1
|
Mahyari E, Boggy GJ, McElfresh GW, Kaza M, Benjamin S, Varco-Merth B, Ojha S, Feltham S, Goodwin W, Nkoy C, Duell D, Selseth A, Bennett T, Barber-Axthelm A, Smedley JV, Labriola CS, Axthelm MK, Reeves RK, Okoye AA, Hansen SG, Picker LJ, Bimber BN. Enhanced interpretation of immune cell phenotype and function through a rhesus macaque single-cell atlas. CELL GENOMICS 2025; 5:100849. [PMID: 40233746 DOI: 10.1016/j.xgen.2025.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) allows cell classification using genome-wide transcriptional state; however, high-dimensional transcriptomic profiles, and the unsupervised analyses employed to interpret them, provide a systematically different view of biology than well-established functional/lineage definitions of immunocytes. Understanding these differences and limits is essential for accurate interpretation of these rich data. We present the Rhesus Immune Reference Atlas (RIRA), the first immune-focused macaque single-cell multi-tissue atlas. We contrasted transcriptional profiles against immune lineages, using surface protein and marker genes as ground truth. While the pattern of clustering can align with cell type, this is not always true. Especially within T and natural killer (NK) cells, many functionally distinct subsets lack defining markers, and strong shared expression programs, such as cytotoxicity, result in systematic intermingling by unsupervised clustering. We identified gene programs with high discriminatory/diagnostic value, including multi-gene signatures that model T/NK cell maturation. Directly measuring these diagnostic programs complements unsupervised analyses.
Collapse
Affiliation(s)
- Eisa Mahyari
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gregory J Boggy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - G W McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Maanasa Kaza
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sebastian Benjamin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin Varco-Merth
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shana Feltham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - William Goodwin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Candice Nkoy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Derick Duell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrea Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tyler Bennett
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Caralyn S Labriola
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Afam A Okoye
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
2
|
Song Y, Cui Y, Zhong Y, Wang Y, Zheng X. Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks. J Biotechnol 2025; 399:81-90. [PMID: 39826698 DOI: 10.1016/j.jbiotec.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Modern management of chicks hinders the vertical transmission of intestinal microbiota, which is closely related to immunity. Inulin is a substrate that can be utilized by the microbiota. This study aimed to determine whether fecal microbiota transplantation (FMT) combined with inulin played a "1 + 1 > 2" role in enhancing the development and function of immune organs. Chicks were treated with 1 % inulin and/or fecal microbiota suspension on days 1-6. The growth performance, immune organ development, and immune indicators were evaluated on days 7, 14, and 21. Results showed that the combination of FMT and inulin significantly increased the immune organ index on day 7 and promoted the morphological structure and the expression of proliferating cell nuclear antigen (PCNA) in immune organs on days 7, 14, and 21. Each treatment increased the gene expression of interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-2 (IL-2), B cell-activating factor receptor (BAFFR), B cell linker (BLNK), C-X-C Motif Chemokine Ligand 12 (CXCL12), C-X-C Motif Chemokine Receptor 4 (CXCR4), and Biotin (Bu-1) to varying degrees. FMT combined with inulin significantly increased the expression of IgA-positive cells on days 7 and 14. In conclusion, the synergistic effect of FMT and inulin had beneficial impacts on the development and function of immune organs.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China.
| |
Collapse
|
3
|
Song Y, Cui Y, Wang Y, Wang T, Zhong Y, Liu J, Zheng X. The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks. Sci Rep 2024; 14:16973. [PMID: 39043769 PMCID: PMC11266578 DOI: 10.1038/s41598-024-67881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Our previous research found that fecal microbiota transplantation (FMT) and inulin synergistically affected the intestinal barrier and immune system function in chicks. However, does it promote the early immunity of the poultry gut-associated lymphoid tissue (GALT)? How does it regulate the immunity? We evaluated immune-related indicators in the serum, cecal tonsil, and intestine to determine whether FMT synergistic inulin had a stronger impact on gut health and which gene expression regulation was affected. The results showed that FMT synergistic inulin increased TGF-β secretion and intestinal goblet cell number and MUC2 expression on day 14. Expression of BAFFR, PAX5, CXCL12, and IL-2 on day 7 and expression of CXCR4 and IL-2 on day 14 in the cecal tonsils significantly increased. The transcriptome indicated that CD28 and CTLA4 were important regulatory factors in intestinal immunity. Correlation analysis showed that differential genes were related to the immunity and development of the gut and cecal tonsil. FMT synergistic inulin promoted the development of GALT, which improved the early-stage immunity of the intestine by regulating CD28 and CTLA4. This provided new measures for replacing antibiotic use and reducing the use of therapeutic drugs while laying a technical foundation for achieving anti-antibiotic production of poultry products.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China.
| |
Collapse
|
4
|
Jo A, Jeong D, Eum HH, Kim N, Na M, Kang H, Lee HO. CTLA-4 inhibition facilitates follicular T and B cell interaction and the production of tumor-specific antibodies. Int J Cancer 2023; 152:1964-1976. [PMID: 36650700 DOI: 10.1002/ijc.34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Immune checkpoint inhibitors (ICIs) induce activation and expansion of cytotoxic T cells. To depict a comprehensive immune cell landscape reshaped by the CTLA-4 checkpoint inhibitor, we performed single-cell RNA sequencing in a mouse syngeneic tumor transplant model. After CTLA-4 inhibition, tumor regression was accompanied by massive immune cell expansion, especially in T and B cells. We found that B cells in tumor transplant represented follicular, germinal center and plasma B cells, some of which shared identical B cell receptor clonotypes and possessed tumor reactivity. Furthermore, the posttreatment tumor contained a tertiary lymphoid-like structure with intermingled T and B cells. These data suggest germinal center formation within the tumor mass and in situ differentiation of tumor-specific plasma cells. Taken together, our data provide a panoramic view of the immune microenvironment after CTLA-4 inhibition and suggest a role for tumor-specific B cells in antitumor immunity.
Collapse
Affiliation(s)
- Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Dasom Jeong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
5
|
Venturutti L, Rivas MA, Pelzer BW, Flümann R, Hansen J, Karagiannidis I, Xia M, McNally DR, Isshiki Y, Lytle A, Teater M, Chin CR, Meydan C, Knittel G, Ricker E, Mason CE, Ye X, Pan-Hammarström Q, Steidl C, Scott DW, Reinhardt HC, Pernis AB, Béguelin W, Melnick AM. An Aged/Autoimmune B-cell Program Defines the Early Transformation of Extranodal Lymphomas. Cancer Discov 2023; 13:216-243. [PMID: 36264161 PMCID: PMC9839622 DOI: 10.1158/2159-8290.cd-22-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leandro Venturutti
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| | - Martin A. Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benedikt W. Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne D-50937, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan R. McNally
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher R. Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada., Department of Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| |
Collapse
|
6
|
Maitre E, Cornet E, Debliquis A, Drenou B, Gravey F, Chollet D, Cheze S, Docquier M, Troussard X, Matthes T. Hairy cell leukemia: a specific 17-gene expression signature points to new targets for therapy. J Cancer Res Clin Oncol 2022; 148:2013-2022. [PMID: 35476232 PMCID: PMC9293816 DOI: 10.1007/s00432-022-04010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hairy cell leukemia (HCL) is a rare chronic B cell malignancy, characterized by infiltration of bone marrow, blood and spleen by typical "hairy cells" that bear the BRAFV600E mutation. However, in addition to the intrinsic activation of the MAP kinase pathway as a consequence of the BRAFV600E mutation, the potential participation of other signaling pathways to the pathophysiology of the disease remains unclear as the precise origin of the malignant hairy B cells. MATERIALS AND METHODS Using mRNA gene expression profiling based on the Nanostring technology and the analysis of 290 genes with crucial roles in B cell lymphomas, we defined a 17 gene expression signature specific for HCL. RESULTS Separate analysis of samples from classical and variant forms of hairy cell leukemia showed almost similar mRNA expression profiles apart from overexpression in vHCL of the immune checkpoints CD274 and PDCD1LG2 and underexpression of FAS. Our results point to a post-germinal memory B cell origin and in some samples to the activation of the non-canonical NF-κB pathway. CONCLUSIONS This study provides a better understanding of the pathogenesis of HCL and describes new and potential targets for treatment approaches and guidance for studies in the molecular mechanisms of HCL.
Collapse
Affiliation(s)
- Elsa Maitre
- Normandie University, UNIROUEN, UNICAEN, INSERM1245, MICAH, Avenue de la côte de Nacre, 14033, Caen, France
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
| | - Edouard Cornet
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
| | - Agathe Debliquis
- Department of Haematology, Groupe Hospitalier de la Région Mulhouse Sud Alsace, 20 avenue du docteur René laennec, 68100, Mulhouse, France
| | - Bernard Drenou
- Department of Haematology, Groupe Hospitalier de la Région Mulhouse Sud Alsace, 20 avenue du docteur René laennec, 68100, Mulhouse, France
| | - François Gravey
- Normandie University, UNIROUEN, UNICAEN, GRAM2.0, Avenue de la côte de Nacre, 14033, Caen, France
| | - Didier Chollet
- iGE3 Genomics Platform, University Medical Center, Geneva University, 1211, Geneva, Switzerland
- Department of Genetics and Evolution, Sciences III, Geneva University, 1205, Geneva, Switzerland
| | - Stephane Cheze
- Hematology Institute, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen, France
| | - Mylène Docquier
- iGE3 Genomics Platform, University Medical Center, Geneva University, 1211, Geneva, Switzerland
- Department of Genetics and Evolution, Sciences III, Geneva University, 1205, Geneva, Switzerland
| | - Xavier Troussard
- Normandie University, UNIROUEN, UNICAEN, INSERM1245, MICAH, Avenue de la côte de Nacre, 14033, Caen, France
- Laboratory Hematology, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen cedex, France
- Hematology Institute, University Hospital Caen, Avenue de la Côte de Nacre, 14033, Caen, France
| | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
7
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
8
|
Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, Qin Z, Liao S, He J, Huang Q, Yu Z, Zeng Y, Guo B, Huang R, Yang R, Jiang Y, Liao J, Xiao Z, Zhan X, Lin C, Xu J, Ye Y, Ma J, Wei Q, Mo Z. Single-Cell Transcriptomics Reveals the Complexity of the Tumor Microenvironment of Treatment-Naive Osteosarcoma. Front Oncol 2021; 11:709210. [PMID: 34367994 PMCID: PMC8335545 DOI: 10.3389/fonc.2021.709210] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma (OS), which occurs most commonly in adolescents, is associated with a high degree of malignancy and poor prognosis. In order to develop an accurate treatment for OS, a deeper understanding of its complex tumor microenvironment (TME) is required. In the present study, tissues were isolated from six patients with OS, and then subjected to single-cell RNA sequencing (scRNA-seq) using a 10× Genomics platform. Multiplex immunofluorescence staining was subsequently used to validate the subsets identified by scRNA-seq. ScRNA-seq of six patients with OS was performed prior to neoadjuvant chemotherapy, and data were obtained on 29,278 cells. A total of nine major cell types were identified, and the single-cell transcriptional map of OS was subsequently revealed. Identified osteoblastic OS cells were divided into five subsets, and the subsets of those osteoblastic OS cells with significant prognostic correlation were determined using a deconvolution algorithm. Thereby, different transcription patterns in the cellular subtypes of osteoblastic OS cells were reported, and key transcription factors associated with survival prognosis were identified. Furthermore, the regulation of osteolysis by osteoblastic OS cells via receptor activator of nuclear factor kappa-B ligand was revealed. Furthermore, the role of osteoblastic OS cells in regulating angiogenesis through vascular endothelial growth factor-A was revealed. C3_TXNIP+ macrophages and C5_IFIT1+ macrophages were found to regulate regulatory T cells and participate in CD8+ T cell exhaustion, illustrating the possibility of immunotherapy that could target CD8+ T cells and macrophages. Our findings here show that the role of C1_osteoblastic OS cells in OS is to promote osteolysis and angiogenesis, and this is associated with survival prognosis. In addition, T cell depletion is an important feature of OS. More importantly, the present study provided a valuable resource for the in-depth study of the heterogeneity of the OS TME.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Dai
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaojie Qin
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Yu
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Binqian Guo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rong Huang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengming Xiao
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Ye
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, Wauters E, Pomella V, Verbandt S, Busschaert P, Bassez A, Franken A, Bempt MV, Xiong J, Weynand B, van Herck Y, Antoranz A, Bosisio FM, Thienpont B, Floris G, Vergote I, Smeets A, Tejpar S, Lambrechts D. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res 2020; 30:745-762. [PMID: 32561858 PMCID: PMC7608385 DOI: 10.1038/s41422-020-0355-0] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naïve CD4+ T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers.
Collapse
Affiliation(s)
- Junbin Qian
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Siel Olbrecht
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Boeckx
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Vos
- Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Emre Etlioglu
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Pneumology) and Leuven Lung Cancer Group, University Hospital KU Leuven, Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valentina Pomella
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Ayse Bassez
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marlies Vanden Bempt
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jieyi Xiong
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | | | - Asier Antoranz
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Francesca Maria Bosisio
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research and University Hospitals Leuven, Department of Pathology, KU Leuven-University of Leuven, B-3000, Leuven, Belgium
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Oncology, KU Leuven, Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium. .,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Jang E, Kim UK, Jang K, Song YS, Cha JY, Yi H, Youn J. Bach2 deficiency leads autoreactive B cells to produce IgG autoantibodies and induce lupus through a T cell-dependent extrafollicular pathway. Exp Mol Med 2019; 51:1-13. [PMID: 31819031 PMCID: PMC6901549 DOI: 10.1038/s12276-019-0352-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Class-switched IgG autoantibodies but not unswitched IgM autoantibodies play a crucial role in the development of systemic lupus erythematosus (SLE). Bach2 is known to be essential for class switch recombination of Ig genes, but recent genomic and clinical studies have suggested an association of Bach2 deficiency with SLE. This study was undertaken to examine the mechanism by which Bach2 regulates the development of SLE. Despite defects in Ig class switch recombination and germinal center formation when actively immunized, Bach2−/− mice spontaneously accumulated IgG autoantibody-secreting cells without germinal center reactions in a regulatory T cell-independent manner, and this phenomenon was accompanied by manifestations akin to SLE. Transcriptome analyses revealed that Bach2 regulated the expression of genes related to germinal center formation and SLE pathogenesis in B cells. B cell-specific deletion of Bach2 was sufficient to impair the development of germinal center B cells but insufficient to promote the production of IgG autoantibodies. Bach2 deficiency caused CD4+ T cells to overexpress Icos and differentiate into extrafollicular helper T cells in a cell-autonomous manner. These findings suggest that Bach2-deficient autoreactive B cells preferentially react at extrafollicular sites to give rise to IgG class-switched pathogenic plasma cells and that this effect requires the help of Bach2-Icoshi helper T cells. Thus, the cell-autonomous roles of Bach2 in B cells and in their cognate CD4+ T cells are required to maintain self-tolerance against SLE. Bach2, a protein that regulates gene expression, is required in the B cells and T cells of the immune system to protect against autoimmune disease. Bach2 deficiency has previously been associated with systemic lupus erythematosus (SLE), but the mechanisms through which it contributes to the development of an immune response against healthy tissue in many parts of the body were unclear. Jeehee Youn at Hanyang University in Seoul, South Korea, and colleagues showed that B cells from mice lacking Bach2 produce self-reactive antibodies and express SLE-related genes. Furthermore, when they specifically deleted Bach2 in T cells, they found that it triggered differentiation into a type of T cell which promoted the maturation of self-reactive B cells. The authors conclude that Bach2 activity in both B cells and T cells is key to maintaining immune self-tolerance.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Un Kyo Kim
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Young Soo Song
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21936, Korea
| | - Hansol Yi
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
11
|
Selheim F, Aasebø E, Ribas C, Aragay AM. An Overview on G Protein-coupled Receptor-induced Signal Transduction in Acute Myeloid Leukemia. Curr Med Chem 2019; 26:5293-5316. [PMID: 31032748 DOI: 10.2174/0929867326666190429153247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized by patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G Protein-coupled Receptors (GPCRs) are a large attractive drug-targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML. This review aims to identify the molecular players of GPCR signaling, focusing on the hematopoietic system, which are involved in AML to help developing novel drug targets and therapeutic strategies. METHODS We undertook an exhaustive and structured search of bibliographic databases for research focusing on GPCR, GPCR signaling and expression in AML. RESULTS AND CONCLUSION Many scientific reports were found with compelling evidence for the involvement of aberrant GPCR expression and perturbed GPCR-mediated signaling in the development of AML. The comprehensive analysis of GPCR in AML provides potential clinical biomarkers for prognostication, disease monitoring and therapeutic guidance. It will also help to provide marker panels for monitoring in AML. We conclude that GPCR-mediated signaling is contributing to leukemogenesis of AML, and postulate that mass spectrometrybased protein profiling of primary AML cells will accelerate the discovery of potential GPCR related biomarkers for AML.
Collapse
Affiliation(s)
- Frode Selheim
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain
| | - Anna M Aragay
- Departamento de Biologia Celular. Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Spanish National Research Council (CSIC), Baldiri i Reixac, 15, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Leptin: an unappreciated key player in SLE. Clin Rheumatol 2019; 39:305-317. [PMID: 31707542 DOI: 10.1007/s10067-019-04831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023]
Abstract
Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.
Collapse
|
13
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Transcription Factor T-bet in B Cells Modulates Germinal Center Polarization and Antibody Affinity Maturation in Response to Malaria. Cell Rep 2019; 29:2257-2269.e6. [DOI: 10.1016/j.celrep.2019.10.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/06/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
|
15
|
Ren J, Catalina MD, Eden K, Liao X, Read KA, Luo X, McMillan RP, Hulver MW, Jarpe M, Bachali P, Grammer AC, Lipsky PE, Reilly CM. Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation and Germinal Center Formation in a Model of Systemic Lupus Erythematosus. Front Immunol 2019; 10:2512. [PMID: 31708928 PMCID: PMC6823248 DOI: 10.3389/fimmu.2019.02512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle D Catalina
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kaitlin A Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, Waltham, MA, United States
| | | | - Amrie C Grammer
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E Lipsky
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
16
|
Sengupta M, Wang BD, Lee NH, Marx A, Kusner LL, Kaminski HJ. MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis. PLoS One 2018; 13:e0205464. [PMID: 30308012 PMCID: PMC6181382 DOI: 10.1371/journal.pone.0205464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A characteristic pathology of early onset myasthenia gravis is thymic hyperplasia with ectopic germinal centers (GC). However, the mechanisms that trigger and maintain thymic hyperplasia are poorly characterized. Dysregulation of small, non-coding microRNAs (miRNAs) and their target genes has been identified in the pathology of several autoimmune diseases. We assessed the miRNA and mRNA profiles of the MG thymus and have investigated their role in GC formation and maintenance. METHODS MG thymus samples were assessed by histology and grouped based upon the appearance of GC; GC positive and GC negative. A systems biology approach was used to study the differences between the groups. Our study included miRNA and mRNA profiling, quantitative real-time PCR validation, miRNA target identification, pathway analysis, miRNA-mRNA reciprocal expression pairing and interaction. RESULTS Thirty-eight mature miRNAs and forty-six annotated mRNA transcripts were differentially expressed between the two groups (>1.5 fold change, ANOVA p<0.05). The miRNAs were found to be involved in immune response pathways and identified in other autoimmune diseases. The cellular and molecular functions of the mRNAs showed involvement in cell death and cell survival, cellular proliferation, cytokine signaling and extra-cellular matrix reorganization. Eleven miRNA and mRNA pairs were reciprocally regulated. The Regulator of G protein Signalling 13 (RGS13), known to be involved in GC regulation, was identified in specimens with GC and was paired with downregulation of miR-452-5p and miR-139-5p. MiRNA target sites were validated by dual luciferase assay. Transfection of miRNA mimics led to down regulation of RGS13 expression in Raji cells. CONCLUSION Our study indicates a distinct miRNA and mRNA expression pattern in ectopic GC in MG thymus. These miRNAs and mRNAs are involved in regulatory pathways common to inflammation and immune response, cell cycle regulation and anti-apoptotic pathways suggesting their involvement in support of GC formation in the thymus. We demonstrate for the first time that miR-139-5p and miR-452-5p negatively regulate RGS13 expression.
Collapse
Affiliation(s)
- Manjistha Sengupta
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
| | - Alexander Marx
- University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Linda L. Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
17
|
McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS One 2018; 13:e0202135. [PMID: 30114200 PMCID: PMC6095528 DOI: 10.1371/journal.pone.0202135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine whether the expression of IL17A and CD21L genes in inflamed rheumatoid synovia is associated with the neogenesis of ectopic lymphoid follicle-like structures (ELS), and if this aids the stratification of rheumatoid inflammation and thereby distinguishes patients with rheumatoid arthritis that might be responsive to specific targeted biologic therapies. METHODS Expression of IL17A and CD21L genes was assessed by RT-PCR, qRT-PCR and dPCR in synovia from 54 patients with rheumatoid arthritis. A subset of synovia (n = 30) was assessed by immunohistology for the presence of CD20+ B-lymphocytes and size of CD20+ B-lymphocyte aggregates as indicated by maximum radial cell count. The molecular profiles of six IL17A+/CD21L+ and six IL17A-/CD21L- synovia were determined by complementary DNA microarray analysis. RESULTS By RT-PCR, 26% of synovia expressed IL17A and 52% expressed CD21L. This provided the basis for distinguishing four subgroups of rheumatoid synovia: IL17A+/CD21L+ (18.5% of synovia), IL17A+/CD21L- (7.5%), IL17A-/CD21L+ (33.3%) and IL17A-/CD21L- (40.7%). While the subgroups did not predict clinical outcome measures, comparisons between the synovial subgroups revealed the IL17A+/CD21L+ subgroup had significantly larger CD20+ B-lymphocyte aggregates (P = 0.007) and a gene expression profile skewed toward B-cell- and antibody-mediated immunity. In contrast, genes associated with bone and cartilage remodelling were prominent in IL17A-/CD21L- synovia. CONCLUSIONS Rheumatoid synovia can be subdivided on the basis of IL17A and CD21L gene expression. Ensuing molecular subgroups do not predict clinical outcome for patients but highlight high inflammation and the predominance of B-lymphocyte mediated mechanisms operating in IL17A+/CD21L+ synovia. This may provide a rationale for more refined therapeutic selection due to the distinct molecular profiles associated with IL17A+/CD21L+ and IL17A-/CD21L- rheumatoid synovia.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Melanie J. Millier
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Terence C. Doyle
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lisa K. Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Highton
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paul A. Hessian
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics 2018; 50:590-604. [PMID: 29702036 PMCID: PMC6139632 DOI: 10.1152/physiolgenomics.00037.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor signaling mechanisms are implicated in many aspects of cardiovascular control, and dysfunction of such signaling mechanisms is commonly associated with disease states. Investigators have identified a large number of regulator of G protein signaling (RGS) proteins that variously contribute to the modulation of intracellular second-messenger signaling kinetics. These many RGS proteins each interact with a specific set of second-messenger cascades and receptor types and exhibit tissue-specific expression patterns. Increasing evidence supports the contribution of RGS proteins, or their loss, in the pathogenesis of cardiovascular dysfunctions. This review summarizes the current understanding of the functional contributions of RGS proteins, particularly within the B/R4 family, in cardiovascular disorders of pregnancy including gestational hypertension, uterine artery dysfunction, and preeclampsia.
Collapse
Affiliation(s)
| | - Guorui Deng
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
- Obesity Education & Research Initiative, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
19
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
20
|
Balkhi MY, Willette-Brown J, Wittmann G, Hu Y. IKKα deficiency disrupts the development of marginal zone and follicular B cells. Genes Immun 2018; 20:224-233. [PMID: 29740197 DOI: 10.1038/s41435-018-0025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Only few genes have been confidently identified to be involved in the Follicular (FO) and Marginal Zone (MZ) B cell differentiation, migration, and retention in the periphery. Our group previously observed that IKKα kinase inactive mutant mice IKKαK44A/K44A have significantly lower number of MZ B cells whereas FO B cell numbers appeared relatively normal. Because kinase dead IKKα can retain some of its biological functions that may interfere in revealing its actual role in the MZ and FO B cell differentiation. Therefore, in the current study, we genetically deleted IKKα from the pro-B cell lineage that revealed novel functions of IKKα in the MZ and FO B lymphocyte development. The loss of IKKα produces a significant decline in the percentage of immature B lymphocytes, mature marginal zone B cells, and follicular B cells along with a severe disruption of splenic architecture of marginal and follicular zones. IKKα deficiency affect the recirculation of mature B cells through bone marrow. A transplant of IKKα knockout fetal liver cells into Rag-/- mice shows a significant reduction compared to control in the B cells recirculating through bone marrow. To reveal the genes important in the B cell migration, a high throughput gene expression analysis was performed on the IKKα deficient recirculating mature B cells (B220+IgMhi). That revealed significant changes in the expression of genes involved in the B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Taken together, this study demonstrates that IKKα forms a vial axis controlling the genes involved in MZ and FO B cell differentiation and migration.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Division of Hematology/Oncology, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Gabor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| |
Collapse
|
21
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
22
|
Li B, He X, Zhao Y, Bai D, Shiraigo W, Zhao Q, Manglai D. Regulatory pathway analysis of coat color genes in Mongolian horses. Hereditas 2017; 155:13. [PMID: 28974924 PMCID: PMC5622463 DOI: 10.1186/s41065-017-0048-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Studies on the molecular genetics of horse skin pigmentation have typically focused on very few genes and proteins. In this study, we used Illumina sequencing to determine the global gene expression profiles in horses with white-colored coats and those with black-colored coats, with the goal of identifying novel genes that could regulate horse coat color. RESULTS Genes encoding ribosomal-associated proteins were highly expressed in horse skin. We found a total of 231 unigenes that were differentially expressed between horses with white coats and horses with black coats; 119 were down-regulated, and 112 were up-regulated. Many of the up-regulated genes in black horses, such as genes related to tyrosine metabolism, may directly regulate dark coat color. Keratin genes, MIA family genes, fatty acid-related genes, and melanoma-associated genes were also differentially regulated, which suggests that they may play important roles in coat color formation. CONCLUSIONS These findings show that the transcription profiles from white and black horse skin provide useful information to understand the genetics underlying the control of skin melanin synthesis in horses, which may enhance our knowledge of human skin diseases, such as melanoma and albinism.
Collapse
Affiliation(s)
- Bei Li
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| | - Xiaolong He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, 010031 People’s Republic of China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| | - Wunierfu Shiraigo
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| | - Qinan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| | - Dugarjaviin Manglai
- College of Animal Science, Inner Mongolia Agricultural University, Huhhot, 010018 People’s Republic of China
| |
Collapse
|
23
|
Ayala VI, Deleage C, Trivett MT, Jain S, Coren LV, Breed MW, Kramer JA, Thomas JA, Estes JD, Lifson JD, Ott DE. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering. J Virol 2017; 91:e02507-16. [PMID: 28298605 PMCID: PMC5432868 DOI: 10.1128/jvi.02507-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Follicular helper CD4 T cells, TFH, residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8hCXCR5) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8hCXCR5 T cells were present throughout the follicles with some observed near infected TFH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication.IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, TFH, present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the TFH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on TFH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W Breed
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joshua A Kramer
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James A Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
24
|
Carreras J, Kikuti YY, Beà S, Miyaoka M, Hiraiwa S, Ikoma H, Nagao R, Tomita S, Martin-Garcia D, Salaverria I, Sato A, Ichiki A, Roncador G, Garcia JF, Ando K, Campo E, Nakamura N. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBC. Histopathology 2017; 70:595-621. [DOI: 10.1111/his.13106] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Joaquim Carreras
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Yara Y Kikuti
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sílvia Beà
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Masashi Miyaoka
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Shinichiro Hiraiwa
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Haruka Ikoma
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Ryoko Nagao
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - Sakura Tomita
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| | - David Martin-Garcia
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Itziar Salaverria
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Ai Sato
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Akifumi Ichiki
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Juan F Garcia
- Department of Pathology; MD Anderson Cancer Center Madrid; Madrid Spain
| | - Kiyoshi Ando
- Department of Hematology and Oncology; Tokai University; School of Medicine; Kanagawa Japan
| | - Elias Campo
- Hematopathology Unit; Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Naoya Nakamura
- Department of Pathology; Tokai University; School of Medicine; Kanagawa Japan
| |
Collapse
|
25
|
Druey KM. Emerging Roles of Regulators of G Protein Signaling (RGS) Proteins in the Immune System. Adv Immunol 2017; 136:315-351. [PMID: 28950950 DOI: 10.1016/bs.ai.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States.
| |
Collapse
|
26
|
Ayala VI, Trivett MT, Barsov EV, Jain S, Piatak M, Trubey CM, Alvord WG, Chertova E, Roser JD, Smedley J, Komin A, Keele BF, Ohlen C, Ott DE. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol 2016; 90:9942-9952. [PMID: 27558423 PMCID: PMC5068542 DOI: 10.1128/jvi.01522-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4+ T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus. IMPORTANCE The establishment of AIDS virus infection in an individual is essentially a race between the spreading virus and host immune defenses. Cell-mediated immune responses induced by infection or vaccination are important contributors in limiting viral replication. However, in human immunodeficiency virus (HIV)/SIV infection, the virus usually wins the race, irreversibly crippling the immune system before an effective cellular immune response is developed and active. We found that providing an accelerated response by adoptively transferring large numbers of antiviral T cells shortly after a high-dose mucosal inoculation, while not preventing infection altogether, limited the number of individual viruses transmitted. Thus, the presence of strong, preexisting T-cell responses, including those induced by vaccines, might prevent infection in humans, where the virus exposure is considerably lower.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- DMS Applied Information & Management Sciences, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Elena Chertova
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D Roser
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alexander Komin
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
27
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
28
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
29
|
Wang O, Liang G, McAllister TA, Plastow G, Stanford K, Selinger B, Guan LL. Comparative Transcriptomic Analysis of Rectal Tissue from Beef Steers Revealed Reduced Host Immunity in Escherichia coli O157:H7 Super-Shedders. PLoS One 2016; 11:e0151284. [PMID: 26959367 PMCID: PMC4784738 DOI: 10.1371/journal.pone.0151284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.
Collapse
Affiliation(s)
- Ou Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Brent Selinger
- Biological Sciences Department, University of Lethbridge, Lethbridge, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
30
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
31
|
Xie Z, Chan EC, Druey KM. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. AAPS JOURNAL 2015; 18:294-304. [PMID: 26597290 DOI: 10.1208/s12248-015-9847-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Eunice C Chan
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
32
|
Petri A, Dybkær K, Bøgsted M, Thrue CA, Hagedorn PH, Schmitz A, Bødker JS, Johnsen HE, Kauppinen S. Long Noncoding RNA Expression during Human B-Cell Development. PLoS One 2015; 10:e0138236. [PMID: 26394393 PMCID: PMC4578992 DOI: 10.1371/journal.pone.0138236] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations.
Collapse
Affiliation(s)
- Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Albæk Thrue
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Peter H. Hagedorn
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
33
|
Jain S, Chen J, Nicolae A, Wang H, Shin DM, Adkins EB, Sproule TJ, Leeth CM, Sakai T, Kovalchuk AL, Raffeld M, Ward JM, Rehg JE, Waldmann TA, Jaffe ES, Roopenian DC, Morse HC. IL-21-driven neoplasms in SJL mice mimic some key features of human angioimmunoblastic T-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3102-14. [PMID: 26363366 DOI: 10.1016/j.ajpath.2015.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022]
Abstract
SJL/J mice exhibit a high incidence of mature B-cell lymphomas that require CD4(+) T cells for their development. We found that their spleens and lymph nodes contained increased numbers of germinal centers and T follicular helper (TFH) cells. Microarray analyses revealed high levels of transcripts encoding IL-21 associated with high levels of serum IL-21. We developed IL-21 receptor (IL21R)-deficient Swiss Jim Lambart (SJL) mice to determine the role of IL-21 in disease. These mice had reduced numbers of TFH cells, lower serum levels of IL-21, and few germinal center B cells, and they did not develop B-cell tumors, suggesting IL-21-dependent B-cell lymphomagenesis. We also noted a series of features common to SJL disease and human angioimmunoblastic T-cell lymphoma (AITL), a malignancy of TFH cells. Gene expression analyses of AITL showed that essentially all cases expressed elevated levels of transcripts for IL21, IL21R, and a series of genes associated with TFH cell development and function. These results identify a mouse model with features of AITL and suggest that patients with the disease might benefit from therapeutic interventions that interrupt IL-21 signaling.
Collapse
Affiliation(s)
- Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alina Nicolae
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Dong-Mi Shin
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland; Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Elisabeth B Adkins
- Jackson Laboratory, Bar Harbor, Maine; Genetics Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts
| | | | - Caroline M Leeth
- Genetics Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts; Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jerrold M Ward
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Derry C Roopenian
- Jackson Laboratory, Bar Harbor, Maine; Genetics Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland.
| |
Collapse
|
34
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
35
|
Obsilova V, Kopecka M, Kosek D, Kacirova M, Kylarova S, Rezabkova L, Obsil T. Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiol Res 2014; 63:S155-64. [PMID: 24564655 DOI: 10.33549/physiolres.932659] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.
Collapse
Affiliation(s)
- V Obsilova
- Department of Protein Structure, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic. and
| | | | | | | | | | | | | |
Collapse
|
36
|
Morandi F, Rouas-Freiss N, Pistoia V. The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev 2014; 25:327-35. [PMID: 24882150 DOI: 10.1016/j.cytogfr.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
HLA-G is an immunosuppressive molecule, that impairs the function of different immune cell populations, both in physiological and pathological conditions. Here, we have analyzed data obtained by our group and others regarding sHLA-G concentration in plasma from patients with different diseases. Next, we have summarized novel data regarding the impairment of chemotaxis of different immune effector cells mediated by sHLA-G. Finally, we have discussed the impact of this function on the immune response during cancer, viral infection, autoimmunity, and on B cell differentiation in secondary lymphoid organs. In conclusion, we have delineated a role of sHLA-G in the control of chemotaxis of immune effector cells, that may be relevant to modulate immune responses in different settings.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Via Gaslini 1, 16147 Genoa, Italy.
| | - Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (iMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, Avenue Claude Vellefaux 1, 75010 Paris, France.
| | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Via Gaslini 1, 16147 Genoa, Italy.
| |
Collapse
|
37
|
Percopo CM, Dyer KD, Garcia-Crespo KE, Gabryszewski SJ, Shaffer AL, Domachowske JB, Rosenberg HF. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:5265-72. [PMID: 24748495 DOI: 10.4049/jimmunol.1400087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kimberly D Dyer
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Katia E Garcia-Crespo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stanislaw J Gabryszewski
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Arthur L Shaffer
- Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Joseph B Domachowske
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
38
|
Wang Y, Bhattacharya D. Adjuvant-specific regulation of long-term antibody responses by ZBTB20. ACTA ACUST UNITED AC 2014; 211:841-56. [PMID: 24711582 PMCID: PMC4010912 DOI: 10.1084/jem.20131821] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ZBTB20 promotes long-lived plasma cell survival after primary activation under alum but not TLR2- and TLR4-activating adjuvant conditions. The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
39
|
Simonetti G, Carette A, Silva K, Wang H, De Silva NS, Heise N, Siebel CW, Shlomchik MJ, Klein U. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. ACTA ACUST UNITED AC 2013; 210:2887-902. [PMID: 24323359 PMCID: PMC3865479 DOI: 10.1084/jem.20131026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor IRF4 limits the retention of B cells in the marginal zone by inhibiting NOTCH2 signaling. The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Herbert Irving Comprehensive Cancer Center, 2 Department of Pathology and Cell Biology, and 3 Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang JH, New JS, Xie S, Yang P, Wu Q, Li J, Luo B, Ding Y, Druey KM, Hsu HC, Mountz JD. Extension of the germinal center stage of B cell development promotes autoantibodies in BXD2 mice. ARTHRITIS AND RHEUMATISM 2013; 65:2703-12. [PMID: 23818250 PMCID: PMC3979745 DOI: 10.1002/art.38059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Regulator of G protein signaling (RGS) proteins inhibit chemokine signaling by desensitizing G protein-coupled receptor signals. This study was undertaken to determine the mechanisms by which RGS13 promotes the generation of pathogenic autoantibodies in germinal centers (GCs), using BXD2-Rgs13-/- mice. METHODS Confocal and light microscopy imaging techniques were used to determine the location of cells that express RGS13 and activation-induced cytidine deaminase (AID) in the mouse spleen, and the number of plasmablasts. The levels of GC and plasma cell program transcripts in GC B cells were determined by real-time quantitative polymerase chain reaction (qPCR). Differential interleukin-17 (IL-17)-mediated expression of RGS13 in GC versus non-GC B cells was analyzed using A20 and 70Z/3 B cells. RESULTS In the spleens of BXD2 mice, RGS13 was mainly expressed by GC B cells and was stimulated by IL-17 but not IL-21. IL-17 up-regulated RGS13 in A20 GC cells but not 70Z/3 non-GC B cells. BXD2- Rgs13-/- mice exhibited smaller GCs and lower AID levels, suggesting lower somatic hypermutation and affinity maturation. However, GC B cells from BXD2- Rgs13-/- mice showed increased levels of IgMbright plasmablasts, up-regulation of the genes encoding plasma program, including interferon regulatory factor 4, B lymphocyte-induced maturation protein 1, and X-box binding protein 1 and the p-CREB target genes Fosb and Obf1, and down-regulation of the GC program genes Aid, Pax5, and Bach2 compared to BXD2 mice. BXD2-Rgs13-/- mice had lower titers of IgG autoantibodies and IgG deposits in the glomeruli, suggesting reduced autoantibody pathogenicity. CONCLUSION RGS13 deficiency is associated with a reduction in GC program genes and the exit of fewer pathogenic IgM plasmablasts in BXD2 mice. Our findings indicate that prolonged GC program, mediated by up-regulation of RGS13, enhances AID expression and enables the generation of pathogenic autoantibodies in autoreactive GCs.
Collapse
|
41
|
B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Dis 2013; 2013:827254. [PMID: 24187614 PMCID: PMC3804284 DOI: 10.1155/2013/827254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/06/2013] [Indexed: 01/10/2023] Open
Abstract
B lymphocytes are the effectors of humoral immunity, providing defense against pathogens through different functions including antibody production. B cells constitute approximately 15% of peripheral blood leukocytes and arise from hemopoietic stem cells in the bone marrow. It is here that their antigen receptors (surface immunoglobulin) are assembled. In the context of autoimmune diseases defined by B and/or T cell autoreactive that upon activation lead to chronic tissue inflammation and often irreversible structural and functional damage, B lymphocytes play an essential role by not only producing autoantibodies but also functioning as antigen-presenting cells (APC) and as a source of cytokines. In this paper, we describe B lymphocyte functions in autoimmunity and autoimmune diseases with a special focus on their abnormalities in systemic lupus erythematosus.
Collapse
|
42
|
Meehan TF, Vasilevsky NA, Mungall CJ, Dougall DS, Haendel MA, Blake JA, Diehl AD. Ontology based molecular signatures for immune cell types via gene expression analysis. BMC Bioinformatics 2013; 14:263. [PMID: 24004649 PMCID: PMC3844401 DOI: 10.1186/1471-2105-14-263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022] Open
Abstract
Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights.
Collapse
Affiliation(s)
- Terrence F Meehan
- Department of Neurology, University at Buffalo School of Medicine and Biomedical Sciences, 100 High Street, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. TLR2, TLR4 and the MyD88 signaling are crucial for the in vivo generation and the longevity of long-lived antibody-secreting cells. PLoS One 2013; 8:e71185. [PMID: 23940714 PMCID: PMC3733974 DOI: 10.1371/journal.pone.0071185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/27/2013] [Indexed: 01/06/2023] Open
Abstract
This study was undertaken to gain better insights into the role of TLRs and MyD88 in the development and differentiation of memory B cells, especially of ASC, during the Th2 polarized memory response induced by Natterins. Our in vivo findings demonstrated that the anaphylactic IgG1 production is dependent on TLR2 and MyD88 signaling, and that TLR4 acts as adjuvant accelerating the synthesis of high affinity-IgE. Also, TLR4 (MyD88-independent) modulated the migration of innate-like B cells (B1a and B2) out of the peritoneal cavity, and the emigration from the spleen of B1b and B2 cells. TLR4 (MyD88-independent) modulated the emigration from the spleen of Bmem as well as ASC B220pos. TLR2 triggered to the egress from the peritoneum of Bmem (MyD88-dependent) and ASC B220pos (MyD88-independent). We showed that TLR4 regulates the degree of expansion of Bmem in the peritoneum (MyD88-dependent) and in BM (MyD88-independent) as well as of ASC B220neg in the spleen (MyD88-independent). TLR2 regulated the intensity of the expansion of Bmem (MyD88-independent) and ASC B220pos (MyD88-dependent) in BM. Finally, TLR4 signals sustained the longevity of ASC B220pos (MyD88-independent) and ASC B220neg into the peritoneum (MyD88-dependent) and TLR2 MyD88-dependent signaling supported the persistence of B2 cells in BM, Bmem in the spleen and ASC B220neg in peritoneum and BM. Terminally differentiated ASC B220neg required the cooperation of both signals through TLR2/TLR4 via MyD88 for longevity in peritoneum, whereas Bmem required only TLR2/MyD88 to stay in spleen, and ASC B220pos rested in peritoneum dependent on TLR4 signaling. Our data sustain that earlier events on memory B cells differentiation induced in secondary immune response against Natterins, after secondary lymph organs influx and egress, may be the key to determining peripheral localization of innate-like B cells and memory B cells as ASC B220pos and ASC B220neg.
Collapse
Affiliation(s)
- Evilin Naname Komegae
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute and Department of Immunology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
44
|
Ha SY, Sung J, Ju H, Karube K, Kim SJ, Kim WS, Seto M, Ko YH. Epstein–Barr virus-positive nodal peripheral T cell lymphomas: Clinicopathologic and gene expression profiling study. Pathol Res Pract 2013; 209:448-54. [DOI: 10.1016/j.prp.2013.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 02/05/2023]
|
45
|
Stolp J, Mariño E, Batten M, Sierro F, Cox SL, Grey ST, Silveira PA. Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:97-109. [PMID: 23740954 DOI: 10.4049/jimmunol.1203252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marginal zone (MZ) B cells are an innate-like population that oscillates between MZ and follicular areas of the splenic white pulp. Differentiation of B cells into the MZ subset is governed by BCR signal strength and specificity, NF-κB activation through the B cell-activating factor belonging to the TNF family (BAFF) receptor, Notch2 signaling, and migration signals mediated by chemokine, integrin, and sphingosine-1-phosphate receptors. An imbalance in splenic B cell development resulting in expansion of the MZ subset has been associated with autoimmune pathogenesis in various murine models. One example is the NOD inbred mouse strain, in which MZ B cell expansion has been linked to development of type 1 diabetes and Sjögren's syndrome. However, the cause of MZ B cell expansion in this strain remains poorly understood. We have determined that increased MZ B cell development in NOD mice is independent of T cell autoimmunity, BCR specificity, BCR signal strength, and increased exposure to BAFF. Rather, mixed bone marrow chimeras showed that the factor(s) responsible for expansion of the NOD MZ subset is B cell intrinsic. Analysis of microarray expression data indicated that NOD MZ and precursor transitional 2-MZ subsets were particularly dysregulated for genes controlling cellular trafficking, including Apoe, Ccbp2, Cxcr7, Lgals1, Pla2g7, Rgs13, S1pr3, Spn, Bid, Cd55, Prf1, and Tlr3. Furthermore, these B cell subsets exhibited an increased steady state dwell time within splenic MZ areas. Our data therefore reveal that precursors of mature B cells in NOD mice exhibit an altered migration set point, allowing increased occupation of the MZ, a niche favoring MZ B cell differentiation.
Collapse
Affiliation(s)
- Jessica Stolp
- Garvan Institute of Medical Research, Immunology Program, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Hwang IY, Hwang KS, Park C, Harrison KA, Kehrl JH. Rgs13 constrains early B cell responses and limits germinal center sizes. PLoS One 2013; 8:e60139. [PMID: 23533672 PMCID: PMC3606317 DOI: 10.1371/journal.pone.0060139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Germinal centers (GCs) are microanatomic structures that develop in secondary lymphoid organs in response to antigenic stimulation. Within GCs B cells clonally expand and their immunoglobulin genes undergo class switch recombination and somatic hypermutation. Transcriptional profiling has identified a number of genes that are prominently expressed in GC B cells. Among them is Rgs13, which encodes an RGS protein with a dual function. Its canonical function is to accelerate the intrinsic GTPase activity of heterotrimeric G-protein α subunits at the plasma membrane, thereby limiting heterotrimeric G-protein signaling. A unique, non-canonical function of RGS13 occurs following translocation to the nucleus, where it represses CREB transcriptional activity. The functional role of RGS13 in GC B cells is unknown. To create a surrogate marker for Rgs13 expression and a loss of function mutation, we inserted a GFP coding region into the Rgs13 genomic locus. Following immunization GFP expression rapidly increased in activated B cells, persisted in GC B cells, but declined in newly generated memory B and plasma cells. Intravital microscopy of the inguinal lymph node (LN) of immunized mice revealed the rapid appearance of GFP+ cells at LN interfollicular regions and along the T/B cell borders, and eventually within GCs. Analysis of WT, knock-in, and mixed chimeric mice indicated that RGS13 constrains extra-follicular plasma cell generation, GC size, and GC B cell numbers. Analysis of select cell cycle and GC specific genes disclosed an aberrant gene expression profile in the Rgs13 deficient GC B cells. These results indicate that RGS13, likely acting at cell membranes and in nuclei, helps coordinate key decision points during the expansion and differentiation of naive B cells.
Collapse
Affiliation(s)
- Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyung-Sun Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chung Park
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen A. Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Louwette S, Van Geet C, Freson K. Regulators of G protein signaling: role in hematopoiesis, megakaryopoiesis and platelet function. J Thromb Haemost 2012; 10:2215-22. [PMID: 22908964 DOI: 10.1111/j.1538-7836.2012.04903.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulators of G protein signaling (RGS) are intracellular signaling regulators that bind activated G protein α subunits (Gα) and increase their intrinsic GTPase activity via their common RGS homology domain. In addition to their GTPase accelerating activity (GAP), RGS proteins also contain other domains that regulate their receptor selectivity, their interaction with other proteins such as adenylyl cyclase or their subcellular localization via interaction with scaffold proteins such as tubulin, 14-3-3 or spinophilin. There are at least 37 different RGS family members in humans and numerous physiological functions have been assigned to these proteins, which have rather a tissue-specific expression pattern. The role of some RGS proteins was shown to be important for hematopoiesis. More recent studies also focused on their expression in platelets, and for R4 RGS subfamily members RGS2, RGS16 and RGS18, it could be demonstrated that they regulate megakaryopoiesis and/or platelet function. These functional studies mostly comprised in vitro experiments and in vivo studies using small animal models. Their role in human pathology related to platelet dysfunction remains still largely unknown, except for a case report with a RGS2 gain of function mutation. In addition to an introduction on RGS signaling and different effectors with a special focus on the R4 subfamily members, we here will give an overview of the studies related to the role of RGS proteins in hematopoiesis, megakaryopoiesis and platelet function.
Collapse
Affiliation(s)
- S Louwette
- Center for Molecular and Vascular Biology Departement of Pediatrics, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
48
|
Hamza N, Bos NA, Kallenberg CG. B-cell populations and sub-populations in Sjögren's syndrome. Presse Med 2012; 41:e475-83. [DOI: 10.1016/j.lpm.2012.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 11/26/2022] Open
|
49
|
Kach J, Sethakorn N, Dulin NO. A finer tuning of G-protein signaling through regulated control of RGS proteins. Am J Physiol Heart Circ Physiol 2012; 303:H19-35. [PMID: 22542620 DOI: 10.1152/ajpheart.00764.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Illinois, 60637, USA
| | | | | |
Collapse
|
50
|
Wei J, Ramanathan P, Thomson PC, Martin IC, Moran C, Williamson P. An Integrative Genomic Analysis of the Superior Fecundity Phenotype in QSi5 Mice. Mol Biotechnol 2012; 53:217-26. [DOI: 10.1007/s12033-012-9530-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|