1
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Bataduwaarachchi VR, Hansanie SMN, Rockwood N, D'Cruz LG. Immunomodulatory properties of morphine and the hypothesised role of long-term opioid use in the immunopathogenesis of tuberculosis. Front Immunol 2023; 14:1265511. [PMID: 37942336 PMCID: PMC10628761 DOI: 10.3389/fimmu.2023.1265511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Epidemiological studies have shown high tuberculosis (TB) prevalence among chronic opioid users. Opioid receptors are found on multiple immune cells and immunomodulatory properties of opioids could be a contributory factor for ensuing immunosuppression and development or reactivation of TB. Toll-like receptors (TLR) mediate an immune response against microbial pathogens, including Mycobacterium tuberculosis. Mycobacterial antigens and opioids co-stimulate TLRs 2/4/9 in immune cells, with resulting receptor cross-talk via multiple cytosolic secondary messengers, leading to significant immunomodulatory downstream effects. Blockade of specific immune pathways involved in the host defence against TB by morphine may play a critical role in causing tuberculosis among chronic morphine users despite multiple confounding factors such as socioeconomic deprivation, Human immunodeficiency virus co-infection and malnutrition. In this review, we map out immune pathways involved when immune cells are co-stimulated with mycobacterial antigens and morphine to explore a potential immunopathological basis for TB amongst long-term opioid users.
Collapse
Affiliation(s)
- Vipula R. Bataduwaarachchi
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
| | - SMN Hansanie
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Neesha Rockwood
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Leon Gerard D'Cruz
- Research and Innovation Department, Portsmouth Hospitals University NHS Trust, Portsmouth, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
3
|
Yang YC, Chen SN, Gan Z, Huang L, Li N, Wang KL, Nie P. Functional characterization of IL-18 receptor subunits, IL-18Rα and IL-18Rβ, and its natural inhibitor, IL-18 binding protein (IL-18BP) in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104610. [PMID: 36496012 DOI: 10.1016/j.dci.2022.104610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As an important proinflammation and immunomodulatory cytokine, IL-18 has been reported in several species of fish, but its receptor subunits, IL-18Rα and IL-18Rβ, and its decoy receptor, IL-18BP, have not been functionally characterized in fish. In the present study, IL-18Rα, IL-18Rβ and IL-18BP were cloned from rainbow trout Oncorhynchus mykiss, and they possess common conserved domains with their mammalian orthologues. In tested organs/tissues, IL-18Rα and IL-18Rβ exhibit basal expression levels, and IL-18BP has a pattern of constitutive expression. When transfected with different combinations of chimeric receptors in HEK293T cells, recombinant IL-18 (rIL-18) can induce the activation of NF-κB only when pcDNA3.1-IL-18Rα/IL-1R1 and pcDNA3.1-IL-18Rβ/IL-1RAP were both expressed. On the other hand, recombinant receptors, including rIL-18BP, rIL-18Rα-ECD-Fc and rIL-18Rβ-ECD-Fc can down-regulate significantly the activity of NF-κB, suggesting the participation of IL-18Rα, IL-18Rβ and IL-18BP in rainbow trout IL-18 signal transduction. Co-IP assays indicated that IL-18Rβ may form a complex with MyD88, IRAK4, IRAK1, TRAF6 and TAB2 in HEK293T cells, indicating that IL-18Rβ, in IL-18 signalling pathway, is associated with these signalling molecules. In conclusion, IL-18Rα, IL-18Rβ and IL-18BP in rainbow trout are conserved in function and signalling pathway with their mammalian orthologues.
Collapse
Affiliation(s)
- Yue Chong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
4
|
Treppiccione L, Maurano F, Rossi S, Luongo D, Rossi M. Transamidated wheat gliadin induces differential antigen recognition in the small intestine of HLA/DQ8 transgenic mice. Food Funct 2022; 13:8941-8950. [PMID: 35929785 DOI: 10.1039/d2fo02032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lifelong gluten-free diet (GFD) is currently the only available therapy for coeliac disease (CD). However, GFD compliance is difficult and alternative strategies are envisaged in the near future. We previously found that wheat gliadin following transamidation by microbial transglutaminase (mTG) does not induce IFN-γ secretion by intestinal T cells from CD patients. Fully transamidated gliadin with lysine ethyl ester can be recovered in a soluble protein fraction (spf) generated by the enzymatic treatment of wheat flour. Herein, we analysed the performance of transamidation by mTG on a pilot-scale (1L) by evaluating the reaction kinetics and its biological effect on the intestinal immune response in HLA/DQ8 transgenic mice, a model of gluten sensitivity. At 1 h, all gliadin fractions showed a faster electrophoretic mobility by acid-polyacrylamide gel electrophoresis (A-PAGE) following transamidation in comparison with their native counterparts. In parallel, the yield of residual native gliadin dropped (30% at 180 min), confirming our previous findings on a lab scale. Mucosal sensitisation of mice with gliadin via the intranasal route induced a Th1 phenotype in mesenteric lymph nodes (MLNs). Importantly, IFN-γ secretion was significantly reduced when gliadin-specific MLN cells were challenged in vitro with spf (P < 0.001). Multiplex analysis revealed that the adaptive immune response evoked by spf involved a distinct cell population characterised by secretion of IL-2, IL-3 and IL-5. Notably, spf stimulated in vitro a reduced or null secretion of all of the examined pro-inflammatory markers mainly associated to innate immunity. In conclusion, our data revealed the ability of transamidated gliadin to modulate both innate and adaptive mechanisms involved in the inflammatory response induced by wheat gliadin in the small intestine of DQ8 mice.
Collapse
Affiliation(s)
| | - Francesco Maurano
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Stefano Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Diomira Luongo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Mauro Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| |
Collapse
|
5
|
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S, Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol 2022; 13:919973. [PMID: 36032110 PMCID: PMC9410767 DOI: 10.3389/fimmu.2022.919973] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host defense against infections and regulates the innate and acquired immune response. IL-18 is produced by both hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes and mesenchymal cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell activities leading to autoimmunity. Its elevated levels have been reported in the blood of patients with some immune-related diseases, including rheumatoid arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic dermatitis, psoriasis, and inflammatory bowel disease. In the present review, we aimed to summarize the biological properties of IL-18 and its pathological role in different autoimmune diseases. We also reported some monoclonal antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and drugs have only produced partial effectiveness or complete ineffectiveness in vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-18 may be largely due to the loophole caused by the involvement of other cytokines and proteins in the signaling pathway of many inflammatory diseases besides the involvement of IL-18. Combination drug therapies, that focus on IL-18 inhibition, in addition to other cytokines, are highly recommended to be considered as an important area of research that needs to be explored.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Gholamreza Azizi,
| |
Collapse
|
6
|
Masuhiro K, Tamiya M, Fujimoto K, Koyama S, Naito Y, Osa A, Hirai T, Suzuki H, Okamoto N, Shiroyama T, Nishino K, Adachi Y, Nii T, Kinugasa-Katayama Y, Kajihara A, Morita T, Imoto S, Uematsu S, Irie T, Okuzaki D, Aoshi T, Takeda Y, Kumagai T, Hirashima T, Kumanogoh A. Bronchoalveolar lavage fluid reveals factors contributing to the efficacy of PD-1 blockade in lung cancer. JCI Insight 2022; 7:157915. [PMID: 35389889 PMCID: PMC9090256 DOI: 10.1172/jci.insight.157915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Bronchoalveolar lavage is commonly performed to assess inflammation and identify responsible pathogens in lung diseases. Findings from bronchoalveolar lavage might be used to evaluate the immune profile of the lung tumor microenvironment (TME). To investigate whether bronchoalveolar lavage fluid (BALF) analysis can help identify patients with non–small cell lung cancer (NSCLC) who respond to immune checkpoint inhibitors (ICIs), BALF and blood were prospectively collected before initiating nivolumab. The secreted molecules, microbiome, and cellular profiles based on BALF and blood analysis of 12 patients were compared with regard to therapeutic effect. Compared with ICI nonresponders, responders showed significantly higher CXCL9 levels and a greater diversity of the lung microbiome profile in BALF, along with a greater frequency of the CD56+ subset in blood T cells, whereas no significant difference in PD-L1 expression was found in tumor cells. Antibiotic treatment in a preclinical lung cancer model significantly decreased CXCL9 in the lung TME, resulting in reduced sensitivity to anti–PD-1 antibody, which was reversed by CXCL9 induction in tumor cells. Thus, CXCL9 might be associated with the lung TME microbiome, and the balance of CXCL9 and lung TME microbiome could contribute to nivolumab sensitivity in patients with NSCLC. BALF analysis can help predict the efficacy of ICIs when performed along with currently approved examinations.
Collapse
Affiliation(s)
- Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Hirai
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidekazu Suzuki
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Norio Okamoto
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuichi Adachi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumi Kinugasa-Katayama
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akiko Kajihara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takuma Irie
- Division of Cancer Immunology, National Cancer Center, Tokyo, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Osaka, Japan
| | - Taiki Aoshi
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tomonori Hirashima
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Patel S, Tucker HR, Gogoi H, Mansouri S, Jin L. cGAS-STING and MyD88 Pathways Synergize in Ly6C hi Monocyte to Promote Streptococcus pneumoniae-Induced Late-Stage Lung IFNγ Production. Front Immunol 2021; 12:699702. [PMID: 34512626 PMCID: PMC8427188 DOI: 10.3389/fimmu.2021.699702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic GMP–AMP synthase–stimulator of interferon genes (cGAS–STING) pathway senses DNA and induces type I interferon (IFN) production. Whether and how the STING pathway crosstalk to other innate immune pathways during pathogen infection, however, remains unclear. Here, we showed that STING was needed for Streptococcus pneumoniae-induced late, not early, stage of lung IFNγ production. Using knockout mice, IFNγ reporter mice, intracellular cytokine staining, and adoptive cell transfer, we showed that cGAS–STING-dependent lung IFNγ production was independent of type I IFNs. Furthermore, STING expression in monocyte/monocyte-derived cells governed IFNγ production in the lung via the production of IL-12p70. Surprisingly, DNA stimulation alone could not induce IL-12p70 or IFNγ in Ly6Chi monocyte. The production of IFNγ required the activation by both DNA and heat-killed S. pneumococcus. Accordingly, MyD88−/− monocyte did not generate IL-12p70 or IFNγ. In summary, the cGAS–STING pathway synergizes with the MyD88 pathway in monocyte to promote late-stage lung IFNγ production during pulmonary pneumococcal infection.
Collapse
Affiliation(s)
- Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Heidi R Tucker
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
9
|
Khan M, Harms JS, Liu Y, Eickhoff J, Tan JW, Hu T, Cai F, Guimaraes E, Oliveira SC, Dahl R, Cheng Y, Gutman D, Barber GN, Splitter GA, Smith JA. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog 2020; 16:e1009020. [PMID: 33108406 PMCID: PMC7647118 DOI: 10.1371/journal.ppat.1009020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 11/06/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation “damage control” via targeted STING destruction may enable establishment of chronic infection. Cytosolic pattern recognition receptors, such as the nucleotide-activated STING molecule, play a critical role in the innate immune system by detecting the presence of intracellular invaders. Brucella bacterial species establish chronic infections in macrophages despite initially activating STING. STING participates in the control of Brucella infection, as mice or cells lacking STING show a higher burden of Brucella infection. However, we have found that early following infection, Brucella upregulates a microRNA, miR-24, that targets the STING messenger RNA, resulting in lower STING levels. Dead bacteria or bacteria lacking a functional type IV secretion system were defective at upregulating miR-24 and STING suppression, suggesting an active bacteria-driven process. Failure to upregulate miR-24 and suppress STING greatly compromised the capacity of Brucella to replicate inside macrophages and in mice. Thus, although Brucella initially activate STING during infection, the ensuing STING downregulation serves as a “damage control” mechanism, enabling intracellular infection. Viruses have long been known to target immune sensors such as STING. Our results indicate that intracellular bacterial pathogens also directly target innate immune receptors to enhance their infectious success.
Collapse
Affiliation(s)
- Mike Khan
- Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jerome S. Harms
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Wen Tan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fengwei Cai
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Guimaraes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yong Cheng
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Delia Gutman
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Gary A. Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Quan H, Kim J, Na YR, Kim JH, Kim BJ, Kim BJ, Hong JJ, Hwang ES, Seok SH. Human Cytomegalovirus-Induced Interleukin-10 Production Promotes the Proliferation of Mycobacterium massiliense in Macrophages. Front Immunol 2020; 11:518605. [PMID: 33013921 PMCID: PMC7511582 DOI: 10.3389/fimmu.2020.518605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) exploits the interleukin-10 (IL-10) pathway as a part of its infection cycle through the manipulation of the host IL-10 signaling cascade. Based on its immunomodulatory nature, HCMV attenuates the host immune response and facilitates the progression of co-infection with other pathogens in an immune-competent host. To investigate the impact of HCMV infection on the burden of non-tuberculous mycobacteria (NTM), whose prevalence is growing rapidly worldwide, macrophages were infected with HCMV and further challenged with Mycobacterium massiliense in vitro. The results showed that HCMV infection significantly increased host IL-10 synthesis and promoted the proliferation of M. massiliense in an IL-10-dependent manner. Transcriptomic analysis revealed that HCMV infection dampened the regulatory pathways of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-1 (IL-1), consequently abrogating the immune responses to M. massiliense coinfection in macrophages. These findings provide a mechanistic basis of how HCMV infection may facilitate the development of pathogenic NTM co-infection by upregulating IL-10 expression.
Collapse
Affiliation(s)
- Hailian Quan
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jiyeon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Global Center for Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi Rang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Jung Heon Kim
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Global Center for Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Eung Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Global Center for Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, South Korea
- Global Center for Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Taneja V, Kalra P, Goel M, Khilnani GC, Saini V, Prasad GBKS, Gupta UD, Krishna Prasad H. Impact and prognosis of the expression of IFN-α among tuberculosis patients. PLoS One 2020; 15:e0235488. [PMID: 32667932 PMCID: PMC7363073 DOI: 10.1371/journal.pone.0235488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection stimulates the release of cytokines, including interferons (IFNs). IFNs are initiators, regulators, and effectors of innate and adaptive immunity. Accordingly, the expression levels of Type I (α, β) and II (γ) IFNs, among untreated tuberculosis (TB) patients and household contacts (HHC) clinically free of TB was assessed. A total of 264 individuals (TB patients-123; HHC-86; laboratory volunteers-55; Treated TB patients-36) were enrolled for this study. IFN-α mRNA expression levels predominated compared to IFN-γ and IFN-β among untreated TB patients. IFN-α transcripts were ~3.5 folds higher in TB patients compared to HHC, (p<0.0001). High expression of IFN-α was seen among 46% (56/ 123) of the TB patients and 26%, (22/86) of HHCs. The expression levels of IFN-α correlated with that of IFN transcriptional release factor 7 (IRF) (p<0.0001). In contrast, an inverse relationship exists between PGE2 and IFN-α expression levels; high IFN-α expressers were associated with low levels of PGE2 and vice-versa (Spearman’s rho = -0.563; p<0.0001). In-vitro, IFN-α failed to restrict the replication of intracellular M.tb. The anti-mycobacterial activity of IFN-γ was compromised in the presence of IFN-α, but not by IFN-β. The expression of IFN-α and β diminished or is absent, among successfully treated TB patients. These observations suggest the utility of assessment of Type I IFNs expression levels as a prognostic marker to monitor tuberculosis patient response to chemotherapy because changes in Type I IFNs expression are expected to precede the clearance and /reduction in bacterial load.
Collapse
Affiliation(s)
- Vibha Taneja
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Goel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi Chand Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - G. B. K. S. Prasad
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Umesh Datta Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | |
Collapse
|
12
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|
13
|
Kang SS, Kim AR, Yun CH, Han SH. Staphylococcus aureus lipoproteins augment inflammatory responses in poly I:C-primed macrophages. Cytokine 2018; 111:154-161. [PMID: 30153621 DOI: 10.1016/j.cyto.2018.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Secondary bacterial infection contributes to severe inflammation following viral infection. Among foodborne pathogenic bacteria, Staphylococcus aureus is known to exacerbate severe inflammatory responses after infection with single-stranded RNA viruses such as influenza viruses. However, it has not been determined if S. aureus infection enhances inflammatory responses after infection with RNA enteric viruses, including rotavirus, which is a double-stranded RNA virus. We therefore investigated the molecular mechanisms by which a cell wall component of S. aureus enhanced inflammatory responses during enteric viral infection using poly I:C-primed macrophages, which is a well-established model for double-stranded RNA virus infection. S. aureus lipoproteins enhanced IL-6 as well as TNF-α production in poly I:C-primed macrophages. Pam2CSK4, a mimic of Gram-positive bacterial lipoproteins and S. aureus lipoproteins, also significantly enhanced IL-6 production in poly I:C-primed macrophages. While IFN-β expression was increased in poly I:C-primed macrophages treated with Pam2CSK4 or S. aureus lipoproteins, the level of IL-6 enhancement in poly I:C-primed macrophages was decreased in the presence of anti-IFN-α/β receptor antibody, suggesting that IFN-β plays an important role in enhanced IL-6 production. Phosphatidylinositol-3-kinase, Akt, ERK and NF-κB were also involved in the enhanced IL-6 production. Collectively, these results suggest that S. aureus lipoproteins induce excessive inflammatory responses in the presence of poly I:C.
Collapse
Affiliation(s)
- Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
14
|
Dabitao D, Hedrich CM, Wang F, Vacharathit V, Bream JH. Cell-Specific Requirements for STAT Proteins and Type I IFN Receptor Signaling Discretely Regulate IL-24 and IL-10 Expression in NK Cells and Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2154-2164. [PMID: 29436412 PMCID: PMC5840025 DOI: 10.4049/jimmunol.1701340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Il10 forms a cytokine cluster with Il19, Il20, and Il24 in a conserved region of chromosome 1. The latter genes are in the IL-20 subfamily of IL-10-related cytokines and, although they are not as well studied their biologic actions and expression patterns, seem to have little in common with IL-10. IL-24, like IL-10, however, is uniquely expressed in T cells and is a signature gene of the Th2 lineage, which suggests they could be coregulated in certain cell types. Little is known about other cellular sources of IL-24. We investigated IL-24 and IL-10 expression in murine macrophages and NK cells, and found that although they are coexpressed under most stimulation conditions, IL-24 and IL-10 are controlled by distinct, cell type-specific pathways. In bone marrow-derived macrophages, optimal IL-24 expression required LPS+IL-4 costimulation and STAT6 but was independent of type I IFN receptor signaling and STAT4. Conversely, LPS-induced IL-10 was independent of IL-4/STAT6 and STAT4 but, consistent with other reports, required type I IFN receptor signaling for optimal expression. Remarkably, NK-specific IL-24 (but not IL-10) expression was dependent on both type I IFN receptor signaling and STAT4. Induction of IL-24 expression was accompanied by cell-specific recruitment of STAT6 and STAT4 to multiple sites that we identified within Il24, which mediated STAT-dependent histone modifications across the gene. Collectively, our results indicate that despite being coexpressed, IL-10 and IL-24 are independently regulated by different type I IFN receptor signaling pathways in innate immune cells and provide insight into the mechanisms that fine-tune cell type-specific gene expression within the Il10 cluster.
Collapse
Affiliation(s)
- Djeneba Dabitao
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Christian M Hedrich
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Fengying Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Vimvara Vacharathit
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
Cobelens F, Nagelkerke N, Fletcher H. The convergent epidemiology of tuberculosis and human cytomegalovirus infection. F1000Res 2018; 7:280. [PMID: 29780582 PMCID: PMC5934687 DOI: 10.12688/f1000research.14184.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
Although several factors are known to increase the risk of tuberculosis, the occurrence of tuberculosis disease in an infected individual is difficult to predict. We hypothesize that active human cytomegalovirus infection due to recent infection, reinfection or reactivation plays an epidemiologically relevant role in the aetiology of tuberculosis by precipitating the progression from latent tuberculosis infection to disease. The most compelling support for this hypothesis comes from the striking similarity in age-sex distribution between the two infections, important because the age-sex pattern of tuberculosis disease progression has not been convincingly explained. Cytomegalovirus infection and tuberculosis have other overlapping risk factors, including poor socio-economic status, solid organ transplantation and, possibly, sexual contact and whole blood transfusion. Although each of these overlaps could be explained by shared underlying risk factors, none of the epidemiological observations refute the hypothesis. If this interaction would play an epidemiologically important role, important opportunities would arise for novel approaches to controlling tuberculosis.
Collapse
Affiliation(s)
- Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Center, Meibergdreef 9, AZ, Amsterdam, 1105, Netherlands
| | - Nico Nagelkerke
- Department of Medical Microbiology, University of Manitoba, Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB , R3E 0J9, Canada
| | - Helen Fletcher
- TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street , London , WC1E 7HT, UK
| |
Collapse
|
16
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
17
|
Norris MH, Schweizer HP, Tuanyok A. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLoS Negl Trop Dis 2017; 11:e0005571. [PMID: 28453531 PMCID: PMC5425228 DOI: 10.1371/journal.pntd.0005571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/10/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines.
Collapse
Affiliation(s)
- Michael H. Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Herbert P. Schweizer
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
18
|
Meunier I, Kaufmann E, Downey J, Divangahi M. Unravelling the networks dictating host resistance versus tolerance during pulmonary infections. Cell Tissue Res 2017; 367:525-536. [PMID: 28168323 PMCID: PMC7088083 DOI: 10.1007/s00441-017-2572-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the “struggle for existence”, as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.
Collapse
Affiliation(s)
- Isabelle Meunier
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada. .,RI-MUHC, Centre for Translational Biology, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Block E (EM3.2248), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
19
|
Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M, Decker T. Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 2017; 8:29. [PMID: 28184222 PMCID: PMC5266721 DOI: 10.3389/fimmu.2017.00029] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction mediates cytokine responses. Canonical signaling is based on STAT tyrosine phosphorylation by activated JAKs. Downstream of interferon (IFN) receptors, activated JAKs cause the formation of the transcription factors IFN-stimulated gene factor 3 (ISGF3), a heterotrimer of STAT1, STAT2 and interferon regulatory factor 9 (IRF9) subunits, and gamma interferon-activated factor (GAF), a STAT1 homodimer. In recent years, several deviations from this paradigm were reported. These include kinase-independent JAK functions as well as extra- and intranuclear activities of U-STATs without phosphotyrosines. Additionally, transcriptional control by STAT complexes resembling neither GAF nor ISGF3 contributes to transcriptome changes in IFN-treated cells. Our review summarizes the contribution of non-canonical JAK-STAT signaling to the innate antimicrobial immunity imparted by IFN. Moreover, we touch upon functions of IFN pathway proteins beyond the IFN response. These include metabolic functions of IRF9 as well as the regulation of natural killer cell activity by kinase-dead TYK2 and different phosphorylation isoforms of STAT1.
Collapse
Affiliation(s)
- Andrea Majoros
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Ekaterini Platanitis
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Elisabeth Kernbauer-Hölzl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Felix Rosebrock
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017; 14:22-35. [PMID: 27264686 PMCID: PMC5214938 DOI: 10.1038/cmi.2016.25] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past decades the notion of 'inflammation' has been extended beyond the original hallmarks of rubor (redness), calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory responses and how these key mediators of inflammation counter-regulate each other.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo Yan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Jarry A, Malard F, Bou-Hanna C, Meurette G, Mohty M, Mosnier JF, Laboisse CL, Bossard C. Interferon-Alpha Promotes Th1 Response and Epithelial Apoptosis via Inflammasome Activation in Human Intestinal Mucosa. Cell Mol Gastroenterol Hepatol 2016; 3:72-81. [PMID: 28174758 PMCID: PMC5247398 DOI: 10.1016/j.jcmgh.2016.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
Abstract
BACKGOUND & AIMS Several lines of investigation suggest that interferon (IFN) alpha can alter human intestinal mucosa homeostasis. These include the endogenous production of IFN alpha in celiac disease or inflammatory bowel diseases, as well as the occurrence of intestinal side effects of exogenous IFN alpha used as a therapeutic tool. Here, we present an ex vivo translational approach to investigate the effects of IFN alpha on the human normal intestinal mucosa, as well as its underlying mechanisms. METHODS Human normal colonic mucosa explants were cultured in the presence or absence of IFN alpha 2a. Epithelial homeostasis was assessed using the immunohistochemical marker of apoptosis M30. The Wnt inhibitor Dickkopf-Homolog-1 (DKK1) was assayed in the supernatants by enzyme-linked immunosorbent assay. Activation of the inflammasome (caspase-1/interleukin [IL]18) and of a Th1 response was determined by in situ detection of active caspase-1, as well as by measurement of mature IL18 production and the prototype Th1 cytokine IFN gamma by enzyme-linked immunosorbent assay. In addition, mechanistic studies were performed using the specific caspase-1 inhibitor Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (YVAD-FMK), IL18-binding protein, neutralizing anti-IFN gamma, and anti-DKK1 antibodies. RESULTS IFN alpha 2a elicited a rapid (24 hours) disruption of surface and crypt colonic epithelial cells via apoptosis that was variable in intensity among the 20 individuals studied. This apoptotic effect was dependent on the initiation of an IFN gamma response elicited by resident T box expressed in T cells-positive lamina propria cells. Both apoptosis and Th1 response were subordinated to active caspase-1 and IL18 production. Finally, neutralization of IFN gamma-induced DKK1 partially protected against IFN alpha-induced epithelial apoptosis. CONCLUSIONS By using an ex vivo model, we show an interindividual heterogeneity of IFN alpha effects. We show that IFN alpha is able to disrupt both epithelial and immune homeostasis in the human intestine, by activation of an innate immunity platform, the inflammasome, which drives a Th1 response and leads to epithelial barrier disruption.
Collapse
Key Words
- 3D, 3-dimensional
- Caspase-1
- DKK1
- DKK1, Dickkopf-Homolog-1
- ELISA, enzyme-linked immunosorbent assay
- FLICA, fluorescent-labeled inhibitor of caspases
- IFN, interferon
- IL, interleukin
- IL18-BP, interleukin 18-binding protein
- Mucosal Innate and Adaptive Immunity
- Roferon
- T-bet, T box expressed in T cells
- Tc1, cytotoxic T cells type 1
- Th, T-helper
- YVAD-FMK, Tyr-Val-Ala-Asp(OMe)-fluoromethylketone
Collapse
Affiliation(s)
- Anne Jarry
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France,Correspondence Address correspondence to: Anne Jarry, PhD, or Céline Bossard, MD, PhD, EA4273 Biometadys, Faculté de Médecine, 1 Rue Gaston Veil, 44035 Nantes Cedex 1, France. fax: (33) 2-40-08-47-02.EA4273 Biometadys, Faculté de Médecine1 Rue Gaston Veil, 44035 Nantes Cedex 1France
| | - Florent Malard
- Center for Research in Transplantation and Immunology, INSERM UMR1064, Nantes, France,Service d’Hématologie Clinique, Centre Hospitalo-Universitaire de Nantes, Nantes, France,Centre de Recherche Saint-Antoine, INSERM UMR 938, Paris, France,Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Chantal Bou-Hanna
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France
| | - Guillaume Meurette
- Clinique de Chirurgie Digestive et Endocrinienne, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine, INSERM UMR 938, Paris, France,Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean-François Mosnier
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France,Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Christian L. Laboisse
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France,Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Céline Bossard
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France,Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalo-Universitaire de Nantes, Nantes, France,Correspondence Address correspondence to: Anne Jarry, PhD, or Céline Bossard, MD, PhD, EA4273 Biometadys, Faculté de Médecine, 1 Rue Gaston Veil, 44035 Nantes Cedex 1, France. fax: (33) 2-40-08-47-02.EA4273 Biometadys, Faculté de Médecine1 Rue Gaston Veil, 44035 Nantes Cedex 1France
| |
Collapse
|
22
|
Freudenberg MA, Kalis C, Chvatchko Y, Merlin T, Gumenscheimer M, Galanos C. Role of interferons in LPS hypersensitivity. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090050601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The innate immune response to Gram-negative bacteria depends mainly on the ability of the host to respond to the LPS component. Consequently, the state of LPS sensitivity at the time of infection and the numbers of invading bacteria ( i.e. the amounts of LPS) are primary factors determining the innate responses provoked by Gram-negative pathogens. LPS sensitivity increases following treatment of mice with live or killed micro-organisms. Two types of sensitization have been recognized, strong, IFN-γ-dependent and moderate IFN-γ-independent. IL-12 and IL-18 are intimately involved in the induction of IFN-γ by bacteria. We showed that Gram-negative bacteria induce IFN-γ in mice also by an IFN-β-dependent pathway that requires IL-18 and is independent of IL-12 signaling. This pathway is STAT4 dependent, the activation of which is directly linked to IFN-β. Further, IFN-β can be replaced by IFN-α. While different components of Gram-negative bacteria induce IL-12 and IL-18, LPS seems to be the only component in these bacteria capable of inducing IFN-β. Therefore, the IFN-β pathway of IFN-γ induction, unlike the IL-12 pathway, proceeds only in LPS responder mice. The IFN-α/β-dependent pathway is expected to play a role whenever IFN-α or IFN-β, and IL-18 are produced concomitantly during infection.
Collapse
Affiliation(s)
| | | | - Yolande Chvatchko
- Serono Pharmaceutical Research Institute, Plan-les-Ouates, Geneva, Switzerland
| | - Thomas Merlin
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | - Chris Galanos
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| |
Collapse
|
23
|
Uchiyama S, Keller N, Schlaepfer E, Grube C, Schuepbach RA, Speck RF, Zinkernagel AS. Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia. J Infect Dis 2016; 214:321-8. [PMID: 27338768 DOI: 10.1093/infdis/jiw157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. METHODS To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. RESULTS We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. CONCLUSIONS These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α.
Collapse
Affiliation(s)
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Reto A Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsα in CD11b⁺ DCs. Mucosal Immunol 2015; 8:815-27. [PMID: 25425266 DOI: 10.1038/mi.2014.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/06/2014] [Indexed: 02/04/2023]
Abstract
Despite an extensive literature on the mechanism of action of cholera toxin (CT), we still lack critical information about how the toxin acts as an adjuvant and, especially, which dendritic cells (DCs) are the target cells. Although a T helper type 2 (Th2)-skewing effect of CT is most commonly reported, effective priming of Th17 cells as well as suppression of Th1 responses are well documented. However, the ability of CT to block interferon regulatory factor 8 (IRF8) function and interleukin (IL)-12 production in DCs, which blocks CD8α DC and Th1 cell development, is inconsistent with priming of Th1 and CD8 T cells in many other reports. This prompted us to investigate the adjuvant effect of CT in wild-type, IL-12p40-/-, Batf3-/-, and IL-17A-/- mice and in mice that selectively lack the Gsα target protein for CT adenosine diphosphate (ADP)-ribosylation in DCs. We found that CT promoted Th1 priming independently of IL-12, and whereas Th2 and also Th17 responses were augmented, the gut IgA responses did not require IL-17A. Adjuvanticity was intact in Batf3-/- mice, lacking CD8α(+) DCs, but completely lost in mice with Gsα-deficient CD11c cells. Thus, our data demonstrate that the adjuvant effect requires Gsα expression in CD11b(+) DCs, and that priming of mucosal IgA and CD4 T cells appears unbiased and is independent of IL-12 and IL-17A.
Collapse
|
25
|
Gomez JC, Yamada M, Martin JR, Dang H, Brickey WJ, Bergmeier W, Dinauer MC, Doerschuk CM. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumonia. Am J Respir Cell Mol Biol 2015; 52:349-64. [PMID: 25100610 DOI: 10.1165/rcmb.2013-0316oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial pneumonia is a common public health problem associated with significant mortality, morbidity, and cost. Neutrophils are usually the earliest leukocytes to respond to bacteria in the lungs. Neutrophils rapidly sequester in the pulmonary microvasculature and migrate into the lung parenchyma and alveolar spaces, where they perform numerous effector functions for host defense. Previous studies showed that migrated neutrophils produce IFN-γ early during pneumonia induced by Streptococcus pneumoniae and that early production of IFN-γ regulates bacterial clearance. IFN-γ production by neutrophils requires Rac2, Hck/Lyn/Fgr Src family tyrosine kinases, and NADPH oxidase. Our current studies examined the mechanisms that regulate IFN-γ production by lung neutrophils during acute S. pneumoniae pneumonia in mice and its function. We demonstrate that IFN-γ production by neutrophils is a tightly regulated process that does not require IL-12. The adaptor molecule MyD88 is critical for IFN-γ production by neutrophils. The guanine nucleotide exchange factor CalDAG-GEFI modulates IFN-γ production. The CD11/CD18 complex, CD44, Toll-like receptors 2 and 4, TRIF, and Nrf2 are not required for IFN-γ production by neutrophils. The recently described neutrophil-dendritic cell hybrid cell, identified by its expression of Ly6G and CD11c, is present at low numbers in pneumonic lungs and is not a source of IFN-γ. IFN-γ produced by neutrophils early during acute S. pneumoniae pneumonia induces transcription of target genes in the lungs, which are critical for host defense. These studies underline the complexity of the neutrophil responses during pneumonia in the acute inflammatory response and in subsequent resolution or initiation of immune responses.
Collapse
Affiliation(s)
- John C Gomez
- 1 Center for Airways Disease, Department of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1890] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
27
|
Divangahi M, King IL, Pernet E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends Immunol 2015; 36:307-14. [PMID: 25843635 DOI: 10.1016/j.it.2015.03.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/24/2022]
Abstract
Globally, respiratory infections cause more than 4 million deaths per year, with influenza and tuberculosis (TB) in particular being major causes of mortality and morbidity. Although immune cell activation is critical for killing respiratory pathogens, this response must be tightly regulated to effectively control and eliminate invading microorganisms while minimizing immunopathology and maintaining pulmonary function. The distinct microenvironment of the lung is constantly patrolled by alveolar macrophages (Mφ), which are essential for tissue homeostasis, early pathogen recognition, initiation of the local immune response, and resolution of inflammation. Here, we focus on recent advances that have provided insight into the relation between pulmonary Mφ, type I interferon (IFN) signaling, and the delicate balance between protective and pathological immune responses in the lung.
Collapse
Affiliation(s)
- Maziar Divangahi
- Department of Medicine, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada; Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada.
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, McGill International TB Centre, McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
28
|
Cho H, Kelsall BL. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol Rev 2015; 260:145-67. [PMID: 24942688 DOI: 10.1111/imr.12195] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease. This review focuses on the role of type I IFNs in the intestine in health and disease and their emerging role as immune modulators. Clear understanding of type I IFN-mediated immune responses may provide avenues for fine-tuning existing IFN treatment for infection and intestinal inflammation.
Collapse
Affiliation(s)
- Hyeseon Cho
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
29
|
Bodduluru LN, Kasala ER, Madhana RMR, Sriram CS. Natural killer cells: the journey from puzzles in biology to treatment of cancer. Cancer Lett 2014; 357:454-67. [PMID: 25511743 DOI: 10.1016/j.canlet.2014.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
Abstract
Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations.
Collapse
Affiliation(s)
- Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Rajaram Mohan Rao Madhana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| |
Collapse
|
30
|
Maruyama S, Kanoh M, Matsumoto A, Kuwahara M, Yamashita M, Asano Y. A novel function of interferon regulatory factor-1: inhibition of Th2 cells by down-regulating the Il4 gene during Listeria infection. Int Immunol 2014; 27:143-52. [PMID: 25280793 DOI: 10.1093/intimm/dxu092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infection with certain pathogens induces a shift of the Th subset balance to a Th1 dominant state. This, in turn, results in the suppression of Th2 responses. We focused on the involvement of interferon regulatory factor-1 (IRF-1) in the suppression of Th2 cells during Listeria infection. We found that the inhibition of IL-4 production by Th2 cells is mediated by a soluble factor (LmSN) produced by Listeria-infected antigen-presenting cells. The inhibition is not observed with T cells from Irf1 gene-targeted mice. IRF-1 suppresses transcription of the Il4 gene in Th2 cells. Under the influence of the LmSN, IRF-1 binds to the 3' untranslated region (UTR) region of the Il4 gene and down-regulates Il4 gene transcription. Finally, we identified IL-1α and IL-1β as the mediator of the LmSN activity. Signaling through IL-1R induces the stabilization and/or nuclear translocation of IRF-1. We propose that IRF-1 functions to induce the T-cell subset shift via a novel mechanism. Under the influence of IL-1, IRF-1 translocates into the nucleus and acts on the 3'UTR region of the Il4 gene, thus inhibiting its transcription in Th2 cells. As a result, the immune system shifts predominantly to a Th1 response during Listeria infection, resulting in effective protection of the host.
Collapse
Affiliation(s)
- Saho Maruyama
- Department of Immunology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Makoto Kanoh
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan Translational Research Center, Ehime University Hospital, Toon, Ehime 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yoshihiro Asano
- Department of Immunology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
31
|
Topical resiquimod protects against visceral infection with Leishmania infantum chagasi in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1314-22. [PMID: 25030052 DOI: 10.1128/cvi.00338-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
New prevention and treatment strategies are needed for visceral leishmaniasis, particularly ones that can be deployed simply and inexpensively in areas where leishmaniasis is endemic. Synthetic molecules that activate Toll-like receptor 7 and 8 (TLR7/8) pathways have previously been demonstrated to enhance protection against cutaneous leishmaniasis. We initially sought to determine whether the TLR7/8-activating molecule resiquimod might serve as an effective vaccine adjuvant targeting visceral leishmaniasis caused by infection with Leishmania infantum chagasi. Resiquimod was topically applied to the skin of mice either prior to or after systemic infection with L. infantum chagasi, and parasite burdens were assessed. Surprisingly, topical resiquimod application alone, in the absence of vaccination, conferred robust resistance to mice against future intravenous challenge with virulent L. infantum chagasi. This protection against L. infantum chagasi infection persisted as long as 8 weeks after the final topical resiquimod treatment. In addition, in mice with existing infections, therapeutic treatment with topical resiquimod led to significantly lower visceral parasite loads. Resiquimod increased trafficking of leukocytes, including B cells, CD4(+) and CD8(+) T cells, dendritic cells, macrophages, and granulocytes, in livers and spleens, which are the key target organs of visceralizing infection. We conclude that topical resiquimod leads to systemic immune modulation and confers durable protection against visceralizing L. infantum chagasi infection, in both prophylactic and therapeutic settings. These studies support continued studies of TLR-modulating agents to determine mechanisms of protection and also provide a rationale for translational development of a critically needed, novel class of topical, preventative, and therapeutic agents for these lethal infections.
Collapse
|
32
|
IL-18, but not IL-12, induces production of IFN-γ in the immunosuppressive environment of HPV16 E7 transgenic hyperplastic skin. J Invest Dermatol 2014; 134:2562-2569. [PMID: 24756108 PMCID: PMC4165718 DOI: 10.1038/jid.2014.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
IFN-γ plays a central role in the defense against infections and cancer. More recently, however, IFN-γ has also been reported to have immunosuppressive effects in models of autoimmune disease, melanoma and premalignant skin disease. While IL-12 and IL-18 are critical inducers of IFN-γ during infection, the mechanisms that induce IFN-γ in an immunosuppressive context are unknown. Previously, we identified a key role for IFN-γ in mediating the suppression of antigen-specific immune responses in a transgenic mouse model of HPV-associated epidermal hyperplasia, driven by expression of the HPV16 E7 oncoprotein from a keratin 14 promoter (K14E7). We now demonstrate elevated production of IFN-γ, IL-18 and IL-12 by K14E7 transgenic compared to non-transgenic skin. IFN-γ in K14E7 transgenic skin was produced predominantly by CD8+ and CD4+ T cells, which were present in greater number in K14E7 transgenic skin. Production of IFN-γ in K14E7 skin required IL-18 but not IL-12. Our findings show that IL-18 contributes to inducing IFN-γ in an immunosuppressive cutaneous environment caused by viral oncogene-driven hyperplasia.
Collapse
|
33
|
Effects of microRNA-21 on the interleukin 12/signal transducer and activator of transcription 4 signaling pathway in asthmatic mice. Cent Eur J Immunol 2014; 39:40-5. [PMID: 26155098 PMCID: PMC4439986 DOI: 10.5114/ceji.2014.42121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/10/2014] [Indexed: 01/04/2023] Open
Abstract
Objective To study the effect of microRNA-21 (miRNA-21) on the regulation of the interleukin 12 (IL-12)/signal transducer and activator of transcription 4 (STAT4) pathway in the lung tissue of asthmatic mice. Material and methods Forty five male C57BL/6 mice were randomly divided into three groups of 15 mice each: normal control, asthmatic model, and dexamethasone. Our mouse model of allergic asathma was established using OVA sensitization and challenge. Hematoxylin and eosin staining was performed to observe the pathological changes in lung tissue morphology. Both the total cell number and the amount of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) were manually counted. The expression of miRNA-21 was detected by real time quantitative PCR. The expression levels of IL-12 and STAT4 in lung tissue were assayed via western blot, and immunohistochemistry was used to observe the distribution of their expression. Results The expression levels of miRNA-21 as well as the total number of BALF cells and EOS were significantly higher in the asthmatic model group than in the control or dexamethasone groups, with significantly higher amounts found in the dexamethasone group than in the control group. The expression levels of IL-12 and STAT4 proteins were lower in the asthmatic model group than in the control and dexamethasone groups, with a significantly lower expression of IL-12 and STAT4 in the dexamethasone group than in the control group. Conclusions The expression level of miRNA-21 was significantly increased and the expression level of IL-12 and STAT4 proteins was significantly decreased in allergic asthmatic mice compared with normal control mice. These findings suggest a role for miRNA-21 and the IL-12/STAT4 pathway in the development of allergic asthma.
Collapse
|
34
|
Wlodarczyk A, Løbner M, Cédile O, Owens T. Comparison of microglia and infiltrating CD11c⁺ cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation 2014; 11:57. [PMID: 24666681 PMCID: PMC3987647 DOI: 10.1186/1742-2094-11-57] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/09/2014] [Indexed: 12/25/2022] Open
Abstract
Background Tissue-resident antigen-presenting cells (APC) exert a major influence on the local immune environment. Microglia are resident myeloid cells in the central nervous system (CNS), deriving from early post-embryonic precursors, distinct from adult hematopoietic lineages. Dendritic cells (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. Methods In this work we compared the antigen presenting capacity of CD11c+ and CD11c− microglia subsets with infiltrating CD11c+ APC, which include DC. The microglial subpopulations (CD11c− CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. Results The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD80 and CD86 as those expressed by CD11c+ cells infiltrating from blood. CD11c+ microglia differed significantly from blood-derived CD11c+ cells in their cytokine profile, expressing no detectable IL-6, IL-12 or IL-23, and low levels of IL-1β. By contrast, CD11c− microglia expressed low but detectable levels of all these cytokines. Transforming growth factor β expression was similar in all three populations. Although CNS-resident and blood-derived CD11c+ cells showed equivalent ability to induce proliferation of myelin oligodendrocyte glycoprotein-immunised CD4+ T cells, CD11c+ microglia induced lower levels of T helper (Th)1 and Th17 cytokines, and did not induce Th2 cytokines. Conclusions Our findings show distinct subtypes of APC in the inflamed CNS, with a hierarchy of functional competence for induction of CD4+ T cell responses.
Collapse
Affiliation(s)
| | | | | | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, J,B, Winsløwsvej 25, Odense, DK 5000, Denmark.
| |
Collapse
|
35
|
Furuya Y, Müllbacher A. Type I IFN exhaustion is a host defence protecting against secondary bacterial infections. Scand J Immunol 2013; 78:395-400. [PMID: 24006947 PMCID: PMC7169485 DOI: 10.1111/sji.12107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/28/2013] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFN-I) have been known for decades for their indispensable role in curtailing viral infections. It is, however, now also increasingly recognized that IFN-I is detrimental to the host in combating a number of bacterial infections. We have previously reported that viral infections induce partial lymphocyte activation, characterized by significant increases in the cell surface expression of CD69 and CD86, but not CD25. This systemic partial activation of lymphocytes, mediated by IFN-I, is rapid and is followed by a period of IFN-I unresponsiveness. Here we propose that IFN-I exhaustion that occurs soon after a primary viral infection may be a host response protecting it from secondary bacterial infections.
Collapse
Affiliation(s)
- Y. Furuya
- Department of Emerging Pathogens and VaccinesJohn Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - A. Müllbacher
- Department of ImmunologyJohn Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
36
|
Schwerk J, Köster M, Hauser H, Rohde M, Fulde M, Hornef MW, May T. Generation of mouse small intestinal epithelial cell lines that allow the analysis of specific innate immune functions. PLoS One 2013; 8:e72700. [PMID: 23940817 PMCID: PMC3734307 DOI: 10.1371/journal.pone.0072700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Fulde
- Institute of Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Mathias W. Hornef
- Institute of Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
37
|
Hwang I, Scott JM, Kakarla T, Duriancik DM, Choi S, Cho C, Lee T, Park H, French AR, Beli E, Gardner E, Kim S. Activation mechanisms of natural killer cells during influenza virus infection. PLoS One 2012; 7:e51858. [PMID: 23300570 PMCID: PMC3534084 DOI: 10.1371/journal.pone.0051858] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
During early viral infection, activation of natural killer (NK) cells elicits the effector functions of target cell lysis and cytokine production. However, the cellular and molecular mechanisms leading to NK cell activation during viral infections are incompletely understood. In this study, using a model of acute viral infection, we investigated the mechanisms controlling cytotoxic activity and cytokine production in response to influenza (flu) virus. Analysis of cytokine receptor deficient mice demonstrated that type I interferons (IFNs), but not IL-12 or IL-18, were critical for the NK cell expression of both IFN-γ and granzyme B in response to flu infection. Further, adoptive transfer experiments revealed that NK cell activation was mediated by type I IFNs acting directly on NK cells. Analysis of signal transduction molecules showed that during flu infection, STAT1 activation in NK cells was completely dependent on direct type I IFN signaling, whereas STAT4 activation was only partially dependent. In addition, granzyme B induction in NK cells was mediated by signaling primarily through STAT1, but not STAT4, while IFN-γ production was mediated by signaling through STAT4, but not STAT1. Therefore, our findings demonstrate the importance of direct action of type I IFNs on NK cells to mount effective NK cell responses in the context of flu infection and delineate NK cell signaling pathways responsible for controlling cytotoxic activity and cytokine production.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cytokines/metabolism
- Female
- Flow Cytometry
- Humans
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon-gamma/metabolism
- Interleukin-12/metabolism
- Interleukin-18/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Orthomyxoviridae/immunology
- Receptors, Interleukin-12/physiology
- Receptors, Interleukin-18/physiology
- STAT1 Transcription Factor/physiology
- STAT4 Transcription Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Ilwoong Hwang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeannine M. Scott
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Tejaswi Kakarla
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Seohyun Choi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Chunghwan Cho
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Taehyung Lee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Hyojin Park
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Anthony R. French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eleni Beli
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, United States of America
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gomes MTR, Campos PC, de Almeida LA, Oliveira FS, Costa MMS, Marim FM, Pereira GSM, Oliveira SC. The role of innate immune signals in immunity to Brucella abortus. Front Cell Infect Microbiol 2012; 2:130. [PMID: 23112959 PMCID: PMC3480720 DOI: 10.3389/fcimb.2012.00130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/18/2023] Open
Abstract
Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, MG, Brazil
| |
Collapse
|
39
|
Kaplan A, Ma J, Kyme P, Wolf AJ, Becker CA, Tseng CW, Liu GY, Underhill DM. Failure to induce IFN-β production during Staphylococcus aureus infection contributes to pathogenicity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4537-45. [PMID: 23008447 DOI: 10.4049/jimmunol.1201111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The importance of type I IFNs in the host response to viral infection is well established; however, their role in bacterial infection is not fully understood. Several bacteria (both Gram-positive and -negative) have been shown to induce IFN-β production in myeloid cells, but this IFN-β is not always beneficial to the host. We examined whether Staphylococcus aureus induces IFN-β from myeloid phagocytes, and if so, whether it is helpful or harmful to the host to do so. We found that S. aureus poorly induces IFN-β production compared with other bacteria. S. aureus is highly resistant to degradation in the phagosome because it is resistant to lysozyme. Using a mutant that is more sensitive to lysozyme, we show that phagosomal degradation and release of intracellular ligands is essential for induction of IFN-β and inflammatory chemokines downstream of IFN-β. Further, we found that adding exogenous IFN-β during S. aureus infection (in vitro and in vivo) was protective. Together, the data demonstrate that failure to induce IFN-β production during S. aureus infection contributes to pathogenicity.
Collapse
Affiliation(s)
- Amber Kaplan
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Host susceptibility to Brucella abortus infection is more pronounced in IFN-γ knockout than IL-12/β2-microglobulin double-deficient mice. Clin Dev Immunol 2011; 2012:589494. [PMID: 22194770 PMCID: PMC3238360 DOI: 10.1155/2012/589494] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022]
Abstract
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies.
Collapse
|
41
|
Brzoza-Lewis KL, Hoth JJ, Hiltbold EM. Type I interferon signaling regulates the composition of inflammatory infiltrates upon infection with Listeria monocytogenes. Cell Immunol 2011; 273:41-51. [PMID: 22212606 DOI: 10.1016/j.cellimm.2011.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/01/2011] [Accepted: 11/20/2011] [Indexed: 12/24/2022]
Abstract
Type I IFN is key to the immune response to viral pathogens, however its role in bacterial infections is less well understood. Mice lacking the type I IFN receptor (IFNAR-/-) demonstrate enhanced resistance to infection with Listeriamonocytogenes. We have now determined that following infection with Listeria, the composition of innate cells recruited to the peritoneal cavity of IFNAR-/- mice reflects an increase in the frequency of neutrophils and a decrease in monocyte frequency compared to WT controls. These differences in inflammatory infiltrates could not be attributed to distinct bone marrow composition prior to infection or to level of apoptosis. We also observed no differences in neutrophil oxidative burst. However, blocking CXCR2 prevented enhanced neutrophil influx and hampered bacterial clearance. Taken together, these studies highlight a novel mechanism by which type I interferon signaling regulates the immune response to Listeria, through negative regulation of chemokines driving neutrophil recruitment.
Collapse
Affiliation(s)
- Kristina L Brzoza-Lewis
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Winston-Salem, NC 27157, United States
| | | | | |
Collapse
|
42
|
Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. THE JOURNAL OF IMMUNOLOGY 2011; 187:2595-601. [PMID: 21813776 DOI: 10.4049/jimmunol.1100088] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclic-di-GMP and cyclic-di-AMP are second messengers produced by bacteria and influence bacterial cell survival, differentiation, colonization, biofilm formation, virulence, and bacteria-host interactions. In this study, we show that in both RAW264.7 macrophage cells and primary bone marrow-derived macrophages, the production of IFN-β and IL-6, but not TNF, in response to cyclic-di-AMP and cyclic-di-GMP requires MPYS (also known as STING, MITA, and TMEM173). Furthermore, expression of MPYS was required for IFN response factor 3 but not NF-κB activation in response to these bacterial metabolites. We also confirm that MPYS is required for type I IFN production by cultured macrophages infected with the intracellular pathogens Listeria monocytogenes and Francisella tularensis. However, during systemic infection with either pathogen, MPYS deficiency did not impact bacterial burdens in infected spleens. Serum IFN-β and IL-6 concentrations in the infected control and MPYS(-/-) mice were also similar at 24 h postinfection, suggesting that these pathogens stimulate MPYS-independent cytokine production during in vivo infection. Our findings indicate that bifurcating MPYS-dependent and -independent pathways mediate sensing of cytosolic bacterial infections.
Collapse
Affiliation(s)
- Lei Jin
- Integrated Department of Immunology, University of Colorado Denver School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dresing P, Borkens S, Kocur M, Kropp S, Scheu S. A fluorescence reporter model defines "Tip-DCs" as the cellular source of interferon β in murine listeriosis. PLoS One 2010; 5:e15567. [PMID: 21179567 PMCID: PMC3002951 DOI: 10.1371/journal.pone.0015567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/12/2010] [Indexed: 12/24/2022] Open
Abstract
Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ.
Collapse
Affiliation(s)
- Philipp Dresing
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
44
|
Abstract
Although the role of type I interferon (IFN) in the protection against viral infections has been known and studied for decades, its role in other immunologically relevant scenarios, including bacterial infections, shock, autoimmunity, and cancer, is less well defined and potentially much more complicated.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
45
|
Richer E, Prendergast C, Zhang DE, Qureshi ST, Vidal SM, Malo D. N-ethyl-N-nitrosourea-induced mutation in ubiquitin-specific peptidase 18 causes hyperactivation of IFN-αß signaling and suppresses STAT4-induced IFN-γ production, resulting in increased susceptibility to Salmonella typhimurium. THE JOURNAL OF IMMUNOLOGY 2010; 185:3593-601. [PMID: 20693420 DOI: 10.4049/jimmunol.1000890] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To deepen our knowledge of the natural host response to pathogens, our team undertook an in vivo screen of mutagenized 129S1 mice with Salmonella Typhimurium. One mutation affecting Salmonella susceptibility was mapped to a region of 1.3 Mb on chromosome 6 that contains 15 protein-coding genes. A missense mutation was identified in the Usp18 (ubiquitin-specific peptidase 18) gene. This mutation results in an increased inflammatory response (IL-6, type 1 IFN) to Salmonella and LPS challenge while paradoxically reducing IFN-gamma production during bacterial infection. Increased STAT1 phosphorylation correlated with impaired STAT4 phosphorylation, resulting in overwhelming IL-6 secretion but reduced IFN-gamma production during infection. The reduced IFN-gamma levels, along with the increased inflammation, rationalize the S. Typhimurium susceptibility in terms of increased bacterial load in target organs and cytokine-induced septic shock and death.
Collapse
Affiliation(s)
- Etienne Richer
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Initially described as effectors of natural cytotoxicity and critical players for the control of viral infections and tumor growth, recent investigations unraveled more widespread functions for the natural killer (NK) cells. Through the establishment of a crosstalk with dendritic cells, NK cells promote T helper-1- and cytotoxic T lymphocyte-mediated immunity, whereas through the establishment of a crosstalk with macrophages, NK cells contribute to the activation of their microbicidal functions. Recent evidence has shown that NK cells also display memory, a characteristic thought to be privative of T and B cells, and that NK cells acquire their mature phenotype during a complex ontogeny program which tunes their activation threshold. Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance, and memory. Cytokines such as interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and type I interferons constitute pivotal factors involved in the maturation, activation, and survival of NK cells. In addition, the discovery of novel cytokines is increasing the spectrum of soluble mediators that regulate NK cell immunobiology. In this review, we summarize and integrate novel concepts about the role of different cytokines in the regulation of NK cell function. We believe that a full understanding of how NK cells become activated and develop their effector functions in response to cytokines and other stimuli may lead to the development of novel immunotherapeutic strategies for the treatment of different types of cancer, viral infections, and chronic autoimmune diseases.
Collapse
|
47
|
Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria. Proc Natl Acad Sci U S A 2010; 107:8748-53. [PMID: 20421474 DOI: 10.1073/pnas.0912551107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-beta. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses.
Collapse
|
48
|
Okubo T, Washida K, Murakami A. Phenethyl isothiocyanate suppresses nitric oxide productionviainhibition of phosphoinositide 3-kinase/Akt-induced IFN-γ secretion in LPS-activated peritoneal macrophages. Mol Nutr Food Res 2010; 54:1351-60. [DOI: 10.1002/mnfr.200900318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Prchal M, Pilz A, Simma O, Lingnau K, von Gabain A, Strobl B, Müller M, Decker T. Type I interferons as mediators of immune adjuvants for T- and B cell-dependent acquired immunity. Vaccine 2010; 27 Suppl 6:G17-20. [PMID: 20006134 DOI: 10.1016/j.vaccine.2009.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 12/30/2022]
Abstract
Originally identified as antiviral substances produced by infected cells, type I interferons (IFN-I) are now known to have a wide range of additional activities within both the innate and adaptive immune response. Here we review properties of IFN-I contributing to their 'natural immune adjuvant' character, and their important role for the function of complete Freund's adjuvant (CFA) and the TLR9-dependent immune adjuvant IC31. We show data to demonstrate that treatment with IFN-I boosts the ability of vaccine/adjuvant combinations to induce peptide-specific CTL in both young and old mice. We view these findings in the perspective of previous clinical applications of IFN-I for vaccination.
Collapse
Affiliation(s)
- Michaela Prchal
- Department of Pharmacology, Medical University of Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Buxbaum LU. Type I IFNs promote the early IFN-gamma response and the IL-10 response in Leishmania mexicana infection. Parasite Immunol 2010; 32:153-60. [PMID: 20070829 DOI: 10.1111/j.1365-3024.2009.01167.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The protozoan parasite Leishmania mexicana causes chronic cutaneous disease in humans and most mouse strains. We previously showed that STAT4-deficient mice, but not IL-12p40-deficient mice, have more parasites and progressively growing lesions unlike those of wild-type mice, the lesions and parasite burdens of which plateau by 10-12 weeks post-infection. This demonstrates a STAT4-dependent, IL-12/IL-23-independent pathway of parasite control. Type I IFNs are important in viral and other infections and can activate STAT4. We found that IFN-alpha/betaR-deficient mice have a nonpersistent, early IFN-gamma defect, and a persistent, early IL-10 defect, without changes in serum IL-12 or LN-derived nitric oxide. We found less IL-10 per cell in CD25+CD4+ T cells and possibly fewer IL-10-producing cells in the draining LN of IFN-alpha/betaR-deficient vs. wild-type mice. IFN-alpha/betaR-deficient mice have chronic, nonprogressive disease, like wild-type mice, suggesting that IL-10 and IFN-gamma defects may balance each other. Our data indicate that although type I IFNs help promote early Th1 responses, they are not the missing activators of STAT4 responsible for partial control of L. mexicana. Also, the lack of lesion resolution in IFN-alpha/betaR-deficient mice despite lower IL-10 levels indicates that other pathways independent of T cell IL-10 help prevent an IL-12-driven clearance of parasites.
Collapse
Affiliation(s)
- L U Buxbaum
- VA Medical Center, Philadelphia, PA 19104-6073, USA.
| |
Collapse
|