1
|
Stone S, Elsharkawy A, Burleson JD, Hauser M, Domi A, Kumari P, Nabi Z, Natekar JP, Porto M, Backstedt B, Newman M, Oruganti SR, Kumar M. Multi-Antigen Viral-Vectored Vaccine Protects Against SARS-CoV-2 and Variants in a Lethal hACE2 Transgenic Mouse Model. Vaccines (Basel) 2025; 13:411. [PMID: 40333327 PMCID: PMC12031414 DOI: 10.3390/vaccines13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Widespread and rapidly evolving SARS-CoV-2 posed an unprecedented challenge to vaccine developers. GeoVax has designed a multiantigen SARS-CoV-2 vaccine, designated GEO-CM02 based on a Modified Vaccinia Virus (MVA) vector that expresses spike (S), membrane (M), and envelope (E) antigens. This experimental vaccine was tested in the hACE2 transgenic mouse model to assess immunogenicity and efficacy. Administration of the vaccine in a two-dose regimen elicited high levels of neutralizing antibodies and provided complete protection, effectively reducing lung, olfactory bulb, and brain viral load and reducing lung inflammation following infection with original B.1 virus and the B.1.1.529 variant. In addition, GEO-CM02 conferred 80% protection against a lethal infection with the B.1.351 variant. GEO-CM02 vaccine efficacy studies also demonstrated a complete level of vaccine-induced protection with a single dose against the original B.1 virus and B.1.1.529 variant. GEO-CM02 effectively elicited functional T-cell responses in both prime and prime-boost groups. These data indicate that vaccination with the GEO-CM02 vaccine can induce immune responses that protect against severe disease induced by SARS-CoV-2 and its variants in a highly relevant pre-clinical model.
Collapse
Affiliation(s)
- Shannon Stone
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (A.E.); (Z.N.); (J.P.N.)
| | - Amany Elsharkawy
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (A.E.); (Z.N.); (J.P.N.)
| | - J. D. Burleson
- GeoVax, Inc., Atlanta, GA 30080, USA; (J.D.B.); (M.H.); (A.D.); (P.K.); (M.N.)
| | - Mary Hauser
- GeoVax, Inc., Atlanta, GA 30080, USA; (J.D.B.); (M.H.); (A.D.); (P.K.); (M.N.)
| | - Arban Domi
- GeoVax, Inc., Atlanta, GA 30080, USA; (J.D.B.); (M.H.); (A.D.); (P.K.); (M.N.)
| | - Pratima Kumari
- GeoVax, Inc., Atlanta, GA 30080, USA; (J.D.B.); (M.H.); (A.D.); (P.K.); (M.N.)
| | - Zainab Nabi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (A.E.); (Z.N.); (J.P.N.)
| | - Janhavi P. Natekar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (A.E.); (Z.N.); (J.P.N.)
| | - Maciel Porto
- BioQual, Inc., Rockville, MD 20850, USA; (M.P.); (B.B.)
| | | | - Mark Newman
- GeoVax, Inc., Atlanta, GA 30080, USA; (J.D.B.); (M.H.); (A.D.); (P.K.); (M.N.)
| | | | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.S.); (A.E.); (Z.N.); (J.P.N.)
| |
Collapse
|
2
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Pei L, Hickman HD. T Cell Surveillance during Cutaneous Viral Infections. Viruses 2024; 16:679. [PMID: 38793562 PMCID: PMC11126121 DOI: 10.3390/v16050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection. Much of our mechanistic understanding of T cell surveillance of cutaneous infection has been gained from murine models of poxvirus and herpesvirus infection. However, we also discuss other viral infections, including flaviviruses and papillomaviruses, in which the cutaneous T cell response has been less extensively studied. In addition to the mechanisms of successful T cell control of cutaneous viral infection, we highlight knowledge gaps and future directions with possible impact on human health.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
4
|
DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marté JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Gulley JL, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunother Cancer 2021; 9:e003238. [PMID: 34479925 PMCID: PMC8420671 DOI: 10.1136/jitc-2021-003238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND MVA-BN-brachyury-TRICOM is a recombinant vector-based therapeutic cancer vaccine designed to induce an immune response against brachyury. Brachyury, a transcription factor overexpressed in advanced cancers, has been associated with treatment resistance, epithelial-to-mesenchymal transition, and metastatic potential. MVA-BN-brachyury-TRICOM has demonstrated immunogenicity and safety in previous clinical trials of subcutaneously administered vaccine. Preclinical studies have suggested that intravenous administration of therapeutic vaccines can induce superior CD8+ T cell responses, higher levels of systemic cytokine release, and stronger natural killer cell activation and proliferation. This is the first-in-human study of the intravenous administration of MVA-BN-brachyury-TRICOM. METHODS Between January 2020 and March 2021, 13 patients were treated on a phase 1, open-label, 3+3 design, dose-escalation study at the National Institutes of Health Clinical Center. The study population was adults with advanced solid tumors and was enriched for chordoma, a rare sarcoma of the notochord that overexpresses brachyury. Vaccine was administered intravenously at three DLs on days 1, 22, and 43. Blood samples were taken to assess drug pharmacokinetics and immune activation. Imaging was conducted at baseline, 1 month, and 3 months post-treatment. The primary endpoint was safety and tolerability as determined by the frequency of dose-limiting toxicities; a secondary endpoint was determination of the recommended phase 2 dose. RESULTS No dose-limiting toxicities were observed and no serious adverse events were attributed to the vaccine. Vaccine-related toxicities were consistent with class profile (ie, influenza-like symptoms). Cytokine release syndrome up to grade 2 was observed with no adverse outcomes. Dose-effect trend was observed for fever, chills/rigor, and hypotension. Efficacy analysis of objective response rate per RECIST 1.1 at the end of study showed one patient with a partial response, four with stable disease, and eight with progressive disease. Three patients with stable disease experienced clinical benefit in the form of improvement in pain. Immune correlatives showed T cell activation against brachyury and other tumor-associated cascade antigens. CONCLUSIONS Intravenous administration of MVA-BN-brachyury-TRICOM vaccine was safe and tolerable. Maximum tolerated dose was not reached. The maximum administered dose was 109 infectious units every 3 weeks for three doses. This dose was selected as the recommended phase 2 dose. TRIAL REGISTRATION NUMBER NCT04134312.
Collapse
Affiliation(s)
- Peter J DeMaria
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lee-Wisdom
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angie Schwab
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Charalampos Floudas
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Mark Redman
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Borys Korchin
- Oncology Strategy, Bavarian Nordic Inc, Morrisville, North Carolina, USA
| | | | - Cesar Pico-Navarro
- Oncology Strategy, Bavarian Nordic Inc, Morrisville, North Carolina, USA
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Lin LCW, Croft SN, Croft NP, Wong YC, Smith SA, Tang SS, Purcell AW, Tscharke DC. Direct Priming of CD8 + T Cells Persists in the Face of Cowpox Virus Inhibitors of Antigen Presentation. J Virol 2021; 95:JVI.00186-21. [PMID: 33692206 PMCID: PMC8139650 DOI: 10.1128/jvi.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.
Collapse
Affiliation(s)
- Leon C. W. Lin
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nathan P. Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Swee-Seong Tang
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Quetglas JI, John LB, Kershaw MH, Alvarez-Vallina L, Melero I, Darcy PK, Smerdou C. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncoimmunology 2021; 1:1344-1354. [PMID: 23243597 PMCID: PMC3518506 DOI: 10.4161/onci.21679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.
Collapse
Affiliation(s)
- José I Quetglas
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Pastor DM, Lee-Wisdom K, Arai AE, Sirajuddin A, Rosing DR, Korchin B, Gulley JL, Bilusic M. Fast Clearance of the SARS-CoV-2 Virus in a Patient Undergoing Vaccine Immunotherapy for Metastatic Chordoma: A Case Report. Front Oncol 2020; 10:603248. [PMID: 33330104 PMCID: PMC7717959 DOI: 10.3389/fonc.2020.603248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
The emergence of the SARS-CoV-2 virus has been associated with perplexing clinical sequelae and phenomena that often have no clear link to the underlying infection. There is a wide spectrum of symptoms associated with infection, from minimal respiratory complaints to severe multi-organ failure, often resulting in death. Individuals with malignancies, particularly those whose treatments have left them immunocompromised or immunosuppressed, are among the patient populations thought to be at greater risk for more severe illness. A man with aggressive metastatic chordoma contracted the SARS-CoV-2 virus and was diagnosed with COVID-19 while undergoing intravenous brachyury vaccine immunotherapy. His disease course was remarkably mild, and the virus cleared rapidly. Despite a treatment delay of 3 months due to the COVID-19 pandemic, the patient’s disease has been stable and tumor-related pain has significantly improved. This suggests not only an intact, functional immune system, but also one that appears to have been responsive to cancer treatment. It has been suggested that individuals undergoing treatment for metastatic cancer are at greater risk of severe SARS-CoV-2-related illnesses and complications. While immunosuppression may be a problem, particularly in those receiving conventional chemotherapeutic agents, it is possible that the non-specific effects of immune-enhancing therapies may confer some protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Danielle M Pastor
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine Lee-Wisdom
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Andrew E Arai
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Arlene Sirajuddin
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Douglas R Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Lauron EJ, Yang L, Harvey IB, Sojka DK, Williams GD, Paley MA, Bern MD, Park E, Victorino F, Boon ACM, Yokoyama WM. Viral MHCI inhibition evades tissue-resident memory T cell formation and responses. J Exp Med 2019; 216:117-132. [PMID: 30559127 PMCID: PMC6314518 DOI: 10.1084/jem.20181077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-resident memory CD8+ T cells (TRMs) confer rapid protection and immunity against viral infections. Many viruses have evolved mechanisms to inhibit MHCI presentation in order to evade CD8+ T cells, suggesting that these mechanisms may also apply to TRM-mediated protection. However, the effects of viral MHCI inhibition on the function and generation of TRMs is unclear. Herein, we demonstrate that viral MHCI inhibition reduces the abundance of CD4+ and CD8+ TRMs, but its effects on the local microenvironment compensate to promote antigen-specific CD8+ TRM formation. Unexpectedly, local cognate antigen enhances CD8+ TRM development even in the context of viral MHCI inhibition and CD8+ T cell evasion, strongly suggesting a role for in situ cross-presentation in local antigen-driven TRM differentiation. However, local cognate antigen is not required for CD8+ TRM maintenance. We also show that viral MHCI inhibition efficiently evades CD8+ TRM effector functions. These findings indicate that viral evasion of MHCI antigen presentation has consequences on the development and response of antiviral TRMs.
Collapse
Affiliation(s)
- Elvin J Lauron
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ian B Harvey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Dorothy K Sojka
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Graham D Williams
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Michael A Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Francisco Victorino
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Adrianus C M Boon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Yuan X, Lin H, Li B, He K, Fan H. Swinepox virus vector-based vaccines: attenuation and biosafety assessments following subcutaneous prick inoculation. Vet Res 2018; 49:14. [PMID: 29415767 PMCID: PMC5804073 DOI: 10.1186/s13567-018-0510-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 11/10/2022] Open
Abstract
Swinepox virus (SPV) has several advantages as a potential clinical vector for a live vector vaccine. In this study, to obtain a safer and more efficient SPV vector, three SPV mutants, Δ003, Δ010, and ΔTK were successfully constructed. A virus replication experiment showed that these SPV mutants had lower replication abilities compared to wtSPV in 10 different host-derived cell lines. Animal experiments with mouse and rabbit models demonstrate that these three mutants and wtSPV did not cause any clinical signs of dermatitis. No fatalities were observed during a peritoneal challenge assay with these mutants and wtSPV in a mouse model. Additionally, the three mutants and wtSPV were not infectious at 60 h after vaccination in rabbit models. Furthermore, we evaluated biosafety, immunogenicity and effectiveness of the three mutants in 65 1-month-old piglets. The results show that there were no clinical signs of dermatitis in the Δ003 and ΔTK vaccination groups. However, mild signs were observed in the Δ010 vaccination groups when virus titres were high, and apparent clinical signs were observed at the sites of inoculation. Samples from all experimental pig groups were assessed by qPCR, and no SPV genomic DNA was found in five organs, faeces or blood. This suggests that the infectious abilities of wtSPV and the SPV mutants were poor and limited. In summary, this study indicates that two mutants of SPV, Δ003 and ΔTK, may be promising candidates for an attenuated viral vector in veterinary medicine.
Collapse
Affiliation(s)
- Xiaomin Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Research, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
11
|
Hobbs SJ, Osborn JF, Nolz JC. Activation and trafficking of CD8 + T cells during viral skin infection: immunological lessons learned from vaccinia virus. Curr Opin Virol 2018; 28:12-19. [PMID: 29080420 PMCID: PMC5835170 DOI: 10.1016/j.coviro.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jossef F Osborn
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jeffrey C Nolz
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
12
|
Ghenassia A, Gross DA, Lorain S, Tros F, Urbain D, Benkhelifa-Ziyyat S, Charbit A, Davoust J, Chappert P. Intradermal Immunization with rAAV1 Vector Induces Robust Memory CD8 + T Cell Responses Independently of Transgene Expression in DCs. Mol Ther 2017; 25:2309-2322. [PMID: 28720467 DOI: 10.1016/j.ymthe.2017.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 01/16/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors exhibit interesting properties as vaccine carriers for their ability to induce long-lasting antibody responses. However, rAAV-based vaccines have been suggested to trigger functionally impaired long-term memory CD8+ T cell responses, in part due to poor dendritic cell (DC) transduction. Such results, albeit limited to intramuscular immunization, undermined the use of rAAV as vaccine vehicles against intracellular pathogens. We report here that intradermal immunization with a model rAAV2/1-based vaccine drives the development of bona fide long-term memory CD8+ T cell responses. The intradermal route of immunization and the presence of potent major histocompatibility complex (MHC) class II responses showed synergistic effects on the overall quantity and quality of systemic long-term effector memory transgene-specific CD8+ T cells being generated against the transgene. Of key interest, we found that the induction of memory cytotoxic T lymphocytes (CTLs) following intradermal immunization was solely dependent on the cross-presentation of skin-expressed transgene products, which appeared highly enhanced as compared to muscle-expressed transgene products. Overall our results highlight key tissue-specific differences in transgene presentation pathway requirements of importance for the design of rAAV-based T cell-inducing vaccines.
Collapse
Affiliation(s)
- Alexandre Ghenassia
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - David-Alexandre Gross
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Stéphanie Lorain
- Myology Research Center, UM76, INSERM U974, CNRS FRE 3617, Institut de Myologie, UPMC Université Paris 6, Sorbonne Universités, 75005 Paris, France
| | - Fabiola Tros
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Dominique Urbain
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Myology Research Center, UM76, INSERM U974, CNRS FRE 3617, Institut de Myologie, UPMC Université Paris 6, Sorbonne Universités, 75005 Paris, France
| | - Alain Charbit
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Jean Davoust
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France.
| | - Pascal Chappert
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France.
| |
Collapse
|
13
|
Nirschl CJ, Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother 2016; 12:104-16. [PMID: 26836327 DOI: 10.1080/21645515.2015.1066050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system.
Collapse
Affiliation(s)
- Christopher J Nirschl
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| | - Niroshana Anandasabapathy
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| |
Collapse
|
14
|
Korsholm KS, Hansen J, Karlsen K, Filskov J, Mikkelsen M, Lindenstrøm T, Schmidt ST, Andersen P, Christensen D. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 2014; 32:3927-35. [PMID: 24877765 DOI: 10.1016/j.vaccine.2014.05.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/11/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022]
Abstract
Vaccines inducing cytotoxic T-cell responses are required to achieve protection against cancers and intracellular infections such as HIV and Hepatitis C virus. Induction of CD8+ T cell responses in animal models can be achieved by the use of viral vectors or DNA vaccines but so far without much clinical success. Here we describe the novel CD8+ T-cell inducing adjuvant, cationic adjuvant formulation (CAF) 09, consisting of dimethyldioctadecylammonium (DDA)-liposomes stabilized with monomycoloyl glycerol (MMG)-1 and combined with the TLR3 ligand, Poly(I:C). Different antigens from tuberculosis (TB10.3, H56), HIV (Gag p24), HPV (E7) and the model antigen ovalbumin were formulated with CAF09 and administering these vaccines to mice resulted in a high frequency of antigen-specific CD8+ T cells. CAF09 was superior in its ability to induce antigen-specific CD8+ T cells as compared to other previously described CTL-inducing adjuvants, CAF05 (DDA/trehalose dibehenate (TDB)/Poly(I:C)), Aluminium/monophosphoryl lipid-A (MPL) and Montanide/CpG/IL-2. The optimal effect was obtained when the CAF09-adjuvanted vaccine was administered by the i.p. route, whereas s.c. administration primed limited CD8+ T-cell responses. The CD4+ T cells induced by CAF09 were mainly of an effector-memory-like phenotype and the CD8+ T cells were highly cytotoxic. Finally, in a mouse therapeutic skin tumor model, the HPV-16 E7 antigen formulated in CAF09 significantly reduced the growth of already established subcutaneous E7-expressing TC-1 tumors in 38% of the mice and in a corresponding prophylactic model 100% of the mice were protected. Thus, CAF09 is a potent new adjuvant which is able to induce CD8+ T-cell responses against several antigens and to enhance the protective efficacy of an E7 vaccine both in a therapeutic and in a prophylactic tumor model.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Jon Hansen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Kasper Karlsen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Jonathan Filskov
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Marianne Mikkelsen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Thomas Lindenstrøm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Signe Tandrup Schmidt
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
15
|
Langerin+ dermal DC, but not Langerhans cells, are required for effective CD8-mediated immune responses after skin scarification with vaccinia virus. J Invest Dermatol 2013; 134:686-694. [PMID: 24126845 PMCID: PMC3945525 DOI: 10.1038/jid.2013.418] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 02/08/2023]
Abstract
Skin scarification (s.s.) with Vaccinia virus (VACV) is essential for generation of an optimal protective T cell memory immune response. Dendritic Cells (DC), which are professional antigen presenting cells, are required for naïve T cell priming and activation. At least three subsets of skin resident DC have been identified: Langerhans Cells (LC), Dermal Langerin+ DC (Lang+dDC) and Dermal Langerin− DC (Lang−dDC). Using Langerin-diphtheria toxin receptor mice and established mouse model of VACV delivered by s.s., we demonstrated that Lang+dDC, but not LC, are absolutely required for the induction of a rapid and robust antigen-specific CD8+ T cell response after s.s. with VACV. The depletion of Lang+dDC led to a significant delay in the priming and proliferation of antigen-specific CD8+ T cells. Moreover CD8+ T cells generated after VACV s.s. in the absence of Lang+dDC lacked effector cytotoxic functions both in vitro and in vivo. While s.s.-immunized WT and LC depleted mice controlled the progression of OVA257–264 expressing T cell lymphoma EG7 (injected intradermally), the depletion of Lang+dDC led to rapid lymphoma progression and mortality. These data indicate that of all skin DC subsets, Lang+dDC the most critical for the generation of robust CD8+ T cell immunity after s.s. with VACV.
Collapse
|
16
|
Systemic toll-like receptor ligation and selective killing of dendritic cell subsets fail to dissect priming pathways for anti-vaccinia virus CD8⁺ T cells. J Virol 2013; 87:11978-86. [PMID: 23986587 DOI: 10.1128/jvi.01835-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD8⁺ T cell responses can be generated by direct or cross-priming mechanisms, and several mouse models have been used to reveal which of these is the most important pathway for various viruses. Among these models is systemic treatment of mice with a CpG-containing oligodeoxynucleotide (CpG) to mature all dendritic cells (DCs), rendering them incapable of cross-presentation. A second is the use of cytochrome c (cytc) as a selective poison of the subsets of DCs able to cross-present antigen. In this study, using two vaccinia virus (VACV) strains, namely, WR and MVA, we found that the CpG and cytc methods gave conflicting data. Moreover, we show for both strains of VACV that treatment of mice with CpG and cytc inhibited CD8⁺ T cell responses to antigens designed to prime exclusively by direct presentation. Further investigation of the CpG method found that the extent to which priming is inhibited depends on the antigen examined, immunization route, replication ability of the virus, and, crucially, immunization dose. We suggest that greater caution is required when interpreting data using these methods and that priming pathways for antiviral CD8⁺ T cells are not simply separated according to DC subsets or their maturation state.
Collapse
|
17
|
Huemer HP, Geiger M, Posch W, Krumböck N, Fresser F, Wilflingseder D, Uberall F. Protein kinase C overexpression does not enhance immune-stimulatory surface markers of vaccinia-infected dendritic cells and DC cell lines. Immunol Invest 2013; 42:164-77. [PMID: 23323525 PMCID: PMC9491103 DOI: 10.3109/08820139.2012.750340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
One of the shortcomings of vaccinia virus (VACV) as immunization vector is the down-regulation of HLA and costimulatory molecules in antigen presenting cells. To overcome this problem we investigated the use of protein kinase C (PKC) as immune stimulatory agent. Thus several classical and atypical PKCs were inserted into wild-type or attenuated VACV using recombination into the hemagglutinin gene and the expression driven by the VACV 7,5K-IE gene promoter. Recombinant constructs expressing PKC-alpha, -beta, -theta as well as wild-type, constitutive active or dominant negative PKC-zeta constructs were generated. Additional constructs expressing PKB/Akt1 and ICAM-1 were used for comparison. Immature and mature peripheral blood derived-dendritic cells (DC) as well as lymphoid cell lines capable of obtaining a DC-like phenotype upon mitogen stimulation were infected. Disappointingly, VACV-driven PKC overexpression did not significantly enhance expression of various activation markers or costimulatory molecules tested. Neither CD86 nor HLA-DR expression was upregulated and also no influence on the maturation of DC, as measured by DC-SIGN and CD83, was observed. However, VACV did not interfere with LPS induced up-regulation of CD83 and did not lead to substantial apoptosis of infected DC within the first 24 hours.
Collapse
Affiliation(s)
- Hartwig P Huemer
- Department of Hygiene, Microbiology & Social Medicine, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lin LCW, Flesch IEA, Tscharke DC. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog 2013; 9:e1003329. [PMID: 23633956 PMCID: PMC3635974 DOI: 10.1371/journal.ppat.1003329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/14/2013] [Indexed: 11/20/2022] Open
Abstract
Immunodominance is a fundamental property of CD8(+) T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV) infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d.), subcutaneous (s.c.), intraperitoneal (i.p.) and intravenous (i.v.) injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c.) compared with those that allow systemic virus dissemination (i.p. and i.v.). This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+) T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1) and CD86 (B7-2), which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+) T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+) T cell immunity to viruses.
Collapse
Affiliation(s)
- Leon C. W. Lin
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Busche A, Jirmo AC, Welten SPM, Zischke J, Noack J, Constabel H, Gatzke AK, Keyser KA, Arens R, Behrens GMN, Messerle M. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2767-77. [PMID: 23390296 DOI: 10.4049/jimmunol.1200966] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CMV can infect dendritic cells (DCs), and direct Ag presentation could, therefore, lead to the priming of CMV-specific CD8(+) T cells. However, CMV-encoded immune evasins severely impair Ag presentation in the MHC class I pathway; thus, it is widely assumed that cross-presentation drives the priming of antiviral T cells. We assessed the contribution of direct versus cross priming in mouse CMV (MCMV) infection using recombinant viruses. DCs infected with an MCMV strain encoding the gB498 epitope from HSV-1 were unable to stimulate in vitro naive gB498-specific CD8(+) T cells from TCR transgenic mice. Infection of C57BL/6 mice with this recombinant virus led, however, to the generation of abundant numbers of gB498-specific T cells in vivo. Of the DC subsets isolated from infected mice, only CD8α(+) DCs were able to stimulate naive T cells, suggesting that this DC subset cross-presents MCMV-encoded Ag in vivo. Upon infection of mice with MCMV mutants encoding Ag that can either be well or hardly cross-presented, mainly CD8(+) T cells specific for cross-presented epitopes were generated. Moreover, even in the absence of immune evasion genes interfering with MHC class I-mediated Ag presentation, priming of T cells to Ag that can only be presented directly was not observed. We conclude that the host uses mainly DCs capable of cross-presentation to induce the CMV-specific CD8(+) T cell response during primary, acute infection and discuss the implications for the development of a CMV vaccine.
Collapse
Affiliation(s)
- Andreas Busche
- Department of Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lambe T, Carey JB, Li Y, Spencer AJ, van Laarhoven A, Mullarkey CE, Vrdoljak A, Moore AC, Gilbert SC. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1. Sci Rep 2013; 3:1443. [PMID: 23485942 PMCID: PMC3595699 DOI: 10.1038/srep01443] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/25/2013] [Indexed: 11/17/2022] Open
Abstract
Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants.
Collapse
Affiliation(s)
- Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. Proc Natl Acad Sci U S A 2012; 109:E3260-7. [PMID: 23112205 DOI: 10.1073/pnas.1217111109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although viral MHC class I inhibition is considered a classic immune-evasion strategy, its in vivo role is largely unclear. Mutant cowpox virus lacking its MHC class I inhibitors is markedly attenuated during acute infection because of CD8(+) T-cell-dependent control, but it was not known how CD8(+) T-cell responses are affected. Interestingly, we found no major effect of MHC class I down-regulation on priming of functional cowpox virus-specific CD8(+) T cells. Instead, we demonstrate that, during acute infection in vivo, MHC class I down-regulation prevents primed virus-specific CD8(+) T cells from recognizing infected cells and exerting effector responses to control the infection.
Collapse
|
22
|
Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol 2012; 86:9782-93. [PMID: 22761378 DOI: 10.1128/jvi.00694-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of strong CD8(+) T-cell responses against infectious diseases and cancer has remained a major challenge. Depending on the source of antigen and the infectious agent, priming of CD8(+) T cells requires direct and/or cross-presentation of antigenic peptides on major histocompatibility complex (MHC) class I molecules by professional antigen-presenting cells (APCs). However, both pathways show distinct preferences concerning antigen stability. Whereas direct presentation was shown to efficiently present peptides derived from rapidly degraded proteins, cross-presentation is dependent on long-lived antigen species. In this report, we analyzed the role of antigen stability on DNA vaccination and recombinant vaccinia virus (VV) infection using altered versions of the same antigen. The long-lived nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) can be targeted for degradation by N-terminal fusion to ubiquitin or, as we show here, to the ubiquitin-like modifier FAT10. Direct presentation by cells either transfected with NP-encoding plasmids or infected with recombinant VV in vitro was enhanced in the presence of short-lived antigens. In vivo, however, the highest induction of NP-specific CD8(+) T-cell responses was achieved in the presence of long-lived NP. Our experiments provide evidence that targeting antigens for proteasomal degradation does not improve the immunogenicity of DNA vaccines and recombinant VVs. Rather, it is the long-lived antigen that is superior for the efficient activation of MHC class I-restricted immune responses in vivo. Hence, our results suggest a dominant role for antigen cross-priming in DNA vaccination and recombinant VV infection.
Collapse
|
23
|
Guzman E, Cubillos-Zapata C, Cottingham MG, Gilbert SC, Prentice H, Charleston B, Hope JC. Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol 2012; 86:5452-66. [PMID: 22419811 PMCID: PMC3347273 DOI: 10.1128/jvi.00264-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 02/03/2023] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells and central to the induction of immune responses following infection or vaccination. The collection of DC migrating from peripheral tissues by cannulation of the afferent lymphatic vessels provides DC which can be used directly ex vivo without extensive in vitro manipulations. We have previously used bovine migrating DC to show that recombinant human adenovirus 5 vectors efficiently transduce afferent lymph migrating DEC-205(+) CD11c(+) CD8(-) DC (ALDC). We have also shown that recombinant modified vaccinia virus Ankara (MVA) infects ALDC in vitro, causing downregulation of costimulatory molecules, apoptosis, and cell death. We now show that in the bovine system, modified vaccinia virus Ankara-induced apoptosis in DC draining from the skin occurs soon after virus binding via the caspase 8 pathway and is not associated with viral gene expression. We also show that after virus entry, the caspase 9 pathway cascade is initiated. The magnitude of T cell responses to mycobacterial antigen 85A (Ag85A) expressed by recombinant MVA-infected ALDC is increased by blocking caspase-induced apoptosis. Apoptotic bodies generated by recombinant MVA (rMVA)-Ag85A-infected ALDC and containing Ag85A were phagocytosed by noninfected migrating ALDC expressing SIRPα via actin-dependent phagocytosis, and these ALDC in turn presented antigen. However, the addition of fresh ALDC to MVA-infected cultures did not improve on the magnitude of the T cell responses; in contrast, these noninfected DC showed downregulation of major histocompatibility complex class II (MHC-II), CD40, CD80, and CD86. We also observed that MVA-infected ALDC promoted migration of DEC-205(+) SIRPα(+) CD21(+) DC as well as CD4(+) and CD8(+) T cells independently of caspase activation. These in vitro studies show that induction of apoptosis in DC by MVA vectors is detrimental to the subsequent induction of T cell responses.
Collapse
Affiliation(s)
- E Guzman
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Iborra S, Izquierdo HM, Martínez-López M, Blanco-Menéndez N, Reis e Sousa C, Sancho D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 2012; 122:1628-43. [PMID: 22505455 PMCID: PMC3336985 DOI: 10.1172/jci60660] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022] Open
Abstract
In order to prime T cells, DCs integrate signals emanating directly from pathogens and from their noxious action on the host. DNGR-1 (CLEC9A) is a DC-restricted receptor that detects dead cells. Therefore, we investigated the possibility that DNGR-1 affects immunity to cytopathic viruses. DNGR-1 was essential for cross-presentation of dying vaccinia virus-infected (VACV-infected) cells to CD8(+) T cells in vitro. Following injection of VACV or VACV-infected cells into mice, DNGR-1 detected the ligand in dying infected cells and mediated cross-priming of anti-VACV CD8(+) T cells. Loss of DNGR-1 impaired the CD8+ cytotoxic response to VACV, especially against those virus strains that are most dependent on cross-presentation. The decrease in total anti-VACV CTL activity was associated with a profound increase in viral load and delayed resolution of the primary lesion. In addition, lack of DNGR-1 markedly diminished protection from infection induced by vaccination with the modified vaccinia Ankara (MVA) strain. DNGR-1 thus contributes to anti-VACV immunity, following both primary infection and vaccination. The non-redundant ability of DNGR-1 to regulate cross-presentation of viral antigens suggests that this form of regulation of antiviral immunity could be exploited for vaccination.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigen Presentation
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cross-Priming
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Knockout Techniques
- Interferon-gamma/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Lysosomes/metabolism
- Lysosomes/virology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Necrosis/virology
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Syk Kinase
- Vaccinia/immunology
- Vaccinia/pathology
- Vaccinia virus/immunology
- Vaccinia virus/physiology
- Viral Load
Collapse
Affiliation(s)
- Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Helena M. Izquierdo
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - María Martínez-López
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Noelia Blanco-Menéndez
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Caetano Reis e Sousa
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - David Sancho
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| |
Collapse
|
25
|
DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:649-58. [PMID: 22398243 DOI: 10.1128/cvi.00038-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.
Collapse
|
26
|
Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector. J Virol 2011; 85:12982-94. [PMID: 21835800 DOI: 10.1128/jvi.00128-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.
Collapse
|
27
|
Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG. Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 2011; 13:749-56. [PMID: 21458584 PMCID: PMC3130819 DOI: 10.1016/j.micinf.2011.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/22/2023]
Abstract
Eicosanoids regulate whether human and murine macrophages infected with Mycobacterium tuberculosis die by apoptosis or necrosis. The death modality is important since apoptosis is associated with diminished pathogen viability and should be viewed as a form of innate immunity. Apoptotic vesicles derived from infected macrophages are also an important source of bacterial antigens that can be acquired by dendritic cells to prime antigen-specific T cells. This review integrates in vitro and in vivo data on how apoptosis of infected macrophages is linked to development of T cell immunity against M. tuberculosis.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Smith Research Building, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
28
|
Uram JN, Black CM, Flynn E, Huang L, Armstrong TD, Jaffee EM. Nondominant CD8 T cells are active players in the vaccine-induced antitumor immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3847-57. [PMID: 21346233 PMCID: PMC3162214 DOI: 10.4049/jimmunol.1000361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We previously reported that CD8(+) T cells are directed predominantly toward the immunodominant Her-2/neu (neu) epitope RNEU(420-429) in nontolerized FVB/N but not tolerized HER-2/neu (neu-N) mice. In this study, we screened overlapping peptides of the entire neu protein and identified six new epitopes recognized by vaccine-induced neu-N-derived T cells. Evaluation of individual nondominant responses by tetramer staining and IFN-γ secretion demonstrate that this repertoire is peripherally tolerized. To address the role that the complete CD8(+) T cell repertoire plays in vaccine-induced antitumor immunity, we created a whole-cell vaccine-expressing neu cDNA that has been mutated at the RNEU(420-429) anchor residue, thereby abrogating activation of immunodominant epitope responses. Studies comparing the mutated and nonmutated vaccines indicate that nondominant CD8(+) T cells can induce antitumor immunity when combined with regulatory T cell-depleting agents in both neu-N and FVB/N mice. Collectively, these studies demonstrate that the neu-directed T cell repertoire is not intrinsically incapable of eradicating tumors. Rather, they are suppressed by mechanisms of peripheral tolerance. Thus, these studies provide new insights into the function of the complete T cell repertoire directed toward a clinically relevant tumor Ag in tumor-bearing hosts.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/metabolism
- Cell Line, Tumor
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation, Neoplastic/immunology
- Immune Tolerance/genetics
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Transgenic
- NIH 3T3 Cells
- Rats
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
Collapse
Affiliation(s)
- Jennifer N Uram
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
29
|
Quakkelaar ED, Redeker A, Haddad EK, Harari A, McCaughey SM, Duhen T, Filali-Mouhim A, Goulet JP, Loof NM, Ossendorp F, Perdiguero B, Heinen P, Gomez CE, Kibler KV, Koelle DM, Sékaly RP, Sallusto F, Lanzavecchia A, Pantaleo G, Esteban M, Tartaglia J, Jacobs BL, Melief CJM. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PLoS One 2011; 6:e16819. [PMID: 21347234 PMCID: PMC3039654 DOI: 10.1371/journal.pone.0016819] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Collapse
Affiliation(s)
- Esther D. Quakkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Elias K. Haddad
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Stella Mayo McCaughey
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas Duhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Abdelali Filali-Mouhim
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Jean-Philippe Goulet
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | - Nikki M. Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul Heinen
- Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | - Karen V. Kibler
- Arizona State University, Tempe, Arizona, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rafick P. Sékaly
- Laboratoire d'Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montreal, Canada
| | | | | | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Jim Tartaglia
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | | | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- ISA Pharmaceuticals B.V., Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Fang M, Roscoe F, Sigal LJ. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. ACTA ACUST UNITED AC 2010; 207:2369-81. [PMID: 20876312 PMCID: PMC2964566 DOI: 10.1084/jem.20100282] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although it is well known that aged hosts are generally more susceptible to viral diseases than the young, specific dysfunctions of the immune system directly responsible for this increased susceptibility have yet to be identified. We show that mice genetically resistant to mousepox (the mouse parallel of human smallpox) lose resistance at mid-age. Surprisingly, this loss of resistance is not a result of intrinsically defective T cell responses. Instead, the primary reason for the loss of resistance results from a decreased number of total and mature natural killer (NK) cells in the blood and an intrinsic impairment in their ability to migrate to the lymph node draining the site of infection, which is essential to curb systemic virus spread. Hence, our work links the age-dependent increase in susceptibility to a viral disease to a specific defect of NK cells, opening the possibility of exploring treatments to improve NK cell function in the aged with the goal of enhancing their resistance to viral diseases.
Collapse
Affiliation(s)
- Min Fang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
31
|
Induction of both cellular and humoral immunity following a rational prime-boost immunization regimen that incorporates recombinant ovine atadenovirus and fowlpox virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1679-86. [PMID: 20810681 DOI: 10.1128/cvi.00291-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant fowlpox viruses (rFPV) and ovine atadenoviruses (rOAdV) are being developed as safe, nonpathogenic, prophylactic and therapeutic vaccine vectors. There is scope, however, to improve the limited immune responses elicited by each of these vaccine vectors. Using previously determined and optimized routes of administration and viral doses, we characterized the primary adaptive immune responses elicited by recombinant variants of each virus. We demonstrate the contrasting nature of the response elicited by each recombinant virus. Whereas rFPV generates predominately cell-mediated immunity to our nominal target antigen, ovalbumin (OVA), rOAdV drives strong humoral responses. By defining the time taken to achieve maximal cytotoxic T cell responses and by studying the different patterns and kinetics of major histocompatibility complex class I-restricted OVA antigen expression postimmunization, we proposed a heterologous prime-boost regimen of immunization with rOAdV followed by rFPV. The subsequent experimental results showed that this approach produced robust cell-mediated and humoral immune responses against OVA that, importantly, were accompanied by weak anti-viral vector antibody responses. These results, therefore, represent a novel and potentially clinically applicable way to achieve broadly based and effective immunity to the antigens encoded by vectored vaccines.
Collapse
|
32
|
Functional divergence among CD103+ dendritic cell subpopulations following pulmonary poxvirus infection. J Virol 2010; 84:10191-9. [PMID: 20660207 DOI: 10.1128/jvi.00892-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large number of dendritic cell (DC) subsets have now been identified based on the expression of a distinct array of surface markers as well as differences in functional capabilities. More recently, the concept of unique subsets has been extended to the lung, although the functional capabilities of these subsets are only beginning to be explored. Of particular interest are respiratory DCs that express CD103. These cells line the airway and act as sentinels for pathogens that enter the lung, migrating to the draining lymph node, where they add to the already complex array of DC subsets present at this site. Here we assessed the contributions of these individual populations to the generation of a CD8(+) T-cell response following respiratory infection with poxvirus. We found that CD103(+) DCs were the most effective antigen-presenting cells (APC) for naive CD8(+) T-cell activation. Surprisingly, we found no evidence that lymph node-resident or parenchymal DCs could prime virus-specific cells. The increased efficacy of CD103(+) DCs was associated with the increased presence of viral antigen as well as high levels of maturation markers. Within the CD103(+) DCs, we observed a population that expressed CD8alpha. Interestingly, cells bearing CD8alpha were less competent for T-cell activation than their CD8alpha(-) counterparts. These data show that lung-migrating CD103(+) DCs are the major contributors to CD8(+) T-cell activation following poxvirus infection. However, the functional capabilities of cells within this population differ with the expression of CD8, suggesting that CD103(+) cells may be divided further into distinct subsets.
Collapse
|
33
|
Xu RH, Remakus S, Ma X, Roscoe F, Sigal LJ. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog 2010; 6:e1000768. [PMID: 20169189 PMCID: PMC2820535 DOI: 10.1371/journal.ppat.1000768] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines. Professional antigen presenting cells fragment viral proteins and display some of the resulting peptides bound to MHC molecules at the cell surface. When virus-specific CD8+ T cells recognize these viral peptides they become activated, proliferate, and kill virus-infected cells to help rid the body of the virus. Two pathways have been described for the origin of the peptides presented by professional antigen presenting cells. In cross-presentation, the antigen presenting cells acquire the proteins from other cells which, in the case of a viral infection, must be infected. In direct presentation, the antigen presenting cells synthesize the proteins themselves and, therefore, during responses to viruses must be infected. However, the participation of direct presentation in anti-viral responses has never been deliberately demonstrated experimentally. In this paper we demonstrate that direct presentation occurs and is the main pathway to induce CD8+ T cells during infection with vaccinia virus. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.
Collapse
Affiliation(s)
- Ren-Huan Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sanda Remakus
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xueying Ma
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Felicia Roscoe
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Moutaftsi M, Tscharke DC, Vaughan K, Koelle DM, Stern L, Calvo-Calle M, Ennis F, Terajima M, Sutter G, Crotty S, Drexler I, Franchini G, Yewdell JW, Head SR, Blum J, Peters B, Sette A. Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 2010; 5:221-39. [PMID: 20143946 PMCID: PMC3363998 DOI: 10.2217/fmb.09.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host-pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
Collapse
Affiliation(s)
- Magdalini Moutaftsi
- Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 2010; 8:62-73. [PMID: 19966816 DOI: 10.1038/nrmicro2240] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent developments in the use of viruses as vaccine vectors have been facilitated by a better understanding of viral biology. Advances occur as we gain greater insight into the interrelationship of viruses and the immune system. Viral-vector vaccines remain the best means to induce cellular immunity and are now showing promise for the induction of strong humoral responses. The potential benefits for global health that are offered by this field reflect the scope and utility of viruses as vaccine vectors for human and veterinary applications, with targets ranging from certain types of cancer to a vast array of infectious diseases.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | | |
Collapse
|
36
|
Abadie V, Bonduelle O, Duffy D, Parizot C, Verrier B, Combadière B. Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice. PLoS One 2009; 4:e8159. [PMID: 19997562 PMCID: PMC2785484 DOI: 10.1371/journal.pone.0008159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 11/02/2009] [Indexed: 01/29/2023] Open
Abstract
Background Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate immune cells for adaptive immune response, determine host responsiveness to antigens. However, the sequence of these events and their impact on the quality of the immune response remain to be elucidated. Here, we chose to study Modified Vaccinia virus Ankara (MVA) which is now replacing live Smallpox vaccines and is proposed as an attenuated vector for vaccination strategies against infectious diseases. Methodology/Principal findings We analyzed in vivo mechanisms triggered following intradermal (i.d.) and intramuscular (i.m.) Modified Vaccinia virus Ankara (MVA) administration. We demonstrated significant differences in the antigen shuttling to lymphoid organs by macrophages (MΦs), myeloid dendritic cells (DCs), and neutrophils (PMNs). MVA i.d. administration resulted in better antigen distribution and more sustained antigen-presenting cells (APCs) recruitment into draining lymph nodes than with i.m. administration. These APCs, which comprise both DCs and MΦs, were differentially involved in T cell priming and shaped remarkably the quality of cytokine-producing virus-specific T cells according to the entry route of MVA. Conclusions/Significance This study improves our understanding of the mechanisms of antigen delivery and their consequences on the quality of immune responses and provides new insights for vaccine development.
Collapse
Affiliation(s)
- Valérie Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Olivia Bonduelle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Darragh Duffy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Christophe Parizot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, Lyon, France
| | - Béhazine Combadière
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies. PLoS One 2009; 4:e5445. [PMID: 19421328 PMCID: PMC2674217 DOI: 10.1371/journal.pone.0005445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 04/05/2009] [Indexed: 11/19/2022] Open
Abstract
Background Modified Vaccinia virus Ankara (MVA) is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. Principal Findings We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg) gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVAΔudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological ‘focusing’, we demonstrate that immunization of mice with MVAΔudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVAΔudg-gag, a udg− recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2–4-fold) and booster (2-fold) immunizations as compared to the udg+ control virus MVA-gag, as determined by intracellular cytokine assay. In contrast, levels of HIV Gag-specific antibodies were elicited similarly in macaques following immunization with MVAΔudg-gag and MVA-gag. Furthermore, both udg− and udg+ MVA vectors induced comparatively similar titers of MVA-specific neutralizing antibody responses following immunization of mice (over a 4-log range: 104–108 PFU) and rhesus macaques. These results suggest that the generation of MVA-specific neutralizing antibody responses are largely driven by input MVA antigens, rather than those that are synthesized de novo during infection, and that the processes governing the generation of antiviral antibody responses are more readily saturated by viral antigen than are those that elicit CD8+ T cell responses. Significance Our identification of a spontaneously-immortalized (but not transformed) chicken embryo fibroblast cell line (DF-1) that is fully permissive for MVA growth and that can be engineered to stably express MVA genes provides the basis for a genetic system for MVA. DF-1 cells (and derivatives thereof) constitute viable alternatives, for the manufacture of MVA-based vaccines, to primary CEFs – the conventional cell substrate for MVA vaccines that is not amenable to genetic complementation strategies due to these cells' finite lifespan in culture. The establishment of a genetic system for MVA, as illustrated here to allow udg deletion, enables the generation of novel replication-defective MVA mutants and expands the repertoire of genetic viral variants that can now be explored as improved vaccine vectors.
Collapse
|
38
|
Pavelic V, Matter MS, Mumprecht S, Breyer I, Ochsenbein AF. CTL induction by cross-priming is restricted to immunodominant epitopes. Eur J Immunol 2009; 39:704-16. [PMID: 19189311 DOI: 10.1002/eji.200838901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CTL are induced by two pathways, i.e. direct priming, where tumor cells present tumor antigens to naïve specific CTL, and cross-priming, where professional APC cross-present captured tumor antigens to CTL. Here, we examined direct priming versus cross-priming after immunizing (H-2(b) x H-2(d)) F1 mice with either H-2(b) or H-2(d) positive tumor cells transfected with the GP or nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV). Cross-priming was observed for the immunodominant epitopes LCMV-gp33 and -np118, although direct induction resulted in higher CTL frequencies. In contrast, CTL specific for the subdominant epitopes LCMV-gp283 or -np396 were induced only if epitopes were presented directly on MHC class I molecules of the immunizing cell. The broader repertoire and the higher CTL frequencies induced after vaccination with haplotype-matched tumor cells resulted in more efficient anti-tumor and antiviral protection. Firstly, our results indicate that certain virus and tumor antigens may not be detected by CD8(+) T cells because of impaired cross-priming. Secondly, efficient cross-priming contributes to the immunodominant nature of a tumor-specific CTL epitope. Thirdly, vaccine strategies using autologous or syngenic antigen-expressing cells induce a broader repertoire of tumor-specific CTL and higher CTL frequencies.
Collapse
Affiliation(s)
- Viktor Pavelic
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Overstreet MG, Cockburn IA, Zavala F. Protective CD8 T cells against Plasmodium liver stages: immunobiology of an 'unnatural' immune response. Immunol Rev 2008; 225:272-83. [PMID: 18837788 PMCID: PMC2597001 DOI: 10.1111/j.1600-065x.2008.00671.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Immunization with high doses of irradiated sporozoites delivered by the bites of infected mosquitoes has been shown to induce protective responses against malaria, mediated in part by CD8(+) T cells. In contrast, natural transmission involving low exposure to live sporozoite antigen fails to elicit strong immunity. In this review, we examine how irradiated sporozoite immunization breaks the natural host-parasite interaction and induces protective CD8(+) T cells. Upon biting, the malaria-infected mosquitoes deposit parasites in the skin, many of which eventually exit to the bloodstream and infect hepatocytes. However, certain antigens, including the circumsporozoite (CS) protein, remain in the skin and are presented in the draining lymph node. These antigens prime specific CD8(+) T cells, which migrate to the liver where they eliminate parasitized hepatocytes. We discuss the relevance of the different tissue compartments involved in the induction and effector phases of this response, as well as the cellular requirements for priming and memory development of CD8(+) T cells, which include a complete dependence on dendritic cells and a near absolute need for CD4(+) T-cell help. Finally, we discuss the impact of the immunodominant CS protein on this protection and the implications of these findings for vaccine design.
Collapse
Affiliation(s)
- Michael Glen Overstreet
- Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ian Andrew Cockburn
- Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fidel Zavala
- Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
40
|
Yammani RD, Pejawar-Gaddy S, Gurley TC, Weimer ET, Hiltbold EM, Alexander-Miller MA. Regulation of maturation and activating potential in CD8+ versus CD8- dendritic cells following in vivo infection with vaccinia virus. Virology 2008; 378:142-50. [PMID: 18586296 PMCID: PMC2615475 DOI: 10.1016/j.virol.2008.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/07/2008] [Accepted: 05/29/2008] [Indexed: 12/01/2022]
Abstract
DC maturation is known to be a necessary step in the generation of an effective immune response. We have used vaccinia virus (VACV) as a model to investigate the regulation of DC subsets in vivo following infection. While a number of in vitro studies have shown that DC infected with VACV fail to undergo maturation, the effect of VACV infection on the maturation of and cytokine production by DC subsets in vivo remains less defined. We have found that following systemic infection with vaccinia virus, both CD8+ and CD8- dendritic cells are infected. The number of infected DC peaked at 6 h and was highly decreased by 24 h post-infection. In both subsets, there was evidence of generalized upregulation of costimulatory molecules. Surprisingly, this included vaccinia infected DC, suggesting the regulation of DC maturation in vivo is much more complex and likely influenced by DC extrinsic signals. However, while we observed generalized upregulation of costimulatory molecules, IL-12 production was restricted to a subset of non-infected cells in both the CD8+ and CD8- DC populations. Importantly, the control of IL-12 production was differentially dependent on MyD88 signaling. IL-12 production was ablated in the absence of MyD88 in CD8- DC, while it was unchanged in CD8+ DC. These findings provide new insights into the control of DC maturation in vivo and demonstrate that the regulation of maturation in vivo following virus infection can be differentially controlled in distinct types of DC.
Collapse
Affiliation(s)
- Rama D. Yammani
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| | - Sharmila Pejawar-Gaddy
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| | - Thaddeus C. Gurley
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| | - Eric T. Weimer
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| | - Elizabeth M. Hiltbold
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| | - Martha A. Alexander-Miller
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-5936, FAX: (336) 716-9928
| |
Collapse
|
41
|
Cockburn IA, Chakravarty S, Overstreet MG, García-Sastre A, Zavala F. Memory CD8+ T cell responses expand when antigen presentation overcomes T cell self-regulation. THE JOURNAL OF IMMUNOLOGY 2008; 180:64-71. [PMID: 18097005 DOI: 10.4049/jimmunol.180.1.64] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial memory CD8+ T cell responses are not readily expanded by either repeated infections or immunizations. This is a major obstacle to the development of T cell vaccines. Prime-boost immunization with heterologous microbes sharing the same CD8+ epitope can induce a large expansion of the CD8+ response; however, different vectors vary greatly in their ability to boost for reasons that are poorly understood. To investigate how efficient memory T cell expansion can occur, we evaluated immune regulatory events and Ag presentation after secondary immunization with strong and weak boosting vectors. We found that dendritic cells were essential for T cell boosting and that Ag presentation by these cells was regulated by cognate memory CD8+ T cells. When weak boosting vectors were used for secondary immunization, pre-established CD8+ T cells were able to effectively curtail Ag presentation, resulting in limited CD8+ T cell expansion. In contrast, a strong boosting vector, vaccinia virus, induced highly efficient Ag presentation that overcame regulation by cognate T cells and induced large numbers of memory CD8+ T cells to expand. Thus, efficient targeting of Ag to dendritic cells in the face of cognate immunity is an important requirement for T cell expansion.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
42
|
Dunbar E, Alatery A, Basta S. Cross-Priming of a Single Viral Protein from Lymphocytic Choriomeningitis Virus Alters Immunodominance Hierarchies of CD8+ T Cells during Subsequent Viral Infections. Viral Immunol 2007; 20:585-98. [DOI: 10.1089/vim.2007.0062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erin Dunbar
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | - Attiya Alatery
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Bins AD, Wolkers MC, van den Boom MD, Haanen JBAG, Schumacher TNM. In vivo antigen stability affects DNA vaccine immunogenicity. THE JOURNAL OF IMMUNOLOGY 2007; 179:2126-33. [PMID: 17675471 DOI: 10.4049/jimmunol.179.4.2126] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The factors that determine the immunogenicity of Ags encoded by viral vaccines or DNA vaccines in vivo are largely unknown. Depending on whether T cell induction occurs via direct presentation of vaccine-encoded epitopes or via one of the different proposed pathways for Ag cross-presentation, the effect of intracellular Ag stability on immunogenicity may possibly vary. However, the influence of Ag stability on CD8(+) T cell induction has not been addressed in clinically relevant vaccine models, nor has the accumulation of vaccine-encoded Ags been monitored in vivo. In this study, we describe the relationship between in vivo Ag stability and immunogenicity of DNA vaccine-encoded Ags. We show that in vivo accumulation of DNA vaccine-encoded Ags is required for the efficient induction of CD8(+) T cell responses. These data suggest that many of the currently used transgene designs in DNA vaccination trials may be suboptimal, and that one should either use pathogen-derived or tumor-associated Ags that are intrinsically stable, or should increase the stability of vaccine-encoded Ags by genetic engineering.
Collapse
Affiliation(s)
- Adriaan D Bins
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Abstract
The primary focus of our work is the initiation of an antiviral immune response. While we employ many experimental systems to address this fundamental issue, much of our work revolves around the use of vaccinia virus. Concerns over the negative effects of vaccination have prevented the return of the smallpox immunization program to the general population and underscored the importance of understanding the primary immune response to vaccinia virus. This response is comprised of a complex symphony of immune system components employing a variety of different mechanisms. In this review, we will both highlight the roles of many of these components and touch on the applications of vaccinia virus in the laboratory and the clinic.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
45
|
Gasteiger G, Kastenmuller W, Ljapoci R, Sutter G, Drexler I. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J Virol 2007; 81:11925-36. [PMID: 17699574 PMCID: PMC2168793 DOI: 10.1128/jvi.00903-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recombinant vaccines based on modified vaccinia virus Ankara (MVA) have an excellent record concerning safety and immunogenicity and are currently being evaluated in numerous clinical studies for immunotherapy of infectious diseases and cancer. However, knowledge about the biological properties of target antigens to efficiently induce MVA vaccine-mediated immunity in vivo is sparse. Here, we examined distinct antigen presentation pathways and different antigen formulations contained in MVA vaccines for their capability to induce cytotoxic CD8(+) T-cell (CTL) responses. Strikingly, we found that CTL responses against MVA-produced antigens were dominated by cross-priming in vivo, despite the ability of the virus to efficiently infect professional antigen-presenting cells such as dendritic cells. Moreover, stable mature protein was preferred to preprocessed antigen as the substrate for cross-priming. Our data are essential for improved MVA vaccine design, as they demonstrate the need for optimal adjustment of the target antigen properties to the intrinsic requirements of the delivering vector system.
Collapse
Affiliation(s)
- Georg Gasteiger
- GSF-Institute for Molecular Virology, Schneckenburgerstrasse 8, D-81675 Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome. Clin Immunol 2007; 124:5-12. [PMID: 17540619 DOI: 10.1016/j.clim.2007.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/13/2007] [Accepted: 04/13/2007] [Indexed: 01/16/2023]
Abstract
T cell-mediated protection against HCV depends on constantly activated effector CD8(+)T cells that control emergence, spread and expansion of the virus. Why these cells fail to contain HCV replication in 70-80% of the individuals who develop persistent viremia is not clear. Although many reviews have focused on HCV's ability to interfere with the process of antigen presentation by dendritic cells (DC), only few have discussed the mechanisms whereby HCV-derived antigens become available for presentation to naive CD8(+)T cells. The importance of these mechanisms has been recently brought to light by new insight into DC biology, antigen processing, HCV replication and the immune system's functional anatomy. This review explores the different immunological scenarios in which CD8(+)T cell responses against HCV may be initiated. It describes the critical factors limiting antigen sensing and capture by APC and antigen recognition by T cells, and discusses how these factors may favor chronicity of HCV infection. Despite the lack of critical detail and hard experimental proof, this review proposes a model whereby liver seclusion, unproductive infection of professional antigen presenting cells and lack of direct tissue damage hamper the launch of a virus-specific CD8(+)T cell response. The implications for vaccine development are also discussed.
Collapse
|
47
|
Abstract
Antigen presentation by professional antigen-presenting cells (pAPCs) to cytotoxic CD8(+) T cells can occur via two processing routes - the direct and cross-presentation pathways. Cross-presentation of exogenous antigens in the context of major histocompatibility complex (MHC) class I molecules has recently attracted a lot of research interest because it may prove crucial for vaccine development. This alternative pathway has been implicated in priming CD8(+) T-cell responses to pathogens as well as tumours in vivo (cross-priming). In cross-presentation, the internalized antigens can be processed through diverse intracellular routes. As many unresolved questions regarding the molecular basis that controls the cross-priming process still exist, it is essential to explore the various elements involved therein, to better elucidate this pathway. In this review, we summarize current data that explore how the source and nature of antigens could affect their cross-presentation. Moreover, we will discuss and outline how recent advances regarding pAPCs' properties have increased our appreciation of the complex nature of the cross-priming pathway in vivo. In conclusion, we contemplate how the direct and cross-presentation pathways can function to allow the immune system to deal efficiently with diverse pathogens.
Collapse
Affiliation(s)
- S Basta
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| | | |
Collapse
|
48
|
Pickup DJ. Understanding orthopoxvirus interference with host immune responses to inform novel vaccine design. Expert Rev Vaccines 2007; 6:87-95. [PMID: 17280481 DOI: 10.1586/14760584.6.1.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Jenner's original vaccine used cowpox virus. Cowpox virus and, subsequently, vaccinia virus, a closely related Orthopoxvirus, provided the means to eradicate smallpox. This history and the unique properties of the virus suggest that vaccinia virus will continue to provide a useful vaccine platform. Yet, surprisingly, it has become apparent that much of the virus genome encodes accessory proteins that interfere with host immune responses to infection. Manipulation of these genes offers the potential for new generations of orthopoxvirus vaccines in which we will have far greater control over key features of the vaccination, including the sites of virus infection, the degree of virus replication, the pathogenicity of the virus and, most importantly, the suppression or induction of immune responses of specific types.
Collapse
Affiliation(s)
- David J Pickup
- Department of Molecular Genetics and Microbiology, and Duke Human Vaccine Institute, Box 3020, Duke University Medical Center, Durham, NC 27710 USA.
| |
Collapse
|
49
|
Viner KM, Girgis N, Kwak H, Isaacs SN. B5-deficient vaccinia virus as a vaccine vector for the expression of a foreign antigen in vaccinia immune animals. Virology 2006; 361:356-63. [PMID: 17188733 PMCID: PMC2048764 DOI: 10.1016/j.virol.2006.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/20/2006] [Accepted: 11/13/2006] [Indexed: 11/19/2022]
Abstract
Recombinant vaccinia viruses have shown promise as vaccine vectors. However, their effectiveness is markedly reduced by pre-existing anti-vaccinia immunity. The possibility of new vaccinia immunizations in the event of a bioterror-related smallpox release poses an additional negative impact on the utility of vaccinia-based vectors. Thus, we aimed to design a vaccinia vector that would enhance the immune response to an expressed foreign protein in a pre-immune animal model. To do this, we made use of the finding that most neutralizing antibodies against the extracellular form of vaccinia virus are directed against the B5 protein. We found that mice immunized with vaccinia, primed with Gag plasmid DNA, and boosted with a recombinant vaccinia virus lacking the majority of the B5 ectodomain expressing a test antigen, HIV Gag, had stronger anti-Gag immune responses than mice that were boosted with a wild-type virus-expressing Gag. These findings are particularly striking given the more attenuated phenotype of this virus, as compared to its wild-type counterpart. Importantly, we found that vaccination with a B5R deletion virus, followed by boosting with the Gag-expressing virus lacking the majority of the B5 ectodomain, resulted in poorer anti-Gag immune responses. Thus, recombinant vaccinia viruses lacking the B5 ectodomain may serve as vaccine vectors in DNA prime-vaccinia boost vaccinations of individuals with pre-existing immunity against vaccinia. These data open the possibility of extending the potential benefit of replication competent recombinant vaccinia virus vectors to a larger population.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Cutaneous
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Gene Deletion
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV-1/immunology
- Immunization, Secondary
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Mice
- Protein Structure, Tertiary/genetics
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/deficiency
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
| | | | | | - Stuart N. Isaacs
- *Corresponding author: Stuart N. Isaacs, University of Pennsylvania School of Medicine, Division of Infectious Diseases 502 Johnson Pavilion, Philadelphia, PA 19104-6073. Phone: 215-662-2150; Fax: 214-349-5111;
| |
Collapse
|
50
|
Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 2006; 25:533-43. [PMID: 17046682 DOI: 10.1016/j.immuni.2006.09.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral CD8(+) T cells respond to only a minute fraction of the potential peptide determinants encoded by viral genomes. Immunogenic determinants can be ordered into highly reproducible hierarchies based on the magnitude of cognate CD8(+) T cell responses. Until recently, this phenomenon, termed immunodominance, was largely defined and characterized in model systems utilizing a few strains of inbred mice infected with a handful of viruses with limited coding capacity. Here, I review work that has extended immunodominance studies to viruses of greater complexity and to the real world of human antiviral immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| |
Collapse
|