1
|
Donado CA, Theisen E, Zhang F, Nathan A, Fairfield ML, Rupani KV, Jones D, Johannes KP, Raychaudhuri S, Dwyer DF, Jonsson AH, Brenner MB. Granzyme K activates the entire complement cascade. Nature 2025; 641:211-221. [PMID: 39914456 DOI: 10.1038/s41586-025-08713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Granzymes are a family of serine proteases that are mainly expressed by CD8+ T cells, natural killer cells and innate-like lymphocytes1. Although their primary function is thought to be the induction of cell death in virally infected cells and tumours, accumulating evidence indicates that some granzymes can elicit inflammation by acting on extracellular substrates1. We previously found that most tissue CD8+ T cells in rheumatoid arthritis synovium, and in inflamed organs for some other diseases, express granzyme K (GZMK)2, a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving the C2 and C4 proteins. The nascent C4b and C2b fragments form a C3 convertase that cleaves C3, enabling the assembly of a C5 convertase that cleaves C5. The resulting convertases generate all the effector molecules of the complement cascade: the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In rheumatoid arthritis synovium, GZMK is enriched in regions with abundant complement activation, and fibroblasts are the main producers of complement proteins that serve as substrates for GZMK-mediated complement activation. Furthermore, Gzmk-deficient mice are significantly protected from inflammatory disease, exhibiting reduced arthritis and dermatitis, with concomitant decreases in complement activation. Our findings describe the discovery of a previously unidentified mechanism of complement activation that is driven entirely by lymphocyte-derived GZMK. Given the widespread abundance of GZMK-expressing T cells in tissues in chronic inflammatory diseases, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.
Collapse
Affiliation(s)
- Carlos A Donado
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Madison L Fairfield
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominique Jones
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kellsey P Johannes
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Dirscherl L, Merz LS, Kobras R, Spies P, Frutiger A, Gatterdam V, Meinel DM. Focal Molography Allows for Affinity and Concentration Measurements of Proteins in Complex Matrices with High Accuracy. BIOSENSORS 2025; 15:66. [PMID: 39996969 PMCID: PMC11853488 DOI: 10.3390/bios15020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Characterizing biomolecular receptor-ligand interactions is critical for research and development. However, performing analyses in complex, biologically relevant matrices, such as serum, remains challenging due to non-specific binding that often impairs measurements. Here, we evaluated Focal Molography (FM) for determining KD and kinetic constants in comparison to gold-standard methods using single-domain heavy-chain antibodies in various systems. FM provided kinetic constants highly comparable to SPR and BLI in standard buffers containing blocking proteins, with KDs of soluble CD4 (sCD4) interactions within a 2.4-fold range across technologies. In buffers lacking blocking proteins, FM demonstrated greater robustness against non-specific binding and rebinding effects. In serum, FM exhibited stable baseline signals, unlike SPR and BLI, and yielded KDs of sCD4 interaction in 50% Bovine Serum within a 1.8-fold range of those obtained in standard buffers. For challenging molecules prone to non-specific binding (Granzyme B), FM successfully determined kinetic constants without external referencing. Finally, FM enabled direct analyte quantification in complex matrices. sCD4 quantification in cell culture media and 50% FBS showed recovery rates of 97.8-100.3% with an inter-assay CV below 1.3%. This study demonstrates the high potential of FM for kinetic affinity determination and biomarker quantification in complex matrices, enabling reliable measurements under biologically relevant conditions.
Collapse
Affiliation(s)
- Lorin Dirscherl
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, FHNW, Hofackerstrasse 30, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Laura S. Merz
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, FHNW, Hofackerstrasse 30, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Ronya Kobras
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, FHNW, Hofackerstrasse 30, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Peter Spies
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, FHNW, Hofackerstrasse 30, 4132 Muttenz, Basel-Landschaft, Switzerland
| | - Andreas Frutiger
- Lino Biotech AG, Soodstrasse 52, 8134 Adliswil, Zurich, Switzerland (V.G.)
| | - Volker Gatterdam
- Lino Biotech AG, Soodstrasse 52, 8134 Adliswil, Zurich, Switzerland (V.G.)
| | - Dominik M. Meinel
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, FHNW, Hofackerstrasse 30, 4132 Muttenz, Basel-Landschaft, Switzerland
| |
Collapse
|
3
|
Ge M, Ruan Z, Zhu YX, Wu W, Yang C, Lin H, Shi J. A natural killer cell mimic against intracellular pathogen infections. SCIENCE ADVANCES 2024; 10:eadp3976. [PMID: 39475620 PMCID: PMC11524181 DOI: 10.1126/sciadv.adp3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
In the competition between the pathogen infection and the host defense, infectious microorganisms may enter the host cells by evading host defense mechanisms and use the intracellular biomolecules as replication nutrient. Among them, intracellular Staphylococcus aureus relies on the host cells to protect itself from the attacks by antibiotics or immune system to achieve long-term colonization in the host, and the consequent clinical therapeutic failures and relapses after antibiotic treatment. Here, we demonstrate that intracellular S. aureus surviving well even in the presence of vancomycin can be effectively eliminated using an emerging cell-mimicking therapeutic strategy. These cell mimics with natural killer cell-like activity (NKMs) are composed of a redox-responsive degradable carrier, and perforin and granzyme B within the carrier. NKMs perform far more effectivly than clinical antibiotics in treating intracellular bacterial infections, providing a direct evidence of the NK cell-mimicking immune mechanism in the treatment of intracellular S. aureus.
Collapse
Affiliation(s)
- Min Ge
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zesong Ruan
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Han Lin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
4
|
Donado CA, Jonsson AH, Theisen E, Zhang F, Nathan A, Rupani KV, Jones D, Accelerating Medicines Partnership RA/SLE Network, Raychaudhuri S, Dwyer DF, Brenner MB. Granzyme K drives a newly-intentified pathway of complement activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595315. [PMID: 38826230 PMCID: PMC11142156 DOI: 10.1101/2024.05.22.595315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Granzymes are a family of serine proteases mainly expressed by CD8+ T cells, natural killer cells, and innate-like lymphocytes1,2. Although their major role is thought to be the induction of cell death in virally infected and tumor cells, accumulating evidence suggests some granzymes can regulate inflammation by acting on extracellular substrates2. Recently, we found that the majority of tissue CD8+ T cells in rheumatoid arthritis (RA) synovium, inflammatory bowel disease and other inflamed organs express granzyme K (GZMK)3, a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving C2 and C4. The nascent C4b and C2a fragments form a C3 convertase that cleaves C3, allowing further assembly of a C5 convertase that cleaves C5. The resulting convertases trigger every major event in the complement cascade, generating the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In RA synovium, GZMK is enriched in areas with abundant complement activation, and fibroblasts are the major producers of complement C2, C3, and C4 that serve as targets for GZMK-mediated complement activation. Our findings describe a previously unidentified pathway of complement activation that is entirely driven by lymphocyte-derived GZMK and proceeds independently of the classical, lectin, or alternative pathways. Given the widespread abundance of GZMK-expressing T cells in tissues in chronic inflammatory diseases and infection, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.
Collapse
Affiliation(s)
- Carlos A. Donado
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - A. Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally: Carlos A. Donado, A. Helena Jonsson
| | - Erin Theisen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Dominique Jones
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | | | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
- Center for Data Sciences, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F. Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Anderson TS, McCormick AL, Smith SL, Lowe DB. Modeling antibody drug conjugate potential using a granzyme B antibody fusion protein. BMC Biol 2024; 22:66. [PMID: 38486229 PMCID: PMC10941411 DOI: 10.1186/s12915-024-01860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Antibody drug conjugates (ADCs) constitute a promising class of targeted anti-tumor therapeutics that harness the selectivity of monoclonal antibodies with the potency of cytotoxic drugs. ADC development is best suited to initially screening antibody candidates for desired properties that potentiate target cell cytotoxicity. However, validating and producing an optimally designed ADC requires expertise and resources not readily available to certain laboratories. RESULTS In this study, we propose a novel approach to help streamline the identification of potential ADC candidates by utilizing a granzyme B (GrB)-based antibody fusion protein (AFP) for preliminary screening. GrB is a non-immunogenic serine protease expressed by immune effector cells such as CD8 + T cells that induces apoptotic activity and can be leveraged for targeted cell killing. CONCLUSIONS Our innovative model allows critical antibody parameters (including target cell binding, internalization, and cytotoxic potential) to be more reliably evaluated in vitro through the creation of an ADC surrogate. Successful incorporation of this AFP could also significantly expand and enhance ADC development pre-clinically, ultimately leading to the accelerated translation of ADC therapies for patients.
Collapse
Affiliation(s)
- Trevor S Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Office 1306, Abilene, TX, 79601, USA
| | - Amanda L McCormick
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Office 1306, Abilene, TX, 79601, USA
| | - Savanna L Smith
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Office 1306, Abilene, TX, 79601, USA
| | - Devin B Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Office 1306, Abilene, TX, 79601, USA.
| |
Collapse
|
6
|
Liu LY, He SJ, Chen Z, Ge M, Lyu CY, Gao D, Yu JP, Cai MH, Yuan JX, Zhang JL. The Role of Regulatory Cell Death in Vitiligo. DNA Cell Biol 2024; 43:61-73. [PMID: 38153369 DOI: 10.1089/dna.2023.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Vitiligo is one of the common chronic autoimmune skin diseases in clinic, which is characterized by localized or generalized depigmentation and seriously affects the physical and mental health of patients. At present, the pathogenesis of vitiligo is not clear; mainly, heredity, autoimmunity, oxidative stress, melanocyte (MC) self-destruction, and the destruction, death, or dysfunction of MCs caused by various reasons are always the core of vitiligo. Regulatory cell death (RCD) is an active and orderly death mode of cells regulated by genes, which widely exists in various life activities, plays a pivotal role in maintaining the homeostasis of the organism, and is closely related to the occurrence and development of many diseases. With the deepening of the research and understanding of RCD, people gradually found that there are many different forms of RCD in the lesions and perilesional skin of vitiligo patients, such as apoptosis, autophagy, pyroptosis, ferroptosis, and so on. Different cell death modes have different mechanisms in vitiligo, and different RCDs can interact and regulate each other. In this article, the mechanism related to RCD in the pathogenesis of vitiligo is reviewed, which provides new ideas for exploring the pathogenesis and targeted treatment of vitiligo.
Collapse
Affiliation(s)
- Lyu-Ye Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Si-Jia He
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| | - Zhao Chen
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Man Ge
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chun-Yi Lyu
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dandan Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ji-Peng Yu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meng-Han Cai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin-Xiang Yuan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jun-Ling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Rahmati A, Bigam S, Elahi S. Galectin-9 promotes natural killer cells activity via interaction with CD44. Front Immunol 2023; 14:1131379. [PMID: 37006235 PMCID: PMC10060867 DOI: 10.3389/fimmu.2023.1131379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Natural killer (NK) cells are a potent innate source of cytokines and cytoplasmic granules. Their effector functions are tightly synchronized by the balance between the stimulatory and inhibitory receptors. Here, we quantified the proportion of NK cells and the surface presence of Galectin-9 (Gal-9) from the bone marrow, blood, liver, spleen, and lungs of adult and neonatal mice. We also examined the effector functions of Gal-9+NK cells compared with their Gal-9- counterparts. Our results revealed that Gal-9+NK cells are more abundant in tissues, in particular, in the liver than in the blood and bone marrow. We found Gal-9 presence was associated with enhanced cytotoxic effector molecules granzyme B (GzmB) and perforin expression. Likewise, Gal-9 expressing NK cells displayed greater IFN-γ and TNF-α expression than their negative counterparts under hemostatic circumstances. Notably, the expansion of Gal-9+NK cells in the spleen of mice infected with E. coli implies that Gal-9+NK cells may provide a protective role against infection. Similarly, we found the expansion of Gal-9+NK cells in the spleen and tumor tissues of melanoma B16-F10 mice. Mechanistically, our results revealed the interaction of Gal-9 with CD44 as noted by their co-expression/co-localization. Subsequently, this interaction resulted in enhanced expression of Phospho-LCK, ERK, Akt, MAPK, and mTOR in NK cells. Moreover, we found Gal-9+NK cells exhibited an activated phenotype as evidenced by increased CD69, CD25, and Sca-1 but reduced KLRG1 expression. Likewise, we found Gal-9 preferentially interacts with CD44high in human NK cells. Despite this interaction, we noted a dichotomy in terms of effector functions in NK cells from COVID-19 patients. We observed that the presence of Gal-9 on NK cells resulted in a greater IFN-γ expression without any changes in cytolytic molecule expression in these patients. These observations suggest differences in Gal-9+NK cell effector functions between mice and humans that should be considered in different physiological and pathological conditions. Therefore, our results highlight the important role of Gal-9 via CD44 in NK cell activation, which suggests Gal-9 is a potential new avenue for the development of therapeutic approaches to modulate NK cell effector functions.
Collapse
Affiliation(s)
- Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven Bigam
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Shokrollah Elahi,
| |
Collapse
|
8
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
9
|
Gapud EJ, Trejo-Zambrano MI, Gomez-Banuelos E, Tiniakou E, Antiochos B, Granville DJ, Andrade F, Casciola-Rosen L, Rosen A. Granzyme B Induces IRF-3 Phosphorylation through a Perforin-Independent Proteolysis-Dependent Signaling Cascade without Inducing Cell Death. THE JOURNAL OF IMMUNOLOGY 2020; 206:335-344. [PMID: 33288544 DOI: 10.4049/jimmunol.2000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
Granzyme B (GrB) is an immune protease implicated in the pathogenesis of several human diseases. In the current model of GrB activity, perforin determines whether the downstream actions of GrB occur intracellularly or extracellularly, producing apoptotic cytotoxicity or nonapoptotic effects, respectively. In the current study, we demonstrate the existence of a broad range of GrB-dependent signaling activities that 1) do not require perforin, 2) occur intracellularly, and 3) for which cell death is not the dominant outcome. In the absence of perforin, we show that GrB enzymatic activity still induces substoichiometric activation of caspases, which through nonlethal DNA damage response signals then leads to activity-associated phosphorylation of IFN regulatory factor-3. These findings illustrate an unexpected potential interface between GrB and innate immunity separate from the traditional role of GrB in perforin-dependent GrB-mediated apoptosis that could have mechanistic implications for human disease.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | | - Eduardo Gomez-Banuelos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Eleni Tiniakou
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Brendan Antiochos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Felipe Andrade
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Livia Casciola-Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Antony Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224; .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21224; and.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
10
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
11
|
Pang X, Liang S, Wang T, Yu S, Yang R, Hou T, Liu Y, He C, Zhang N. Engineering Thermo-pH Dual Responsive Hydrogel for Enhanced Tumor Accumulation, Penetration, and Chemo-Protein Combination Therapy. Int J Nanomedicine 2020; 15:4739-4752. [PMID: 32753862 PMCID: PMC7342477 DOI: 10.2147/ijn.s253990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Combined chemotherapeutic drug and protein drug has been a widely employed strategy for tumor treatment. To realize both tumor accumulation and deep tumor penetration for drugs with different pharmacokinetics, we propose a structure-transformable, thermo-pH dual responsive co-delivery system to co-load granzyme B/docetaxel (GrB/DTX). Methods Thermo-sensitive hydrogels based on diblock copolymers (mPEG-b-PELG) were synthesized through ring opening polymerization. GrB/DTX mini micelles (GDM) was developed by co-loading these two drugs in pH-sensitive mini micelles, and the GDM-incorporated thermo-sensitive hydrogel (GDMH) was constructed. The thermo-induced gelation behavior of diblock copolymers and the physiochemical properties of GDMH were characterized. GDMH degradation and deep tumor penetration of released mini micelles were confirmed. The pH-sensitive disassembly and lysosomal escape abilities of released mini micelles were evaluated. In vitro cytotoxicity was studied using MTT assays and the in vivo antitumor efficacy study was evaluated in B16-bearing C57BL/6 mice. Results GDMH was gelatinized at body temperature and can be degraded by proteinase to release mini micelles. The mini micelles incorporated in GDMH can achieve deep tumor penetration and escape from lysosomes to release GrB and DTX. MTT results showed that maximum synergistic antitumor efficacy of GrB and DTX was observed at mass ratio of 1:100. Our in vivo antitumor efficacy study showed that GDMH inhibited tumor growth in the subcutaneous tumor model and in the post-surgical recurrence model. Conclusion The smart-designed transformable GDMH can facilitate tumor accumulation, deep tumor penetration, and rapid drug release to achieve synergistic chemo-protein therapy.
Collapse
Affiliation(s)
- Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Shuangjiang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Rui Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, People's Republic of China
| |
Collapse
|
12
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
13
|
Abstract
Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.
Collapse
Affiliation(s)
- Xing Liu
- Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences, Shanghai 200031, China;
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
14
|
Amoury M, Kolberg K, Pham AT, Hristodorov D, Mladenov R, Di Fiore S, Helfrich W, Kiessling F, Fischer R, Pardo A, Thepen T, Hussain AF, Nachreiner T, Barth S. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett 2016; 372:201-9. [PMID: 26806809 DOI: 10.1016/j.canlet.2016.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC.
Collapse
Affiliation(s)
- Manal Amoury
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Katharina Kolberg
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany; Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Anh-Tuan Pham
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Dmitrij Hristodorov
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Radoslav Mladenov
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Stefano Di Fiore
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Rainer Fischer
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Alessa Pardo
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Theophilus Thepen
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Ahmad F Hussain
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
15
|
Reboul CF, Whisstock JC, Dunstone MA. Giant MACPF/CDC pore forming toxins: A class of their own. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:475-86. [PMID: 26607011 DOI: 10.1016/j.bbamem.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Li X, Yang W, Zou Y, Meng F, Deng C, Zhong Z. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. J Control Release 2015; 220:704-14. [PMID: 26348387 DOI: 10.1016/j.jconrel.2015.08.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Protein drugs as one of the most potent biotherapeutics have a tremendous potential in cancer therapy. Their application is, nevertheless, restricted by absence of efficacious, biocompatible, and cancer-targeting nanosystems. In this paper, we report that 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (Acupa)-decorated pH-responsive chimaeric polymersomes (Acupa-CPs) efficiently deliver therapeutic proteins into prostate cancer cells. Acupa-CPs had a unimodal distribution with average sizes ranging from 157-175 nm depending on amounts of Acupa. They displayed highly efficient loading of both model proteins, bovine serum albumin (BSA) and cytochrome C (CC), affording high protein loading contents of 9.1-24.5 wt.%. The in vitro release results showed that protein release was markedly accelerated at mildly acidic pH due to the hydrolysis of acetal bonds in the vesicular membrane. CLSM and MTT studies demonstrated that CC-loaded Acupa10-CPs mediated efficient delivery of protein drugs into PSMA positive LNCaP cells leading to pronounced antitumor effect, in contrast to their non-targeting counterparts and free CC. Remarkably, granzyme B (GrB)-loaded Acupa10-CPs caused effective apoptosis of LNCaP cells with a low half-maximal inhibitory concentration (IC50) of 1.6 nM. Flow cytometry and CLSM studies using MitoCapture™ revealed obvious depletion of mitochondria membrane potential in LNCaP cells treated with GrB-loaded Acupa10-CPs. The preliminary in vivo experiments showed that Acupa-CPs had a long circulation time with an elimination phase half-life of 3.3h in nude mice. PSMA-targeted, pH-responsive, and chimaeric polymersomes have appeared as efficient protein nanocarriers for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Weijing Yang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yan Zou
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
17
|
Lu L, Zou Y, Yang W, Meng F, Deng C, Cheng R, Zhong Z. Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules 2015; 16:1726-35. [DOI: 10.1021/acs.biomac.5b00193] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ling Lu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Yan Zou
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Weijing Yang
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
18
|
Stewart SE, Kondos SC, Matthews AY, D'Angelo ME, Dunstone MA, Whisstock JC, Trapani JA, Bird PI. The perforin pore facilitates the delivery of cationic cargos. J Biol Chem 2014; 289:9172-81. [PMID: 24558045 DOI: 10.1074/jbc.m113.544890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic lymphocytes eliminate virally infected or neoplastic cells through the action of cytotoxic proteases (granzymes). The pore-forming protein perforin is essential for delivery of granzymes into the cytoplasm of target cells; however the mechanism of this delivery is incompletely understood. Perforin contains a membrane attack complex/perforin (MACPF) domain and oligomerizes to form an aqueous pore in the plasma membrane; therefore the simplest (and best supported) model suggests that granzymes passively diffuse through the perforin pore into the cytoplasm of the target cell. Here we demonstrate that perforin preferentially delivers cationic molecules while anionic and neutral cargoes are delivered inefficiently. Furthermore, another distantly related pore-forming MACPF protein, pleurotolysin (from the oyster mushroom), also favors the delivery of cationic molecules, and efficiently delivers human granzyme B. We propose that this facilitated diffusion is due to conserved features of oligomerized MACPF proteins, which may include an anionic lumen.
Collapse
|
19
|
|
20
|
Thiery J, Lieberman J. Perforin: a key pore-forming protein for immune control of viruses and cancer. Subcell Biochem 2014; 80:197-220. [PMID: 24798013 DOI: 10.1007/978-94-017-8881-6_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perforin (PFN) is the key pore-forming molecule in the cytotoxic granules of immune killer cells. Expressed only in killer cells, PFN is the rate-limiting molecule for cytotoxic function, delivering the death-inducing granule serine proteases (granzymes) into target cells marked for immune elimination. In this chapter we describe our current understanding of how PFN accomplishes this task. We discuss where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage, how it is released, how it delivers Granzymes into target cells and the consequences of PFN deficiency.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM U753, University Paris Sud and Gustave Roussy Cancer Campus, Villejuif, France,
| | | |
Collapse
|
21
|
|
22
|
Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
23
|
Jabulowsky RA, Oberoi P, Bähr-Mahmud H, Dälken B, Wels WS. Surface charge-modification prevents sequestration and enhances tumor-cell specificity of a recombinant granzyme B-TGFα fusion protein. Bioconjug Chem 2012; 23:1567-76. [PMID: 22759275 DOI: 10.1021/bc3000657] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serine protease granzyme B (GrB) plays an important role in the immune defense mediated by cytotoxic lymphocytes. Recombinant derivatives of this pro-apoptotic protein fused to tumor-targeting ligands hold promise for cancer therapy, but their applicability may be limited by promiscuous binding to nontarget tissues via electrostatic interactions. Here, we investigated cell binding and specific cytotoxicity of chimeric molecules consisting of wild-type or surface-charge-modified human GrB and the natural EGFR ligand TGFα for tumor targeting. We mutated two cationic heparin-binding motifs responsible for electrostatic interactions of GrB with cell surface structures, and genetically fused the resulting GrBcs derivative to TGFα for expression in the yeast Pichia pastoris. Purified GrBcs-TGFα (GrBcs-T) and a corresponding fusion protein employing wild-type GrB (GrB-T) displayed similar enzymatic activity and targeted cytotoxicity against EGFR-overexpressing breast carcinoma cells in the presence of an endosomolytic reagent. However, unspecific binding of the modified GrBcs-T variant to EGFR-negative cells was dramatically reduced, preventing the sequestration by nontarget cells in mixed cell cultures and increasing tumor-cell specificity. Likewise, modification of the GrB domain alleviated unspecific extracellular effects such as cell detachment indicative of extracellular matrix degradation. Our data demonstrate improved selectivity and functionality of surface-charge-modified GrBcs, suggesting this strategy as a general approach for the development of optimized GrB fusion proteins for therapeutic applications.
Collapse
Affiliation(s)
- Robert A Jabulowsky
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
24
|
Ray M, Hostetter DR, Loeb CRK, Simko J, Craik CS. Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate 2012; 72:846-55. [PMID: 21919028 PMCID: PMC3401211 DOI: 10.1002/pros.21486] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND In order for tumors to grow and proliferate, they must avoid recognition by immune cells and subsequent death by apoptosis. Granzyme B (GrB), a protease located in natural killer cells, initiates apoptosis in target cells. Inhibition of GrB by PI-9, its natural inhibitor, can prevent apoptosis. Here we investigate whether PI-9 protects prostate cancer cells from apoptosis. METHODS The expression of PI-9 was quantified by qPCR in several prostate cancer cell lines, and GrB activity was tested in each cell line. PI-9 was overexpressed in LNCaP cells, which lack endogenous PI-9. Apoptosis was induced by natural killer cells in LNCaP cells that either contained or lacked PI-9, and the percent cell death was quantified. Lastly, PI-9 levels were examined by qPCR and immunohistochemistry in prostate tumor tissue. RESULTS Prostate cancer cell lines that expressed PI-9 could inhibit GrB. Overexpression of PI-9 protected LNCaP cells from natural killer cell-mediated apoptosis. Examination of the levels of PI-9 in tissue from prostate tumors showed that PI-9 could be upregulated in low grade tumors and stochastically dysregulated in high grade tumors. Additionally, PI-9 was found consistently in high grade prostatic intraepithelial neoplasia and atrophic lesions. CONCLUSIONS These results indicate that overexpression of PI-9 can protect prostate cancer cells from apoptosis, and this effect may occur in human prostate tumors. These findings imply that early prostatic inflammation may trigger this increase in PI-9. This suggests that PI-9 upregulation is needed early in tumor progression, before additional protective mechanisms are in place.
Collapse
Affiliation(s)
- Manisha Ray
- Graduate Group in Biochemistry and Molecular Biology, University of California, San Francisco, CA
| | - Daniel R. Hostetter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA
| | - Carly RK Loeb
- Graduate Group in Biochemistry and Molecular Biology, University of California, San Francisco, CA
| | - Jeffry Simko
- Department of Urology, University of California San Francisco, CA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA
- To whom correspondence should be addressed. Contact Information University of California, San Francisco Genentech Hall, MC 2280 600 16th Street, San Francisco CA 94158-2517 Phone: (415) 476-8146 Fax: (415) 502-8298
| |
Collapse
|
25
|
Zirger JM, Puntel M, Bergeron J, Wibowo M, Moridzadeh R, Bondale N, Barcia C, Kroeger KM, Liu C, Castro MG, Lowenstein PR. Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells. Mol Ther 2012; 20:808-19. [PMID: 22233583 PMCID: PMC3321600 DOI: 10.1038/mt.2011.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023] Open
Abstract
The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.
Collapse
Affiliation(s)
- Jeffrey M Zirger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mariana Puntel
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Josee Bergeron
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mia Wibowo
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rameen Moridzadeh
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Niyati Bondale
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carlos Barcia
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kurt M Kroeger
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Deceased
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria G Castro
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Board of Governors' Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Current address: Department of Neurosurgery, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
- Current address: Department of Cell and Developmental Biology, The University of Michigan, Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Laskarin G, Persic V, Ruzic A, Miletic B, Rakic M, Samsa DT, Raljevic D, Pejcinovic VP, Miskulin R, Rukavina D. Perforin-mediated cytotoxicity in non-ST elevation myocardial infarction. Scand J Immunol 2011; 74:195-204. [PMID: 21388427 DOI: 10.1111/j.1365-3083.2011.02554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this investigation was to examine the role of perforin (P)-mediated cytotoxicity in the dynamics of tissue damage in patients with non-ST-segment elevation myocardial infarction (NSTEMI) treated with anti-ischaemic drugs. We enrolled 48 patients with NSTEMI in this study [age, 71.5 years; 61.5/76 (median, 25th/75th percentiles)]. The percentage of total peripheral blood P(+) lymphocytes was elevated owing to the increased frequency of P(+) cells within natural killer (NK) subsets, T and NKT cells in patients on day 1 after NSTEMI when compared with healthy controls. Positive correlations were found between cardiac troponin I plasma concentrations and the frequency of P(+) cells, P(+) T cells, P(+) NK cells and their CD56(+dim) and CD56(+bright) subsets during the first week after the NSTEMI. The expression of P in NK cells was accompanied by P-mediated cytotoxicity against K-562 targets at all days examined, except day 21, when an anti-perforin monoclonal antibody did not completely abolish the killing. The percentage of P(+) T cells, P(+) NKT cells and P(+) NK subsets was the highest on the day 1 after NSTEMI and decreased in the post-infarction period. CD56(+) lymphocytes were found in damaged myocardium, suggesting their tissue recruitment. In conclusion, patients with NSTEMI have a strong and prolonged P-mediated systemic inflammatory reaction, which may sustain autoaggressive reactions towards myocardial tissue during the development of myocardial infarction.
Collapse
Affiliation(s)
- G Laskarin
- Division of Cardiology, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism Thalassotherapia-Opatija, Opatija, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Massari D, Prpic-Massari L, Kehler T, Kastelan M, Curkovic B, Persic V, Ruzic A, Laskarin G. Analysis of granulysin-mediated cytotoxicity in peripheral blood of patients with psoriatic arthritis. Rheumatol Int 2011; 32:2777-84. [PMID: 21830153 DOI: 10.1007/s00296-011-2013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/10/2011] [Indexed: 11/25/2022]
Abstract
The objective of the present study was to investigate possible changes in granulysin (GNLY)-mediated cytotoxicity of peripheral blood lymphocytes in psoriatic arthritis (PsA) patients with respect to different phases of the disease. We prospectively enrolled 25 PsA patients in the active phase, 26 PsA patients in remission and 24 healthy controls. The simultaneous detection of intracellular GNLY and cell surface antigens (CD3 and CD56) was performed with flow cytometry. GNLY apoptotic protein was visualised by immunocytochemistry. Natural killer (NK) cell cytotoxicity was analysed with a cytotoxicity assay against human erythroleukaemia K-562 cells. The percentage of GNLY(+) cells did not differ significantly between PsA patients in the acute phase and those in remission; however, it was always higher than in healthy examinees due to the increased percentage of GNLY(+) cells within T cells, NKT cells, and both, and in the CD56(+dim) and CD56(+bright) NK subsets. The mean fluorescence intensity for GNLY was higher in all lymphocyte subpopulations in the acute phase than in remission and in healthy controls. Accordingly, GNLY-mediated NK cell cytotoxicity against K-562 cells of active phase PsA patients was significantly higher than that in patients in remission or in healthy controls. These findings demonstrated the involvement of GNLY in the worsening of PsA and suggested that GNLY mediated the development of joint lesions.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antirheumatic Agents/therapeutic use
- Apoptosis/physiology
- Arthritis, Psoriatic/drug therapy
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/pathology
- CD3 Complex/metabolism
- CD56 Antigen/metabolism
- Case-Control Studies
- Cell Line, Tumor
- Cytotoxicity, Immunologic/physiology
- Female
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/pathology
- Male
- Middle Aged
- Prospective Studies
- Remission Induction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Drazen Massari
- Thalassotherapia Opatija, Special Hospital for Rehabilitation of Hearth and Lung Diseases and Rheumatism, M. Tita 188, 51410 Opatija, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stewart SE, D'Angelo ME, Bird PI. Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:59-67. [PMID: 21683168 DOI: 10.1016/j.bbapap.2011.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022]
Abstract
Cytotoxic lymphocytes (CLs) are responsible for the clearance of virally infected or neoplastic cells. CLs possess specialised lysosome-related organelles called granules which contain the granzyme family of serine proteases and perforin. Granzymes may induce apoptosis in the target cell when delivered by the pore forming protein, perforin. Here we follow the perforin-granzyme pathway from synthesis and storage in the granule, to exocytosis and finally delivery into the target cell. This review focuses on the controversial subject of perforin-mediated translocation of granzymes into the target cell cytoplasm. It remains unclear whether this occurs at the cell surface with granzymes moving through a perforin pore in the plasma membrane, or if it involves internalisation of perforin and granzymes and subsequent release from an endocytic compartment. The latter mechanism would represent an example of cross talk between the endo-lysosomal pathways of individual cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Sarah E Stewart
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Khurshid R, Saleem M, Akhtar MS, Salim A. Granzyme M: characterization with sites of post-translational modification and specific sites of interaction with substrates and inhibitors. Mol Biol Rep 2011; 38:2953-2960. [PMID: 20107908 DOI: 10.1007/s11033-010-9959-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Granzymes kill cells in a variety of ways. They induce mitochondrial dysfunction through caspase dependent and caspase-independent pathways and destroy DNA and the integrity of the nucleus. For gaining a better understanding of the molecular function of granzyme M and its NK cell specificity, structural characterization of this enzyme by molecular modeling as well as its detailed comparison with other granzymes is presented in this study. The study includes mode of action of granzyme M using cationic binding sites, substrate specificity, post-translational structural modification and its functional relationship and interaction of the enzyme with inhibitor in an attempt to explore how the activity of human granzyme M is controlled under physiological conditions. It is concluded from the present study that the post-translational modification, including Oglycosylation of serine, phosphorylation of serine and threonine and myristoylation of glycine, play an important role in the interaction of enzyme with the cell surface membrane and regulate protein trafficking and stability. Phosphorylated serine and threonine also plays a role in tumor elimination, viral clearance and tissue repair. In Gzm M there are cationic sites, cs1 and cs2 that may participate in binding of Gzm M to the cell surface, thereby promoting its uptake and eventual release into the cytoplasm. Gzm M shows apoptotic activity both by caspase dependent and independent pathways. Modeling of inhibitors bound to the granzyme active site shows that the dimer also contributes to substrate specificity in a unique manner by extending the active-site cleft.
Collapse
Affiliation(s)
- Rukhshan Khurshid
- Department of Biochemistry, Fatima Jinnah Medical College, Lahore, Pakistan
| | | | | | | |
Collapse
|
30
|
Yamada T, Tomita T, Weiss LM, Orlofsky A. Toxoplasma gondii inhibits granzyme B-mediated apoptosis by the inhibition of granzyme B function in host cells. Int J Parasitol 2011; 41:595-607. [PMID: 21329693 PMCID: PMC3116727 DOI: 10.1016/j.ijpara.2010.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 12/14/2022]
Abstract
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8(+) T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Tadakimi Tomita
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Louis M. Weiss
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Amos Orlofsky
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| |
Collapse
|
31
|
Lorberboum-Galski H. Human toxin-based recombinant immunotoxins/chimeric proteins as a drug delivery system for targeted treatment of human diseases. Expert Opin Drug Deliv 2011; 8:605-21. [PMID: 21453191 DOI: 10.1517/17425247.2011.566269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The development of specific immunosuppressive reagents remains the major goal in the treatment of human diseases. One such approach is the use of recombinant immunotoxins/chimeric proteins, composed of targeting and killing moieties, fused at the cDNA level. Most of these 'magic bullets' use bacterial or plant toxins to induce cell death. These toxins are extremely potent, but they also cause severe toxicity and systemic side effects that limit the maximal doses given to patients. Moreover, being of non-human origin, they are highly immunogenic, and the resulting neutralizing antibody production impairs their efficacy. AREAS COVERED This review describes recombinant immunotoxins/chimeric proteins composed of the classical delivering, cell-targeting molecules, fused to highly cytotoxic human proteins capable of generating an intense apoptotic response within the target cell. This review focuses on the new 'Human Killing Moieties' of these targeted proteins and describes recent progress in the development of these promising molecules. EXPERT OPINION Human toxin-based immunotoxins/chimeric proteins for the targeted delivery of drugs are still in their early stages of development. However, they are certain to advance in the very near future to become an extra weapon in the everlasting war against human diseases, mainly cancer.
Collapse
Affiliation(s)
- Haya Lorberboum-Galski
- The Hebrew University, Institute for Medical Research - Israel-Canada, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
32
|
Xu WL, Wang Q, Du M, Zhao YH, Sun XR, Sun WG, Chen BQ. Growth Inhibition Effect of β-Catenin Small Interfering RNA–Mediated Gene Silencing on Human Colon Carcinoma HT-29 Cells. Cancer Biother Radiopharm 2010; 25:529-37. [DOI: 10.1089/cbr.2010.0768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wei-Li Xu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Qi Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Ming Du
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yong-Huan Zhao
- Department of Food Science, Heilongjiang August First Land Reclamation University, Daqing, People's Republic of China
| | - Xiang-Rong Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Wen-Guang Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Bing-Qing Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
33
|
Tilburgs T, Schonkeren D, Eikmans M, Nagtzaam NM, Datema G, Swings GM, Prins F, van Lith JM, van der Mast BJ, Roelen DL, Scherjon SA, Claas FH. Human decidual tissue contains differentiated CD8+ effector-memory T cells with unique properties. THE JOURNAL OF IMMUNOLOGY 2010; 185:4470-7. [PMID: 20817873 DOI: 10.4049/jimmunol.0903597] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During pregnancy, maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Recently, CD4(+)CD25(bright) regulatory T cells have been shown to be concentrated in decidual tissue, where they are able to suppress fetus-specific and nonspecific immune responses. Decidual CD8(+) T cells are the main candidates to recognize and respond to fetal HLA-C at the fetal-maternal interface, but data on the characteristics of these cells are limited. In this study we examined the decidual and peripheral CD8(+) T cell pool for CD45RA, CCR7, CD28, and CD27 expression, using nine-color flow cytometry. Our data demonstrate that decidual CD8(+) T cells mainly consist of differentiated CD45RA(-)CCR7(-) effector-memory (EM) cells, whereas unprimed CD45RA(+)CCR7(+) naive cells are almost absent. Compared with peripheral blood EM CD8(+) T cells, the decidual EM CD8(+) T cells display a significantly reduced expression of perforin and granzyme B, which was confirmed by immunohistochemistry of decidual tissue sections. Interestingly, quantitative PCR analysis demonstrates an increased perforin and granzyme B mRNA content in decidual EM CD8(+) T cells in comparison with peripheral blood EM CD8(+) T cells. The presence of high levels of perforin and granzyme B mRNA in decidual EM T cells suggests that decidual CD8(+) T cells pursue alternative means of EM cell differentiation that may include a blockade of perforin and granzyme B mRNA translation into functional perforin and granzyme B proteins. Regulation of decidual CD8(+) T cell differentiation may play a crucial role in maternal immune tolerance to the allogeneic fetus.
Collapse
Affiliation(s)
- Tamara Tilburgs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Granzyme B (GzmB) is used by cytotoxic lymphocytes as a molecular weapon for the defense against virus-infected and malignantly transformed host cells. It belongs to a family of small serine proteases that are stored in secretory vesicles of killer cells. After secretion of these cytolytic granules during killer cell attack, GzmB is translocated into the cytosol of target cells with the help of the pore-forming protein perforin. GzmB has adopted similar protease specificity as caspase-8, and once delivered, it activates major executioner apoptosis pathways. Since GzmB is very effective in killing human tumor cell lines that are otherwise resistant against many cytotoxic drugs and since GzmB of human origin can be recombinantly expressed, its use as part of a 'magic bullet' in tumor therapy is a very tempting idea. In this review, we emphasize the peculiar characteristics of GzmB that make it suited for use as an effector domain in potential immunoconjugates. We discuss what is known about its uptake into target cells and the trials performed with GzmB-armed immunoconjugates, and we assess the prospects of its potential therapeutic value.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
35
|
Direct microbicidal activity of cytotoxic T-lymphocytes. J Biomed Biotechnol 2010; 2010:249482. [PMID: 20617144 PMCID: PMC2896662 DOI: 10.1155/2010/249482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/22/2010] [Indexed: 01/04/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTL) are famous for their ability to kill tumor, allogeneic and virus-infected cells. However, an emerging literature has now demonstrated that CTL also possess the ability to directly recognize and kill bacteria, parasites, and fungi. Here, we review past and recent findings demonstrating the direct microbicidal activity of both CD4+ and CD8+ CTL against various microbial pathogens. Further, this review will outline what is known regarding the mechanisms of direct killing and their underlying signalling pathways.
Collapse
|
36
|
Abstract
Granzyme A (GzmA) is the most abundant serine protease in killer cell cytotoxic granules. GzmA activates a novel programed cell death pathway that begins in the mitochondrion, where cleavage of NDUFS3 in electron transport complex I disrupts mitochondrial metabolism and generates reactive oxygen species (ROS). ROS drives the endoplasmic reticulum-associated SET complex into the nucleus, where it activates single-stranded DNA damage. GzmA also targets other important nuclear proteins for degradation, including histones, the lamins that maintain the nuclear envelope, and several key DNA damage repair proteins (Ku70, PARP-1). Cells that are resistant to the caspases or GzmB by overexpressing bcl-2 family anti-apoptotic proteins or caspase or GzmB protease inhibitors are sensitive to GzmA. By activating multiple cell death pathways, killer cells provide better protection against a variety of intracellular pathogens and tumors. GzmA also has proinflammatory activity; it activates pro-interleukin-1beta and may also have other proinflammatory effects that remain to be elucidated.
Collapse
Affiliation(s)
- Judy Lieberman
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Kroner A, Ip CW, Thalhammer J, Nave KA, Martini R. Ectopic T-cell specificity and absence of perforin and granzyme B alleviate neural damage in oligodendrocyte mutant mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:549-55. [PMID: 20042681 DOI: 10.2353/ajpath.2010.090722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In transgenic mice overexpressing the major myelin protein of the central nervous system, proteolipid protein, CD8+ T-lymphocytes mediate the primarily genetically caused myelin and axon damage. In the present study, we investigated the cellular and molecular mechanisms underlying this immune-related neural injury. At first, we investigated whether T-cell receptors (TCRs) are involved in these processes. For this purpose, we transferred bone marrow from mutants carrying TCRs with an ectopic specificity to ovalbumin into myelin mutant mice that also lacked normal intrinsic T-cells. T-lymphocytes with ovalbumin-specific TCRs entered the mutant central nervous system to a similar extent as T-lymphocytes from wild-type mice. However, as revealed by histology, electron microscopy and axon- and myelin-related immunocytochemistry, these T-cells did not cause neural damage in the myelin mutants, reflecting the need for specific antigen recognition by cytotoxic CD8+ T-cells. By chimerization with bone marrow from perforin- or granzyme B (Gzmb)-deficient mice, we demonstrated that absence of these cytotoxic molecules resulted in reduced neural damage in myelin mutant mice. Our study strongly suggests that pathogenetically relevant immune reactions in proteolipid protein-overexpressing mice are TCR-dependent and mediated by the classical components of CD8+ T-cell cytotoxicity, perforin, and Gzmb. These findings have high relevance with regard to our understanding of the pathogenesis of disorders primarily caused by genetically mediated oligodendropathy.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurology, Section of Developmental Neurobiology, University of Wuerzburg, Josef-Schneider Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 2009; 115:1582-93. [PMID: 20038786 DOI: 10.1182/blood-2009-10-246116] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes and natural killer cells destroy target cells via the polarized exocytosis of lytic effector proteins, perforin and granzymes, into the immunologic synapse. How these molecules enter target cells is not fully understood. It is debated whether granzymes enter via perforin pores formed at the plasma membrane or whether perforin and granzymes are first endocytosed and granzymes are then released from endosomes into the cytoplasm. We previously showed that perforin disruption of the plasma membrane induces a transient Ca(2+) flux into the target cell that triggers a wounded membrane repair response in which lysosomes and endosomes donate their membranes to reseal the damaged membrane. Here we show that perforin activates clathrin- and dynamin-dependent endocytosis, which removes perforin and granzymes from the plasma membrane to early endosomes, preserving outer membrane integrity. Inhibiting clathrin- or dynamin-dependent endocytosis shifts death by perforin and granzyme B from apoptosis to necrosis. Thus by activating endocytosis to preserve membrane integrity, perforin facilitates granzyme uptake and avoids the proinflammatory necrotic death of a membrane-damaged cell.
Collapse
|
39
|
Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, Tindle S, Pypaert M, Freitas H, Piqueras B, Banchereau J, Palucka AK. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6815-23. [PMID: 19454677 PMCID: PMC2749454 DOI: 10.4049/jimmunol.0802008] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are key regulators of antiviral immunity. They rapidly secrete IFN-alpha and cross-present viral Ags, thereby launching adaptive immunity. In this study, we show that activated human pDCs inhibit replication of cancer cells and kill them in a contact-dependent fashion. Expression of CD2 distinguishes two pDC subsets with distinct phenotype and function. Both subsets secrete IFN-alpha and express granzyme B and TRAIL. CD2(high) pDCs uniquely express lysozyme and can be found in tonsils and in tumors. Both subsets launch recall T cell responses. However, CD2(high) pDCs secrete higher levels of IL12p40, express higher levels of costimulatory molecule CD80, and are more efficient in triggering proliferation of naive allogeneic T cells. Thus, human blood pDCs are composed of subsets with specific phenotype and functions.
Collapse
Affiliation(s)
- Toshimichi Matsui
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - John E. Connolly
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Mark Michnevitz
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Damien Chaussabel
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Chun-I Yu
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
- Institute of Biomedical Studies, Baylor University, Waco, Texas
| | - Casey Glaser
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Sasha Tindle
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Marc Pypaert
- Yale University School of Medicine, New Haven, CT
| | - Heidi Freitas
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Bernard Piqueras
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Jacques Banchereau
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - A. Karolina Palucka
- Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, and INSERM U899, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| |
Collapse
|
40
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
41
|
Sintsov AV, Kovalenko EI, Khanin MA. Apoptosis induced by granzyme B. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:725-33. [DOI: 10.1134/s1068162008060010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis. Proc Natl Acad Sci U S A 2008; 105:13799-804. [PMID: 18772390 DOI: 10.1073/pnas.0801724105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How granzymes gain entry into the cytosol of target cells during killer cell attack has been the subject of several studies in the past, but the effective delivery mechanism during target cell encounter has not been clarified. Here we show that granzyme B (GzmB) mutants lacking binding to negatively charged, essentially heparan-sulfate-containing membrane receptors are poorly endocytosed yet are delivered to the cytosol with efficacy similar to that of WT GzmB. In a cell-based system GzmB-deficient natural killer cells provided perforin (pfn) by natural polarized secretion and synergized with externally added GzmB. Whereas receptor (heparan sulfate)-dependent endocytosis was dispensable, delivery of larger cargo like that of GzmB fusion proteins and GzmB-antibody complexes was restricted by their size. Our data support the model in which granzymes are primarily translocated through repairable membrane pores of finite size and not by the disruption of endocytosed vesicles. We conclude that structurally related translocators, i.e., perforin and cholesterol-dependent cytolysins, deliver deathly cargo across host cell membranes in a similar manner.
Collapse
|
43
|
Barcia C, Sanderson NSR, Barrett RJ, Wawrowsky K, Kroeger KM, Puntel M, Liu C, Castro MG, Lowenstein PR. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury. PLoS One 2008; 3:e2977. [PMID: 18714338 PMCID: PMC2496894 DOI: 10.1371/journal.pone.0002977] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/17/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. FINDINGS Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. CONCLUSIONS Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro.
Collapse
Affiliation(s)
- Carlos Barcia
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas S. R. Sanderson
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert J. Barrett
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kolja Wawrowsky
- Department of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kurt M. Kroeger
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mariana Puntel
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chunyan Liu
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria G. Castro
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pedro R. Lowenstein
- Board of Governors' Gene Therapeutics Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, The Brain Research Institute, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
44
|
Barcia C, Wawrowsky K, Barrett RJ, Liu C, Castro MG, Lowenstein PR. In vivo polarization of IFN-gamma at Kupfer and non-Kupfer immunological synapses during the clearance of virally infected brain cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:1344-52. [PMID: 18209028 PMCID: PMC2629497 DOI: 10.4049/jimmunol.180.3.1344] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kupfer-type immunological synapses are thought to mediate intercellular communication between antiviral T cells and virally infected target Ag-presenting brain cells in vivo during an antiviral brain immune response. This hypothesis predicts that formation of Kupfer-type immunological synapses is necessary for polarized distribution of effector molecules, and their directed secretion toward the target cells. However, no studies have been published testing the hypothesis that cytokines can only form polarized clusters at Kupfer-type immunological synapses. Here, we show that IFN-gamma and granzyme-B cluster in a polarized fashion at contacts between T cells and infected astrocytes in vivo. In some cases these clusters were found in Kupfer-type immunological synapses between T cells and infected astrocytes, but we also detected polarized IFN-gamma at synaptic immunological contacts which did not form Kupfer-type immunological synaptic junctions, i.e., in the absence of polarization of TCR or LFA-1. This indicates that TCR signaling, which leads to the production, polarization, and eventual directed secretion of effector molecules such as IFN-gamma, occurs following the formation of both Kupfer-type and non-Kupfer type immunological synaptic junctions between T cells and virally infected target astrocytes in vivo.
Collapse
Affiliation(s)
- Carlos Barcia
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Kolja Wawrowsky
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert J. Barrett
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Chunyan Liu
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Maria G. Castro
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Pedro R. Lowenstein
- Board of Governors’ Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
45
|
Abstract
The granzymes are cell death-inducing enzymes, stored in the cytotoxic granules of cytotoxic T lymphocytes and natural killer cells, that are released during granule exocytosis when a specific virus-infected or transformed target cell is marked for elimination. Recent work suggests that this homologous family of serine esterases can activate at least three distinct pathways of cell death. This redundancy likely evolved to provide protection against pathogens and tumors with diverse strategies for evading cell death. This review discusses what is known about granzyme-mediated pathways of cell death as well as recent studies that implicate granzymes in immune regulation and extracellular proteolytic functions in inflammation.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Dana Farber Cancer Institute and Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
46
|
Walch M, Latinovic-Golic S, Velic A, Sundstrom H, Dumrese C, Wagner CA, Groscurth P, Ziegler U. Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells. BMC Immunol 2007; 8:14. [PMID: 17705829 PMCID: PMC1976101 DOI: 10.1186/1471-2172-8-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/16/2007] [Indexed: 11/25/2022] Open
Abstract
Background Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. Results We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. Conclusion The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux.
Collapse
Affiliation(s)
- Michael Walch
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Sonja Latinovic-Golic
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ana Velic
- Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hanna Sundstrom
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Claudia Dumrese
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Peter Groscurth
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Urs Ziegler
- Institute of Anatomy, Division of Cell Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
47
|
Piuko K, Bravo IG, Müller M. Identification and characterization of equine granzyme B. Vet Immunol Immunopathol 2007; 118:239-51. [PMID: 17604123 DOI: 10.1016/j.vetimm.2007.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/25/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
In the present study we describe the isolation and characterization of putative equine granzyme B for which we propose the designation 'eqGrzmB'. Sequence analysis revealed characteristic features of a GrzmB protease such as the presence of a signal (leader-) peptide and an activation di-peptide. The isolated eqGrzmB is functionally active when expressed in human or in insect cells. Furthermore, exchange of any of three putative active site amino acids, which are highly conserved along granzyme B enzymes, led to a complete loss of enzymatic activity in the newly identified eqGrzmB. Phylogenetic analysis places eqGrzmB in the chymase-locus within the large family of granzymes in close proximity to putative equine mast cell protease and to granzyme B from mouse, rat, and human. eqGrzmB proteolytic activity has been kinetically characterized and can be specifically inhibited by granzyme B inhibitors. Taken together, we conclude that we have isolated a new member of the granzyme B family, the first granzyme identified in Equidae. The description of equine granzyme B might facilitate the development of immunological assays for the activity of equine lymphocytes.
Collapse
Affiliation(s)
- Konrad Piuko
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, F035, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Ida H, Utz PJ, Anderson P, Eguchi K. Granzyme B and natural killer (NK) cell death. Mod Rheumatol 2007; 15:315-22. [PMID: 17029086 DOI: 10.1007/s10165-005-0426-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Granzyme B is a unique serine protease, which plays a crucial role for target cell death. Several mechanisms of delivery of granzyme B to target cells have been recently identified. Granzyme B directly activates Bid, a specific substrate for granzyme B, resulting in caspase activation. Granzyme B efficiently cleaves many prominent autoantigens, and the hypothesis that autoantibodies arise when cryptic determinants are revealed to the immune system has been proposed. Some autoantibodies directed against granzyme B-specific neoepitopes are present in serum from patients with autoimmune diseases. In the tissues from autoimmune diseases, granzyme B might play an important role for disease progression (i.e., rheumatoid arthritis synovium) or inhibition (i.e., regulatory T cells). We have identified a novel type of activation-induced cell death (granzyme B leakage-induced cell death). Activation-induced natural killer (NK) cell death is accompanied by the leakage of granzyme B from intracellular granules into the cytoplasm, and it triggers apoptosis by directing Bid to mitochondrial membranes. An excess of "leaked" granzyme B over its inhibitor, serpin proteinase inhibitor 9, is a major determinant of cell death. The role of granzyme B in autoimmunity and its influence on NK cell death are discussed.
Collapse
Affiliation(s)
- Hiroaki Ida
- First Department of Internal Medicine, Graduate School of Biochemical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | | | | | | |
Collapse
|
49
|
Ward NE, Pellis NR, Risin SA, Risin D. Gene expression alterations in activated human T-cells induced by modeled microgravity. J Cell Biochem 2006; 99:1187-202. [PMID: 16795038 DOI: 10.1002/jcb.20988] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS. Activated T lymphocytes were obtained by adding 100 ng/ml of anti-CD3 and 100 U/ml of IL-2 in RPMI medium to blood donor mononuclear cells for 4 days. After that the cells were washed and additionally cultured for up to 2 weeks with media (RPMI, 10% FBS and 100 U/ml IL-2) replacement every 3-4 days. Flow cytometry analysis had proven that activated T lymphocytes were the only cells remaining in culture by that time. They were split into two portions, cultured for additional 24 h in either static or simulated microgravity conditions, and used for RNA extraction. The gene expression was assessed by Affymetrix GeneChip Human U133A array allowing screening for expression of 18,400 genes. About 4-8% of tested genes responded to MG by more than a 1.5-fold change in expression; however, reproducible changes were observed only in 89 genes. Ten of these genes were upregulated and 79 were downregulated. These genes were categorized by associated pathways and viewed graphically through histogram analysis. Separate histograms of each pathway were then constructed representing individual gene expression fold changes. Possible functional consequences of the identified reproducible gene expression changes are discussed.
Collapse
|
50
|
Lettau M, Schmidt H, Kabelitz D, Janssen O. Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 2006; 108:10-9. [PMID: 17097742 DOI: 10.1016/j.imlet.2006.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/22/2022]
Abstract
Secretory lysosomes are specialized organelles that combine catabolic functions of conventional lysosomes with an inducible secretory potential. They are present in various hematopoietic cell types commonly characterized by the need for rapid mobilization and secretion of effector proteins. As an example, the cytotoxic effector function of T cells and natural killer cells strictly depends on the activation-dependent mobilization of such vesicles to the cytotoxic immunological synapse. This review focuses on some molecules that have been identified as cargo of secretory lysosomes and which play a major role in effector function of CTL and NK cells. We also briefly point to the fact that the dysregulation of formation and transport of secretory vesicles is causative for severe immunodeficiencies and autoimmunity observed in patients and also in mice that have been used as representative model systems to analyze the pathophysiological relevance of secretory vesicles in vivo.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, Medical Center Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | |
Collapse
|