1
|
Zein JG, Zounemat-Kerman N, Adcock IM, Hu B, Attaway A, Castro M, Dahlén SE, Denlinger LC, Erzurum SC, Fahy JV, Gaston B, Hastie AT, Israel E, Jarjour NN, Levy BD, Mauger DT, Moore W, Peters MC, Sumino K, Townsend E, Woodruff P, Ortega VE, Wenzel SE, Meyers DA, Chung KF, Bleecker ER. Development of an asthma health-care burden score as a measure of severity and predictor of remission in SARP III and U-BIOPRED: results from two major longitudinal asthma cohorts. THE LANCET. RESPIRATORY MEDICINE 2025; 13:35-46. [PMID: 39586307 PMCID: PMC11700758 DOI: 10.1016/s2213-2600(24)00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Current asthma guidelines, including those of the European Respiratory Society (ERS) and American Thoracic Society (ATS), suboptimally predict asthma remission, disease severity, and health-care utilisation. We aimed to establish a novel approach to assess asthma severity based on asthma health-care burden data. METHODS We analysed prospectively collected data from the Severe Asthma Research Program III (SARP III; USA) and the European Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED; 11 European countries) to calculate a composite burden score based on asthma exacerbations and health-care utilisation, which was modified to include the use of short-acting beta agonists (SABAs) to reflect asthma symptom burden. FINDINGS In SARP III, 528 adult participants with asthma were followed up for a mean of 4·4 (SD 1·6) years, and 312 (59%) had severe asthma according to the ERS-ATS definition. Among the 205 participants with asthma who used rescue SABAs daily, 90 used these two or more times a day. In U-BIOPRED, 509 adult participants with asthma were followed up for 1 year, and 421 (83%) had severe asthma. The burden score was less than 1·29 per patient-year in 106 (34%) of 312 SARP III participants and in 80 (19%) of 421 U-BIOPRED participants with severe asthma. By contrast, the burden score was above the median value in 58 (28%) SARP III and 24 (27%) U-BIOPRED participants with non-severe asthma. In both cohorts, the burden score negatively correlated with lung function, asthma control, and quality of life. A burden score of 0·15 or lower predicted asthma remission with a sensitivity greater than 91% and a specificity of 99%. INTERPRETATION Our findings highlight considerable discrepancies between the current definition of asthma severity and our burden score. Although the definition of severe asthma proposed by the ERS-ATS and the and Global Initiative for Asthma (GINA) is based on prescribed asthma medications, our personalised health-care burden score includes patient-centred data that reflect disease severity and accurately predicts asthma remission. Subject to prospective validation, the burden score could help to optimise the management of high-risk individuals with asthma. FUNDING SARP III: US National Heart, Lung, and Blood Institute; AstraZeneca; Boehringer Ingelheim; Genentech; GlaxoSmithKline; Sanofi Genzyme/Regeneron; and Teva Pharmaceuticals. U-BIOPRED Innovative Medicines Initiative Joint Undertaking (EU's Seventh Framework Programme and European Federation of Pharmaceutical Industries and Associations) and eTRIKS project.
Collapse
Affiliation(s)
- Joe G Zein
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA.
| | - Nazanin Zounemat-Kerman
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Bo Hu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amy Attaway
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Sven-Erik Dahlén
- The National Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Benjamin Gaston
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David T Mauger
- Center for Biostatistics and Epidemiology, Pennsylvania State University School of Medicine, Hershey, PA, USA
| | - Wendy Moore
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Michael C Peters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Kaharu Sumino
- Division of Pulmonary and Critical Care Medicine, Washington University College of Medicine, Saint Louis, MO, USA
| | - Elizabeth Townsend
- Department of Medicine, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Victor E Ortega
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah A Meyers
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Kian Fan Chung
- Data Science Institute and National Heart & Lung Institute, Imperial College London, London, UK
| | - Eugene R Bleecker
- Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
2
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
3
|
A Case Report on Longitudinal Collection of Tumour Biopsies for Gene Expression-Based Tumour Microenvironment Analysis from Pancreatic Cancer Patients Treated with Endoscopic Ultrasound Guided Radiofrequency Ablation. Curr Oncol 2022; 29:6754-6763. [PMID: 36290808 PMCID: PMC9600136 DOI: 10.3390/curroncol29100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most patients with pancreatic ductal adenocarcinoma (PDAC) are metastatic at presentation with dismal prognosis warranting improved systemic therapy options. Longitudinal sampling for the assessment of treatment response poses a challenge for validating novel therapies. In this case study, we evaluate the feasibility of collecting endoscopic ultrasound (EUS)-guided longitudinal fine-needle aspiration biopsies (FNABs) from two PDAC patients and conduct gene expression studies associated with tumour microenvironment changes associated with radiofrequency ablation (RFA). METHODS EUS-guided serial/longitudinal FNABs of tumour were collected before and after treatment from two stage III inoperable gemcitabine-treated PDAC patients treated with targeted RFA three times. Biopsies were analysed using a custom NanoString panel (144 genes) consisting of cancer and cancer-associated fibroblast (CAFs) subtypes and immune changes. CAF culture was established from one FNAB and characterised by immunofluorescence and immunoblotting. RESULTS Two-course RFA led to the upregulation of the CD1E gene (involved in antigen presentation) in both patients 1 and 2 (4.5 and 3.9-fold changes) compared to baseline. Patient 1 showed increased T cell genes (CD4-8.7-fold change, CD8-35.7-fold change), cytolytic function (6.4-fold change) and inflammatory response (8-fold change). A greater than 2-fold upregulation of immune checkpoint genes was observed post-second RFA in both patients. Further, two-course RFA led to increased PDGFRα (4.5-fold change) and CAF subtypes B and C genes in patient 1 and subtypes A, B and D genes in patient 2. Patient 2-derived CAFs post-first RFA showed expression of PDGFRα, POSTN and MYH11 proteins. Finally, RFA led to the downregulation of classical PDAC subtype-specific genes in both patients. CONCLUSIONS This case study suggests longitudinal EUS-FNAB as a potential resource to study tumour and microenvironmental changes associated with RFA treatment. A large sample size is required in the future to assess the efficacy and safety of the treatment and perform comprehensive statistical analysis of EUS-RFA-based molecular changes in PDAC.
Collapse
|
4
|
Balogh M, Zhang J, Gaffney CM, Kalakuntla N, Nguyen NT, Trinh RT, Aguilar C, Pham HV, Milutinovic B, Nichols JM, Mahalingam R, Shepherd AJ. Sensory neuron dysfunction in orthotopic mouse models of colon cancer. J Neuroinflammation 2022; 19:204. [PMID: 35962398 PMCID: PMC9375288 DOI: 10.1186/s12974-022-02566-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Reports of neurological sequelae related to colon cancer are largely restricted to rare instances of paraneoplastic syndromes, due to autoimmune reactions. Systemic inflammation associated with tumor development influences sensory neuron function in other disease models, though the extent to which this occurs in colorectal cancer is unknown. We induced orthotopic colorectal cancer via orthotopic injection of two colorectal cancer cell lines (MC38 and CT26) in two different mouse strains (C57BL/6 and Balb/c, respectively). Behavioral tests of pain sensitivity and activity did not detect significant alterations in sensory sensitivity or diminished well-being throughout tumor development. However, immunohistochemistry revealed widespread reductions in intraepidermal nerve fiber density in the skin of tumor-bearing mice. Though loss of nerve fiber density was not associated with increased expression of cell injury markers in dorsal root ganglia, lumbar dorsal root ganglia neurons of tumor-bearing animals showed deficits in mitochondrial function. These neurons also had reduced cytosolic calcium levels in live-cell imaging and reduced spontaneous activity in multi-electrode array analysis. Bulk RNA sequencing of DRGs from tumor-bearing mice detected activation of gene expression pathways associated with elevated cytokine and chemokine signaling, including CXCL10. This is consistent with the detection of CXCL10 (and numerous other cytokines, chemokines and growth factors) in MC38 and CT26 cell-conditioned media, and the serum of tumor-bearing mice. Our study demonstrates in a pre-clinical setting that colon cancer is associated with latent sensory neuron dysfunction and implicates cytokine/chemokine signaling in this process. These findings may have implications for determining risk factors and treatment responsiveness related to neuropathy in colorectal cancer.
Collapse
Affiliation(s)
- Mihály Balogh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Jixiang Zhang
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Kalakuntla
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas T Nguyen
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ronnie T Trinh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bojana Milutinovic
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neurosurgery, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
6
|
Salameh L, Bhamidimarri PM, Saheb Sharif-Askari N, Dairi Y, Hammoudeh SM, Mahdami A, Alsharhan M, Tirmazy SH, Rawat SS, Busch H, Hamid Q, Al Heialy S, Hamoudi R, Mahboub B. In Silico Bioinformatics Followed by Molecular Validation Using Archival FFPE Tissue Biopsies Identifies a Panel of Transcripts Associated with Severe Asthma and Lung Cancer. Cancers (Basel) 2022; 14:1663. [PMID: 35406434 PMCID: PMC8996975 DOI: 10.3390/cancers14071663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the lung tissue. Whilst there are a few studies that suggest an association between asthma and lung cancer, to the best of our knowledge, this is the first study to identify common genes involved in both severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling. In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling, wound healing, and growth factor response, representing the early cancer pathways. Analysis of the enriched genes derived from the pathway analysis identified seven genes expressed in both the asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer and severe asthma patients using real-time PCR. The effect of the expression of the seven genes identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using a Kaplan-Meier plot. In vivo validation performed in the archival biopsies obtained from patients diagnosed with both the disease conditions provided interesting insights into the pathogenesis of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.
Collapse
Affiliation(s)
- Laila Salameh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Youssef Dairi
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Sarah Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Amena Mahdami
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
| | - Mouza Alsharhan
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Syed Hammad Tirmazy
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| | - Surendra Singh Rawat
- Collage of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.S.R.); (S.A.H.)
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck 23562, Germany;
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Faculty of Medicine, Montreal, QC H3A 0G4, Canada
| | - Saba Al Heialy
- Collage of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (S.S.R.); (S.A.H.)
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Faculty of Medicine, Montreal, QC H3A 0G4, Canada
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (L.S.); (P.M.B.); (N.S.S.-A.); (S.M.H.); (A.M.); (Q.H.)
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Bassam Mahboub
- Dubai Health Authority, Dubai 4545, United Arab Emirates; (Y.D.); (M.A.); (S.H.T.); (B.M.)
| |
Collapse
|
7
|
Cortes LM, Brodsky D, Chen C, Pridgen T, Odle J, Snider DB, Cruse G, Putikova A, Masuda MY, Doyle AD, Wright BL, Dawson HD, Blikslager A, Dellon ES, Laster SM, Käser T. Immunologic and pathologic characterization of a novel swine biomedical research model for eosinophilic esophagitis. FRONTIERS IN ALLERGY 2022; 3:1029184. [PMID: 36452260 PMCID: PMC9701751 DOI: 10.3389/falgy.2022.1029184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia-a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15 eosinophils/0.24 mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE.
Collapse
Affiliation(s)
- Lizette M Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - David Brodsky
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Celine Chen
- USDA, ARS, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Tiffany Pridgen
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jack Odle
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Arina Putikova
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Harry D Dawson
- USDA, ARS, Diet, Genomics and Immunology Laboratory, Beltsville, MD, United States
| | - Anthony Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | - Evan S Dellon
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, Center for Esophageal Diseases and Swallowing, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Scott M Laster
- Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Center for Food Allergy Modeling in Pigs (CFAMP), Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Kimura S, Noguchi H, Nanbu U, Nakayama T. Macrophage CCL22 expression promotes lymphangiogenesis in patients with tongue squamous cell carcinoma via IL-4/STAT6 in the tumor microenvironment. Oncol Lett 2021; 21:383. [PMID: 33777206 PMCID: PMC7988704 DOI: 10.3892/ol.2021.12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The C-C motif chemokine ligand 22 (CCL22) chemokine is produced by M2-like tumor-associated macrophages (TAMs) in the tumor microenvironment. Chemokine C-C motif receptor 4 (CCR4), the CCL22 receptor, on T helper2 (Th2) cells leads to a Th2 cytokine-dominant environment. In our previous study, lymph node metastasis was the main predictor of tongue squamous cell carcinoma (SCC) via CCL22. Therefore, the present study aimed to investigate the effects of CCL22 and a Th2 cytokine-predominant tumor microenvironment on vascular endothelial growth factor (VEGF)-C expression and lymphangiogenesis. The post-operative courses of 110 patients with early-stage tongue SCC with a histopathological diagnosis based on the 8th TNM classification were followed up (mean/median follow-up time, 47.1/42.0 months) from surgery until death or the last follow-up visit, and subsequent lymph node relapse was assessed. Lymphangiogenesis and the immunohistochemical expression of several markers (CCL22, CCR4 and VEGF-C) were evaluated. The Kaplan-Meier method was used to plot lymph node relapse-free survival and overall survival curves, which were compared using the log-rank test. In vitro, the association between CCL22 and VEGF-C by interleukin (IL)-4/signal transducer and activator of transcription 6 (STAT6) stimulation was examined. Lymphangiogenesis was significantly associated with lymph node relapse (P<0.001) and a CCL22+ macrophage ratio (P<0.001). CCL22+ TAMs were positive for VEGF-C and surrounded by CCR4+ cells. Additionally, VEGF-C expression was increased in IL-4/STAT6-stimulated macrophages. In addition, the STAT6 signaling pathway was activated in the SCC cells in the deeply invaded part of the tumor along with the aggregated macrophages. In conclusion, TAM CCL22 expression led to lymph node relapse via VEGF-C expression within the tumor microenvironment and the IL-4/STAT6 signaling pathway in early stage tongue SCC. Additionally, the worst pattern of invasion and depth of invasion were revealed to be useful parameters for lymph node relapse in patients with tongue SCC. The present study suggested that CCL22 contributed to the role of M2-like differentiated TAMs in prognosis and lymph node relapse via IL-4/STAT6 and VEGF. The IL-4/STAT6 signaling pathway may be a new molecular target for tongue SCC.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Fukuoka 805-8534, Japan.,Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Uki Nanbu
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
10
|
Joseph P, Umbright CM, Roberts JR, Cumpston JL, Orandle MS, McKinney WG, Sager TM. Lung toxicity and gene expression changes in response to whole-body inhalation exposure to cellulose nanocrystal in rats. Inhal Toxicol 2021; 33:66-80. [PMID: 33602020 PMCID: PMC10442725 DOI: 10.1080/08958378.2021.1884320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS Rats were exposed to air or CNC (20 mg/m3, six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jared L Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
11
|
Francisco D, Wang Y, Conway M, Hurbon AN, Dy ABC, Addison KJ, Chu HW, Voelker DR, Ledford JG, Kraft M. Surfactant Protein-A Protects against IL-13-Induced Inflammation in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2829-2839. [PMID: 32245819 PMCID: PMC7304346 DOI: 10.4049/jimmunol.1901227] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022]
Abstract
The lung surfactant proteins are recognized as critical not only for their role in lowering lung surface tension but also in innate host defense. Reports have shown that some asthmatic patients have decreased levels of one member of this protein family in particular, surfactant protein-A (SP-A). Our studies set out to determine the contribution of SP-A to the response of a key effector cytokine in asthma, IL-13. Our studies employ both animal models sufficient and deficient in SP-A challenged with IL-13 and primary epithelial cells from participants with asthma that are exogenously treated with SP-A in the context of IL-13 challenge. The inflammatory response and mucin production were assessed in both model systems. As compared with WT mice, we show that the activity of IL-13 is dramatically augmented in SP-A-/- mice, which have significantly increased neutrophil and eosinophil recruitment, mucin production and asthma-associated cytokines in the bronchoalveolar lavage fluid. In parallel, we show asthma-associated factors are attenuated in human cells from asthma subjects when exogenous SP-A is added during IL-13 challenge. Although many of these phenotypes have previously been associated with STAT6 signaling, SP-A inhibited IL-13-induced STAT3 phosphorylation in mice and in human epithelial cells while having little effect on STAT6 phosphorylation. In addition, when either STAT3 or IL-6 were inhibited in mice, the phenotypes observed in SP-A-/- mice were significantly attenuated. These studies suggest a novel mechanism for SP-A in asthma as a modulator of IL-13-induced inflammation via mediating downstream IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Dave Francisco
- Department of Medicine, University of Arizona, Tucson, AZ 85719
- Asthma and Airway Disease Research Center, Tucson, AZ 85724
- Department of Medicine, Duke University, Durham, NC 27707
| | - Ying Wang
- Department of Medicine, University of Arizona, Tucson, AZ 85719
- Asthma and Airway Disease Research Center, Tucson, AZ 85724
- Department of Medicine, Duke University, Durham, NC 27707
| | - Michelle Conway
- Department of Medicine, University of Arizona, Tucson, AZ 85719
| | | | - Alane B C Dy
- Asthma and Airway Disease Research Center, Tucson, AZ 85724
| | - Kenneth J Addison
- Asthma and Airway Disease Research Center, Tucson, AZ 85724
- Department of Medicine, Duke University, Durham, NC 27707
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206; and
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, CO 80206; and
| | - Julie G Ledford
- Asthma and Airway Disease Research Center, Tucson, AZ 85724;
- Department of Medicine, Duke University, Durham, NC 27707
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719
| | - Monica Kraft
- Department of Medicine, University of Arizona, Tucson, AZ 85719;
- Asthma and Airway Disease Research Center, Tucson, AZ 85724
- Department of Medicine, Duke University, Durham, NC 27707
| |
Collapse
|
12
|
Dietschmann A, Schruefer S, Krappmann S, Voehringer D. Th2 cells promote eosinophil-independent pathology in a murine model of allergic bronchopulmonary aspergillosis. Eur J Immunol 2020; 50:1044-1056. [PMID: 32108934 DOI: 10.1002/eji.201948411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Repeated inhalation of airborne conidia derived from the fungus Aspergillus fumigatus (Af) can lead to a severe eosinophil-dominated inflammatory condition of the lung termed allergic bronchopulmonary aspergillosis (ABPA). ABPA affects about 5 million individuals worldwide and the mechanisms regulating lung pathology in ABPA are poorly understood. Here, we used a mouse model of ABPA to investigate the role of eosinophils and T cell-derived IL-4/IL-13 for induction of allergic lung inflammation. Selective deletion of IL-4/IL-13 in T cells blunted the Af-induced lung eosinophilia and further resulted in lower expression of STAT6-regulated chemokines and effector proteins such as Arginase 1, Relm-α, Relm-β, and Muc5a/c. Eosinophil-deficient ΔdblGata mice showed lower IL-4 expression in the lung and the number of Th2 cells in the lung parenchyma was reduced. However, expression of the goblet cell markers Clca1 and Muc5a/c, abundance of mucin-positive cells, as well as weight gain of lungs were comparable between Af-challenged ΔdblGata and WT mice. Based on these results, we conclude that T cell-derived IL-4/IL-13 is essential for Af-induced lung eosinophilia and inflammation while eosinophils may play a more subtle immunomodulatory role and should not simply be regarded as pro-inflammatory effector cells in ABPA.
Collapse
Affiliation(s)
- Axel Dietschmann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Sebastian Schruefer
- Institute of Clinical Microbiology, Immuology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Sven Krappmann
- Institute of Clinical Microbiology, Immuology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| |
Collapse
|
13
|
Inagaki‐Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, Kibata K, Satake A, Nomura S. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol 2019; 49:2051-2062. [PMID: 31269241 PMCID: PMC6899642 DOI: 10.1002/eji.201847992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
DCs and epithelial cell-derived thymic stromal lymphopoietin (TSLP) have pivotal roles in allergic inflammation. TSLP stimulates myeloid DCs to express OX40-ligand (OX40L) and CCL17, which trigger and maintain Th2 cell responses. We have previously shown that statins, which are HMG-CoA reductase inhibitors, have the ability to suppress type I IFN production by plasmacytoid DCs. Here, we extended our previous work to examine the immunomodulatory effect of statins on allergic responses, particularly the TSLP-dependent Th2 pathway induced by myeloid DCs. We found that treatment of TSLP-stimulated DCs with either pitavastatin or simvastatin suppressed both the DC-mediated inflammatory Th2 cell differentiation and CRTH2+ CD4+ memory Th2 cell expansion and also repressed the expressions of OX40L and CCL17 by DCs. These inhibitory effects of statins were mimicked by treatment with either a geranylgeranyl-transferase inhibitor or Rho-kinase inhibitor and were counteracted by the addition of mevalonate, suggesting that statins induce geranylgeranylated Rho inactivation through a mevalonate-dependent pathway. We also found that statins inhibited the expressions of phosphorylated STA6 and NF-κB-p50 in TSLP-stimulated DCs. This study identified a specific ability of statins to control DC-mediated Th2 responses, suggesting their therapeutic potential for treating allergic diseases.
Collapse
Affiliation(s)
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Muneo Inaba
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Yoshiko Azuma
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Akihiro Tanaka
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Vien Phan
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Kayoko Kibata
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| |
Collapse
|
14
|
Intratumoral IFN-α gene delivery reduces tumor-infiltrating regulatory T cells through the downregulation of tumor CCL17 expression. Cancer Gene Ther 2018; 26:334-343. [PMID: 30420718 DOI: 10.1038/s41417-018-0059-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023]
Abstract
The effect of IFN-α on the immunosuppressive tumor microenvironment is not fully understood. We previously reported that intratumoral IFN-α gene transduction decreased the frequency of regulatory T cells (Tregs) in the tumor by inducing the secretion of IL-6 from dendritic cells. In this study, we examined whether IFN-α affects the trafficking of Tregs to the tumor. Since CT26 cells expressed CCL17 among Treg-attracting chemokines, we focused on its role in IFN-α-mediated Treg suppression. IFN-α directly suppressed CCL17 production from CT26 cells in vitro, and IFN-α transduction reduced CCL17 expression in tumors in vivo. Next, to investigate whether CCL17 downregulation is related to the suppression of Treg trafficking, CCL17-downregulated CT26 cells produced using short hairpin RNA (CT26-shCCL17) were inoculated into mice. The frequency of Tregs in CT26-shCCL17 tumors was reduced and tumor growth was suppressed. Finally, to examine the combinatorial effect of IFN-α expression with CCL17 downregulation, IFN-α was transduced into CT26-shCCL17 tumors. This resulted in an elevation of CT26-specific CD8+ T cells and the complete eradication of tumors. This study shows a novel mechanism of IFN-α-mediated Treg suppression, and combining IFN-α gene therapy with strong CCL17 downregulation could offer a promising strategy for the treatment of cancer.
Collapse
|
15
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Di Mise A, Wang YX, Zheng YM. Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:13-32. [PMID: 29047078 DOI: 10.1007/978-3-319-63245-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids. This damage (oxidative stress) modulates the activity of ion channels and elevates the intracellular calcium concentration ([Ca2+]i, Ca2+ signaling) of PASMCs. The oxidative stress and increased Ca2+ signaling mutually interact with each other, and synergistically results in a variety of cellular responses. These responses include functional and structural abnormalities of mitochondria, sarcoplasmic reticulum, and nucleus; cell contraction, proliferation, migration, and apoptosis, as well as generation of vasoactive substances, inflammatory molecules, and growth factors that mediate the development of PH. A number of studies reveal that various transcription factors (TFs) play important roles in hypoxia-induced oxidative stress, disrupted PAMSC Ca2+ signaling and the development and progress of PH. It is believed that in the pathogenesis of PH, hypoxia facilitates these roles by mediating the expression of multiple genes. Therefore, the identification of specific genes and their transcription factors implicated in PH is necessary for the complete understanding of the underlying molecular mechanisms. Moreover, this identification may aid in the development of novel and effective therapeutic strategies for PH.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Yun-Min Zheng
- Department of Molecular & Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
17
|
CCR9 Is a Key Regulator of Early Phases of Allergic Airway Inflammation. Mediators Inflamm 2016; 2016:3635809. [PMID: 27795621 PMCID: PMC5067335 DOI: 10.1155/2016/3635809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation is the most common hallmark of allergic asthma. Chemokine receptors involved in leukocyte recruitment are closely related to the pathology in asthma. CCR9 has been described as a homeostatic and inflammatory chemokine receptor, but its role and that of its ligand CCL25 during lung inflammation remain unknown. To investigate the role of CCR9 as a modulator of airway inflammation, we established an OVA-induced allergic inflammation model in CCR9-deficient mice. Here, we report the expression of CCR9 and CCL25 as early as 6 hours post-OVA challenge in eosinophils and T-lymphocytes. Moreover, in challenged CCR9-deficient mice, cell recruitment was impaired at peribronchial and perivenular levels. OVA-administration in CCR9-deficient mice leads to a less inflammatory cell recruitment, which modifies the expression of IL-10, CCL11, and CCL25 at 24 hours after OVA challenge. In contrast, the secretion of IL-4 and IL-5 was not affected in CCR9-deficient mice compared to WT mice. These results demonstrate for the first time that CCR9 and CCL25 expressions are induced in the early stages of airway inflammation and they have an important role modulating eosinophils and lymphocytes recruitment at the first stages of inflammatory process, suggesting that they might be a potential target to regulate inflammation in asthma.
Collapse
|
18
|
Zaffini R, Di Paola R, Cuzzocrea S, Menegazzi M. PARP inhibition treatment in a nonconventional experimental mouse model of chronic asthma. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1301-1313. [PMID: 27604227 DOI: 10.1007/s00210-016-1294-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/25/2016] [Indexed: 01/15/2023]
Abstract
Allergic asthma is an immunological disease that occurs as a consequence of aeroallergen exposure. Inhibition of poly(ADP-ribose) polymerases (PARPs) in conventional models of asthma-like reaction has emerged as an effective anti-inflammatory and airway remodeling intervention. In a house dust mite (HDM) exposure mouse model, we investigated the impact of PARP inhibition on allergic airway inflammation, sensitization, and remodeling. Mice were intranasally exposed to a HDM extract for 5 days per week for up to 5 weeks. Mice were administered, or not, by PARP inhibitors 3-aminobenzamide (3-ABA) or 5-aminoisoquinolinone (5-AIQ) during the last 2 weeks of HDM treatment. Mice treated with PARP inhibitors after HDM stimulation showed a significant decrease in the number of total cells and eosinophils detectable in the bronchoalveolar lavage fluid as compared with the HDM-stimulated ones. In vitro HDM-stimulated splenocyte culture produced considerable amounts of the Th2 cytokines that were not affected by treatment with PARP inhibitors. Immunoglobulin levels in the serum were also unchanged. In the lung tissue, collagen deposition was decreased, whereas α-smooth muscle actin thickening was not significantly affected. Moreover, in HDM-stimulated PARP inhibitor-treated groups, we found a downregulation in the activation of signal transducer and activator of trascription-6 (STAT-6) and a significant decrease in the mRNA levels of C-C motif chemokine 11 (CCL11). In this mouse model of chronic asthma PARP inhibition treatment, although it does not affect sensitization, it effectively reduces the allergic airway inflammation and affects the remodeling through a mechanism involving STAT6 and CCL11.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|
19
|
Matsukura S, Osakabe Y, Sekiguchi A, Inoue D, Kakiuchi Y, Funaki T, Yamazaki Y, Takayasu H, Tateno H, Kato E, Wakabayashi A, Hayashi M, Ishii G, Yamaguchi F, Tsuchiya Y, Kasahara K, Sagara H, Kokubu F. Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells. Allergol Int 2016; 65 Suppl:S17-23. [PMID: 27497617 DOI: 10.1016/j.alit.2016.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND MicroRNAs are non-coding small RNAs that regulate expression of target genes by binding to 3' untranslated regions. In this study, we used bronchial epithelial cells to investigate in vitro the role of the microRNA miR-155 in the expression of chemokines associated with airway inflammation. miR-155 has previously been reported to regulate allergic inflammation. METHODS BEAS-2B bronchial epithelial cells were cultured and transfected with mimic or inhibitor oligonucleotides to overexpress or downregulate miR-155, as confirmed by real-time PCR. Cells were then stimulated with tumor necrosis factor-alpha, interleukin-13 (IL-13), and a double stranded RNA that binds Toll-like receptor 3. Expression and secretion of the chemokines CCL5, CCL11, CCL26, CXCL8, and CXCL10 were then quantified by real-time PCR and ELISA, respectively. Phosphorylation of signal transducer and activator of transcription 6 (STAT6), a target of the IL-13 receptor, was analyzed by ELISA. RESULTS miR-155 overexpression significantly suppressed IL-13-induced secretion of CCL11 and CCL26. These effects were specific, and were not observed for other chemokines, nor in cells with downregulated miR-155. miR-155 overexpression also suppressed CCL11 and CCL26 mRNA, but did not affect expression of the IL-13 receptor or phosphorylation of STAT6. CONCLUSIONS miR-155 specifically inhibits IL-13-induced expression of eosinophilic chemokines CCL11 and CCL26 in bronchial epithelial cells, even though the 3'-untranslated region of these genes do not contain a consensus binding site for miR-155.
Collapse
Affiliation(s)
- Satoshi Matsukura
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan.
| | - Yuki Osakabe
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Ayaka Sekiguchi
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Daisuke Inoue
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Yusuke Kakiuchi
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Toshitaka Funaki
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Yohei Yamazaki
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Hiromi Takayasu
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Hidetsugu Tateno
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Eisuke Kato
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Aya Wakabayashi
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Makoto Hayashi
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Gen Ishii
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan; Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Fumihiro Yamaguchi
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Yutaka Tsuchiya
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Keita Kasahara
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Hironori Sagara
- Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Fumio Kokubu
- Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| |
Collapse
|
20
|
Zhou W, Zhang J, Goleniewska K, Dulek DE, Toki S, Newcomb DC, Cephus JY, Collins RD, Wu P, Boothby MR, Peebles RS. Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1577-86. [PMID: 27456482 DOI: 10.4049/jimmunol.1501063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Allergic airway diseases are immune disorders associated with heightened type 2 immune responses and IL-5 and IL-13 production at the site of inflammation. We have previously reported that cyclooxygenase (COX) inhibition by indomethacin augmented allergic airway inflammation in a STAT6-independent manner. However, the key COX product(s) responsible for restraining indomethacin-mediated STAT6-independent allergic inflammation is unknown. In this study, using the mouse model of OVA-induced allergic airway inflammation, we identified that PGI2 receptor (IP) signaling was critical for indomethacin-induced, STAT6-independent proallergic effects. We demonstrated that IP deficiency increased inflammatory cell infiltration, eosinophilia, and IL-5 and IL-13 expression in the lung in a STAT6-independent manner. The augmented STAT6-independent allergic inflammation correlated with enhanced primary immune responses to allergic sensitization and elevated production of multiple inflammatory chemokines (CCL11, CCL17, CCL22, and CXCL12) in the lung after allergen challenge. We also showed that the PGI2 analogue cicaprost inhibited CD4 T cell proliferation and IL-5 and IL-13 expression in vitro, and IP deficiency diminished the stimulatory effect of indomethacin on STAT6-independent IL-5 and IL-13 responses in vivo. The inhibitory effects of PGI2 and the IP signaling pathway on CD4 T cell activation, inflammatory chemokine production, and allergic sensitization and airway inflammation suggest that PGI2 and its analogue iloprost, both Food and Drug Administration-approved drugs, may be useful in treating allergic diseases and asthma. In addition, inhibiting PGI2 signaling by drugs that either block PGI2 production or restrain IP signaling may augment STAT6-independent pathways of allergic inflammation.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Daniel E Dulek
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Jacqueline Y Cephus
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Robert D Collins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
21
|
Yang F, Yu X, Wang L, Liu L, Xu X, Zheng X, Wei G. Identify asthma genes across three phases based on protein-protein interaction network. IET Syst Biol 2015; 9:135-40. [PMID: 26243829 DOI: 10.1049/iet-syb.2015.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Asthma is a common inflammatory disease that is generally caused by genetic mutations or environmental factors. Recently, the emerging of omics data provides an alternative way to understand asthma. In this study, the authors present a new framework to detect asthma disease genes based on protein-protein interaction network (PPIN) and gene expression. Specifically, they construct PPINs for different stages of asthma, and detect those interactions occurred in the specific stages. By investigating the proteins in these stage-specific interactions, they find they are more likely related to asthma, and the functional enrichment analysis indicate that the pathways enriched in the differential interactions are related to the progress of asthma. Moreover, some proteins in the differential interactions have been previously reported to be related to asthma in the literature, implying the usefulness of the proposed approach.
Collapse
Affiliation(s)
- Fengyong Yang
- ICU, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China
| | - Xianling Yu
- Emergency Department, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China
| | - Liping Wang
- ICU, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China
| | - Lili Liu
- Department of Cardiology, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China
| | - Xiaorong Xu
- Respiratory Medical Department, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China
| | - Xingfeng Zheng
- Burn Center, Changhai Hospital affiliated to Second Military Medical University, Changhai Road, Shanghai, 200433, People's Republic of China
| | - Guangchen Wei
- ICU, The People's Hospital of Laiwu City, Snow Lake Avenue, Laiwu, Shandong Province, 271199, People's Republic of China.
| |
Collapse
|
22
|
Altered activation of innate immunity associates with white matter volume and diffusion in first-episode psychosis. PLoS One 2015; 10:e0125112. [PMID: 25970596 PMCID: PMC4430522 DOI: 10.1371/journal.pone.0125112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
First-episode psychosis (FEP) is associated with inflammatory and brain structural changes, but few studies have investigated whether systemic inflammation associates with brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsychotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines and cytokines, and cardiovascular risk markers were measured at baseline and 2 months later. We collected T1- and diffusion-weighted MRIs with a 3 T scanner from the patients at baseline. We analyzed the association of psychosis-related inflammatory markers with gray and white matter (WM) volume using voxel-based morphometry and WM diffusion using tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP patients had higher CCL22 and lower TGFα, CXCL1, CCL7, IFN-α2 and ApoA-I than controls. CCL22 decreased significantly between baseline and 2 months in patients but was still higher than in controls. The association between inflammatory markers and FEP remained significant after adjusting for age, sex, smoking and BMI. We did not observe a correlation of inflammatory markers with any symptoms or duration of antipsychotic treatment. Baseline CCL22 levels correlated negatively with WM volume and positively with mean diffusivity and radial diffusivity bilaterally in the frontal lobes in ROI analyses. Decreased serum level of ApoA-I was associated with smaller volume of the medial temporal WM. In whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivity, and CXCL1 associated negatively with fractional anisotropy and positively with mean diffusivity and radial diffusivity in several brain regions. This is the first report to demonstrate an association between circulating chemokine levels and WM in FEP patients. Interestingly, CCL22 has been previously implicated in autoimmune diseases associated with WM pathology. The results suggest that an altered activation of innate immunity may contribute to WM damage in psychotic disorders.
Collapse
|
23
|
Fulkerson PC, Schollaert KL, Bouffi C, Rothenberg ME. IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4043-52. [PMID: 25230753 DOI: 10.4049/jimmunol.1400732] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Eosinophils originate in the bone marrow from an eosinophil lineage-committed, IL-5Rα-positive, hematopoietic progenitor (eosinophil progenitor). Indeed, IL-5 is recognized as a critical regulator of eosinophilia and has effects on eosinophil progenitors, eosinophil precursors, and mature eosinophils. However, substantial levels of eosinophils remain after IL-5 neutralization or genetic deletion, suggesting that there are alternative pathways for promoting eosinophilia. In this study, we investigated the contributory role of IL-5 accessory cytokines on the final stages of eosinophil differentiation. IL-5 stimulation of low-density bone marrow cells resulted in expression of a panel of cytokines and cytokine receptors, including several ligand-receptor pairs. Notably, IL-4 and IL-4Rα were expressed by eosinophil precursors and mature eosinophils. Signaling through IL-4Rα promoted eosinophil maturation when IL-5 was present, but IL-4 stimulation in the absence of IL-5 resulted in impaired eosinophil survival, suggesting that IL-4 cooperates with IL-5 to promote eosinophil differentiation. In contrast, CCL3, an eosinophil precursor-produced chemokine that signals through CCR1, promotes terminal differentiation of CCR1-positive eosinophil precursors in the absence of IL-5, highlighting an autocrine loop capable of sustaining eosinophil differentiation. These findings suggest that brief exposure to IL-5 is sufficient to initiate a cytokine cooperative network that promotes eosinophil differentiation of low-density bone marrow cells independent of further IL-5 stimulation.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kaila L Schollaert
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Carine Bouffi
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
24
|
Cho SH, Oh SY, Lane AP, Lee J, Oh MH, Lee S, Zheng T, Zhu Z. Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways. PLoS One 2014; 9:e103685. [PMID: 25090641 PMCID: PMC4121172 DOI: 10.1371/journal.pone.0103685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/04/2014] [Indexed: 12/20/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease orchestrated by Th2 lymphocytes. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 is known to be a negative regulator in the IL-4α/STAT-6 signaling pathway of the lung. However, the role of SHP-1 enzyme and its functional relationship with Th2 and Th1 cytokines are not known in the nasal airway. In this study, we aimed to study the nasal inflammation as a result of SHP-1 deficiency in viable motheaten (mev) mice and to investigate the molecular mechanisms involved. Cytology, histology, and expression of cytokines and chemokines were analyzed to define the nature of the nasal inflammation. Targeted gene depletion of Th1 (IFN-γ) and Th2 (IL-4 and IL-13) cytokines was used to identify the critical pathways involved. Matrix metalloproteinases (MMPs) were studied to demonstrate the clearance mechanism of recruited inflammatory cells into the nasal airway. We showed here that mev mice had a spontaneous allergic rhinitis-like inflammation with eosinophilia, mucus metaplasia, up-regulation of Th2 cytokines (IL-4 and IL-13), chemokines (eotaxin), and MMPs. All of these inflammatory mediators were clearly counter-regulated by Th2 and Th1 cytokines. Deletion of IFN-γ gene induced a strong Th2-skewed inflammation with transepithelial migration of the inflammatory cells. These findings suggest that SHP-1 enzyme and Th2/Th1 paradigm may play a critical role in the maintenance of nasal immune homeostasis and in the regulation of allergic rhinitis.
Collapse
Affiliation(s)
- Seok Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Sun Young Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joan Lee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Min-Hee Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seakwoo Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Zheng
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhou Zhu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Glosson NL, Bruns HA, Kaplan MH. Wheezing and itching: The requirement for STAT proteins in allergic inflammation. JAKSTAT 2014; 1:3-12. [PMID: 24058746 PMCID: PMC3670132 DOI: 10.4161/jkst.19086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
The development of allergic inflammation requires the orchestration of gene expression from the inflamed tissue and from the infiltrating immune cells. Since many of the cytokines that promote allergic inflammation signal through hematopoietin family receptors, the Signal Transducer and Activator of Transcription (STAT) family have obligate roles in pro-allergic cytokine-induced gene regulation in multiple cell types. In this review, we summarize work defining the contribution of each of the STAT family members to the development of allergic inflammation, using data from mouse models of allergic inflammation, studies on patient samples and correlations with single nucleotide polymorphisms in STAT genes.
Collapse
Affiliation(s)
- Nicole L Glosson
- Department of Pediatrics; Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
26
|
Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun 2014; 82:3723-39. [PMID: 24958709 DOI: 10.1128/iai.00035-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.
Collapse
|
27
|
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2563-2582. [PMID: 24892271 DOI: 10.1016/j.bbamcr.2014.05.014] [Citation(s) in RCA: 1432] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Inflammation occurs as a result of exposure of tissues and organs to harmful stimuli such as microbial pathogens, irritants, or toxic cellular components. The primary physical manifestations of inflammation are redness, swelling, heat, pain, and loss of function to the affected area. These processes involve the major cells of the immune system, including monocytes, macrophages, neutrophils, basophils, dendritic cells, mast cells, T-cells, and B-cells. However, examination of a range of inflammatory lesions demonstrates the presence of specific leukocytes in any given lesion. That is, the inflammatory process is regulated in such a way as to ensure that the appropriate leukocytes are recruited. These events are in turn controlled by a host of extracellular molecular regulators, including members of the cytokine and chemokine families that mediate both immune cell recruitment and complex intracellular signalling control mechanisms that characterise inflammation. This review will focus on the role of the main cytokines, chemokines, and their receptors in the pathophysiology of auto-inflammatory disorders, pro-inflammatory disorders, and neurological disorders involving inflammation.
Collapse
Affiliation(s)
- Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Belinda Nedjai
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College, South Kensington, London SW7 2AZ, United Kingdom
| | - Tara Hurst
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, Whitechapel, London E1 2AT, United Kingdom
| |
Collapse
|
28
|
Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EKL. Reduced levels of CCL2 and CXCL10 in systemic lupus erythematosus patients under treatment with prednisone, mycophenolate mofetil, or hydroxychloroquine, except in a high STAT1 subset. Arthritis Res Ther 2014; 16:R23. [PMID: 24460726 PMCID: PMC3978465 DOI: 10.1186/ar4451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 01/14/2014] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Our recent data showed that signal transducers and activators of transcription 1 (STAT1), adenosine deaminase acting on RNA (ADAR), C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine 10 (CXCL10) were significantly elevated in a systemic lupus erythematosus (SLE) cohort compared to healthy donors. High and low STAT1 subsets were identified in SLE patient visits. The present study analyzed the correlation of common treatments used in SLE with the levels of these biomarkers. METHODS Peripheral blood leukocytes were collected from 65 healthy donors and 103 SLE patients, of whom 60 had samples from two or more visits. Total RNA was isolated and analyzed for the expression of mRNA and microRNA using Taqman real-time polymerase chain reaction (PCR) assays. Relative expression of interferon signature genes, CCL2, and CXCL10 were determined by the ΔΔCT method. Results were correlated with therapy using prednisone, mycophenolate mofetil, and hydroxychloroquine and analyzed by Wilcoxon/Kruskal-Wallis test and Fisher's exact test. RESULTS CCL2 and CXCL10 were significantly higher in untreated patients compared to treated patients, however, in high STAT1 patient visits there is no significant difference between treated and untreated patients' visits. When comparing linear regression fits of interferon (IFN) score with CCL2 and CXCL10, untreated patients and high STAT1 patients displayed significantly higher slopes compared to treated patients. There was no significant difference between the slopes of high STAT1 and untreated patients indicating that CCL2 and CXCL10 were correlated with type-I IFN in high STAT1 patients similar to that in untreated patients. CCL2 and CXCL10 levels in the high STAT1 subset remained high in treated patient visits compared to those of the low STAT1 subset. CONCLUSIONS Among the biomarkers analyzed, only CCL2 and CXCL10 showed significantly reduced levels in treated compared to untreated SLE patients. STAT1, CCL2, and CXCL10 are potentially useful indicators of therapeutic action in SLE patients. Further work is needed to determine whether high STAT1 levels convey resistance to therapies commonly used to treat SLE and whether STAT1 inhibitors may have therapeutic implication for these patients.
Collapse
Affiliation(s)
- Paul R Dominguez-Gutierrez
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA
- Current address: Department of Urology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0247, USA
| | - Angela Ceribelli
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA
- Current address: Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089 Rozzano, Italy
- Current address: BIOMETRA Department, University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
- School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Eric S Sobel
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Westley H Reeves
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Edward KL Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA
| |
Collapse
|
29
|
Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EKL. Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R20. [PMID: 24451065 PMCID: PMC3978614 DOI: 10.1186/ar4448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 01/14/2014] [Indexed: 02/09/2023] Open
Abstract
INTRODUCTION The present study examines the levels of recently reported biomarkers, adenosine deaminase acting on RNA (ADAR), C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), signal transducers and activators of transcription 1 (STAT1), and miR-146a in systemic lupus erythematosus (SLE) patients over multiple visits. METHODS Peripheral blood leukocytes were collected from 65 healthy donors and 103 SLE patients, 60 of whom had samples from 2 or more visits. Total RNA was isolated and analyzed for the expression of mRNA and microRNA using Taqman real time PCR assays. Relative expression of I-IFN signature genes, chemokines, and miR-146a were determined by the ΔΔCT method. Results were correlated with clinical data and analyzed by Wilcoxon/Kruskal-Wallis test and Fisher's exact test. RESULTS Levels of ADAR, CCL2, CXCL10, and STAT1 in SLE were significantly elevated compared with the healthy controls (P <0.0001). ADAR, CCL2, and CXCL10 showed significant correlation with IFN score in both healthy donors (P <0.0033) and SLE patients (P <0.0001). In SLE patients, miR-146a level was not significantly different from healthy controls nor correlated to the IFN score. Two STAT1 populations were identified: a low STAT1 and a high STAT1 group. High STAT1 patient visits displayed higher (P ≤0.0020) levels of CCL2 and CXCL10 than the low STAT1 patient visits. STAT1 levels correlated with IFN score in low STAT1 group but not in high STAT1 group. More importantly, high STAT1 levels appeared as an enhancer of CCL2 and CXCL10 as indicated by the significantly stronger correlation of CCL2 and CXCL10 with IFN score in high STAT1 patient visits relative to low STAT1 patient visits. CONCLUSION Our data indicate a novel role for STAT1 in the pathogenesis of SLE as an expression enhancer of CCL2 and CXCL10 in SLE patients with high levels of STAT1. Future study is needed to examine the exact role of STAT1 in the etiology of SLE.
Collapse
Affiliation(s)
- Paul R Dominguez-Gutierrez
- Department of Oral Biology, University of Florida, P.O. Box 100424, 1395 Center Drive, Gainesville, FL 32610-0424, USA
- Current address: Department of Urology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0247, USA
| | - Angela Ceribelli
- Department of Oral Biology, University of Florida, P.O. Box 100424, 1395 Center Drive, Gainesville, FL 32610-0424, USA
- Current address: Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089 Rozzano, Italy
- Current address: BIOMETRA Department, University of Milan, Milan, Italy
| | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, P.O. Box 100221, 1600 SW Archer Rd, Gainesville, FL 32610-0221, USA
- School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Eric S Sobel
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, P.O. Box 100221, 1600 SW Archer Rd, Gainesville, FL 32610-0221, USA
| | - Westley H Reeves
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, P.O. Box 100221, 1600 SW Archer Rd, Gainesville, FL 32610-0221, USA
| | - Edward KL Chan
- Department of Oral Biology, University of Florida, P.O. Box 100424, 1395 Center Drive, Gainesville, FL 32610-0424, USA
| |
Collapse
|
30
|
Icariin attenuates glucocorticoid insensitivity mediated by repeated psychosocial stress on an ovalbumin-induced murine model of asthma. Int Immunopharmacol 2014; 19:381-90. [PMID: 24462390 DOI: 10.1016/j.intimp.2014.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 01/23/2023]
Abstract
Evidence shows that psychosocial stress exacerbates asthma, but there is little intervention to alleviate negative effects of psychosocial stress on asthma. We investigated the role of icariin in anti-inflammation and anti-anxiety potential in a murine model combined psychosocial stress with allergic exposure. The results indicated that icariin administered remarkable increased activity in the center of the open field, reversed airway hyperresponsivenesss, reduced inflammatory cytokine infiltration to the lung and whole body and also in part recovered glucocorticoid responsiveness. Furthermore, our data also showed that icariin significantly inhibited increases of corticosterone and markedly increased glucocorticoid receptor mRNA and protein expression in the lungs of mice exposed to both stress and allergen. Collectively, we speculate that inducing glucocorticoid receptor modulation might be the potential mechanisms of icariin to facilitate corticosteroid responsiveness of cytokine production.
Collapse
|
31
|
Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ, Bendotti C. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:3305-32. [PMID: 24065725 DOI: 10.1093/brain/awt250] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Collapse
Affiliation(s)
- Giovanni Nardo
- 1 Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chung HS, Kim Y, Oh SJ, Kim H, Choi SI, Zhang Y, Jeong JH, Bae H. A synthetic compound, 4-acetyl-3-methyl-6-(3,4,5-trimethoxyphenyl)pyrano[3,4-c]pyran-1,8-dione, ameliorates ovalbumin-induced asthma. Bioorg Med Chem 2013; 21:6359-65. [PMID: 24054491 DOI: 10.1016/j.bmc.2013.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/19/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Eosinophilia is one of the characteristic signs of allergic inflammation. Massive migration of eosinophils to the airways can cause epithelial tissue injury, contraction of airway smooth muscle and increased bronchial responsiveness. Previously, we discovered a new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione (PPY), derived from the fruit of Vitex rotundifolia L. and evaluated its anti-inflammatory and anti-asthmatic properties. In this study, we synthesized a new modified compound, 4-acetyl-3-methyl-6-(3,4,5-trimethoxyphenyl) pyrano[3,4-c]pyran-1,8-dione (PPY-345), which was based on the PPY skeleton, and we evaluated its anti-asthmatic effects. To evaluate the anti-asthmatic effect of PPY-345 in vitro, A549 lung epithelial cells were stimulated with TNF-alpha, IL-4 and IL-1-beta to induce the expression of CCL11 (Eotaxin), a chemokine involved in eosinophil chemotaxis. To characterize the anti-asthmatic properties of PPY-345 in vivo, we examined the influence of PPY-345 in an ovalbumin (OVA)-induced asthma model. PPY-345 treatments significantly reduced CCL11 secretion. PPY-345 treatment did not inhibit the translocation of NF-κB into the nucleus but suppressed the phosphorylation of signal transducers and activators of transcription 6 (STAT6). PPY-345 treatment significantly reduced airway hyperreactivity as measured by whole-body plethysmography. PPY-345 further reduced total cells, including eosinophil, macrophage and lymphocytes, in the BAL fluid, goblet cell hyperplasia and myosin light chain 2 positive smooth muscle cell area in the lung tissue. Additionally, PPY-345 significantly suppressed the levels of OVA-IgE present in the serum. These results suggested that PPY-345 could improve asthma symptoms in OVA-sensitized mice.
Collapse
Affiliation(s)
- Hwan-Suck Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee CC, Lai YT, Chang HT, Liao JW, Shyu WC, Li CY, Wang CN. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochem Pharmacol 2013; 86:940-9. [PMID: 23948063 DOI: 10.1016/j.bcp.2013.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023]
Abstract
The role of high-mobility group box 1 (HMGB1) in chronic allergic asthma is currently unclear. Both airway neutrophilia and eosinophilia and increase in HMGB1 expression in the lungs in our murine model of chronic asthma. Inhibition of HMGB1 expression in lung in ovalbumin (OVA)-immunized mice decreased induced airway inflammation, mucus formation, and collagen deposition in lung tissues. Analysis of the numbers of CD4(+) T helper (Th) cells in the mediastinal lymph nodes and lungs revealed that Th17 showed greater increases than Th2 cells and Th1 cells in OVA-immunized mice; further, the numbers of Th1, Th2, and Th17 cells decreased in anti-HMGB1 antibody (Ab)-treated mice. In OVA-immunized mice, TLR-2 and TLR-4 expression, but not RAGE expression, was activated in the lungs and attenuated after anti-HMGB1 Ab treatment. The results showed that increase in HMGB1 release and expression in the lungs could be an important pathological mechanism underlying chronic allergic asthma and HMGB1 might a potential therapeutic target for chronic allergic asthma.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung, Taiwan; Graduate Institute of Immunology, College of Medicine, China Medicine University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, College of Medicine, China Medicine University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Caramori G, Casolari P, Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. ACTA ACUST UNITED AC 2013; 20:21-40. [PMID: 23472830 DOI: 10.3109/15419061.2013.775257] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate CEMICEF; formerly named Centro di Ricerca su Asma e BPCO, Sezione di Malattie dell'Apparato Respiratorio, Università di Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
35
|
Daubeuf F, Hachet-Haas M, Gizzi P, Gasparik V, Bonnet D, Utard V, Hibert M, Frossard N, Galzi JL. An antedrug of the CXCL12 neutraligand blocks experimental allergic asthma without systemic effect in mice. J Biol Chem 2013; 288:11865-76. [PMID: 23449983 PMCID: PMC3636874 DOI: 10.1074/jbc.m112.449348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor CXCR4 and its chemokine CXCL12 are involved in normal tissue patterning but also in tumor cell growth and survival as well as in the recruitment of immune and inflammatory cells, as successfully demonstrated using agents that block either CXCL12 or CXCR4. In order to achieve selectivity in drug action on the CXCR4/CXCL12 pair, in particular in the airways, drugs should be delivered as selectively as possible in the treated tissue and should not diffuse in the systemic circulation, where it may reach undesired organs. To this end, we used a previously unexploited Knoevenagel reaction to create a short lived drug, or soft drug, based on the CXCL12-neutralizing small molecule, chalcone 4, which blocks binding of CXCL12 to CXCR4. We show that the compound, carbonitrile-chalcone 4, blocks the recruitment of eosinophils to the airways in ovalbumin-sensitized and challenged mice in vivo when administered directly to the airways by the intranasal route, but not when administered systemically by the intraperitoneal route. We show that the lack of effect at a distant site is due to the rapid degradation of the molecule to inactive fragments. This approach allows selective action of the CXCL12 neutraligands although the target protein is widely distributed in the organism.
Collapse
Affiliation(s)
- François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tang X, Asano M, O'Reilly A, Farquhar A, Yang Y, Amar S. p53 is an important regulator of CCL2 gene expression. Curr Mol Med 2013; 12:929-43. [PMID: 22804246 DOI: 10.2174/156652412802480844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
The p53 protein is a sequence-specific DNA-binding factor that regulates inflammatory genes such as CCL2/MCP-1 that may play a role in various diseases. A recent study has indicated that the knockdown of human p53 leads to a strong negative regulation of CCL2 induction. We are therefore interested in how p53 regulates CCL2 gene expression. In the following study, our findings indicate that UV-induced p53 accumulation in mouse macrophages significantly decreases LPS-induced CCL2 production, and that p53 binds to CCL2 5'UTR in the region (16-35). We also found that a p53 domain (p53pep170) mimics full length p53 to down-regulate CCL2 promoter activity. Treatment of p53-deficient mouse primary macrophages with synthetic p53pep170 was found to decrease LPS-induced production of CCL2 without association with cellular endogenous p53. CCL2 production induced by lentiCLG in human monocytes or mouse primary macrophages was blocked in the presence of p53pep170. Overall, these results demonstrate that p53 or its derived peptide (p53pep170) is an important regulator of CCL2 gene expression via its binding activity, and acts as a novel model for future studies linking p53 and its short peptide to pave the way to possible pharmaceutical intervention of CCL2-mediated inflammatory and cancer diseases.
Collapse
Affiliation(s)
- X Tang
- Center for Anti- Inflammatory Therapeutics, Boston University, 650 Albany Street, X- 343, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Deppong CM, Green JM. Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 2013; 5:167-80. [PMID: 23277043 DOI: 10.2741/s364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is largely an inflammatory disease, with the development of T cell mediated inflammation in the lung following exposure to allergen or other precipitating factors. Currently, the major therapies for this disease are directed either at relief of bronchoconstriction (ie beta-agonists) or are non-specific immunomodulators (ie, corticosteroids). While much attention has been paid to factors that regulate the initiation of an inflammatory response, chronic inflammation may also be due to defects in regulatory mechanisms that limit or terminate immune responses. In this review, we explore the elements controlling both the recruitment of T cells to the lung and their function. Possibilities for future therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
38
|
Rauch I, Müller M, Decker T. The regulation of inflammation by interferons and their STATs. JAKSTAT 2013; 2:e23820. [PMID: 24058799 PMCID: PMC3670275 DOI: 10.4161/jkst.23820] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT.
Collapse
Affiliation(s)
- Isabella Rauch
- Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels Austria; University of Veterinary Medicine Vienna; Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| |
Collapse
|
39
|
Paulissen G, El Hour M, Rocks N, Guéders MM, Bureau F, Foidart JM, Lopez-Otin C, Noel A, Cataldo DD. Control of allergen-induced inflammation and hyperresponsiveness by the metalloproteinase ADAMTS-12. THE JOURNAL OF IMMUNOLOGY 2012; 189:4135-43. [PMID: 22962682 DOI: 10.4049/jimmunol.1103739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) constitute a family of endopeptidases related to matrix metalloproteinases. These proteinases have been largely implicated in tissue remodeling associated with pathological processes. Among them, ADAMTS12 was identified as an asthma-associated gene in a human genome screening program. However, its functional implication in asthma is not yet documented. The present study aims at investigating potential ADAMTS-12 functions in experimental models of allergic airways disease. Two different in vivo protocols of allergen-induced airways disease were applied to the recently generated Adamts12-deficient mice and corresponding wild-type mice. In this study, we provide evidence for a protective effect of ADAMTS-12 against bronchial inflammation and hyperresponsiveness. In the absence of Adamts12, challenge with different allergens (OVA and house dust mite) led to exacerbated eosinophilic inflammation in the bronchoalveolar lavage fluid and in lung tissue, along with airway dysfunction assessed by increased airway responsiveness following methacholine exposure. Furthermore, mast cell counts and ST2 receptor and IL-33 levels were higher in the lungs of allergen-challenged Adamts12-deficient mice. The present study provides, to our knowledge, the first experimental evidence for a contribution of ADAMTS-12 as a key mediator in airways disease, interfering with immunological processes leading to inflammation and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Geneviève Paulissen
- Laboratory of Tumor and Developmental Biology, Interdisciplinary Group of Applied Genoproteomics-Cancer (GIGA-Cancer), University of Liège and University Hospital of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ainsworth DM, Reyner CL. Effects of in vitro exposure to autologous blood and serum on expression of interleukin-8, interleukin-1β, and chemokine (C-X-C motif) ligand 2 in equine primary bronchial epithelial cell cultures. Am J Vet Res 2012; 73:296-301. [PMID: 22280393 DOI: 10.2460/ajvr.73.2.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To examine the effects of in vitro exposure to solutions of autologous horse blood (AHB) and autologous horse serum (AHS) on expressions of selected cytokine genes in equine primary bronchial epithelial cell (BEC) cultures and to contrast these responses to those induced in BEC cultures by endotoxin and hay dust. SAMPLE BEC cultures established from bronchi of 6 healthy horses. PROCEDURES 5-day-old BEC cultures were treated with PBS solution, AHB (2 concentrations), AHS, hay dust solution, and lipopolysaccharide solution for 24 hours. Gene expressions of interleukin (IL)-8, IL-1β, chemokine (C-X-C motif) ligand 2 (CXCL2), and glyceralde-hyde-3-phosphate dehydrogenase were subsequently measured with a kinetic PCR assay. RESULTS With the exception of AHS, all treatments of the BECs resulted in upregulation of each target gene expression relative to its expression in cultures exposed to PBS solution. Treatment with AHB induced a dose-dependent increase of each target gene, with IL-1β expression increasing the most (> 1,200-fold increase). Lipopolysaccharide and hay dust solution treatments each resulted in 20-fold increases in IL-8 and IL-1β gene expressions. Lipopolysaccharide and hay dust solution treatments also resulted in a 7- and 8-fold increase in CXCL2 gene expression, respectively. The increases in IL-8 and CXCL2 gene expressions following treatment with the higher concentration of blood were equivalent to those associated with hay dust solution or lipopolysaccharide. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that chemokine expression by cultured equine BECs following exposure to pulmonary hemorrhage conditions may contribute to the development of inflammatory airway disease in horses.
Collapse
Affiliation(s)
- Dorothy M Ainsworth
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
41
|
Abstract
Allergic inflammation develops in tissues that have large epithelial surface areas that are exposed to the environment, such as the lung, skin and gut. In the steady state, antigen-experienced memory T cells patrol these peripheral tissues to facilitate swift immune responses against invading pathogens. In at least two allergy-prone organs, the skin and the gut, memory T cells are programmed during the initial antigen priming to express trafficking receptors that enable them to preferentially home to these organs. In this review we propose that tissue-specific memory and inflammation-specific T cell trafficking facilitates the development of allergic disease in these organs. We thus review recent advances in our understanding of tissue-specific T cell trafficking and how regulation of T cell trafficking by the chemokine system contributes to allergic inflammation in mouse models and in human allergic diseases of the skin, lung and gut. Inflammation- and tissue-specific T lymphocyte trafficking pathways are currently being targeted as new treatments for non-allergic inflammatory diseases and may yield effective new therapeutics for allergic diseases.
Collapse
|
42
|
Baay-Guzman GJ, Huerta-Yepez S, Vega MI, Aguilar-Leon D, Campillos M, Blake J, Benes V, Hernandez-Pando R, Teran LM. Role of CXCL13 in asthma: novel therapeutic target. Chest 2012; 141:886-894. [PMID: 22016489 DOI: 10.1378/chest.11-0633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND B cells play an important role in allergic asthma. However, the mechanisms by which these cells are activated in the airways remain poorly understood. METHODS We used a mouse model of ovalbumin (OVA)-induced allergic inflammation to study CXCL13 and to investigate the concentration of this chemokine in the BAL fluid derived from asthmatic and normal control subjects. RESULTS We found that OVA-challenged mice upregulate the CXCL13/CXCR5 axis, which is associated with several changes in their airways, including recruitment of B and CD4(+) cells, development of bronchial-associated lymphoid tissue, and airway inflammation. Treating sensitized mice with an anti-CXCL13 antibody reduced cell recruitment, bronchial-associated lymphoid tissue formation, and airways inflammation. Interestingly, measurements of CXCL13 using enzyme-linked immunosorbent assay showed that levels of this cytokine were significantly elevated in BAL fluid from subjects with asthma compared with control subjects (median, 162 [range, 120-296] vs 31 [range, 120-156] pg/mL; P = .005). CONCLUSIONS All together, these findings suggest that CXCL13 is involved in the allergic airway inflammatory process, and targeting this chemokine may constitute a novel approach in asthma.
Collapse
Affiliation(s)
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Mario I Vega
- Unidad de Investigación Medica en Oncologia, CMN sXXI IMSS, Mexico City, Mexico
| | - Diana Aguilar-Leon
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán," Mexico City, Mexico
| | - Monica Campillos
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jonathon Blake
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán," Mexico City, Mexico
| | - Luis M Teran
- Department of Allergy and Clinical Immunology, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.
| |
Collapse
|
43
|
Swain SD, Meissner NN, Siemsen DW, McInnerney K, Harmsen AG. Pneumocystis elicits a STAT6-dependent, strain-specific innate immune response and airway hyperresponsiveness. Am J Respir Cell Mol Biol 2012; 46:290-8. [PMID: 21960549 PMCID: PMC3326431 DOI: 10.1165/rcmb.2011-0154oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022] Open
Abstract
It is widely held that exposure to pathogens such as fungi can be an agent of comorbidity, such as exacerbation of asthma or chronic obstructive pulmonary disease. Although many studies have examined allergic responses to fungi and their effects on pulmonary function, the possible pathologic implications of the early innate responses to fungal pathogens have not been explored. We examined early responses to the atypical fungus Pneumocystis in two common strains of mice in terms of overall immunological response and related pathology, such as cell damage and airway hyperresponsiveness (AHR). We found a strong strain-specific response in BALB/c mice that included recruitment of neutrophils, NK, NKT, and CD4 T cells. This response was accompanied by elevated indicators of lung damage (bronchoalveolar lavage fluid albumin and LDH) and profound AHR. This early response was absent in C57BL/6 mice, although both strains exhibited a later response associated with the clearance of Pneumocystis. We found that this AHR could not be attributed exclusively to the presence of recruited neutrophils, NKT, NK, or CD4 cells or to the actions of IFN-γ or IL-4. However, in the absence of STAT6 signaling, AHR and inflammatory cell recruitment were virtually absent. Gene expression analysis indicated that this early response included activation of several transcription factors that could be involved in pulmonary remodeling. These results show that exposure to a fungus such as Pneumocystis can elicit pulmonary responses that may contribute to morbidity, even without prior sensitization, in the context of certain genetic backgrounds.
Collapse
MESH Headings
- Albumins/metabolism
- Animals
- Antigens, CD1/genetics
- Antigens, CD1/metabolism
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- Bronchial Hyperreactivity/microbiology
- Bronchial Hyperreactivity/physiopathology
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- Disease Models, Animal
- Gene Expression Regulation
- Immunity, Innate
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interleukin-4/metabolism
- L-Lactate Dehydrogenase/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Lung/physiopathology
- Lung Diseases, Fungal/genetics
- Lung Diseases, Fungal/immunology
- Lung Diseases, Fungal/metabolism
- Lung Diseases, Fungal/microbiology
- Lung Diseases, Fungal/physiopathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Natural Killer T-Cells/microbiology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Pneumocystis Infections/genetics
- Pneumocystis Infections/immunology
- Pneumocystis Infections/metabolism
- Pneumocystis Infections/microbiology
- Pneumocystis Infections/physiopathology
- Receptors, Interleukin-4/deficiency
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-8B/deficiency
- Receptors, Interleukin-8B/genetics
- STAT6 Transcription Factor/deficiency
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Species Specificity
- Time Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Steve D Swain
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | |
Collapse
|
44
|
Chemokines and their receptors in the allergic airway inflammatory process. Clin Rev Allergy Immunol 2011; 41:76-88. [PMID: 20352527 DOI: 10.1007/s12016-010-8202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The development of the allergic airway disease conveys several cell types, such as T-cells, eosinophils, mast cells, and dendritic cells, which act in a special and temporal synchronization. Cellular mobilization and its complex interactions are coordinated by a broad range of bioactive mediators known as chemokines. These molecules are an increasing family of small proteins with common structural motifs and play an important role in the recruitment and cell activation of both leukocytes and resident cells at the allergic inflammatory site via their receptors. Trafficking and recruitment of cell populations with specific chemokines receptors assure the presence of reactive allergen-specific T-cells in the lung, and therefore the establishment of an allergic inflammatory process. Different approaches directed against chemokines receptors have been developed during the last decades with promising therapeutic results in the treatment of asthma. In this review we explore the role of the chemokines and chemokine receptors in allergy and asthma and discuss their potential as targets for therapy.
Collapse
|
45
|
Oxazolone (OXA) is a respiratory allergen in Brown Norway rats. Toxicology 2011; 290:59-68. [DOI: 10.1016/j.tox.2011.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022]
|
46
|
Yu M, Eckart MR, Morgan AA, Mukai K, Butte AJ, Tsai M, Galli SJ. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J Clin Invest 2011; 121:3133-43. [PMID: 21737883 DOI: 10.1172/jci43598] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/11/2011] [Indexed: 01/10/2023] Open
Abstract
Asthma is considered a Th2 cell–associated disorder. Despite this, both the Th1 cell–associated cytokine IFN-γ and airway neutrophilia have been implicated in severe asthma. To investigate the relative contributions of different immune system components to the pathogenesis of asthma, we previously developed a model that exhibits several features of severe asthma in humans, including airway neutrophilia and increased lung IFN-γ. In the present studies, we tested the hypothesis that IFN-γ regulates mast cell function in our model of chronic asthma. Engraftment of mast cell–deficient KitW(-sh/W-sh) mice, which develop markedly attenuated features of disease, with wild-type mast cells restored disease pathology in this model of chronic asthma. However, disease pathology was not fully restored by engraftment with either IFN-γ receptor 1–null (Ifngr1–/–) or Fcε receptor 1γ–null (Fcer1g–/–) mast cells. Additional analysis, including gene array studies, showed that mast cell expression of IFN-γR contributed to the development of many FcεRIγ-dependent and some FcεRIγ-independent features of disease in our model, including airway hyperresponsiveness, neutrophilic and eosinophilic inflammation, airway remodeling, and lung expression of several cytokines, chemokines, and markers of an alternatively activated macrophage response. These findings identify a previously unsuspected IFN-γ/mast cell axis in the pathology of chronic allergic inflammation of the airways in mice.
Collapse
Affiliation(s)
- Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5176, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Rothenberg ME, Wen T, Shik D, Cole ET, Mingler MM, Munitz A. IL-13 receptor α1 differentially regulates aeroallergen-induced lung responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:4873-80. [PMID: 21957151 DOI: 10.4049/jimmunol.1004159] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IL-13 and IL-4 are hallmark cytokines of Th2-associated diseases including asthma. Recent studies revealed that IL-13Rα1 regulates asthma pathogenesis by mediating both IL-4- and IL-13-mediated responses. Nonetheless, the relative contribution of each cytokine in response to aeroallergen challenge and the degree of functional dichotomy between IL-4 and IL-13 in asthma remains unclear. Consistent with prior publications, we demonstrate that IL-13Rα1 regulates aeroallergen-induced airway resistance and mucus production but not IgE and Th2 cytokine production. We demonstrate that aeroallergen-induced eosinophil recruitment and chemokine production were largely dependent on IL-13Rα1 after Aspergillus but not house dust mite (HDM) challenges. Notably, Aspergillus-challenged mice displayed increased IL-13Rα1-dependent accumulation of dendritic cell subsets into lung-draining lymph nodes in comparison with HDM-challenged mice. Comparison of IL-4 and IL-13 levels in the different experimental models revealed increased IL-4/IL-13 ratios after HDM challenge, likely explaining the IL-13Rα1-independent eosinophilia and chemokine production. Consistently, eosinophil adoptive transfer experiments revealed near ablation of lung eosinophilia in response to Aspergillus in Il13ra1(-/-) mice, suggesting that Aspergillus-induced lung eosinophil recruitment is regulated by IL-13-induced chemokine production rather than altered IL-13 signaling in eosinophils. Furthermore, the near complete protection observed in Il13ra1(-/-) mice in response to Aspergillus challenge was dependent on mucosal sensitization, as alum/Aspergillus-sensitized mice that were rechallenged with Aspergillus developed IL-13Rα1-independent eosinophilia although other asthma parameters remained IL-13Rα1 dependent. These results establish that IL-13Rα1 is required for aeroallergen-induced airway resistance and that allergen-induced chemokine production and consequent eosinophilia is dictated by the balance between IL-4 and IL-13 production in situ.
Collapse
Affiliation(s)
- Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abbas AR, Jackman JK, Bullens SL, Davis SM, Choy DF, Fedorowicz G, Tan M, Truong BT, Gloria Meng Y, Diehl L, Miller LA, Schelegle ES, Hyde DM, Clark HF, Modrusan Z, Arron JR, Wu LC. Lung gene expression in a rhesus allergic asthma model correlates with physiologic parameters of disease and exhibits common and distinct pathways with human asthma and a mouse asthma model. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1667-80. [PMID: 21819959 DOI: 10.1016/j.ajpath.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/10/2011] [Accepted: 06/27/2011] [Indexed: 01/22/2023]
Abstract
Experimental nonhuman primate models of asthma exhibit multiple features that are characteristic of an eosinophilic/T helper 2 (Th2)-high asthma subtype, characterized by the increased expression of Th2 cytokines and responsive genes, in humans. Here, we determine the molecular pathways that are present in a house dust mite-induced rhesus asthma model by analyzing the genomewide lung gene expression profile of the rhesus model and comparing it with that of human Th2-high asthma. We find that a prespecified human Th2 inflammation gene set from human Th2-high asthma is also present in rhesus asthma and that the expression of the genes comprising this gene set is positively correlated in human and rhesus asthma. In addition, as in human Th2-high asthma, the Th2 gene set correlates with physiologic markers of allergic inflammation and disease in rhesus asthma. Comparison of lung gene expression profiles from human Th2-high asthma, the rhesus asthma model, and a common mouse asthma model indicates that genes associated with Th2 inflammation are shared by all three species. However, some pathophysiologic aspects of human asthma (ie, subepithelial fibrosis, angiogenesis, neural biology, and immune host defense biology) are better represented in the gene expression profile of the rhesus model than in the mouse model. Further study of the rhesus asthma model may yield novel insights into the pathogenesis of human Th2-high asthma.
Collapse
Affiliation(s)
- Alexander R Abbas
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee LN, Baban D, Ronan EO, Ragoussis J, Beverley PCL, Tchilian EZ. Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A. BMC Med Genomics 2010; 3:46. [PMID: 20942964 PMCID: PMC2967494 DOI: 10.1186/1755-8794-3-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
Background Immunization of BALB/c mice with a recombinant adenovirus expressing Mycobacterium tuberculosis (M. tuberculosis) antigen 85A (Ad85A) protects against aerosol challenge with M. tuberculosis only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of M. tuberculosis growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization. Method Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools. Results CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene Cxcr6, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry. Conclusions Our microarray analysis represents the first ex vivo study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after i.n. immunization. This may account for the early inhibition of M. tuberculosis growth observed in Ad85A i.n. immunized mice and explain the effectiveness of i.n. compared to parenteral immunization with this viral vector.
Collapse
Affiliation(s)
- Lian N Lee
- Nuffield Department of Medicine, University of Oxford, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Pie JE, Kim YR, Kim IK, Seo SH, Lee SH, Lee HR, Yoo Y, Chung JT, Youn JP, Oh M, Hwang SY, Kim MK. Correlation between nutrition intake and gene expression profiles in children with asthma. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|