1
|
Qureshi OS, Sutton EJ, Bithell RF, West SM, Cutler RM, McCluskey G, Craggs G, Maroof A, Barnes NM, Humphreys DP, Rapecki S, Smith BJ, Shock A. Interactions of the anti-FcRn monoclonal antibody, rozanolixizumab, with Fcγ receptors and functional impact on immune cells in vitro. MAbs 2024; 16:2300155. [PMID: 38241085 PMCID: PMC10802195 DOI: 10.1080/19420862.2023.2300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.
Collapse
|
2
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
3
|
Zhu W, Wang Y, Lv L, Wang H, Shi W, Liu Z, Zhou M, Zhu J, Lu H. Universal chimeric Fcγ receptor T cells with appropriate affinity for IgG1 antibody exhibit optimal antitumor efficacy. Acta Pharm Sin B 2023; 13:2071-2085. [DOI: 10.1016/j.apsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 02/11/2023] Open
|
4
|
Thibault G, Paintaud G, Sung HC, Lajoie L, Louis E, Desvignes C, Watier H, Gouilleux-Gruart V, Ternant D. Association of IgG1 Antibody Clearance with FcγRIIA Polymorphism and Platelet Count in Infliximab-Treated Patients. Int J Mol Sci 2021; 22:ijms22116051. [PMID: 34205175 PMCID: PMC8199937 DOI: 10.3390/ijms22116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
The FcγRIIA/CD32A is mainly expressed on platelets, myeloid and several endothelial cells. Its affinity is considered insufficient for allowing significant binding of monomeric IgG, while its H131R polymorphism (histidine > arginine at position 131) influences affinity for multimeric IgG2. Platelet FcγRIIA has been reported to contribute to IgG-containing immune-complexe clearance. Given our finding that platelet FcγRIIA actually binds monomeric IgG, we investigated the role of platelets and FcγRIIA in IgG antibody elimination. We used pharmacokinetics analysis of infliximab (IgG1) in individuals with controlled Crohn’s disease. The influence of platelet count and FcγRIIA polymorphism was quantified by multivariate linear modelling. The infliximab half-life increased with R allele number (13.2, 14.4 and 15.6 days for HH, HR and RR patients, respectively). It decreased with increasing platelet count in R carriers: from ≈20 days (RR) and ≈17 days (HR) at 150 × 109/L, respectively, to ≈13 days (both HR and RR) at 350 × 109/L. Moreover, a flow cytometry assay showed that infliximab and monomeric IgG1 bound efficiently to platelet FcγRIIA H and R allotypes, whereas panitumumab and IgG2 bound poorly to the latter. We propose that infliximab (and presumably any IgG1 antibody) elimination is partly due to an unappreciated mechanism dependent on binding to platelet FcγRIIA, which is probably tuned by its affinity for IgG2.
Collapse
Affiliation(s)
- Gilles Thibault
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +332-3437-9699
| | - Gilles Paintaud
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hsueh Cheng Sung
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Laurie Lajoie
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
| | - Edouard Louis
- Department of Gastroenterology, University Hospital, CHU of Liège, 4000 Liège, Belgium;
| | | | - Celine Desvignes
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| | - Hervé Watier
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire d’Immunologie, CHRU de Tours, 37032 Tours, France
| | - David Ternant
- EA 7501 GICC, Université de Tours, 37032 Tours, France; (G.P.); (H.C.S.); (L.L.); (C.D.); (H.W.); (V.G.-G.); (D.T.)
- Laboratoire de Pharmacologie-Toxicologie, CHRU de Tours, 37044 Tours, France
| |
Collapse
|
5
|
Chen YCE, Burgess M, Mapp S, Mollee P, Gill D, Blumenthal A, Saunders NA. SIRPα Suppresses Response to Therapeutic Antibodies by Nurse Like Cells From Chronic Lymphocytic Leukemia Patients. Front Immunol 2021; 11:610523. [PMID: 33552071 PMCID: PMC7859087 DOI: 10.3389/fimmu.2020.610523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Targeted antibody therapies improve outcomes for chronic lymphocytic leukemia (CLL) patients. However, resistance often develops. We have previously shown that resistance to therapeutic antibodies, by monocyte derived macrophages (referred to as nurse like cells, NLCs), from CLL patients is characterized by suppression of antibody dependent phagocytosis (ADP). The mechanism(s) contributing to the muted ADP responses remain unresolved. In this regard, an innate immune checkpoint was recently described that uses the CD47:SIRPα axis to suppress phagocytic responses by macrophages. In this study we examine whether the SIRPα axis regulates ADP responses to the anti-CD20 antibody, obinutuzumab, by NLCs. Using siRNA depletion strategies we show that SIRPα is a suppressor of ADP responses. Moreover, we show that this innate immune checkpoint contributes to the resistance phenotype in NLCs derived from CLL patients. Finally, we show that SIRPα suppression is mediated via the phosphatase, Shp1, which in turn suppresses SYK-dependent activation of ADP. Thus, we identify a druggable pathway that could be exploited to enhance sensitivity to existing therapeutic antibodies used in CLL. This is the first study to show that activation of the CD47:SIRPα innate immune checkpoint contributes to ADP resistance in NLCs from CLL patients.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- CD47 Antigen/genetics
- Cells, Cultured
- Immunity, Innate/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Phagocytosis/drug effects
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Syk Kinase/metabolism
Collapse
Affiliation(s)
- Yu-Chen Enya Chen
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Melinda Burgess
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Sally Mapp
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Translational Research Institute, University of Queensland School of Medicine, Woolloongabba, QLD, Australia
| | - Peter Mollee
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Devinder Gill
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Antje Blumenthal
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Saunders
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- Translational Research Institute, University of Queensland School of Medicine, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
7
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Litzman J, Chovancová Z, Bejdák P, Litzman M, Hel Z, Vlková M. Common variable immunodeficiency patients display elevated plasma levels of granulocyte activation markers elastase and myeloperoxidase. Int J Immunopathol Pharmacol 2019; 33:2058738419843381. [PMID: 30968712 PMCID: PMC6458674 DOI: 10.1177/2058738419843381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency disorders (CVIDs) represent a group of primary immunodeficiency diseases characterized by hypogammaglobulinemia and dysfunctional immune response to invading pathogens. Previous studies have indicated that CVID is associated with microbial translocation and systemic myeloid cell activation. The goal of this study was to determine whether patients with CVID display elevated systemic levels of markers of granulocyte activation and whether the levels are further influenced by intravenous immunoglobulin (IVIg) infusions. The plasma levels of granulocyte activation markers elastase and myeloperoxidase were determined using enzyme-linked immunosorbent assay (ELISA) in 46 CVID patients and 44 healthy controls. All CVID patients were in a stable state with no apparent acute infection. In addition, granulocyte activation markers’ plasma levels in 24 CVID patients were determined prior to and 1 h following IVIg administration. Neutrophil elastase and myeloperoxidase plasma levels were significantly higher in CVID patients than in healthy controls. Systemic elastase levels were further increased following IVIg administration. In vitro stimulation of 13 CVID patients’ whole blood using IVIg in a therapeutically relevant dose for 2 h resulted in a significant increase in plasma elastase levels compared to unstimulated blood. The data presented here indicate that CVID is associated with chronic granulocytic activation which is further exacerbated by administering IVIg. Increased myeloperoxidase and elastase levels may contribute to associated comorbidities in CVID patients.
Collapse
Affiliation(s)
- Jiří Litzman
- 1 Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic.,2 Department of Clinicla Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zita Chovancová
- 1 Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic.,2 Department of Clinicla Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Bejdák
- 1 Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic.,2 Department of Clinicla Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Litzman
- 3 Department of Economics, Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic
| | - Zdeněk Hel
- 4 Departments of Pathology and Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcela Vlková
- 1 Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic.,2 Department of Clinicla Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Stamou M, Grodzki AC, van Oostrum M, Wollscheid B, Lein PJ. Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 2018; 15:7. [PMID: 29306331 PMCID: PMC5756609 DOI: 10.1186/s12974-017-1050-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Background Exposure of the developing brain to immune mediators, including antibodies, is postulated to increase risk for neurodevelopmental disorders and neurodegenerative disease. It has been suggested that immunoglobulin G-immune complexes (IgG-IC) activate Fc gamma receptors (FcγR) expressed on neurons to modify signaling events in these cells. However, testing this hypothesis is hindered by a paucity of data regarding neuronal FcγR expression and function. Methods FcγR transcript expression in the hippocampus, cortex, and cerebellum of neonatal male and female rats was investigated ex vivo and in mixed cultures of primary hippocampal and cortical neurons and astrocytes using quantitative PCR analyses. Expression at the protein level in mixed cultures of primary hippocampal and cortical neurons and astrocytes was determined by immunocytochemistry, western blotting, proteotype analysis, and flow cytometry. The functionality of these receptors was assessed by measuring changes in intracellular calcium levels, Erk phosphorylation, and IgG internalization following stimulation with IgG-immune complexes. Results FcgrIa, FcgrIIa, FcgrIIb, FcgrIIIa, and Fcgrt transcripts were detectable in the cortex, hippocampus, and cerebellum at postnatal days 1 and 7. These transcripts were also present in primary hippocampal and cortical cell cultures, where their expression was modulated by IFNγ. Expression of FcγRIa, FcγRIIb, and FcγRIIIa, but not FcγRIIa or FcRn proteins, was confirmed in cultured hippocampal and cortical neurons and astrocytes at the single cell level. A subpopulation of these cells co-expressed the activating FcγRIa and the inhibitory FcγRIIb. Functional analyses demonstrated that exposure of hippocampal and cortical cell cultures to IgG-IC increases intracellular calcium and Erk phosphorylation and triggers FcγR-mediated internalization of IgG. Conclusions Our data demonstrate that developing neurons and astrocytes in the hippocampus and the cortex express signaling competent FcγR. These findings suggest that IgG antibodies may influence normal neurodevelopment or function via direct interactions with FcγR on non-immune cells in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-017-1050-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Marc van Oostrum
- Department of Health Sciences and Technology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zürich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zürich, Switzerland
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
A simple method for measuring immune complex-mediated, Fc gamma receptor dependent antigen-specific activation of primary human T cells. J Immunol Methods 2017; 454:32-39. [PMID: 29258749 DOI: 10.1016/j.jim.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Immune complex (IC) deposition of IgG containing autologous antigens has been observed in autoimmunity. This can lead to IC-mediated antigen uptake and presentation by antigen presenting cells (APC) driving T cell dependent inflammation. IgG receptors (FcγRs) have been suggested to be involved in this process. Since ICs have been linked to autoimmune diseases, interfering with IC mediated effects on APCs and subsequent autoimmune T cell activation via FcγR blockade may be therapeutically beneficial. However, this is currently challenging due to a lack of translatable animal models and specific human in vitro assays to study IC-driven T cell responses. Here, we developed a simple cellular assay to study IC-mediated T cell activation in vitro using human peripheral blood mononuclear cells and tetanus toxoid as a model antigen. We observed that tetanus ICs led to a strong induction of T cell proliferation and release of pro-inflammatory cytokines, which are hallmarks of chronic inflammation. This process was exacerbated when compared to tetanus toxoid challenge alone. IC-mediated T cell effects were FcγR dependent and inhibited by high-dose intravenous IgG (IVIg), a drug often used for the clinical treatments of autoimmune diseases. Similar effects were also seen using a hepatitis antigen. Consequently, we propose our assay as a rapid yet robust alternative to more labour-intense and time-consuming protocols, for example involving separate maturation of dendritic cells followed by T cell co-culture to study antigen specific primary T cell activation.
Collapse
|
12
|
Quinti I, Mitrevski M. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells. Front Immunol 2017; 8:697. [PMID: 28670314 PMCID: PMC5472665 DOI: 10.3389/fimmu.2017.00697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022] Open
Abstract
Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD) in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Milica Mitrevski
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 2016; 268:340-64. [PMID: 26497532 PMCID: PMC7165974 DOI: 10.1111/imr.12367] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody‐dependent enhancement (ADE) of infection, the phenomenon occurs when virus‐antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis.
Collapse
Affiliation(s)
- Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Luan Vu Dinh
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
14
|
Prezzo A, Cavaliere FM, Bilotta C, Iacobini M, Quinti I. Intravenous immunoglobulin replacement treatment does not alter polymorphonuclear leukocytes function and surface receptors expression in patients with common variable immunodeficiency. Cell Immunol 2016; 306-307:25-34. [PMID: 27264689 DOI: 10.1016/j.cellimm.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 01/15/2023]
Abstract
The study of the expression of CD16, CD11b and Siglec 9 receptors and the oxidative burst provides insights on polymorphonuclear leukocytes (PMN) functionality in common variable immunodeficiency (CVID) and on the possible effects of intravenous immunoglobulin (IVIg) infusion. We evaluated in vivo before and soon after IVIg administration the CD16, CD11b and Siglec 9 expression on unstimulated and Escherichia coli-stimulated PMN and the oxidative burst induced by Escherichia coli and PMA. The E. coli stimulation up-regulated CD16 and Siglec 9 expression and it induced a strong CD11b up-regulation at baseline and soon after IVIg. The oxidative burst overlapped that observed in healthy donors when induced by Escherichia coli while it increased when induced by PMA. Soon after IVIg infusion, the oxidative burst decreased only when induced by PMA. Our results showed that the IVIg infusion in vivo had a minimal effect on CVID's PMN.
Collapse
Affiliation(s)
- Alessandro Prezzo
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | | | - Caterina Bilotta
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | | | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
15
|
Richard A, Corvol JC, Debs R, Reach P, Tahiri K, Carpentier W, Gueguen J, Guillemot V, Labeyrie C, Adams D, Viala K, Cohen Aubart F. Transcriptome Analysis of Peripheral Blood in Chronic Inflammatory Demyelinating Polyradiculoneuropathy Patients Identifies TNFR1 and TLR Pathways in the IVIg Response. Medicine (Baltimore) 2016; 95:e3370. [PMID: 27175635 PMCID: PMC4902477 DOI: 10.1097/md.0000000000003370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have studied the response to intravenous immunoglobulins (IVIg) by a transcriptomic approach in 11 chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients (CIDP duration = 6 [0.83-6.5] years). RNA was extracted from cells in whole blood collected before and 3 weeks after IVIg treatment, and hybridized on Illumina chips. After RNA quality controls, gene expression was analyzed using statistical tests fitted for microarrays (R software, limma package), and a pathway analysis was performed using DAVID software. We identified 52 genes with expression that varied significantly after IVIg (fold change [FC] > 1.2, P < 0.001, false discovery rate [FDR] <0.05). Among these 52 genes, 7 were related to immunity, 3 were related to the tumor necrosis factor (TNF)-α receptor 1 (TNFR1) pathway (inhibitor of caspase-activated DNase (ICAD): FC = 1.8, P = 1.7E-7, FDR = 0.004; p21 protein-activated kinase 2 [PAK2]: FC = 1.66, P = 2.6E-5, FDR = 0.03; TNF-α-induced protein 8-like protein 1 [TNFAIP8L1]: P = 1.00E-05, FDR = 0.026), and 2 were related to Toll-like receptors (TLRs), especially TLRs 7 and 9, and were implicated in autoimmunity. These genes were UNC93B1 (FC = 1.6, P = 2E-5, FDR = 0.03), which transports TLRs 7 and 9 to the endolysosomes, and RNF216 (FC = 1.5, P = 1E-05, FDR = 0.03), which promotes TLR 9 degradation. Pathway analysis showed that the TNFR1 pathway was significantly lessened by IVIg (enrichment score = 24, Fischer exact test = 0.003). TNF-α gene expression was higher in responder patients than in nonresponders; however, it decreased after IVIg in responders (P = 0.04), but remained stable in nonresponders. Our data suggest the actions of IVIg on the TNFR1 pathway and an original mechanism involving innate immunity through TLRs in CIDP pathophysiology and the response to IVIg. We conclude that responder patients have stronger inflammatory activity that is lessened by IVIg.
Collapse
Affiliation(s)
- Alexandra Richard
- From the Sorbonne Universités (AR, J-CC, KT), UPMC Univ Paris 06, INSERM UMRS_1127, CIC_1422, CNRS UMR_7225, AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux; Hôpital Pitié Salpêtrière (RD, PR, KV), Département de Neurophysiologie Clinique; Plateforme Post-génomique P3S (WC), UPMC, Site Pitié Salpêtrière; IHU-A-ICM Bioinformatics/Biostatistics Core Facility (JG, VG), Paris; Hôpital de Bicêtre (CL, DA), Centre de Référence des Neuropathies Amyloïdes et autres Neuropathies Périphériques Rares, Le Kremlin-Bicêtre; and AP-HP, Hôpital Pitié Salpêtrière, Service de Médecine Interne, Institut E3M, Centre National de Référence Maladies auto-immunes Systémiques Rares, et Université Paris VI Pierre et Marie Curie, Sorbonnes Université, Paris, France (FCA)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sonneveld ME, van der Schoot CE, Vidarsson G. The Elements Steering Pathogenesis in IgG-Mediated Alloimmune Diseases. J Clin Immunol 2016; 36 Suppl 1:76-81. [PMID: 26961360 DOI: 10.1007/s10875-016-0253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 02/05/2023]
Abstract
Alloimmune diseases can occur in pregnancy and after blood transfusions, where antibodies are formed, targeting foreign cells and tissues for destruction by myeloid cells through IgG Fc-receptors (FcγR). In pregnancy, antibodies against human blood group or platelet antigens (e.g. HPA1-a) cause life-threatening anemia or thrombocytopenia in the developing fetus or newborn. Here we discuss how both the induction of those IgG antibodies as well as the proinflammatory status of the fetus affects the effector functions through FcγR. Recent studies have found IgG-glycosylation to be important with low IgG-Fc-core fucosylation resulting in increased affinity to FcγRIIIa and FcγRIIIb and enhanced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis. The importance of these and other features, including oxidative stress and acute phase responses (C-reactive protein, CRP), will be discussed and how these features may collectively synergize resulting in elevated disease pathology in these allo-, but also autoimmune mediated diseases.
Collapse
Affiliation(s)
- Myrthe E Sonneveld
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Cavaliere FM, Prezzo A, Conti V, Bilotta C, Pulvirenti F, Iacobini M, Quinti I. Intravenous immunoglobulin replacement induces an in vivo reduction of inflammatory monocytes and retains the monocyte ability to respond to bacterial stimulation in patients with common variable immunodeficiencies. Int Immunopharmacol 2015; 28:596-603. [DOI: 10.1016/j.intimp.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
|
18
|
Abstract
While the interactions between Gram-positive bacteria and platelets have been well characterized, there is a paucity of data on the interaction between other pathogens and platelets. However, thrombocytopenia is a common feature with many infections especially viral hemorrhagic fever. The little available data on these interactions indicate a similarity with bacteria-platelet interactions with receptors such as FcγRIIa and Toll-Like Receptors (TLR) playing key roles with many pathogens. This review summarizes the known interactions between platelets and pathogens such as viruses, fungi and parasites.
Collapse
Affiliation(s)
- Ana Lopez Alonso
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland , Dublin , Ireland
| | | |
Collapse
|
19
|
Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol 2015; 5:674. [PMID: 25653650 PMCID: PMC4301001 DOI: 10.3389/fimmu.2014.00674] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
Intravenous IgG (IVIg) contains polyclonal immunoglobulin G (IgG) from thousands of donors. It is administered at a low dose at regular intervals as antibody replacement therapy and at a higher dose as immunomodulatory treatment in various auto-immune or auto-inflammatory diseases. The working mechanism of immunomodulation is not well understood. Many different explanations have been given. During the last decade, we have focused on classical antibody binding via the Fc-domain of the IgG molecules to the common IgG receptors, i.e. the Fcγ receptors (FcγRs). Variation in the genes encoding human FcγRs determines function as well as expression among immune cells. As described here, NK cells and myeloid cells, including macrophages, can express different FcγR variants, depending on the individual's genotype, copy number variation (CNV), and promoter polymorphisms. B-cells seem to only express the single inhibitory receptor. Although these inhibitory FcγRIIb receptors are also expressed by monocytes, macrophages, and only rarely by NK cells or neutrophils, their presence is unlikely to explain the immunomodulatory capacity of IVIg, nor does the sialylation of IgG. Direct IVIg effects at the level of the activating FcγRs, including the more recently described FcγRIIc, deserve renewed attention to describe IVIg-related immunomodulation.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands ; Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital at the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
20
|
Inhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophages. Blood 2014; 124:3709-18. [DOI: 10.1182/blood-2014-05-576835] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Key Points
Phagocytosis of IgG-opsonized blood cells by human macrophages is inhibited by intravenous immunoglobulins. This inhibition is independent of IgG-Fc sialylation but improves with IgG preparations that bind FcγRs more avidly.
Collapse
|
21
|
Tjon ASW, Jaadar H, van Gent R, van Kooten PJS, Achatbi N, Metselaar HJ, Kwekkeboom J. Prevention of immunoglobulin G immobilization eliminates artifactual stimulation of dendritic cell maturation by intravenous immunoglobulin in vitro. Transl Res 2014; 163:557-64. [PMID: 24491358 DOI: 10.1016/j.trsl.2014.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Intravenous immunoglobulin (IVIg), a therapeutic preparation containing pooled human immunoglobulin (Ig) G, has been suggested to inhibit differentiation and maturation of dendritic cells (DCs); however, controversies exist on this issue. We aimed to reinvestigate the effects of IVIg on human DC maturation and cytokine production, and to determine whether an artifactual determinant is involved in the observed effects. Human monocyte-derived DCs or freshly isolated blood myeloid DCs were cultured in the presence of IVIg in vitro, and the expression of maturation markers CD80, CD86, CD83, and Human Leukocyte Antigen-DR were determined by flow cytometry, whereas production of interleukin (IL)-12 and IL-10 was measured by enzyme-linked immunosorbent assay, and T-cell stimulatory capacity was determined in cocultures with allogeneic CD4(+) T cells. Interestingly, we observed that IVIg did not inhibit, but instead stimulated, spontaneous maturation and T-cell stimulatory ability of human DCs, while leaving lipopolysaccharide-induced DC maturation and cytokine production unaffected. Strikingly, prevention of IVIg binding to culture plate surface, or blocking of the activating Fcγ receptor IIa on DC, abrogated the stimulatory effect of IVIg on costimulatory molecule expression and on T-cell stimulatory capacity of DCs, suggesting that IVIg activates DCs on IgG adsorption to the plastic surface. This study warrants for careful study design when performing cell culture studies with IVIg to prevent artifactual effects, and shows that IVIg does not modulate directly costimulatory molecule expression, cytokine production, or allogeneic T-cell stimulatory capacity of human DCs.
Collapse
Affiliation(s)
- Angela S W Tjon
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Haziz Jaadar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Rogier van Gent
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Peter J S van Kooten
- Department of Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Najib Achatbi
- Department of Clinical Pharmacology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Abstract
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
23
|
Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 2013; 122:3482-91. [PMID: 24106207 DOI: 10.1182/blood-2013-05-504043] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Key Points
Phagocytosis of CLL targets by neutrophils is a novel mechanism of action of the glycoengineered anti-CD20 antibody obinutuzumab. This mechanism takes place in physiological conditions and requires CD16B and CD32A.
Collapse
|
24
|
Rollet-Labelle E, Vaillancourt M, Marois L, Newkirk MM, Poubelle PE, Naccache PH. Cross-linking of IgGs bound on circulating neutrophils leads to an activation of endothelial cells: possible role of rheumatoid factors in rheumatoid arthritis-associated vascular dysfunction. J Inflamm (Lond) 2013; 10:27. [PMID: 23902799 PMCID: PMC3734015 DOI: 10.1186/1476-9255-10-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is characterized by the presence of circulating auto-antibodies, including rheumatoid factors, which recognize the Fc portion of IgGs. The neutrophil is the most abundant circulating leukocyte and it expresses high levels of FcγRs on its surface. The aim of the present study was to examine the capacity of circulating human neutrophils to be activated by rheumatoid factors and the consequences of these events on endothelium. METHODS Neutrophil-bound IgGs were cross-linked with anti-human IgGs to mimick the presence of circulating rheumatoid factors and FcγRs-dependent signalling events and functions were examined. The IgG and IgM composition of rheumatoid factors isolated from the serum of RA patients was characterized. Adhesion of neutrophils to endothelial cells was quantified in response to the addition of rheumatoid factors. RESULTS Cross-linking of IgGs bound on neutrophils leads to FcγRs-dependent tyrosine phosphorylation, mobilisation of intracellular calcium and the extracellular release of superoxide anions and lysozyme. Incubation of endothelial cells with the supernatant of activated neutrophils increases ICAM-1 expression and IL-8 production by endothelial cells. Finally, rheumatoid factors enhance neutrophil adhesion to endothelial cells. CONCLUSIONS Our results show that activation of neutrophils' FcγRs by rheumatoid factors could participate in rheumatoid arthritis-associated vascular damage.
Collapse
Affiliation(s)
- Emmanuelle Rollet-Labelle
- Départements de Microbiologie-Infectiologie et Immunologie et de Médecine, Centre de recherche en rhumatologie et immunologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Myriam Vaillancourt
- Départements de Microbiologie-Infectiologie et Immunologie et de Médecine, Centre de recherche en rhumatologie et immunologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Louis Marois
- Départements de Microbiologie-Infectiologie et Immunologie et de Médecine, Centre de recherche en rhumatologie et immunologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Marianna M Newkirk
- Department of Medicine, Division of Rheumatology, Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Patrice E Poubelle
- Départements de Microbiologie-Infectiologie et Immunologie et de Médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Paul H Naccache
- Départements de Microbiologie-Infectiologie et Immunologie et de Médecine, Centre de recherche en rhumatologie et immunologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
25
|
van der Heijden J, Geissler J, van Mirre E, van Deuren M, van der Meer JWM, Salama A, van den Berg TK, Roos D, Kuijpers TW. A novel splice variant of FcγRIIa: a risk factor for anaphylaxis in patients with hypogammaglobulinemia. J Allergy Clin Immunol 2013; 131:1408-16.e5. [PMID: 23545275 DOI: 10.1016/j.jaci.2013.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/23/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our index case was a patient with common variable immunodeficiency (CVID). She had anaphylactoid reactions on administration of intravenous immunoglobulin (IVIg) associated with the presence of IgG antibodies against IgA. OBJECTIVE We sought to determine the role of Fcγ receptor (FcγR) IIa in IVIg-induced anaphylactoid reactions. METHODS Neutrophils and PBMCs were isolated from healthy subjects and IVIg-treated patients. FcγRIIa mRNA and DNA were analyzed by using real-time PCR and sequencing. IgG-mediated elastase release and intracellular Ca(2+) mobilization were determined in neutrophils and transfected cell lines, respectively. RESULTS A novel splice variant of FcγRIIa containing an expressed cryptic exon 6* (FcγRIIa(exon6∗)) was identified in our index patient. This exon is normally spliced out of all FcγRII isoforms, except the inhibitory FcγRIIb1. Compared with healthy control subjects, the heterozygous FCGR2A(c.742+871A>G) mutation was more frequent in patients with CVID (n = 53, P < .013). Expression in patients with CVID was associated with anaphylaxis on IVIg infusion (P = .002). On screening of additional IVIg-treated patient cohorts, we identified 6 FCGR2A(c.742+871A>G) allele-positive patients with Kawasaki disease (n = 208) and 1 patient with idiopathic thrombocytopenia (n = 93). None had adverse reactions to IVIg. Moreover, FcγRIIa(exon6∗) was also demonstrated in asymptomatic family members. Functional studies in primary cells and transfected murine cells demonstrated enhanced cellular activation by FcγRIIa(exon6∗) compared with its native form, as shown by increased elastase release and intracellular calcium mobilization. CONCLUSION A novel splice variant, FcγRIIa(exon6∗), was characterized as a low-frequency allele, coding for a gain-of-function receptor for IgG. In the presence of immune complexes, FcγRIIa(exon6∗) can contribute to anaphylaxis in patients with CVID.
Collapse
Affiliation(s)
- Joris van der Heijden
- Department of Blood Cell Research, Sanquin Research at CLB and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Intravenous immunoglobulin in the management of lupus nephritis. Autoimmune Dis 2012; 2012:589359. [PMID: 23056926 PMCID: PMC3465901 DOI: 10.1155/2012/589359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/17/2022] Open
Abstract
The occurrence of nephritis in patients with systemic lupus erythematosus is associated with increased morbidity and mortality. The pathogenesis of lupus nephritis is complex, involving innate and adaptive cellular and humoral immune responses. Autoantibodies in particular have been shown to be critical in the initiation and progression of renal injury, via interactions with both Fc-receptors and complement. One approach in the management of patients with lupus nephritis has been the use of intravenous immunoglobulin. This therapy has shown benefit in the setting of many forms of autoantibody-mediated injury; however, the mechanisms of efficacy are not fully understood. In this paper, the data supporting the use of immunoglobulin therapy in lupus nephritis will be evaluated. In addition, the potential mechanisms of action will be discussed with respect to the known involvement of complement and Fc-receptors in the kidney parenchyma. Results are provocative and warrant additional clinical trials.
Collapse
|
27
|
Jain A, Olsen HS, Vyzasatya R, Burch E, Sakoda Y, Mérigeon EY, Cai L, Lu C, Tan M, Tamada K, Schulze D, Block DS, Strome SE. Fully recombinant IgG2a Fc multimers (stradomers) effectively treat collagen-induced arthritis and prevent idiopathic thrombocytopenic purpura in mice. Arthritis Res Ther 2012; 14:R192. [PMID: 22906120 PMCID: PMC3580588 DOI: 10.1186/ar4024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction Soluble immune aggregates bearing intact Fc fragments are effective treatment for a variety of autoimmune disorders in mice. The better to understand the mechanisms by which Fc-bearing immune complexes suppress autoimmunity, and to develop a platform for clinical translation, we created a series of fully recombinant forms of polyvalent IgG2a Fc, termed stradomers, and tested their efficacy in a therapeutic model of collagen-induced arthritis (CIA) and preventive models of both idiopathic thrombocytopenic purpura (ITP) and graft-versus-host disease (GVHD). Methods Stradomers were created by engineering either the human IgG2 hinge sequence (IgG2H) or the isoleucine zipper (ILZ) onto either the carboxy or amino termini of murine IgG2a Fc. Multimerization and binding to the canonical Fc receptors and the C-type lectin SIGN-RI were evaluated by using sodium dodecylsulfate-polymerase chain reaction (SDS-PAGE) and Biacore/Octet assays. The efficacy of stradomers in alleviating CIA and preventing ITP and GVHD was compared with "gold standard" therapies, including prednisolone and intravenous immune globulin (IVIG). Results Stradomers exist as both homodimeric and highly ordered sequential multimers. Higher-order multimers demonstrate increasingly stable associations with the canonic Fcγ receptors (FcγRs), and SIGN-R1, and are more effective than Fc homodimers in treating CIA. Furthermore, stradomers confer partial protection against platelet loss in a murine model ITP, but do not prevent GVHD. Conclusion These data suggest that fully human stradomers might serve as valuable tools for the treatment of selected autoimmune disorders and as reagents to study the function of Fc:FcR interactions in vivo.
Collapse
|
28
|
Tremblay T, Paré I, Bazin R. Immunoglobulin G dimers and immune complexes are dispensable for the therapeutic efficacy of intravenous immune globulin in murine immune thrombocytopenia. Transfusion 2012; 53:261-9. [DOI: 10.1111/j.1537-2995.2012.03725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Kwekkeboom J. Modulation of dendritic cells and regulatory T cells by naturally occurring antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:133-44. [PMID: 22903671 DOI: 10.1007/978-1-4614-3461-0_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most studies on the effects of naturally occurring autoantibodies (NAbs) on immune cells have been performed in the context of research on the immunomodulatory effects of intravenous immunoglobulin (IVIG). Among others, IVIG inhibits the differentiation, maturation and functions of dendritic cells (DC), thereby suppressing T-cell activation. In addition, IVIG stimulates expansion and suppressive function of regulatory T cells (Treg) carrying the antigens CD4, CD25 and Foxp3. Current data on the immunomodulatory effects of IVIG on DC and Treg are summarized, and possible molecular interactions between NAbs and DC or Treg that mediate these effects are discussed.
Collapse
Affiliation(s)
- Jaap Kwekkeboom
- Laboratory of Gastroenterology and Hepatology, Erasmus MC - University Medical Centre Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Chen L, Zhu Y, Zhang G, Gao C, Zhong W, Zhang X. CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2. Proc Natl Acad Sci U S A 2011; 108:18778-83. [PMID: 22065790 PMCID: PMC3219128 DOI: 10.1073/pnas.1018994108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD83 is commonly known as a specific marker for mature dendritic cells. It has been shown to be important for CD4(+) T-cell development in the thymus. However, its function in the peripheral immune system remains enigmatic. Here, we show that CD83 inhibits proliferation and production of IL-2 and IFN-γ by T cells, and the inhibitory effect of CD83 is mediated by monocytes. Prostaglandin E2 (PGE(2)), but not IL-10 or TGF-β, was up-regulated specifically by CD83 in monocytes. Consistent with high levels of PGE(2), expression of COX-2 also was increased upon CD83 treatment. NF-κB activation also is required for induction of PGE(2) by CD83. Finally, application of the COX-2-selective inhibitor NS-398 fully prevented CD83-triggered inhibition of T-cell responses. Our study establishes an immune-regulatory mechanism by CD83 via stimulation of PGE(2) production in monocytes.
Collapse
Affiliation(s)
| | - Yibei Zhu
- Institute of Medical Biotechnology and
- Jiangsu Stem Cell Key Laboratory, Soochow University, Suzhou 215007, China; and
| | - Guangbo Zhang
- Institute of Medical Biotechnology and
- Jiangsu Institute of Clinical Immunology, Soochow University No.1 Affiliated Hospital, Suzhou 215007, China
| | - Chao Gao
- Institute of Medical Biotechnology and
| | | | - Xueguang Zhang
- Institute of Medical Biotechnology and
- Jiangsu Stem Cell Key Laboratory, Soochow University, Suzhou 215007, China; and
- Jiangsu Institute of Clinical Immunology, Soochow University No.1 Affiliated Hospital, Suzhou 215007, China
| |
Collapse
|
31
|
Casulli S, Topçu S, Fattoum L, von Gunten S, Simon HU, Teillaud JL, Bayry J, Kaveri SV, Elbim C. A differential concentration-dependent effect of IVIg on neutrophil functions: relevance for anti-microbial and anti-inflammatory mechanisms. PLoS One 2011; 6:e26469. [PMID: 22065996 PMCID: PMC3204983 DOI: 10.1371/journal.pone.0026469] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. METHODOLOGY/PRINCIPAL FINDINGS We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. CONCLUSIONS/SIGNIFICANCE IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.
Collapse
Affiliation(s)
- Sarah Casulli
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Selma Topçu
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Lakhdar Fattoum
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jean-Luc Teillaud
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Srini V. Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
- * E-mail: (SVK); (CE)
| | - Carole Elbim
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
- * E-mail: (SVK); (CE)
| |
Collapse
|
32
|
Machino Y, Ohta H, Suzuki E, Higurashi S, Tezuka T, Nagashima H, Kohroki J, Masuho Y. Effect of immunoglobulin G (IgG) interchain disulfide bond cleavage on efficacy of intravenous immunoglobulin for immune thrombocytopenic purpura (ITP). Clin Exp Immunol 2010; 162:415-24. [PMID: 21029072 DOI: 10.1111/j.1365-2249.2010.04255.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) has been used widely to treat immune thrombocytopenic purpura (ITP), but the mechanisms of its action remain unclear. We investigated the affinity for Fcγ receptors (FcγRs) and the thrombocytopenia-ameliorating effect of S-sulfonated gammaglobulin (SGG) and S-alkylated gammaglobulin (AGG), in comparison with unmodified gammaglobulin (GG), in a mouse ITP model. Cleavage of immunoglobulin (Ig)G interchain disulfide bonds by either S-sulfonation or S-alkylation did not decrease the affinity for FcγRIIA (CD32A) and FcγRIIB (CD32B), but did decrease the affinity for FcγRIA (CD64A) and FcγRIIIA (CD16A), presumably because of changes in H-chain configuration. The interchain disulfide bond cleavage decreased the affinity much more for mouse FcγRIV than for mouse FcγRIIB. The ability of AGG to ameliorate ITP was greatly diminished, while SGG, whose disulfide bonds are reconstituted in vivo, was as effective as GG. These results suggest that the interchain disulfide bonds are important for therapeutic effect. It is also suggested that the interaction of IVIG with the inhibitory receptor FcγRIIB is insufficient for effective amelioration of ITP and that, at least in this model, direct binding of IVIG to FcγRIIIA is also required.
Collapse
Affiliation(s)
- Y Machino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bayry J, Misra N, Dasgupta S, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Natural autoantibodies: immune homeostasis and therapeutic intervention. Expert Rev Clin Immunol 2010; 1:213-22. [PMID: 20476935 DOI: 10.1586/1744666x.1.2.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The importance of natural autoantibodies reacting with self-antigens has long been neglected, as tolerance to self was believed to be primarily dependent on the deletion of autoreactive clones during ontogeny. However, it is now well established that autoreactive antibodies and B- and T-cells are present in healthy individuals. Research into the properties of natural autoantibodies and their role in immune homeostasis has been extensively investigated for a number of years. This information should lead towards the therapeutic exploitation of natural autoantibodies in the immunotherapy of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut des Cordeliers, INSERM U681, 15 Rue de l'Ecole de Médecine, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
34
|
Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood 2009; 115:1727-34. [PMID: 19965673 DOI: 10.1182/blood-2009-06-225417] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several clinical studies done with intravenous immunoglobulin (IVIg)-treated autoimmune patients as well as several in vitro studies have revealed that IVIg can reduce polyclonal T-cell activation and modify their cytokine secretion pattern. However, their effect on (auto)antigen-specific T-cell responses has never been addressed directly. In the present work, we used an in vivo model of induction of antigen-specific T-cell responses and an in vitro antigen presentation system to study the effects of IVIg on T-cell responses. The results obtained showed that IVIg inhibited both the in vivo and in vitro antigen-specific T-cell responses but that this effect was the indirect consequence of a reduction in the antigen presentation ability of antigen-presenting cells. The inhibitory effect of IVIg was FcgammaRIIb-independent, suggesting that IVIg must interfere with activating FcgammaRs expressed on antigen-presenting cells to reduce their ability to present antigens. Such inhibition of T-cell responses by reducing antigen presentation may therefore contribute to the well-known anti-inflammatory effects of IVIg in autoimmune diseases.
Collapse
|
35
|
Ghio M, Contini P, Negrini S, Proietti M, Gonella R, Ubezio G, Ottonello L, Indiveri F. TRANSFUSION PRACTICE: sHLA-I contaminating molecules as novel mechanism of ex vivo/in vitro transcriptional and posttranscriptional modulation of transforming growth factor-β1 in CD8+ T lymphocytes and neutrophils after intravenous immunoglobulin treatmen. Transfusion 2009; 50:547-55. [DOI: 10.1111/j.1537-2995.2009.02479.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
Low-affinity Fcgamma receptors (FcgammaRs) mediate the effects of immunoglobulin G (IgG) antibodies on leukocytes, including recruitment to inflammatory lesions, phagocytosis, antibody-dependent cellular cytotoxicity, release of inflammatory mediators and regulation of B cell activation. These functions are an important part of the mammalian response to infection, but if deployed inappropriately can cause autoimmune disease. Although most FcgammaRs are activatory, there is also an inhibitory FcgammaR that, when bound to IgG immune complexes, is able to downregulate the effects of both the activatory FcgammaRs and the B cell receptor. This review discusses the role of the low-affinity FcgammaRs in a balanced immune response and how perturbations in FcgammaR function result in susceptibility to infection or autoimmunity.
Collapse
|
37
|
Galeotti C, Maddur M, Kazatchkine MD, Mouthon L, Kaveri SV. Immunoglobulines intraveineuses dans les maladies auto-immunes et inflammatoires : au-delà d’une simple substitution. Transfus Clin Biol 2009; 16:75-9. [DOI: 10.1016/j.tracli.2009.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 01/10/2023]
|
38
|
Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 2008; 29:608-15. [PMID: 18926775 DOI: 10.1016/j.it.2008.08.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 01/20/2023]
Abstract
Intravenous immunoglobulin (IVIg) is therapeutically used in a variety of immune-mediated diseases. The beneficial effects of IVIg in auto-antibody-mediated diseases can be explained by neutralization, accelerated clearance and prevention of Fcgamma-receptor binding of auto-antibodies. However, the means by which IVIg exerts therapeutic effects in disorders mediated by cellular immunity have remained enigmatic. Clinical improvements, followed by IVIg treatment, often extend beyond the half-life of infused IgG, thereby indicating that IVIg modifies the cellular immune compartment for a prolonged period. Here, we discuss recent advances in the understanding of different, mutually non-exclusive mechanisms of action of IVIg on cells of the innate and adaptive immune system. These mechanisms might explain the beneficial effects of IVIg in certain autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Thanyalak Tha-In
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
39
|
The Mechanisms of Action of Intravenous Immunoglobulin and Polyclonal Anti-D Immunoglobulin in the Amelioration of Immune Thrombocytopenic Purpura: What Do We Really Know? Transfus Med Rev 2008; 22:103-16. [DOI: 10.1016/j.tmrv.2007.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Breunis WB, van Mirre E, Bruin M, Geissler J, de Boer M, Peters M, Roos D, de Haas M, Koene HR, Kuijpers TW. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood 2008; 111:1029-38. [PMID: 17827395 DOI: 10.1182/blood-2007-03-079913] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractGene copy number variation (CNV) and single nucleotide polymorphisms (SNPs) count as important sources for interindividual differences, including differential responsiveness to infection or predisposition to autoimmune disease as a result of unbalanced immunity. By developing an FCGR-specific multiplex ligation-dependent probe amplification assay, we were able to study a notoriously complex and highly homologous region in the human genome and demonstrate extensive variation in the FCGR2 and FCGR3 gene clusters, including previously unrecognized CNV. As indicated by the prevalence of an open reading frame of FCGR2C, Fcγ receptor (FcγR) type IIc is expressed in 18% of healthy individuals and is strongly associated with the hematological autoimmune disease idiopathic thrombocytopenic purpura (ITP) (present in 34.4% of ITP patients; OR 2.4 (1.3-4.5), P < .009). FcγRIIc acts as an activating IgG receptor that exerts antibody-mediated cellular cytotoxicity by immune cells. Therefore, we propose that the activating FCGR2C-ORF genotype predisposes to ITP by altering the balance of activating and inhibitory FcγR on immune cells.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cells, Cultured
- Genetic Predisposition to Disease/genetics
- Genotype
- Haplotypes
- Health
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Mice
- Multigene Family/genetics
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Willemijn B Breunis
- Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZMA, Kuipers EJ, de Man RA, Kwekkeboom J. Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood 2007; 110:3253-62. [PMID: 17673603 DOI: 10.1182/blood-2007-03-077057] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe modes of action of intravenous immunoglobulins (IVIgs) in exerting their immunomodulatory properties are broad and not fully understood. IVIgs can modulate the function of various immune cells, including suppressing the capacity of dendritic cells (DCs) to stimulate T cells. In the present study, we showed that DCs matured in the presence of IVIgs (IVIg-DCs) activated NK cells, and increased their interferon-γ production and degranulation. The activated NK cells induced apoptosis of the majority of IVIg-DCs. In consequence, only in the presence of NK cells, IVIg-DCs were 4-fold impaired in their T-cell priming capacity. This was due to NK-cell–mediated antibody-dependent cellular cytotoxicity (ADCC) to IVIg-DCs, probably induced by IgG multimers, which could be abrogated by blockade of CD16 on NK cells. Furthermore, IVIg-DCs down-regulated the expression of NKp30 and KIR receptors, and induced the generation of CD56brightCD16−CCR7+ lymph node–type NK cells. Our results identify a novel pathway, in which IVIgs induce ADCC of mature DCs by NK cells, which downsizes the antigen-presenting pool and inhibits T-cell priming. By influencing the interaction between DCs and NK cells, IVIgs modulate the ability of the innate immunity to trigger T-cell activation, a mechanism that can “cool down” the immune system at times of activation.
Collapse
Affiliation(s)
- Thanyalak Tha-In
- Department of Gastroenterology and Hepatology, Erasmus Medical Center-University Medical Center, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Sibéril S, Elluru S, Negi VS, Ephrem A, Misra N, Delignat S, Bayary J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Intravenous immunoglobulin in autoimmune and inflammatory diseases: More than mere transfer of antibodies. Transfus Apher Sci 2007; 37:103-7. [PMID: 17765663 DOI: 10.1016/j.transci.2007.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/07/2007] [Indexed: 01/21/2023]
Abstract
Initially used for the treatment of immunodeficiencies, intravenous immunoglobulin (IVIg) has increasingly been used as an immunomodulatory agent in immune thrombocytopenic purpura, autoimmune neuropathies, systemic lupus erythematosus, myasthenia gravis, Guillain-Barré syndrome, and Kawasaki disease. Although IVIg benefits have been reported in many autoimmune and systemic inflammatory diseases, its mechanisms of immunomodulation are not fully understood and probably involve Fc-dependent and/or F(ab')(2)-dependent mutually non-exclusive effects. These mechanisms of action of IVIg reflect the importance of natural antibodies in the maintenance of immune homeostasis. We discuss here the recent advances in the understanding of immunoregulatory effects of IVIg.
Collapse
Affiliation(s)
- Sophie Sibéril
- Centre de Recherche des Cordeliers, Equipe 16- Immunopathology and therapeutic immunointervention, Université Pierre et Marie Curie Paris 6, UMR S 872, 15 rue de l'Ecole de Médicine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Staudt A, Eichler P, Trimpert C, Felix SB, Greinacher A. FcγReceptors IIa on Cardiomyocytes and Their Potential Functional Relevance in Dilated Cardiomyopathy. J Am Coll Cardiol 2007; 49:1684-92. [PMID: 17448369 DOI: 10.1016/j.jacc.2006.11.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/13/2006] [Accepted: 11/06/2006] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate how cardiac autoantibodies might contribute to cardiac dysfunction in patients suffering from dilated cardiomyopathy (DCM). BACKGROUND In the majority of DCM patients, it is possible to detect antibodies with negative inotropic effect on cardiomyocytes. The manner in which these antibodies impair cardiac function is poorly understood. METHODS Immunoglobulin (Ig)G was prepared from plasma of 11 DCM patients containing antibodies that induced a negative inotropic effect on cardiomyocytes. We analyzed the effects of antibodies/IgG fragments on calcium transients and on systolic cell shortening of adult rat cardiomyocytes and investigated the dependency of these effects on potential cardiomyocyte Fc receptors. RESULTS In contrast to control subjects, intact IgG from DCM patients reduced calcium transients and cell shortening of cardiomyocytes. The F(ab')2 fragments of these antibodies did not induce these effects but inhibited the functional effects of DCM-IgG of the respective patients' IgG. These effects were also inhibited by Fc fragments of normal IgG. Reconstitution of the Fc part by incubation of cardiomyocytes with DCM-F(ab')2 fragments followed by goat-anti-human-F(ab')-IgG again induced reduction of cell shortening and of calcium transients. In rat and human ventricular cardiomyocytes, Fc(gamma) receptors IIa (CD32) were demonstrated by immunofluorescence. CONCLUSIONS Our findings indicate that DCM-IgG-F(ab')2 bind to their cardiac antigen(s), but the Fc part might trigger the negative inotropic effects via the newly detected Fc(gamma) receptor on cardiomyocytes. These results point to a novel potential mechanism for antibody-induced impairment of cardiac function in DCM patients.
Collapse
Affiliation(s)
- Alexander Staudt
- Klinik für Innere Medizin B, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | |
Collapse
|
44
|
Venkat-Raman N, Venkata-Krishnan RV, Howarth ES. Successful pregnancy outcome following maternal intravenous immunoglobulin treatment in a woman with recurrent perinatal haemochromatosis. Prenat Diagn 2007; 26:1256-9. [PMID: 17099927 DOI: 10.1002/pd.1601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We report a case of successful pregnancy outcome following maternal intravenous immunoglobulin treatment in a woman with previous history of recurrent fetal hydrops secondary to perinatal haemochromatosis. METHODS A 32-year old woman had two successive pregnancies complicated by fetal hydrops and perinatal deaths. Pathological examination of the fetus showed severe liver destruction with siderosis of hepatocytes at extrahepatic sites, but sparing of the reticulo-endothelial elements, consistent with the diagnosis of perinatal haemochromatosis. In the subsequent pregnancy, maternal intravenous immunoglobulin was administered weekly from the 18th week of gestation until delivery by elective caesarean section at 38 weeks. The infant was treated with desferrioxamine, N-acetylcysteine, vitamins K and E. RESULTS The infant was born in good health, but had high serum ferritin levels, markedly elevated percent transferrin saturation, and mild transient derangement of liver and coagulation function. The infant made an excellent recovery and the treatment was stopped at 7 weeks of age. The liver and coagulation parameters and the serum ferritin levels returned to normal values. CONCLUSIONS Haemochromatosis should be considered in the differential diagnosis of hydrops fetalis. The recurrence risk is high, and immunomodulation with intravenous immunoglobulin treatment appears to alter the course of the disease with better infant survival.
Collapse
Affiliation(s)
- Narayanaswamy Venkat-Raman
- Department of Obstetrics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK.
| | | | | |
Collapse
|
45
|
Teng YTA. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium. J Dent Res 2006; 85:198-208. [PMID: 16498065 DOI: 10.1177/154405910608500301] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
46
|
Crespo MS. Immune Complex Processing: A Phagocytosis-Based Mechanism with Proinflammatory Potential. Transfus Med Hemother 2005. [DOI: 10.1159/000089123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Abstract
The activation threshold of cells in the immune system is often tuned by cell surface molecules. The Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or downmodulating immune responses and combines humoral and cell-mediated immunity. Thus, Fc receptors are the intelligent sensors of the immune status in the individual. However, impaired regulation by Fc receptors will lead to unresponsiveness or hyperreactivity to foreign as well as self-antigens. Murine models for autoimmune disease indicate the indispensable roles of the inhibitory Fc receptor in the suppression of such disorders, whereas activating-type FcRs are crucial for the onset and exacerbation of the disease. The development of many autoimmune diseases in humans may be caused by impairment of the human Fc receptor regulatory system. This review is aimed at providing a current overview of the mechanism of Fc receptor-based immune regulation and the possible scenario of how autoimmune disease might result from their dysfunction.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of Japan Science and Technology Agency, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
48
|
Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 2005; 306:151-60. [PMID: 16219319 DOI: 10.1016/j.jim.2005.08.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 11/19/2022]
Abstract
Fucose depletion from oligosaccharides of human IgG1-type antibodies results in a great enhancement of antibody-dependent cellular cytotoxicity (ADCC). The aim of this study was to clarify the effect of fucose removal on effector functions of all human IgG subclasses. A panel of anti-CD20 chimeric antibodies having a matched set of human heavy chain subclasses with different fucose contents in their oligosaccharides was constructed using wild-type and fucosyltransferase-knockout Chinese hamster ovary cells as host cells. As found previously for IgG1, fucose-negative variant of IgG2, IgG3, and IgG4 exhibited enhanced ADCC and FcgammaRIIIa binding compared with their highly fucosylated counterparts. In contrast, fucose removal did not affect complement-dependent cytotoxicity (CDC) of any IgGs. Consequently, fucose removal from IgG2 and IgG4 resulted in a unique effector function profile; they had potent ADCC and no CDC. In conclusion fucose depletion can provide a panel of IgGs with enhanced ADCC without an impact on other inherent properties specific for each IgG subclass, such as CDC.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Murine-Derived
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD20/analysis
- Antigens, CD20/immunology
- Asparagine/chemistry
- CHO Cells
- Cell Line, Tumor
- Cricetinae
- Cricetulus
- Fucose/chemistry
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Lymphoma, B-Cell/immunology
- Oligosaccharides/chemistry
- Receptors, IgG/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Rituximab
Collapse
Affiliation(s)
- Rinpei Niwa
- Department of Antibody Research, Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|