRAIL expression in activated human NK cells. Furthermore, perforin-independent killing of the human MM cell lines RPMI8226 and U266 by NK cells was markedly suppressed following bortezomib treatment. In addition, blocking cell surface-bound TRAIL with a TRAIL antibody impaired NK cell-mediated lysis of the TRAIL-sensitive MM cell line, RPMI8226. In conclusion, the proteasome is likely to be involved in the regulation of TRAIL expression in primary human IL-2-activated NK cells. Proteasome inhibition by bortezomib disrupts TRAIL expression and TRAIL dependent and/or independent pathway-mediated killing of myeloma cells, suggesting that bortezomib may potentially hamper NK-dependent immunosurveillance against tumors in patients treated with this drug.
Collapse
Affiliation(s)
- Xiaoli Feng
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|