1
|
Srinivasan S, Mishra S, Fan KK, Wang L, Im J, Segura C, Mukherjee N, Huang G, Rao M, Ma C, Zhang N. Age-Dependent Bi-Phasic Dynamics of Ly49 +CD8 + Regulatory T Cell Population. Aging Cell 2025; 24:e14461. [PMID: 39696807 PMCID: PMC11984669 DOI: 10.1111/acel.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Aging is tightly associated with reduced immune protection but increased risk of autoimmunity and inflammatory conditions. Regulatory T cells are one of the key cells to maintaining immune homeostasis. The age-dependent changes in CD4+Foxp3+ regulatory T cells (Tregs) have been well documented. However, the nonredundant Foxp3-CD8+ Tregs were never examined in the context of aging. This study first established clear distinctions between phenotypically overlapping CD8+ Tregs and virtual memory T cells. Then, we elucidated the dynamics of CD8+ Tregs across the lifespan in mice and further extended our investigation to human peripheral blood mononuclear cells (PBMCs). In mice, we discovered a bi-phasic dynamic shift in the frequency of CD8+CD44hiCD122hiLy49+ Tregs, with a steady increase in young adults and a notable peak in middle age followed by a decline in older mice. Transcriptomic analysis revealed that mouse CD8+ Tregs upregulated a selected set of natural killer (NK) cell-associated genes, including NKG2D, with age. Importantly, NKG2D might negatively regulate CD8+ Tregs. Additionally, by analyzing a scRNA-seq dataset of human PBMC, we found a distinct CD8+ Treg-like subset (Cluster 10) with comparable age-dependent frequency changes and gene expression, suggesting a conserved aging pattern in CD8+ Treg across mice and humans. In summary, our findings highlight the importance of CD8+ Tregs in immune regulation and aging.
Collapse
Affiliation(s)
- Saranya Srinivasan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Gilead Sciences IncCaliforniaUSA
| | - Kenneth Ka‐Ho Fan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Liwen Wang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Hematology, Third Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - John Im
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Courtney Segura
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Neelam Mukherjee
- Department of UrologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Gang Huang
- Department of Cell Systems and AnatomyGreehey Children's Cancer Research InstituteSan AntonioTexasUSA
| | - Manjeet Rao
- Department of Cell Systems and AnatomyGreehey Children's Cancer Research InstituteSan AntonioTexasUSA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- South Texas Veterans Health Care SystemSan AntonioTexasUSA
| |
Collapse
|
2
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Ren J, Jo Y, Picton LK, Su LL, Raulet DH, Garcia KC. Induced CD45 Proximity Potentiates Natural Killer Cell Receptor Antagonism. ACS Synth Biol 2022; 11:3426-3439. [PMID: 36169352 PMCID: PMC9594326 DOI: 10.1021/acssynbio.2c00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Natural killer (NK) cells are a major subset of innate immune cells that are essential for host defense against pathogens and cancer. Two main classes of inhibitory NK receptors (NKR), KIR and CD94/NKG2A, play a key role in suppressing NK activity upon engagement with tumor cells or virus-infected cells, limiting their antitumor and antiviral activities. Here, we find that single-chain NKR antagonists linked to a VHH that binds the cell surface phosphatase CD45 potentiate NK and T activities to a greater extent than NKR blocking antibodies alone in vitro. We also uncovered crosstalk between NKG2A and Ly49 that collectively inhibit NK cell activation, such that CD45-NKG2A and CD45-Ly49 bispecific molecules show synergistic effects in their ability to enhance NK cell activation. The basis of the activity enhancement by CD45 ligation may reflect greater antagonism of inhibitory signaling from engagement of MHC I on target cells, combined with other mechanisms, including avidity effects, tonic signaling, antagonism of weak inhibition from engagement of MHC I on non-target cells, and possible CD45 segregation within the NK cell-target cell synapse. These results uncover a strategy for enhancing the activity of NK and T cells that may improve cancer immunotherapies.
Collapse
Affiliation(s)
- Junming Ren
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Yeara Jo
- Division
of Immunology and Molecular Medicine, Department of Molecular and
Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Lora K. Picton
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Leon L. Su
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - David H. Raulet
- Division
of Immunology and Molecular Medicine, Department of Molecular and
Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - K. Christopher Garcia
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
5
|
Mishra S, Srinivasan S, Ma C, Zhang N. CD8 + Regulatory T Cell - A Mystery to Be Revealed. Front Immunol 2021; 12:708874. [PMID: 34484208 PMCID: PMC8416339 DOI: 10.3389/fimmu.2021.708874] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) are essential to maintain immune homeostasis and prevent autoimmune disorders. While the function and molecular regulation of Foxp3+CD4+ Tregs are well established, much of CD8+ Treg biology remains to be revealed. Here, we will review the heterogenous subsets of CD8+ T cells have been named "CD8+ Treg" and mainly focus on CD122hiLy49+CD8+ Tregs present in naïve mice. CD122hiLy49+CD8+ Tregs, which depends on transcription factor Helios and homeostatic cytokine IL-15, have been established as a non-redundant regulator of germinal center (GC) reaction. Recently, we have demonstrated that TGF-β (Transforming growth factor-β) and transcription factor Eomes (Eomesodermin) are essential for the function and homeostasis of CD8+ Tregs. In addition, we will discuss several open questions regarding the differentiation, function and true identity of CD8+ Tregs as well as a brief comparison between two regulatory T cell subsets critical to control GC reaction, namely CD4+ TFR (follicular regulatory T cells) and CD8+ Tregs.
Collapse
Affiliation(s)
| | | | | | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Shytikov D, Rohila D, Li D, Wang P, Jiang M, Zhang M, Xu Q, Lu L. Functional Characterization of Ly49 +CD8 T-Cells in Both Normal Condition and During Anti-Viral Response. Front Immunol 2021; 11:602783. [PMID: 33488602 PMCID: PMC7817614 DOI: 10.3389/fimmu.2020.602783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The role of Ly49+CD8 T-cells in the immune system is not clear. Previously, several papers suggested Ly49+CD8 T-cells as immunosuppressors, while multiple studies also suggested their role as potent participants of the immune response. The mechanism of Ly49 expression on CD8 T-cells is also not clear. We investigated phenotype, functions, and regulation of Ly49 expression on murine CD8 T-cells in both normal state and during LCMV infection. CD8 T-cells express different Ly49 receptors compared with NK-cells. In intact mice, Ly49+CD8 T-cells have a phenotype similar to resting central memory CD8 T-cells and do not show impaired proliferation and cytokine production. Conventional CD8 T-cells upregulate Ly49 receptors during TCR-induced stimulation, and IL-2, as well as IL-15, affect it. At the same time, Ly49+CD8 T-cells change the Ly49 expression profile dramatically upon re-stimulation downregulating inhibitory and upregulating activating Ly49 receptors. We observed the expression of Ly49 receptors on the virus-specific CD8 T-cells during LCMV infection, especially marked in the early stages, and participation of Ly49+CD8 T-cells in the anti-viral response. Thus, CD8 T-cells acquire Ly49 receptors during the T-cell activation and show dynamic regulation of Ly49 receptors during stimulation.
Collapse
Affiliation(s)
- Dmytro Shytikov
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deepak Rohila
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
8
|
|
9
|
Miah SMS, Jayasuriya CT, Salter AI, Reilly EC, Fugere C, Yang W, Chen Q, Brossay L. Ptpn11 Deletion in CD4 + Cells Does Not Affect T Cell Development and Functions but Causes Cartilage Tumors in a T Cell-Independent Manner. Front Immunol 2017; 8:1326. [PMID: 29085371 PMCID: PMC5650614 DOI: 10.3389/fimmu.2017.01326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 12/01/2022] Open
Abstract
The ubiquitously expressed tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2 (SHP-2, encoded by Ptpn11) is required for constitutive cellular processes including proliferation, differentiation, and the regulation of immune responses. During development and maturation, subsets of T cells express a variety of inhibitory receptors known to associate with phosphatases, which in turn, dephosphorylate key players of activating receptor signaling pathways. We hypothesized that SHP-2 deletion would have major effects on T cell development by altering the thresholds for activation, as well as positive and negative selection. Surprisingly, using mice conditionally deficient for SHP-2 in the T cell lineage, we show that the development of these lymphocytes is globally intact. In addition, our data demonstrate that SHP-2 absence does not compromise T cell effector functions, suggesting that SHP-2 is dispensable in these cells. Unexpectedly, in aging mice, Ptpn11 gene deletion driven by CD4 Cre recombinase leads to cartilage tumors in wrist bones in a T cell-independent manner. These tumors resemble miniature cartilaginous growth plates and contain CD4-lineage positive chondrocyte-like cells. Altogether these results indicate that SHP-2 is a cartilage tumor suppressor during aging.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Department of Molecular Microbiology and Immunology, Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, Providence, RI, United States
| | - Alexander I Salter
- Department of Molecular Microbiology and Immunology, Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Emma C Reilly
- Department of Molecular Microbiology and Immunology, Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Céline Fugere
- Department of Molecular Microbiology and Immunology, Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| | - Wentian Yang
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, Providence, RI, United States
| | - Qian Chen
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, Providence, RI, United States
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
10
|
Kyaw T, Tipping P, Toh BH, Bobik A. Killer cells in atherosclerosis. Eur J Pharmacol 2017; 816:67-75. [PMID: 28483458 DOI: 10.1016/j.ejphar.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023]
Abstract
Cytotoxic lymphocytes (killer cells) play a critical role in host defence mechanisms, protecting against infections and in tumour surveillance. They can also exert detrimental effects in chronic inflammatory disorders and in autoimmune diseases. Tissue cell death and necrosis are prominent features of advanced atherosclerotic lesions including vulnerable/unstable lesions which are largely responsible for most heart attacks and strokes. Evidence for accumulation of killer cells in both human and mouse lesions together with their cytotoxic potential strongly suggest that these cells contribute to cell death and necrosis in lesions leading to vulnerable plaque development and potentially plaque rupture. Killer cells can be divided into two groups, adaptive and innate immune cells depending on whether they require antigen presentation for activation. Activated killer cells detect damaged or stressed cells and kill by cytotoxic mechanisms that include perforin, granzymes, TRAIL or FasL and in some cases TNF-α. In this review, we examine current knowledge on killer cells in atherosclerosis, including CD8 T cells, CD28- CD4 T cells, natural killer cells and γδ-T cells, mechanisms responsible for their activation, their migration to developing lesions and effector functions. We also discuss pharmacological strategies to prevent their deleterious vascular effects by preventing/limiting their cytotoxic effects within atherosclerotic lesions as well as potential immunomodulatory therapies that might better target lesion-resident killer cells, to minimise any compromise of the immune system, which could result in increased susceptibility to infections and reductions in tumour surveillance.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia; Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia.
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
MHC class II peptides induce CD8+CD44+Ly49+ regulatory T cells in C57BL/6 mice. Cell Immunol 2017; 312:71-77. [DOI: 10.1016/j.cellimm.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
|
12
|
Protective genotypes in HIV infection reflect superior function of KIR3DS1+ over KIR3DL1+ CD8+ T cells. Immunol Cell Biol 2014; 93:67-76. [PMID: 25112829 PMCID: PMC4500641 DOI: 10.1038/icb.2014.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 01/19/2023]
Abstract
Certain human class I histocompatibility-linked leukocyte antigen (HLA)/killer cell immunoglobulin-like receptor (KIR) genotypic combinations confer more favourable prognoses upon exposure to human immunodeficiency virus (HIV). These combinations influence natural killer (NK) cell function, thereby implicating NK cells in protection from HIV infection or disease progression. Because CD8(+) T cells restrict HIV replication, depend upon HLA class I antigen presentation and can also express KIR molecules, we investigated how these HLA/KIR combinations relate to the phenotype and function of CD8(+) T cells from uninfected controls and individuals with chronic HIV infection. CD8(+) T cells from KIR3DL1 and KIR3DS1 homozygous individuals, and expressing the corresponding KIR, were enumerated and phenotyped for CD127, CD57 and CD45RA expression. Ex vivo and in vitro responsiveness to antigen-specific and polyclonal stimulation was compared between KIR-expressing and non-expressing CD8(+) T cells by interferon-γ production. There were higher numbers and fractions of KIR3DL1-expressing CD8(+) T cells in HIV-infected individuals independent of HLA-Bw4 co-expression, whereas expansion of KIR3DS1-expressing CD8(+) T cells reflected HLA-Bw4*80I co-expression. KIR3DL1(+) and S1(+) CD8(+) T cells were predominantly CD127(-)CD57(+)CD45RA(+). KIR3DL1-expressing CD8(+) T cells were insensitive to ex vivo stimulation with peptides from HIV or common viruses, but responded to anti-CD3 and recovered responsiveness to common viruses in vitro. Ex vivo non-responsiveness of KIR3DL1-expressing CD8(+) T cells was also independent of HLA-Bw4. KIR3DS1-expressing T cells responded normally to ex vivo antigenic stimulation, illustrating functional superiority over KIR3DL1(+) CD8(+) T cells.
Collapse
|
13
|
|
14
|
Activated CD8 T cells acquire NK1.1 expression and preferentially locate in the liver in mice after allogeneic hematopoietic cell transplantation. Immunol Lett 2013; 150:75-8. [PMID: 23291124 DOI: 10.1016/j.imlet.2012.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/18/2012] [Accepted: 12/23/2012] [Indexed: 11/22/2022]
Abstract
Immune cells expressing both NK and T cell markers include CD1d-dependent NKT cells and CD1d-independent NKT-like cells. We now describe the presence of NK1.1(+)CD8(+) T cells in the liver, but not other tissues (spleen, bone marrow, thymus or peripheral blood) in mice receiving allogeneic hematopoietic cell transplantation (allo-HCT). These cells are CD1d-independent TCRαβ(+) T cells with an effector/memory CD44(hi)CD62L(-) phenotype, and do not express Ly49 receptors. Furthermore, these cells were derived from donor splenocytes, but not bone marrow cells. Depletion of CD8(+), but not NK1.1(+), cells from donor splenocytes prior to transplantation prevented the generation of NK1.1(+)CD8(+) T cells, indicating that these cells arose from donor NK1.1(-)CD8(+) splenic T cells. These results provide direct evidence that donor CD8(+) T cells can acquire NK1.1 expression upon activation in allo-HCT recipients and that these NK1.1(+)CD8(+) NKT-like cells maintain an effector/memory phenotype and persist in the recipients with preferential localization in the liver.
Collapse
|
15
|
Odorizzi PM, Wherry EJ. Inhibitory receptors on lymphocytes: insights from infections. THE JOURNAL OF IMMUNOLOGY 2012; 188:2957-65. [PMID: 22442493 DOI: 10.4049/jimmunol.1100038] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Costimulatory and inhibitory receptors are critical regulators of adaptive immune cell function. These pathways regulate the initiation and termination of effective immune responses to infections while limiting autoimmunity and/or immunopathology. This review focuses on recent advances in our understanding of inhibitory receptor pathways and their roles in different diseases and/or infections, emphasizing potential clinical applications and important unanswered mechanistic questions. Although significant progress has been made in defining the influence of inhibitory receptors at the cellular level, relatively little is known about the underlying molecular pathways. We discuss our current understanding of the molecular mechanisms for key inhibitory receptor pathways, highlight major gaps in knowledge, and explore current and future clinical applications.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Microbiology, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
16
|
Notake T, Horisawa S, Sanjo H, Miyagawa SI, Hida S, Taki S. Differential requirements for IRF-2 in generation of CD1d-independent T cells bearing NK cell receptors. THE JOURNAL OF IMMUNOLOGY 2012; 188:4838-45. [PMID: 22504642 DOI: 10.4049/jimmunol.1200210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NK cell receptors (NKRs) such as NK1.1, NKG2D, and Ly49s are expressed on subsets of CD1d-independent memory phenotype CD8(+) and CD4(-)CD8(-) T cells. However, the mechanism for the generation and functions of these NKR(+) T cells remained elusive. In this study, we found that CD1d-independent Ly49(+) T cells were reduced severely in the spleen, bone marrow, and liver, but not thymus, in mice doubly deficient for IFN regulatory factor-2 (IRF-2) and CD1d, in which the overall memory phenotype T cell population was contrastingly enlarged. Because a large fraction of Ly49(+) T cells coexpressed NK1.1 or NKG2D, the reduction of Ly49(+) T cells resulted indirectly in underrepresentation of NK1.1(+) or NKG2D(+) cells. Ly49(+) T cell deficiency was observed in IRF-2(-/-) mice additionally lacking IFN-α/βR α-chain (IFNAR1) as severely as in IRF-2(-/-) mice, arguing against the involvement of the accelerated IFN-α/β signals due to IRF-2 deficiency. Rather, mice lacking IFN-α/βR alone also exhibited relatively milder Ly49(+) T cell reduction, and IL-2 could expand Ly49(+) T cells from IFNAR1(-/-), but not from IRF-2(-/-), spleen cells in vitro. These results together indicated that IRF-2 acted in Ly49(+) T cell development in a manner distinct from that of IFN-α/β signals. The influence of IRF-2 deficiency on Ly49(+) memory phenotype T cells observed in this study suggested a unique transcriptional program for this T cell population among other NKR(+) T and memory phenotype T cells.
Collapse
Affiliation(s)
- Tsuyoshi Notake
- Department of Immunology and Infectious Diseases, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Kim HJ, Cantor H. Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol 2012; 23:446-52. [PMID: 22136694 DOI: 10.1016/j.smim.2011.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/14/2022]
Abstract
Mounting an efficient immune response to pathogens while avoiding damage to host tissues is the central task of the immune system. Emerging evidence has highlighted the contribution of the CD8(+) lineage of regulatory T cells to the maintenance of self-tolerance. Specific recognition of the MHC class Ib molecule Qa-1 complexed to peptides expressed by activated CD4(+) T cells by regulatory CD8(+) T cells triggers an inhibitory interaction that prevents autoimmune responses. Conversely, defective Qa-1-restricted CD8(+) regulatory activity can result in development of systemic autoimmune disease. Here, we review recent research into the cellular and molecular basis of these regulatory T cells, their mechanism of suppressive activity and the potential application of these insights into new treatments for autoimmune disease and cancer.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
18
|
Inhibitory receptors specific for MHC class I educate murine NK cells but not CD8αα intestinal intraepithelial T lymphocytes. Blood 2011; 118:339-47. [PMID: 21613250 DOI: 10.1182/blood-2011-01-331124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The engagement of inhibitory receptors specific for major histocompatibility complex class I (MHC-I) molecules educates natural killer (NK) cells, meaning the improvement of the response of activation receptors to subsequent stimulation. It is not known whether inhibitory MHC-I receptors educate only NK cells or whether they improve the responsiveness of all cell types, which express them. To address this issue, we analyzed the expression of inhibitory MHC-I receptors on intestinal intraepithelial lymphocytes (iIELs) and show that T-cell receptor (TCR)-αβ CD8αα iIELs express multiple inhibitory receptors specific for MHC-I molecules, including CD94/NKG2A, Ly49A, and Ly49G2. However, the presence of MHC-I ligand for these receptors did not improve the response of iIELs to activation via the TCR. The absence of iIEL education by MHC-I receptors was not related to a lack of inhibitory function of these receptors in iIELs and a failure of these receptors to couple to the TCR. Thus, unlike NK cells, iIELs do not undergo an MHC-I-guided education process. These data suggest that education is an NK cell-specific function of inhibitory MHC-I receptors.
Collapse
|
19
|
CD8+ T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc Natl Acad Sci U S A 2011; 108:2010-5. [PMID: 21233417 DOI: 10.1073/pnas.1018974108] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immune system includes a subpopulation of CD8(+) T cells equipped to inhibit the expansion of follicular T helper (T(FH)) cells, resulting in suppression of autoantibody production and associated lupus-like disease. These CD8(+) T regulatory (Treg) cells recognize Qa-1/peptide complexes on target T(FH) cells and depend on the IL-15 cytokine for development and function. Here we show that these CD8(+) Treg cells express a triad of surface receptors--CD44, CD122, and the class I MHC receptor Ly49--and account for <5% of CD8(+) T cells. Moreover, the development of systemic lupus erythematosus-like disease in B6-Yaa mutant mice is associated with a pronounced defect in CD8(+) Treg cell activity, suggesting that this regulatory subset may represent an effective therapeutic approach to systemic lupus erythematosus-like autoimmune disease.
Collapse
|
20
|
Abstract
Natural killer (NK) cells express receptors to detect and kill target cells based on expression of target cell surface molecules. Through a process termed NK cell licensing, only NK cells that express inhibitory receptors (e.g., Ly49 receptors in the mouse) for self-major histocompatibility complex (MHC) class I molecules become functionally competent to be triggered through their activation receptors. To determine the licensing status of particular Ly49(+) murine NK cell subsets, splenocytes are stimulated with plate-bound anti-NK1.1 monoclonal antibody in the presence of brefeldin A and then assessed for NK cell activation on a single-cell basis using intracellular cytokine interferon-gamma staining and flow cytometry.
Collapse
Affiliation(s)
- A Helena Jonsson
- Medical Scientist Training Program, Rheumatology Division, Departments of Medicine, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
21
|
Stewart CA, Walzer T, Robbins SH, Malissen B, Vivier E, Prinz I. Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like gammadelta T cells. Eur J Immunol 2007; 37:1442-52. [PMID: 17492716 DOI: 10.1002/eji.200737354] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
NK cells and gammadelta T cells are distinct subsets of lymphocytes that contextually share multiple phenotypic and functional characteristics. However, the acquisition and the extent of these similarities remain poorly understood. Here, using T cell receptor delta locus-histone 2B-enhanced GFP (Tcrd-H2BEGFP) reporter mice, we show that germ-line transcription of Tcrd occurs in all maturing NK cells. We also describe a population of mouse NK-like cells that are indistinguishable from "bona fide" NK cells using standard protocols. Requirements for V(D)J recombination and a functional thymus, along with very low-level expression of surface TCRgammadelta but high intracellular CD3, define these cells as gammadelta T cells. "NK-like gammadelta T cells" are CD127+, have a memory-activated phenotype, express multiple NK cell receptors and readily produce interferon-gamma in response to IL-12/IL-18 stimulation. The close phenotypic resemblance between NK cells and NK-like gammadelta T cells is a source of experimental ambiguity in studies bridging NK and T cell biology, such as those on thymic NK cell development. Instead, it ascribes chronic TCRgammadelta engagement as a means of acquiring NK-like function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Antigens, Surface/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Lineage/immunology
- Cytokines/pharmacology
- Forkhead Transcription Factors/genetics
- Gene Expression
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Histones/genetics
- Homeodomain Proteins/genetics
- Immunophenotyping
- Integrin alpha2/metabolism
- Interferon-gamma/metabolism
- Interleukin-2 Receptor beta Subunit/analysis
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Lectins, C-Type/metabolism
- Lysosomal-Associated Membrane Protein 1/metabolism
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily B
- Phosphoproteins/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Charles A Stewart
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, and Service d'Immunologie, Hôpital de Conception, Assistance Publique-Hôpitaux de Marseille, France.
| | | | | | | | | | | |
Collapse
|
22
|
Karlsen TH, Boberg KM, Olsson M, Sun JY, Senitzer D, Bergquist A, Schrumpf E, Thorsby E, Lie BA. Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol 2007; 46:899-906. [PMID: 17383044 DOI: 10.1016/j.jhep.2007.01.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/05/2007] [Accepted: 01/22/2007] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Combinations of killer immunoglobulin-like receptors (KIRs) and HLA class I ligands that reduce natural killer (NK) cell inhibition have been shown to increase risk for autoimmune diseases. We aimed to clarify to what extent such combinations influence susceptibility to primary sclerosing cholangitis (PSC). METHODS Three hundred and sixty-five Scandinavian PSC patients and 368 healthy controls were genotyped for the presence or absence of genes encoding all KIRs using a PCR-SSP approach. KIR binding site variation of HLA-A, -B and -C was also determined. RESULTS The KIR gene frequencies were similar among patients and controls. However, the frequency of HLA-Bw4 and -C2, which are ligands for the inhibitory KIRs 3DL1 and 2DL1, respectively, was significantly reduced in PSC patients as compared with controls (38.2% vs. 54.7%, P(corrected)[P(c)]=0.0006 and 42.7% vs. 56.9%, P(c)=0.009, respectively). Two HLA risk haplotypes in PSC (carrying DRB1*0301 or DRB1*1501, respectively) were devoid of both of these alleles, and carried the 5.1 variant of the major histocompatibility complex class I chain-related A (MICA) gene previously reported to influence PSC susceptibility. CONCLUSIONS Particular variants of ligands for NK cell receptors encoded at three neighbouring genes in the HLA complex may contribute to PSC associations observed in this genetic region.
Collapse
Affiliation(s)
- Tom H Karlsen
- Medical Department, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kelly-Rogers J, Madrigal-Estebas L, O'Connor T, Doherty DG. Activation-Induced Expression of CD56 by T Cells Is Associated With a Reprogramming of Cytolytic Activity and Cytokine Secretion Profile In Vitro. Hum Immunol 2006; 67:863-73. [PMID: 17145366 DOI: 10.1016/j.humimm.2006.08.292] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/15/2006] [Accepted: 08/17/2006] [Indexed: 01/11/2023]
Abstract
A subset of human T lymphocytes expresses the natural killer (NK) cell-associated receptor CD56 and is capable of major histocompatibility complex (MHC)-unrestricted cytotoxicity against a variety of autologous and allogeneic tumor cells. CD56+ T cells have shown potential for immunotherapy as antitumor cytotoxic effectors, but their capacity to control adaptive immune responses via cytokine secretion is unclear. We have examined the inducibility of CD56+ T cells from human blood in vitro and compared the kinetics of Th1, Th2, and regulatory cytokine secretion by CD56+ T cells with those of conventional CD56- T cells. CD56 was induced on CD8+ and CD4- CD8- T cells by CD3/T-cell receptor (TCR)-mediated activation, particularly when grown in the presence of interleukin (IL)-2. Activation-induced CD56+ T cells proliferated less vigorously but displayed enhanced natural cytotoxicity compared with CD56- T cells. CD56+ T cells released interferon-gamma (IFN-gamma) and interleukin-13 (IL-13), but not IL-10, upon TCR stimulation. Flow cytometric analysis demonstrated that, compared with CD56- T cells, elevated proportions of CD56+ T cells expressed IFN-gamma, IL-4, and IL-13 within hours of activation. These acquired cytolytic and cytokine secretion activities of CD56+ T cells make them potential targets for immunotherapy for infectious and immune-mediated disease.
Collapse
Affiliation(s)
- Jane Kelly-Rogers
- Lymphocyte Biology Group, Institute of Immunology and Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | |
Collapse
|
24
|
Thimme R, Appay V, Koschella M, Panther E, Roth E, Hislop AD, Rickinson AB, Rowland-Jones SL, Blum HE, Pircher H. Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation. J Virol 2005; 79:12112-6. [PMID: 16140789 PMCID: PMC1212638 DOI: 10.1128/jvi.79.18.12112-12116.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The killer cell lectin-like receptor G1 (KLRG1) is a natural killer cell receptor expressed by T cells that exhibit impaired proliferative capacity. Here, we determined the KLRG1 expression by virus-specific T cells. We found that repetitive and persistent antigen stimulation leads to an increase in KLRG1 expression of virus-specific CD8+ T cells in mice and that virus-specific CD8+ T cells are mostly KLRG1+ in chronic human viral infections (human immunodeficiency virus, cytomegalovirus, and Epstein-Barr virus) but not in resolved infection (influenza virus). Thus, by using KLRG1 as a T-cell marker, our results suggest that the differentiation status and function of virus-specific CD8+ T cells are directly influenced by persistent antigen stimulation.
Collapse
Affiliation(s)
- Robert Thimme
- Institute for Medical Microbiology and Hygiene, Department of Immunology, Hermann-Herder-Str. 11, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lafarge X, Pitard V, Ravet S, Roumanes D, Halary F, Dromer C, Vivier E, Paul P, Moreau JF, Déchanet-Merville J. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of gammadelta T cells. Eur J Immunol 2005; 35:1896-905. [PMID: 15864777 DOI: 10.1002/eji.200425837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
NK cell receptors for MHC class I molecules (MHC-NKR) can be expressed by T cell subsets. The restricted repertoire and phenotypic characteristics of MHC-NKR(+) T cells indicate that expression of MHC-NKR is acquired upon antigenic challenge and might promote expansion of T cells. Previous studies performed on in vitro generated alphabeta T cell clones concluded that MHC-NKR expression was not a clonal attribute. Here, we examined a massive monoclonal expansion of a non-leukemic gammadelta T cell population found in the peripheral blood of a lung-transplanted patient who suffered from a cytomegalovirus infection. Despite their monoclonality, these T cells displayed a heterogeneous and stable in vivo Ig- and lectin-like MHC-NKR phenotype. Twenty percent of the cells displayed a CD94(+)NKG2A(+) phenotype, and 10% were labeled with an anti-CD158b1/b2/j monoclonal antibody. A CD158b/j(+) gammadelta T cell clone derived in vitro from patient's peripheral blood lymphocytes was shown to express the activating form CD158j (KIR2DS2), which once cross-linked stimulated the clone cytolytic function and costimulated the TCR-induced production of cytokines, independently of the killer-activating receptor-associated protein (KARAP). In conclusion, heterogeneity of MHC-NKR expression confers a functional intraclonal diversity that may participate to induction of specific gammadelta T cell effector functions or proliferation upon pathogen challenge.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/physiology
- Base Sequence
- Cytomegalovirus Infections/immunology
- Female
- Histocompatibility Antigens Class I/metabolism
- Humans
- Lectins, C-Type/physiology
- Lung Transplantation
- Lymphocyte Activation
- Middle Aged
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Immunologic/physiology
- Receptors, KIR
- Receptors, KIR2DL2
- Receptors, KIR2DL3
- Receptors, Natural Killer Cell
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Xavier Lafarge
- CNRS-UMR 5164, CIRID, IFR66, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smith SS, Patterson T, Pauza ME. Transgenic Ly-49A inhibits antigen-driven T cell activation and delays diabetes. THE JOURNAL OF IMMUNOLOGY 2005; 174:3897-905. [PMID: 15778344 DOI: 10.4049/jimmunol.174.7.3897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of islet-specific T cells plays a significant role in the development of type 1 diabetes. In an effort to control T cell activation, we expressed the inhibitory receptor, Ly-49A, on islet-specific mouse CD4 cells. Ag-mediated activation of Ly-49A T cells was inhibited in vitro when the Ly-49A ligand, H-2D(d), was present on APCs. Ag-driven T cell proliferation, cytokine production, and changes in surface receptor expression were significantly reduced. Inhibition was also evident during secondary antigenic challenge. Addition of exogenous IL-2 did not rescue cells from inhibition, suggesting that Ly-49A engagement does not lead to T cell anergy. Importantly, in an adoptive transfer model, Ly-49A significantly delays the onset of diabetes. Together these results demonstrate that the inhibitory receptor Ly-49A effectively limits Ag-specific CD4 cell responses even in the presence of sustained autoantigen expression in vivo.
Collapse
Affiliation(s)
- Sherry S Smith
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield 62702, USA
| | | | | |
Collapse
|
27
|
Anfossi N, Doisne JM, Peyrat MA, Ugolini S, Bonnaud O, Bossy D, Pitard V, Merville P, Moreau JF, Delfraissy JF, Dechanet-Merville J, Bonneville M, Venet A, Vivier E. Coordinated Expression of Ig-Like Inhibitory MHC Class I Receptors and Acquisition of Cytotoxic Function in Human CD8+T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:7223-9. [PMID: 15585844 DOI: 10.4049/jimmunol.173.12.7223] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I-specific inhibitory receptors are expressed by a subset of memory-phenotype CD8(+) T cells. Similar to NK cells, MHC class I-specific inhibitory receptors might subserve on T cells an important negative control that participates to the prevention of autologous damage. We analyzed here human CD8(+) T cells that express the Ig-like MHC class I-specific inhibitory receptors: killer cell Ig-like receptor (KIR) and CD85j. The cell surface expression of Ig-like inhibitory MHC class I receptors was found to correlate with an advanced stage of CD8(+) T cell maturation as evidenced by the reduced proliferative potential of KIR(+) and CD85j(+) T cells associated with their high intracytoplasmic perforin content. This concomitant regulation might represent a safety mechanism to control potentially harmful cytolytic CD8(+) T cells, by raising their activation threshold. Yet, KIR(+) and CD85j(+) T cells present distinct features. KIR(+)CD8(+) T cells are poor IFN-gamma producers upon TCR engagement. In addition, KIR are barely detectable at the surface of virus-specific T cells during the course of CMV or HIV-1 infection. By contrast, CD85j(+)CD8(+) T cells produce IFN-gamma upon TCR triggering, and represent a large fraction of virus-specific T cells. Thus, the cell surface expression of Ig-like inhibitory MHC class I receptors is associated with T cell engagement into various stages of the cytolytic differentiation pathway, and the cell surface expression of CD85j or KIR witnesses to the history of qualitatively and/or quantitatively distinct T cell activation events.
Collapse
Affiliation(s)
- Nicolas Anfossi
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 2004; 5:996-1002. [PMID: 15454923 DOI: 10.1038/ni1114] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although natural killer (NK) cells are defined as a component of the innate immune system, they exhibit certain features generally considered characteristic of the adaptive immune system. NK cells also participate directly in adaptive immune responses, mainly by interacting with dendritic cells. Such interactions can positively or negatively regulate dendritic cell activity. Reciprocally, dendritic cells regulate NK cell function. In addition, 'NK receptors' are frequently expressed by T cells and can directly regulate the functions of these cells. In these distinct ways, NK cells and their receptors influence the adaptive immune response.
Collapse
Affiliation(s)
- David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3200, USA.
| |
Collapse
|