1
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-like receptor 9 is altered during persistence. Infect Immun 2024; 92:e0006324. [PMID: 38899879 PMCID: PMC11238561 DOI: 10.1128/iai.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA (gDNA). Previous bioinformatic studies have demonstrated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here, we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. Utilizing reporter cell lines, we demonstrate that purified gDNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion, exacerbated by the inhibition of lipooligosaccharide biosynthesis, and is significantly altered during the induction of aberrance/persistence. Our observations support the hypothesis that chlamydial gDNA is released during the conversion between the pathogen's replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly. Given that C. trachomatis inclusions do not co-localize with TLR9-containing vacuoles in the pro-monocytic cell line U937, our findings also hint that chlamydial gDNA is capable of egress from the inclusion, and traffics to TLR9-containing vacuoles via an as yet unknown pathway.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
3
|
Diallo A, Overman G, Sah P, Liechti GW. Recognition of Chlamydia trachomatis by Toll-Like Receptor 9 is altered during persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579186. [PMID: 38370826 PMCID: PMC10871208 DOI: 10.1101/2024.02.06.579186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Toll-like receptor 9 (TLR9) is an innate immune receptor that localizes to endosomes in antigen presenting cells and recognizes single stranded unmethylated CpG sites on bacterial genomic DNA. Previous bioinformatic studies have indicated that the genome of the human pathogen Chlamydia trachomatis contains TLR9 stimulatory motifs, and correlative studies have implied a link between human TLR9 (hTLR9) genotype variants and susceptibility to infection. Here we present our evaluation of the stimulatory potential of C. trachomatis gDNA and its recognition by hTLR9- and murine TLR9 (mTLR9)-expressing cells. We confirm that hTLR9 colocalizes with chlamydial inclusions in the pro-monocytic cell line, U937. Utilizing HEK293 reporter cell lines, we demonstrate that purified genomic DNA from C. trachomatis can stimulate hTLR9 signaling, albeit at lower levels than gDNA prepared from other Gram-negative bacteria. Interestingly, we found that while C. trachomatis is capable of signaling through hTLR9 and mTLR9 during live infections in non-phagocytic HEK293 reporter cell lines, signaling only occurs at later developmental time points. Chlamydia-specific induction of hTLR9 is blocked when protein synthesis is inhibited prior to the RB-to-EB conversion and exacerbated by the inhibition of lipooligosaccharide biosynthesis. The induction of aberrance / persistence also significantly alters Chlamydia-specific TLR9 signaling. Our observations support the hypothesis that chlamydial gDNA is released at appreciable levels by the bacterium during the conversion between its replicative and infectious forms and during treatment with antibiotics targeting peptidoglycan assembly.
Collapse
Affiliation(s)
- Aissata Diallo
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Grace Overman
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Prakash Sah
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States of America
| |
Collapse
|
4
|
He R, Torres CA, Wang Y, He C, Zhong G. Type-I Interferon Signaling Protects against Chlamydia trachomatis Infection in the Female Lower Genital Tract. Infect Immun 2023; 91:e0015323. [PMID: 37191510 PMCID: PMC10269118 DOI: 10.1128/iai.00153-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
We have previously shown that Chlamydia trachomatis is significantly inhibited during the early stage of infection in the female mouse lower genital tract and the anti-C. trachomatis innate immunity is compromised in the absence of cGAS-STING signaling. Since type-I interferon is a major downstream response of the cGAS-STING signaling, we evaluated the effect of type-I interferon signaling on C. trachomatis infection in the female genital tract in the current study. The infectious yields of chlamydial organisms recovered from vaginal swabs along the infection course were carefully compared between mice with or without deficiency in type-I interferon receptor (IFNαR1) following intravaginal inoculation with 3 different doses of C. trachomatis. It was found that IFNαR1-deficient mice significantly increased the yields of live chlamydial organisms on days 3 and 5, providing the 1st experimental evidence for a protective role of type-I interferon signaling in preventing C. trachomatis infection in mouse female genital tract. Further comparison of live C. trachomatis recovered from different genital tract tissues between wild type and IFNαR1-deficient mice revealed that the type-I interferon-dependent anti-C. trachomatis immunity was restricted to mouse lower genital tract. This conclusion was validated when C. trachomatis was inoculated transcervically. Thus, we have demonstrated an essential role of type-I interferon signaling in innate immunity against C. trachomatis infection in the mouse lower genital tract, providing a platform for further revealing the molecular and cellular basis of type-I interferon-mediated immunity against sexually transmitted infection with C. trachomatis.
Collapse
Affiliation(s)
- Rongze He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caroline Andrea Torres
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheng He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Silver LW, Cheng Y, Quigley BL, Robbins A, Timms P, Hogg CJ, Belov K. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol Ecol 2022; 31:3286-3303. [PMID: 35510793 PMCID: PMC9325493 DOI: 10.1111/mec.16493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome‐wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as “endangered.”
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Provectus Algae Pty Ltd, 5 Bartlett Road, Noosaville, Queensland, 4566, Australia
| | - Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, Queensland, 4510, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Evidence for cGAS-STING signaling in the female genital tract resistance to Chlamydia trachomatis infection. Infect Immun 2022; 90:e0067021. [PMID: 34978925 DOI: 10.1128/iai.00670-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sexually transmitted Chlamydia trachomatis can ascend to the upper genital tract due to its resistance to innate immunity in the lower genital tract. C. trachomatis can activate cGAS-STING signaling pathway in cultured cells via either cGAS or STING. The current study was designed to evaluate the role of the cGAS-STING pathway in innate immunity against C. trachomatis in the mouse genital tract. Following intravaginal inoculation, C. trachomatis significantly declined by day 5 following a peak infection on day 3 while the mouse-adapted C. muridarum continued to rise for >1 week, indicating that C. trachomatis is susceptible to the innate immunity in the female mouse genital tract. This conclusion was supported by the observation of a similar shedding course in mice deficient in adaptive immunity. Thus, C. trachomatis can be used to evaluate innate immunity in the female genital tract. It was found that mice deficient in either cGAS or STING significantly increased the yields of live C. trachomatis on day 5, indicating an essential role of the cGAS-STING signaling pathway in innate immunity of the mouse genital tract. Comparison of live C. trachomatis recovered from different genital tissues revealed that the cGAS-STING-dependent immunity against C. trachomatis was restricted to the mouse lower genital tract regardless of whether C. trachomatis was inoculated intravaginally or transcervically. Thus, we have demonstrated an essential role of the cGAS-STING signaling pathway in innate immunity against chlamydial infection, laying a foundation for further illuminating the mechanisms of the innate immunity in the female lower genital tract.
Collapse
|
7
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
8
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
9
|
Karunakaran KP, Yu H, Jiang X, Chan QWT, Foster LJ, Johnson RM, Brunham RC. Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development. J Infect Dis 2020; 221:841-850. [PMID: 31599954 DOI: 10.1093/infdis/jiz522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/05/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis and Chlamydia muridarum are intracellular bacterial pathogens of mucosal epithelial cells. CD4 T cells and major histocompatibility complex (MHC) class II molecules are essential for protective immunity against them. Antigens presented by dendritic cells (DCs) expand naive pathogen-specific T cells (inductive phase), whereas antigens presented by epithelial cells identify infected epithelial cells as targets during the effector phase. We previously showed that DCs infected by C trachomatis or C muridarum present epitopes from a limited spectrum of chlamydial proteins recognized by Chlamydia-specific CD4 T cells from immune mice. METHODS We hypothesized that Chlamydia-infected DCs and epithelial cells present overlapping sets of Chlamydia-MHC class II epitopes to link inductive and effector phases to generate protective immunity. We tested that hypothesis by infecting an oviductal epithelial cell line with C muridarum, followed by immunoaffinity isolation and sequencing of MHC class I- and II-bound peptides. RESULTS We identified 26 class I-bound and 4 class II-bound Chlamydia-derived peptides from infected epithelial cells. We were surprised to find that none of the epithelial cell class I- and class II-bound chlamydial peptides overlapped with peptides presented by DCs. CONCLUSIONS We suggest the discordance between the DC and epithelial cell immunoproteomes has implications for delayed clearance of Chlamydia and design of a Chlamydia vaccine.
Collapse
Affiliation(s)
- Karuna P Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Hong Yu
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Xiaozhou Jiang
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Queenie W T Chan
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond M Johnson
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert C Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Pedrosa AT, Murphy KN, Nogueira AT, Brinkworth AJ, Thwaites TR, Aaron J, Chew TL, Carabeo RA. A post-invasion role for Chlamydia type III effector TarP in modulating the dynamics and organization of host cell focal adhesions. J Biol Chem 2020; 295:14763-14779. [PMID: 32843479 PMCID: PMC7586217 DOI: 10.1074/jbc.ra120.015219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.
Collapse
Affiliation(s)
- António T Pedrosa
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Korinn N Murphy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ana T Nogueira
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Amanda J Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Tristan R Thwaites
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Rey A Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
11
|
NOD1/NOD2 and RIP2 Regulate Endoplasmic Reticulum Stress-Induced Inflammation during Chlamydia Infection. mBio 2020; 11:mBio.00979-20. [PMID: 32487756 PMCID: PMC7267884 DOI: 10.1128/mbio.00979-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the initiation of the inflammatory response during Chlamydia infection is of public health importance given the impact of this disease on young women in the United States. Many young women are chronically infected with Chlamydia but are asymptomatic and therefore do not seek treatment, leaving them at risk of long-term reproductive harm due to inflammation in response to infection. Our manuscript explores the role of the endoplasmic reticulum stress response pathway initiated by an innate receptor in the development of this inflammation. The inflammatory response to Chlamydia infection is likely to be multifactorial and involve a variety of ligand-dependent and -independent recognition pathways. We previously reported the presence of NOD1/NOD2-dependent endoplasmic reticulum (ER) stress-induced inflammation during Chlamydia muridarum infection in vitro, but the relevance of this finding to an in vivo context is unclear. Here, we examined the ER stress response to in vivo Chlamydia infection. The induction of interleukin 6 (IL-6) production after systemic Chlamydia infection correlated with expression of ER stress response genes. Furthermore, when tauroursodeoxycholate (TUDCA) was used to inhibit the ER stress response, an increased bacterial burden was detected, suggesting that ER stress-driven inflammation can contribute to systemic bacterial clearance. Mice lacking both NOD1 and NOD2 or RIP2 exhibited slightly higher systemic bacterial burdens after infection with Chlamydia. Overall, these data suggest a model where RIP2 and NOD1/NOD2 proteins link ER stress responses with the induction of Chlamydia-specific inflammatory responses.
Collapse
|
12
|
Kumar R, Derbigny WA. TLR3 Deficiency Leads to a Dysregulation in the Global Gene-Expression Profile in Murine Oviduct Epithelial Cells Infected with Chlamydia muridarum. ACTA ACUST UNITED AC 2020; 1:1-13. [PMID: 31891165 PMCID: PMC6937138 DOI: 10.18689/ijmr-1000101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlamydia trachomatis replicates primarily in the epithelial cells lining the genital tract and induces the innate immune response by triggering cellular pathogen recognition receptors (PRRs). Our previous studies showed that Toll-like receptor 3 (TLR3) is expressed in murine oviduct epithelial (OE) cells, is the primary PRR triggered by C. muridarum (Cm) early during infection to induce IFN-β synthesis, and that TLR3 signaling regulates the chlamydial induced synthesis of a plethora of other innate inflammatory modulators including IL-6, CXCL10, CXCL16 and CCL5. We also showed that the expression of these cytokines induced by Chlamydia was severely diminished during TLR3 deficiency; however, the replication of Chlamydiain TLR3 deficient OE cells was more robust than in WT cells. These data suggested that TLR3 had a biological impact on the inflammatory response to Chlamydia infection; however, the global effects of TLR3 signaling in the cellular response to Chlamydia infection in murine OE cells has not yet been investigated. To determine the impact of TLR3 signaling on Chlamydia infection in OE cell at the transcriptome level, we infected wild-type (OE-WT) and TLR3-deficient (OE-TLR3KO) cells with Cm, and performed transcriptome analyses using microarray. Genome-wide expression and ingenuity pathway analysis (IPA) identified enhanced expression of host genes encoding for components found in multiple cellular processes encompassing: (1) pro-inflammatory, (2) cell adhesion, (3) chemoattraction, (4) cellular matrix and small molecule transport, (5) apoptosis, and (6) antigen-processing and presentation. These results support a role for TLR3 in modulating the host cellular responses to Cm infection that extend beyond inflammation and fibrosis, and shows that TLR3 could serve a potential therapeutic target for drug and/or vaccine development.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| |
Collapse
|
13
|
Xu JZ, Kumar R, Gong H, Liu L, Ramos-Solis N, Li Y, Derbigny WA. Toll-Like Receptor 3 Deficiency Leads to Altered Immune Responses to Chlamydia trachomatis Infection in Human Oviduct Epithelial Cells. Infect Immun 2019; 87:e00483-19. [PMID: 31383744 PMCID: PMC6759307 DOI: 10.1128/iai.00483-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Reproductive tract pathology caused by Chlamydia trachomatis infection is an important global cause of human infertility. To better understand the mechanisms associated with Chlamydia-induced genital tract pathogenesis in humans, we used CRISPR genome editing to disrupt Toll-like receptor 3 (TLR3) function in the human oviduct epithelial (hOE) cell line OE-E6/E7 in order to investigate the possible role(s) of TLR3 signaling in the immune response to Chlamydia Disruption of TLR3 function in these cells significantly diminished the Chlamydia-induced synthesis of several inflammation biomarkers, including interferon beta (IFN-β), interleukin-6 (IL-6), interleukin-6 receptor alpha (IL-6Rα), soluble interleukin-6 receptor beta (sIL-6Rβ, or gp130), IL-8, IL-20, IL-26, IL-34, soluble tumor necrosis factor receptor 1 (sTNF-R1), tumor necrosis factor ligand superfamily member 13B (TNFSF13B), matrix metalloproteinase 1 (MMP-1), MMP-2, and MMP-3. In contrast, the Chlamydia-induced synthesis of CCL5, IL-29 (IFN-λ1), and IL-28A (IFN-λ2) was significantly increased in TLR3-deficient hOE cells compared to their wild-type counterparts. Our results indicate a role for TLR3 signaling in limiting the genital tract fibrosis, scarring, and chronic inflammation often associated with human chlamydial disease. Interestingly, we saw that Chlamydia infection induced the production of biomarkers associated with persistence, tumor metastasis, and autoimmunity, such as soluble CD163 (sCD163), chitinase-3-like protein 1, osteopontin, and pentraxin-3, in hOE cells; however, their expression levels were significantly dysregulated in TLR3-deficient hOE cells. Finally, we demonstrate using hOE cells that TLR3 deficiency resulted in an increased amount of chlamydial lipopolysaccharide (LPS) within Chlamydia inclusions, which is suggestive that TLR3 deficiency leads to enhanced chlamydial replication and possibly increased genital tract pathogenesis during human infection.
Collapse
Affiliation(s)
- Jerry Z Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Haoli Gong
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luyao Liu
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Carrasco SE, Hu S, Imai DM, Kumar R, Sandusky GE, Yang XF, Derbigny WA. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS One 2018; 13:e0195165. [PMID: 29624589 PMCID: PMC5889059 DOI: 10.1371/journal.pone.0195165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.
Collapse
Affiliation(s)
- Sebastian E. Carrasco
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Denise M. Imai
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
16
|
Lehr S, Vier J, Häcker G, Kirschnek S. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid. Microbes Infect 2018; 20:284-292. [PMID: 29499390 DOI: 10.1016/j.micinf.2018.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.
Collapse
Affiliation(s)
- Saskia Lehr
- Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 11, 79104, Freiburg, Germany
| | - Juliane Vier
- Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 11, 79104, Freiburg, Germany
| | - Georg Häcker
- Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 11, 79104, Freiburg, Germany
| | - Susanne Kirschnek
- Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 11, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Kowsar R, Marey MA, Shimizu T, Miyamoto A. Short communication: Urea induces T helper 2 (Th2) type environment at transcriptional level and prostaglandin E2 secretion in bovine oviduct epithelial cells in culture. J Dairy Sci 2016; 99:5844-5850. [PMID: 27132094 DOI: 10.3168/jds.2016-10874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/24/2016] [Indexed: 12/30/2022]
Abstract
Excess dietary protein intake in early lactation dairy cows resulting in blood urea nitrogen of greater than 19 to 20mg/dL is associated with decreased fertility. Little is known about the local interference of urea in the normal immunological environment of the oviduct that provides optimal conditions for early reproductive events. A bovine oviduct epithelial cell (BOEC) culture was used to determine how urea influences immune environment. The BOEC monolayer was supplemented with low (20mg/dL) and high (40mg/dL) concentrations of urea together with ovarian steroids, estradiol (1ng/mL) and progesterone (1ng/mL), and LH (10ng/mL) at concentrations observed during the preovulatory period. The urea values used in this study were equivalent to 9.3 and 18.7mg/dL of blood urea nitrogen, which are typically common in lactating dairy cows with low or high protein intake, respectively. Stimulation of BOEC with 40mg/dL of urea induced gene expression of IL10 and IL4, epithelial-derived T helper type 2-driving (anti-inflammatory) cytokines as well as mPGES-1 expression and prostaglandin E2 (PGE2) secretion. However, urea concentrations of both 20 and 40mg/dL failed to alter the expression of IL1B and TNFA, Th1-driving cytokines, and the gene expression of TLR4. However, a concentration of 40mg/dL of urea stimulated α 1-acid glycoprotein expression, an acute phase protein. Data from this in vitro study suggest that urea, at least in part, contributes to influence the expression of some immune-related genes toward T helper type 2 type and prostaglandin E2 secretion, leading to disruption in local environment for fertilization and early embryonic development.
Collapse
Affiliation(s)
- R Kowsar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - M A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt 22511
| | - T Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - A Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
19
|
Johnson RM, Kerr MS. Modeling the transcriptome of genital tract epithelial cells and macrophages in healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection. Pathog Dis 2015; 73:ftv100. [PMID: 26519447 PMCID: PMC4732027 DOI: 10.1093/femspd/ftv100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars are intracellular bacteria that parasitize human reproductive tract epithelium. As the principal cell type supporting bacterial replication, epithelial cells are central to Chlamydia immunobiology initially as sentries and innate defenders, and subsequently as collaborators in adaptive immunity-mediated bacterial clearance. In asymptomatic individuals who do not seek medical care a decisive struggle between C. trachomatis and host defenses occurs at the epithelial interface. For this study, we modeled the immunobiology of epithelial cells and macrophages lining healthy genital mucosa and inflamed/infected mucosa during the transition from innate to adaptive immunity. Upper reproductive tract epithelial cell line responses were compared to bone marrow-derived macrophages utilizing gene expression microarray technology. Those comparisons showed minor differences in the intrinsic innate defenses of macrophages and epithelial cells. Major lineage-specific differences in immunobiology relate to epithelial collaboration with adaptive immunity including an epithelial requirement for inflammatory cytokines to express MHC class II molecules, and a paucity and imbalance between costimulatory and coinhibitory ligands on epithelial cells that potentially limits sterilizing immunity (replication termination) to Chlamydia-specific T cells activated with limited or unconventional second signals.
Collapse
Affiliation(s)
- Raymond M Johnson
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Micah S Kerr
- Department of Microbiology, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Hosey KL, Hu S, Derbigny WA. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells. J Interferon Cytokine Res 2015; 35:901-16. [PMID: 26262558 DOI: 10.1089/jir.2015.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription.
Collapse
Affiliation(s)
- Kristen Lynette Hosey
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sishun Hu
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana.,2 College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Wilbert Alfred Derbigny
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
21
|
Hu S, Hosey KL, Derbigny WA. Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells. PLoS One 2015; 10:e0119235. [PMID: 25798928 PMCID: PMC4370658 DOI: 10.1371/journal.pone.0119235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
We previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.
Collapse
Affiliation(s)
- Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kristen L. Hosey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Branković I, van Ess EF, Noz MP, Wiericx WAJ, Spaargaren J, Morré SA, Ouburg S. NOD1 in contrast to NOD2 functional polymorphism influence Chlamydia trachomatis infection and the risk of tubal factor infertility. Pathog Dis 2015; 73:1-9. [PMID: 25854006 DOI: 10.1093/femspd/ftu028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Intracellular pattern-recognition receptors NOD1 and NOD2 are capable of sensing common structural units of bacterial walls. Recognition triggers specific immune signalling pathways and leads to pro-inflammatory cytokine upregulation and adequate immune response. We investigated whether two functional polymorphisms in NOD1 and NOD2 exert an effect on susceptibility to (STD patients) and severity of (female patients visiting the fertility clinic) Chlamydia trachomatis infection in 807 Dutch Caucasian women. A significant association of the NOD1 +32656 GG insertion variant with protection against infection with C. trachomatis has been detected [p: 0.0057; OR: 0.52]. When comparing C. trachomatis-positive women without symptoms to C. trachomatis-positive women with symptoms, and to C. trachomatis-positive women with TFI, we observed an increasing trend in carriage of the GG allele [Ptrend: 0.0003]. NOD2 1007fs failed to reveal an association. We hypothesize that the underlying mechanism might be a functional effect of the GG insertion on IFN-beta-dependent regulation of immune response in the genital tract. The research is part of an ongoing effort of identifying key polymorphisms that determine the risk of TFI and effectively translating them into the clinical setting for the purpose of optimizing diagnostic management of women at risk for developing TFI.
Collapse
Affiliation(s)
- Ivan Branković
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eleanne F van Ess
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Marlies P Noz
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilhelmina Anke J Wiericx
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Joke Spaargaren
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands Dutch Chlamydia trachomatis Reference Laboratory, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Zschemisch NH, Eisenblätter R, Rudolph C, Glage S, Dorsch M. Immortalized tumor derived rat fibroblasts as feeder cells facilitate the cultivation of male embryonic stem cells from the rat strain WKY/Ztm. SPRINGERPLUS 2014; 3:588. [PMID: 25332888 PMCID: PMC4197200 DOI: 10.1186/2193-1801-3-588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023]
Abstract
Feeder cells are essential for the establishment and culture of pluripotent rat embryonic stem cells (ESC) in vitro. Therefore, we tested several fibroblast and epithelial cell lines derived from the female genital tract as feeder cells to further improve ESC culture conditions. The immortalized tumor derived rat fibroblast TRF-O3 cells isolated from a Dnd1-deficient teratoma were identified as optimal feeder cells supporting stemness and proliferation of rat ESC. The TRF-O3 cells were characterized as myofibroblasts by expression of fibroblast specific genes alpha-2 type I collagen, collagen prolyl 4-hydroxylase alpha (II), vimentin, S100A4, and smooth muscle α-actin. Culture of inner cell masses (ICM) derived from WKY/Ztm rat blastocysts in 2i-LIF medium on TRF-O3 feeder cells lacking LIF, SCF and FGF2 expression resulted in pluripotent and germ-line competent rat ESC lines. Therein, genotyping confirmed up to 26% male ESC lines. On the other hand the TRF-O3 specific BMP4 expression was correlated with transcriptional activity of the mesodermal marker T-brachyury and the ectoderm specific nestin in the ESC line ES21 demonstrating mesodermal or ectodermal cell lineage differentiation processes within the ESC population. Substitution of 2i-LIF by serum-containing YPAC medium supplemented with TGF-β and rho kinase inhibitors or by 4i medium in combination with TRF-O3 feeder cells led to enhanced differentiation of ES21 cells and freshly isolated ICMs. These results suggest that the ESC culture conditions using TRF-O3 feeder cells and 2i-LIF medium supported the establishment of male ESC lines from WKY/Ztm rats, which represent a favored, permissive genetic background for rat ESC culture.
Collapse
Affiliation(s)
- Nils-Holger Zschemisch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Regina Eisenblätter
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Cornelia Rudolph
- Institute for Molecular and Cellular Pathology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Martina Dorsch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| |
Collapse
|
24
|
Early microRNA expression profile as a prognostic biomarker for the development of pelvic inflammatory disease in a mouse model of chlamydial genital infection. mBio 2014; 5:e01241-14. [PMID: 24961692 PMCID: PMC4073489 DOI: 10.1128/mbio.01241-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED It is not currently possible to predict the probability of whether a woman with a chlamydial genital infection will develop pelvic inflammatory disease (PID). To determine if specific biomarkers may be associated with distinct chlamydial pathotypes, we utilized two Chlamydia muridarum variants (C. muridarum Var001 [CmVar001] and CmVar004) that differ in their abilities to elicit upper genital tract pathology in a mouse model. CmVar004 has a lower growth rate in vitro and induces pathology in only 20% of C57BL/6 mouse oviducts versus 83.3% of oviducts in CmVar001-infected mice. To determine if chemokine and cytokine production within 24 h of infection is associated with the outcome of pathology, levels of 15 chemokines and cytokines were measured. CmVar004 infection induced significantly lower levels of CXCL1, CXCL2, tumor necrosis factor alpha (TNF-α), and CCL2 in comparison to CmVar001 infection with similar rRNA (rs16) levels for Chlamydiae. A combination of microRNA (miRNA) sequencing and quantitative real-time PCR (qRT-PCR) analysis of 134 inflammation-related miRNAs was performed 24 h postinfection to determine if the chemokine/cytokine responses would also be reflected in miRNA expression profiles. Interestingly, 12 miRNAs (miR-135a-5p, miR298-5p, miR142-3p, miR223-3p, miR299a-3p, miR147-3p, miR105, miR325-3p, miR132-3p, miR142-5p, miR155-5p, and miR-410-3p) were overexpressed during CmVar004 infection compared to CmVar001 infection, inversely correlating with the respective chemokine/cytokine responses. To our knowledge, this is the first report demonstrating that early biomarkers elicited in the host can differentiate between two pathological variants of chlamydiae and be predictive of upper tract disease. IMPORTANCE It is apparent that an infecting chlamydial population consists of multiple genetic variants with differing capabilities of eliciting a pathological response; thus, it may be possible to identify biomarkers specific for a given virulence pathotype. miRNAs are known to regulate genes that in turn regulate signaling pathways involved in disease pathogenesis. Importantly, miRNAs are stable and can reflect a tissue response and therefore have the potential to be biomarkers of disease severity. Currently, with respect to chlamydial infections, there is no way to predict whether an infected patient is more or less likely to develop PID. However, data presented in this study indicate that the expression of a specific miRNA profile associated with a virulent variant early in the infection course may be predictive of an increased risk of pelvic inflammatory disease, allowing more aggressive treatment before significant pathology develops.
Collapse
|
25
|
Chlamydia trachomatis polymorphic membrane protein D is a virulence factor involved in early host-cell interactions. Infect Immun 2014; 82:2756-62. [PMID: 24733093 DOI: 10.1128/iai.01686-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular mucosotropic pathogen of significant medical importance. It is the etiological agent of blinding trachoma and bacterial sexually transmitted diseases, infections that afflict hundreds of millions of people globally. The C. trachomatis polymorphic membrane protein D (PmpD) is a highly conserved autotransporter and the target of broadly cross-reactive neutralizing antibodies; however, its role in host-pathogen interactions is unknown. Here we employed a targeted reverse genetics approach to generate a pmpD null mutant that was used to define the role of PmpD in the pathogenesis of chlamydial infection. We show that pmpD is not an essential chlamydial gene and the pmpD null mutant has no detectable deficiency in cultured murine cells or in a murine mucosal infection model. Notably, however, the pmpD null mutant was significantly attenuated for macaque eyes and cultured human cells. A reduction in pmpD null infection of human endocervical cells was associated with a deficiency in chlamydial attachment to cells. Collectively, our results show that PmpD is a chlamydial virulence factor that functions in early host-cell interactions. This study is the first of its kind using reverse genetics to evaluate the contribution of a C. trachomatis gene to disease pathogenesis.
Collapse
|
26
|
Frazer LC, Scurlock AM, Zurenski MA, Riley MM, Mintus M, Pociask DA, Sullivan JE, Andrews CW, Darville T. IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis. Am J Reprod Immunol 2013; 70:472-84. [PMID: 24238108 PMCID: PMC3852156 DOI: 10.1111/aji.12171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Chlamydia trachomatis infections are a significant cause of reproductive tract pathology. Protective and pathological immune mediators must be differentiated to design a safe and effective vaccine. METHODS Wild-type mice and mice deficient in IL-22 and IL-23 were infected intravaginally with Chlamydia muridarum, and their course of infection and oviduct pathology were compared. Local genital tract and draining lymph node immune responses were also examined in IL-23-deficient mice. RESULTS IL-22- and IL-23-deficient mice exhibited normal susceptibility to infection and oviduct pathology. IL-23 was required for the development of a Chlamydia-specific Th17 response in the lymph nodes and for production of IL-22 and IL-17 in the genital tract. However, influx of Th1 and innate immune cells was not compromised in the absence of IL-23. CONCLUSION IL-22 and IL-23 play either redundant or minimal roles in the pathogenesis of Chlamydia infection in the mouse model. Induction of Th17-associated cytokines by a Chlamydia vaccine should be avoided as these responses are not central to resolution of infection and have pathologic potential.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Amy M. Scurlock
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas 72202
| | - Matthew A. Zurenski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Melissa M. Riley
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Margaret Mintus
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Derek A. Pociask
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Jeanne E. Sullivan
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | - Toni Darville
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
27
|
Frazer LC, Sullivan JE, Zurenski MA, Mintus M, Tomasak TE, Prantner D, Nagarajan UM, Darville T. CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:4269-79. [PMID: 24038087 DOI: 10.4049/jimmunol.1301547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resolution of Chlamydia genital tract infection is delayed in the absence of MyD88. In these studies, we first used bone marrow chimeras to demonstrate a requirement for MyD88 expression by hematopoietic cells in the presence of a wild-type epithelium. Using mixed bone marrow chimeras we then determined that MyD88 expression was specifically required in the adaptive immune compartment. Furthermore, adoptive transfer experiments revealed that CD4(+) T cell expression of MyD88 was necessary for normal resolution of genital tract infection. This requirement was associated with a reduced ability of MyD88(-/-)CD4(+) T cells to accumulate in the draining lymph nodes and genital tract when exposed to the same inflammatory milieu as wild-type CD4(+) T cells. We also demonstrated that the impaired infection control we observed in the absence of MyD88 could not be recapitulated by deficiencies in TLR or IL-1R signaling. In vitro, we detected an increased frequency of apoptotic MyD88(-/-)CD4(+) T cells upon activation in the absence of exogenous ligands for receptors upstream of MyD88. These data reveal an intrinsic requirement for MyD88 in CD4(+) T cells during Chlamydia infection and indicate that the importance of MyD88 extends beyond innate immune responses by directly influencing adaptive immunity.
Collapse
Affiliation(s)
- Lauren C Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hafner LM, Cunningham K, Beagley KW. Ovarian steroid hormones: effects on immune responses and Chlamydia trachomatis infections of the female genital tract. Mucosal Immunol 2013; 6:859-75. [PMID: 23860476 DOI: 10.1038/mi.2013.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.
Collapse
Affiliation(s)
- L M Hafner
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia.
| | | | | |
Collapse
|
29
|
Mackern-Oberti JP, Motrich RD, Breser ML, Sánchez LR, Cuffini C, Rivero VE. Chlamydia trachomatis infection of the male genital tract: an update. J Reprod Immunol 2013; 100:37-53. [PMID: 23870458 DOI: 10.1016/j.jri.2013.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 05/06/2013] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis (CT) is the most prevalent cause of sexually transmitted diseases. Although the prevalence of chlamydial infection is similar in men and women, current research and screening are still focused on women, who develop the most severe complications, leaving the study of male genital tract (MGT) infection underrated. Herein, we reviewed the literature on genital CT infection with special focus on the MGT. Data indicate that CT certainly infects different parts of the MGT such as the urethra, seminal vesicles, prostate, epididymis and testis. However, whether or not CT infection has detrimental effects on male fertility is still controversial. The most important features of CT infection are its chronic nature and the presence of a mild inflammation that remains subclinical in most individuals. Chlamydia antigens and pathogen recognition receptors (PRR), expressed on epithelial cells and immune cells from the MGT, have been studied in the last years. Toll-like receptor (TLR) expression has been observed in the testis, epididymis, prostate and vas deferens. It has been demonstrated that recognition of chlamydial antigens is associated with TLR2, TLR4, and possibly, other PRRs. CT recognition by PRRs induces a local production of cytokines/chemokines, which, in turn, provoke chronic inflammation that might evolve in the onset of an autoimmune process in genetically susceptible individuals. Understanding local immune response along the MGT, as well as the crosstalk between resident leukocytes, epithelial, and stromal cells, would be crucial in inducing a protective immunity, thus adding to the design of new therapeutic approaches to a Chlamydia vaccine.
Collapse
|
30
|
Yilma AN, Singh SR, Dixit S, Dennis VA. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int J Nanomedicine 2013; 8:2421-32. [PMID: 23882139 PMCID: PMC3709643 DOI: 10.2147/ijn.s44090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chlamydia trachomatis is a very common sexually transmissible infection in both developing and developed countries. A hallmark of C. trachomatis infection is the induction of severe inflammatory responses which play critical roles in its pathogenesis. Antibiotics are the only treatment option currently available for controlling C. trachomatis infection; however, they are efficacious only when administered early after an infection. The objectives of this study are to explore alternative strategies in the control and regulation of inflammatory responses triggered by a C. trachomatis infection. We employed silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles, which have been shown to possess anti-inflammatory properties, as our target and the in vitro mouse J774 macrophage model of C. trachomatis infection. Our hypothesis is that small sizes of Ag-PVP nanoparticles will control inflammatory mediators triggered by a C. trachomatis infection. Cytotoxicity studies using Ag-PVP nanoparticles of 10, 20, and 80 nm sizes revealed >80% macrophage viability up to a concentration of 6.25 μg/mL, with the 10 nm size being the least toxic. All sizes of Ag-PVP nanoparticles, especially the 10 nm size, reduced the levels of the prototypic cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, as elicited from C. trachomatis infected macrophages. Additionally, Ag-PVP nanoparticles (10 nm) selectively inhibited a broad spectrum of other cytokines and chemokines produced by infected macrophages. Of significance, Ag-PVP nanoparticles (10 nm) caused perturbations in a variety of upstream (toll like receptor 2 [TLR2], nucleotide-binding oligomerization-protein 2 [NOD2], cluster of differentiation [CD]40, CD80, and CD86) and downstream (IL-1 receptor-associated kinase 3 [IRAK3] and matrix metallopeptidase 9 [MMP9]) inflammatory signaling pathways by downregulating their messenger ribonucleic acid (mRNA) gene transcript expressions as induced by C. trachomatis in macrophages. Collectively, our data provides further evidence for the anti-inflammatory properties of Ag-PVP nanoparticles, and opens new possibilities for smaller sizes of Ag-PVP nanoparticles to be employed as regulators of inflammatory responses induced by C. trachomatis.
Collapse
Affiliation(s)
- Abebayehu N Yilma
- Center for Nanobiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Center for Nanobiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA
| | - Saurabh Dixit
- Center for Nanobiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA
| | - Vida A Dennis
- Center for Nanobiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
31
|
Kowsar R, Hambruch N, Liu J, Shimizu T, Pfarrer C, Miyamoto A. Regulation of innate immune function in bovine oviduct epithelial cells in culture: the homeostatic role of epithelial cells in balancing Th1/Th2 response. J Reprod Dev 2013; 59:470-8. [PMID: 23800958 PMCID: PMC3934114 DOI: 10.1262/jrd.2013-036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate the role of epithelial cells in regulating innate immunity in bovine oviduct epithelial cell (BOEC) culture. We studied the effect of Escherichia coli lipopolysaccharide (LPS) and its interaction with ovarian steroids, estradiol (E2) and progesterone (P4), and luteinizing hormone (LH) at concentrations observed during the preovulatory period on immune responses in BOEC culture. Immunohistochemistry of oviduct tissue showed intensive expression of Toll-like receptor-4 (TLR-4) and TLR-2 in epithelial cells. A dose of 10 ng/ml LPS stimulated TLR-4, cyclooxygenase-2 (COX-2), nuclear factor kappa B inhibitor A (NFKBIA), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) expression, indicating an early pro-inflammatory response. A dose of 100 ng/ml LPS did not induce expression of these genes but stimulated TLR-2, IL-10,IL-4 and microsomal prostaglandin E synthase-1 (mPGES-1) expression and PGE2 secretion, indicating an anti-inflammatory response. Ovarian steroids and LH completely block LPS (10 ng/ml)-induced TLR-4, IL-1β and TNF-α expression as well as LPS (100 ng/ml)-induced TLR-2 expression. Taken together, this study suggests the existence of an early signaling system to respond to infection in the BOEC. In addition, ovarian steroids and LH may play a critical role in inducing homeostasis and in controlling hyperactive pro-inflammatory responses detrimental to epithelial cells, sperm and the embryo.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis inflammation. Mediators Inflamm 2013; 2013:102457. [PMID: 23766556 PMCID: PMC3676976 DOI: 10.1155/2013/102457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1β, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway.
Collapse
|
33
|
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 2013; 4:e00018-13. [PMID: 23631912 PMCID: PMC3663186 DOI: 10.1128/mbio.00018-13] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED STING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells. IMPORTANCE This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections.
Collapse
|
34
|
Wang A, Al-Kuhlani M, Johnston SC, Ojcius DM, Chou J, Dean D. Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cell Microbiol 2012; 15:779-94. [PMID: 23163821 DOI: 10.1111/cmi.12071] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/15/2012] [Accepted: 11/10/2012] [Indexed: 01/17/2023]
Abstract
Chlamydia pneumoniae is responsible for a high prevalence of respiratory infections worldwide and has been implicated in atherosclerosis. Inflammation is regulated by transcription factor (TF) networks. Yet, the core TF network triggered by chlamydiae remains largely unknown. Primary human coronary artery endothelial cells were mock-infected or infected with C. pneumoniae to generate human transcriptome data throughout the chlamydial developmental cycle. Using systems network analysis, the predominant TF network involved receptor, binding and adhesion and immune response complexes. Cells transfected with interfering RNA against activator protein-1 (AP-1) members FOS, FOSB, JUN and JUNB had significantly decreased expression and protein levels of inflammatory mediators interleukin (IL)6, IL8, CD38 and tumour necrosis factor compared with controls. These mediators have been shown to be associated with C. pneumoniae disease. Expression of AP-1 components was regulated by MAPK3K8, a MAPK pathway component. Additionally, knock-down of JUN and FOS showed significantly decreased expression of Toll-like receptor (TLR)3 during infection, implicating JUN and FOS in TLR3 regulation. TLR3 stimulation led to elevated IL8. These findings suggest that C. pneumoniae initiates signalling via TLR3 and MAPK that activate AP-1, a known immune activator in other bacteria not previously shown for chlamydiae, triggering inflammation linked to C. pneumoniae disease.
Collapse
Affiliation(s)
- Anyou Wang
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shao R, Wang X, Wang W, Stener-Victorin E, Mallard C, Brännström M, Billig H. From mice to women and back again: causalities and clues for Chlamydia-induced tubal ectopic pregnancy. Fertil Steril 2012; 98:1175-85. [PMID: 22884019 DOI: 10.1016/j.fertnstert.2012.07.1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To provide an overview of knockout mouse models that have pathological tubal phenotypes after Chlamydia muridarum infection, discuss factors and pathological processes that contribute to inflammation, summarize data on tubal transport and progression of tubal implantation from studies in humans and animal models, and highlight research questions in the field. DESIGN A search of the relevant literature using PubMed and other online tools. SETTING University-based preclinical and clinical research laboratories. PATIENT(S) Women with tubal ectopic pregnancy after Chlamydia trachomatis infection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Critical review of the literature. RESULT(S) Chlamydia trachomatis infection poses a major threat to human reproduction. Biological and epidemiological evidence suggests that progression of Chlamydia infection causes intense and persistent inflammation, injury, and scarring in the fallopian tube, leading to a substantially increased risk of ectopic pregnancy and infertility. The main targets of Chlamydia infection are epithelial cells lining the mucosal surface, which play a central role in host immune responses and pathophysiology. Tubal phenotypes at the cellular level in mutant mice appear to reflect alterations in the balance between inflammatory mediator and factor deficiency. While studies in mice infected with Chlamydia muridarum have provided insight into potential inflammatory mediators linked to fallopian tube pathology, it is unclear how inflammation induced by Chlamydia infection prevents or retards normal tubal transport and causes embryo implantation in the fallopian tube. CONCLUSION(S) Given the similarities in the tubal physiology of humans and rodents, knockout mouse models can be used to study certain aspects of tubal functions, such as gamete transport and early embryo implantation. Elucidation of the exact molecular mechanisms of immune and inflammatory responses caused by Chlamydia infection in human fallopian tubal cells in vitro and understanding how Chlamydia infection affects tubal transport and implantation in animal studies in vivo may explain how Chlamydia trachomatis infection drives inflammation and develops the tubal pathology in women with tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Beckett EL, Phipps S, Starkey MR, Horvat JC, Beagley KW, Foster PS, Hansbro PM. TLR2, but not TLR4, is required for effective host defence against Chlamydia respiratory tract infection in early life. PLoS One 2012; 7:e39460. [PMID: 22724018 PMCID: PMC3378543 DOI: 10.1371/journal.pone.0039460] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022] Open
Abstract
Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.
Collapse
Affiliation(s)
- Emma L. Beckett
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Simon Phipps
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Malcolm R. Starkey
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C. Horvat
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kenneth W. Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- * E-mail: (PMH); (PSF)
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Disease, The University of Newcastle, and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- * E-mail: (PMH); (PSF)
| |
Collapse
|
37
|
Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2011; 80:254-65. [PMID: 22006569 DOI: 10.1128/iai.05549-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Because epithelial cells are the major cell type productively infected with Chlamydia during genital tract infections, the overall goal of our research was to understand the contribution of infected epithelial cells to the host defense. We previously showed that Toll-like receptor 3 (TLR3) is the critical pattern recognition receptor in oviduct epithelial (OE) cells that is stimulated during Chlamydia infection, resulting in the synthesis of beta interferon (IFN-β). Here, we present data that implicates TLR3 in the expression of a multitude of other innate-inflammatory immune modulators including interleukin-6 (IL-6), CXCL10, CXCL16, and CCL5. We demonstrate that Chlamydia-induced expression of these cytokines is severely disrupted in TLR3-deficient OE cells, whereas Chlamydia replication in the TLR3-deficient cells is more efficient than in wild-type OE cells. Pretreatment of the TLR3-deficient OE cells with 50 U of IFN-β/ml prior to infection diminished Chlamydia replication and restored the ability of Chlamydia infection to induce IL-6, CXCL10, and CCL5 expression in TLR3-deficient OE cells; however, CXCL16 induction was not restored by IFN-β preincubation. Our findings were corroborated in pathway-focused PCR arrays, which demonstrated a multitude of different inflammatory genes that were defectively regulated during Chlamydia infection of the TLR3-deficient OE cells, and we found that some of these genes were induced only when IFN-β was added prior to infection. Our OE cell data implicate TLR3 as an essential inducer of IFN-β and other inflammatory mediators by epithelial cells during Chlamydia infection and highlight the contribution of TLR3 to the inflammatory cytokine response.
Collapse
|
38
|
Frazer LC, O'Connell CM, Andrews CW, Zurenski MA, Darville T. Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect Immun 2011; 79:4029-41. [PMID: 21825059 PMCID: PMC3187238 DOI: 10.1128/iai.05535-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
Abstract
Our previous studies revealed that intravaginal infection of mice with a plasmid-deficient strain of Chlamydia muridarum, CM3.1, does not induce the development of oviduct pathology. In this study, we determined that infection with CM3.1 resulted in a significantly reduced frequency and absolute number of neutrophils in the oviducts during acute infection. This reduction in neutrophils was associated with significantly lower levels of neutrophil chemokines in the oviducts and decreased production of neutrophil chemokines by oviduct epithelial cells infected with CM3.1 in vitro. Infection with CM3.1 also resulted in an increased frequency of late apoptotic/dead neutrophils in the oviduct. Examination of the ability of Chlamydia trachomatis to prevent neutrophil apoptosis in vitro revealed that C. trachomatis strain D/UW-3/Cx exhibited an enhanced ability to prevent neutrophil apoptosis compared to plasmid-deficient CTD153, and this effect was dependent on the presence of CD14(high) monocytes. The presence of monocytes also resulted in enhanced neutrophil cytokine production and increased production of tissue-damaging molecules in response to D/UW-3/Cx relative to results with CTD153. Attempts to use antibody-mediated depletion to discern the specific role of neutrophils in infection control and pathology in vivo revealed that although Ly6G(high) neutrophils were eliminated from the blood and oviducts with this treatment, immature neutrophils and high levels of tissue-damaging molecules were still detectable in the upper genital tract. These data support the role of neutrophils in chlamydia-induced pathology and reveal that novel methods of depletion must be developed before their role can be specifically determined in vivo.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | - Toni Darville
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
39
|
Cheng C, Jain P, Bettahi I, Pal S, Tifrea D, de la Maza LM. A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine 2011; 29:6641-9. [PMID: 21742006 PMCID: PMC3156873 DOI: 10.1016/j.vaccine.2011.06.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen in the World and there is an urgent need for a vaccine to prevent these infections. To determine what type of adjuvant can better enhance the immunogenicity of a Chlamydia vaccine, we formulated the recombinant major outer membrane protein (Ct-rMOMP) with several ligands for Toll-like receptors (TLR) and the nucleotide-binding oligomerization domain (NOD) including Pam(2)CSK(4) (TLR2/TLR6), Poly (I:C) (TLR3), monophosphoryl lipid A (TLR4), flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline R848 (TRL7/8), CpG-1826 (TLR9), M-Tri-(DAP) (NOD1/NOD2) and muramyldipeptide (NOD2). Groups of female BALB/c mice were immunized intramuscularly (i.m.) three times with the Ct-rMOMP and each one of those adjuvants. Four weeks after the last immunization the mice were challenged intranasally (i.n.) with 10(4)C. trachomatis mouse pneumonitis (MoPn) inclusion forming units (IFU). As negative antigen control, mice were immunized with the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) and the same adjuvants. As a positive vaccine control, mice were inoculated i.n. with 10(4)IFU of MoPn. The humoral and cell mediated immune responses were determined the day before the challenge. Following the challenge the mice were weighed daily and, at 10 days post-challenge (p.c.), they were euthanized, their lungs weighted and the number of IFU in the lungs counted. As determined by the IgG2a/IgG1 ratio in the sera, mice immunized with Ct-rMOMP+Pam(2)CSK(4) showed a strong Th2 biased humoral immune response. Furthermore, these mice developed a robust cellular immune response with high Chlamydia-specific T cell proliferation and levels of IFN-γ production. In addition, based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, the mice immunized with Ct-rMOMP+Pam(2)CSK(4), were better protected against the i.n. challenge than any group of mice immunized with Ct-rMOMP and the other adjuvants. In conclusion, Pam(2)CSK(4) should be evaluated as a candidate adjuvant for a C. trachomatis vaccine.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| | - Pooja Jain
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| | - Ilham Bettahi
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, California 92697-4800, USA
| |
Collapse
|
40
|
He X, Nair A, Mekasha S, Alroy J, O'Connell CM, Ingalls RR. Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS One 2011; 6:e20846. [PMID: 21695078 PMCID: PMC3114860 DOI: 10.1371/journal.pone.0020846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/11/2011] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces.
Collapse
Affiliation(s)
- Xianbao He
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anjali Nair
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Samrawit Mekasha
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph Alroy
- Department of Pathology, Tufts University School of Medicine, Cummings School of Veterinary Medicine, and Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Robin R. Ingalls
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Berrington WR, Iyer R, Wells RD, Smith KD, Skerrett SJ, Hawn TR. NOD1 and NOD2 regulation of pulmonary innate immunity to Legionella pneumophila. Eur J Immunol 2010; 40:3519-27. [PMID: 21108472 PMCID: PMC3063513 DOI: 10.1002/eji.201040518] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/30/2010] [Accepted: 09/10/2010] [Indexed: 01/06/2023]
Abstract
The role of nucleotide-binding oligomerization domain-1 (NOD1) and nucleotide-binding oligomerization domain-2 (NOD2), cytoplasmic receptors which detect bacterial cell wall molecules, in pulmonary innate immune responses is poorly understood. We determined that both NOD1 and NOD2 detect heat-killed Legionella and stimulate NF-κb and IFN-β promoter activity using an in vitro luciferase reporter system. We next infected NOD1- and NOD2-deficient animals with aerosolized Legionella pneumophila. At 3 days post infection, Nod1(-/-) mice had impaired bacterial clearance compared to WT controls. In addition, at 4 h and 24 h, Nod1(-/-) mice had impaired neutrophil recruitment to the alveolar space. In contrast, increased lung neutrophils were seen in the Nod2(-/-) animals at 24 h. Analysis of cytokine production at 4 h post infection revealed a significant decrease in proinflammatory cytokines in the Nod1(-/-) animals when compared to WT animals. In contrast, increased 4-h proinflammatory cytokines were seen in the Nod2(-/-) animals. Furthermore, the lungs of both Nod1(-/-) and Nod2(-/-) mice had significantly increased pro-inflammatory cytokine levels at 24 h, suggesting possible suppressive roles for later stages of infection. Together, our data suggest that although both NOD1 and NOD2 can detect Legionella, these receptors modulate the in vivo pulmonary immune response differently.
Collapse
|
42
|
Mackern-Oberti JP, Maccioni M, Breser ML, Eley A, Miethke T, Rivero VE. Innate immunity in the male genital tract: Chlamydia trachomatis induces keratinocyte-derived chemokine production in prostate, seminal vesicle and epididymis/vas deferens primary cultures. J Med Microbiol 2010; 60:307-316. [PMID: 21109628 DOI: 10.1099/jmm.0.024877-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chlamydia trachomatis is an intracellular pathogen that infects mucosal epithelial cells, causing persistent infections. Although chronic inflammation is a hallmark of chlamydial disease, the proinflammatory mechanisms involved are poorly understood. Little is known about how innate immunity in the male genital tract (MGT) responds to C. trachomatis. Toll-like receptors (TLRs) are a family of receptors of the innate immunity that recognize different pathogen-associated molecular patterns (PAMPs) present in bacteria, viruses, yeasts and parasites. The study of TLR expression in the MGT has been poorly investigated. The aim of this work was to investigate the keratinocyte-derived chemokine (KC) response of MGT primary cultures from C57BL/6 mice to C. trachomatis and different PAMPs. KC production by prostate, seminal vesicle and epididymis/vas deferens cell cultures was determined by ELISA in culture supernatants. TLR2, 3, 4 and 9 agonists induced the production of KC by all MGT primary cultures assayed. In addition, we analysed the host response against C. trachomatis and Chlamydia muridarum. Chlamydial LPS (cLPS) as well as C. trachomatis and C. muridarum infection induced KC secretion by all MGT cell cultures analysed. Differences in KC levels were observed between cultures, suggesting specific sensitivity against pathogens among MGT tissues. Chemokine secretion was observed after stimulation of seminal vesicle cells with TLR agonists, cLPS and C. trachomatis. To our knowledge, this is the first report showing KC production by seminal vesicle cells after stimulation with TLR ligands, C. trachomatis or C. muridarum antigens. These results indicate that different receptors of the innate immunity are present in the MGT. Understanding specific immune responses, both innate and adaptive, against chlamydial infections, mounted in each tissue of the MGT, will be crucial to design new therapeutic approaches where innate and/or adaptive immunity would be targeted.
Collapse
Affiliation(s)
- Juan Pablo Mackern-Oberti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Maria Laura Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - Adrian Eley
- Henry Wellcome Laboratories for Medical Research, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | - Thomas Miethke
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstr. 30, 81675 München, Germany
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5016 Córdoba, Argentina
| |
Collapse
|
43
|
Derbigny WA, Johnson RM, Toomey KS, Ofner S, Jayarapu K. TheChlamydia muridarum-Induced IFN-β Response Is TLR3-Dependent in Murine Oviduct Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6689-97. [DOI: 10.4049/jimmunol.1001548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Abdul-Sater AA, Saïd-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, Tattoli I, Lipinski S, Girardin SE, Rosenstiel P, Ojcius DM. Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J Biol Chem 2010; 285:41637-45. [PMID: 20959452 DOI: 10.1074/jbc.m110.137885] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the sources of ROS production in epithelial cells following infection with C. trachomatis. In this study, we provide evidence that basal levels of ROS are generated during chlamydial infection by NADPH oxidase, but ROS levels, regardless of their source, are enhanced by an NLRX1-dependent mechanism. Significantly, the presence of NLRX1 is required for optimal chlamydial growth.
Collapse
Affiliation(s)
- Ali A Abdul-Sater
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, California 95343, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burian K, Endresz V, Deak J, Kormanyos Z, Pal A, Nelson D, Virok DP. Transcriptome analysis indicates an enhanced activation of adaptive and innate immunity by chlamydia-infected murine epithelial cells treated with interferon γ. J Infect Dis 2010; 202:1405-14. [PMID: 20868270 DOI: 10.1086/656526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interferon γ (IFN‐γ) is the major cytokine involved in the elimination of Chlamydia infection. Despite its importance, the combined effect of Chlamydia infection and IFN‐γ on the gene expression of murine epithelial cells has only partially been described. METHODS The DNA chip method was used to evaluate the impact of IFN‐γ and both the human strain Chlamydia trachomatis L2 infection and the murine strain Chlamydia muridarum infection on the transcriptome of murine epithelial cells. RESULTS The gene expression analysis revealed that IFN‐γ had an enhancing effect on both the up‐regulation and down‐regulation of the epithelial gene expression. The influenced gene functional classes included cytokine and chemokine expression, antigen presentation, apoptosis, and genes involved in basic metabolic processes such as fatty acid oxidation. We also detected the up‐regulation of various genes that could be directly antichlamydial, such as members of the p47 GTPase family, inducible nitric oxide synthase, and monokine induced by IFN‐γ (MIG). As a functional validation of DNA chip data, we measured the antichlamydial effect of MIG on the extracellular form of Chlamydia. CONCLUSIONS Our results show that IFN‐γ is a key cytokine that primes epithelial cells to activate adaptive and innate immunity and to express antichlamydial effector genes both intracellularly and extracellularly.
Collapse
Affiliation(s)
- Katalin Burian
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Abdul-Sater AA, Saïd-Sadier N, Padilla EV, Ojcius DM. Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes Infect 2010; 12:652-661. [PMID: 20434582 DOI: 10.1016/j.micinf.2010.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022]
Abstract
Chlamydia trachomatis infections represent the leading cause of bacterial sexually-transmitted disease in the United States and can cause serious tissue damage leading to infertility and ectopic pregnancies in women. Inflammation and hence the innate immune response to chlamydial infection contributes significantly to tissue damage, particularly by secreting proinflammatory cytokines such as interleukin (IL)-1beta from monocytes, macrophages and dendritic cells. Here we demonstrate that C. trachomatis or Chlamydia muridarum infection of a monocytic cell line leads to caspase-1 activation and IL-1beta secretion through a process requiring the NLRP3 inflammasome. Thus, secretion of IL-1beta decreased significantly when cells were depleted of NLRP3 or treated with the anti-inflammatory inhibitors parthenolide or Bay 11-7082, which inhibit inflammasomes and the transcription factor NF-kappaB. As for other infections causing NRLP3 inflammasome assembly, caspase-1 activation in monocytes is triggered by potassium efflux and reactive oxygen species production. However, anti-oxidants inhibited IL-1beta secretion only partially. Atypically for a bacterial infection, caspase-1 activation during chlamydial infection also involves partially the spleen tyrosine kinase (Syk), which is usually associated with a pathogen recognition receptor for fungal pathogens. Secretion of IL-1beta during infection by many bacteria requires both microbial products from the pathogen and an exogenous danger signal, but chlamydial infection provides both the pathogen-associated molecular patterns and danger signals necessary for IL-1beta synthesis and its secretion from human monocytes. Use of inhibitors that target the inflammasome in animals should therefore dampen inflammation during chlamydial infection.
Collapse
Affiliation(s)
- Ali A Abdul-Sater
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Najwane Saïd-Sadier
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA.,Institut Jacques Monod, Université Paris Diderot, 75205 Paris cedex 13, France
| | - Eduardo V Padilla
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - David M Ojcius
- Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA 95343, USA.,Institut Jacques Monod, Université Paris Diderot, 75205 Paris cedex 13, France
| |
Collapse
|
47
|
Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2602-10. [PMID: 20124098 DOI: 10.4049/jimmunol.0901593] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MyD88, a key adaptor molecule required for many innate immunity receptor-activated signaling pathways, was evaluated in a Chlamydia muridarum urogenital tract infection model. Compared with wild-type mice, MyD88 knockout (KO) mice failed to produce significant levels of inflammatory cytokines in the genital tract during the first week of chlamydial infection. MyD88 KO mice developed a Th2-dominant whereas wild-type mice developed a Th1/Th17-dominant immune response after chlamydial infection. Despite the insufficient production of early inflammatory cytokines and lack of Th1/Th17-dominant adaptive immunity, MyD88 KO mice appeared to be as resistant to chlamydial intravaginal infection as wild-type mice based on the number of live organisms recovered from vaginal samples. However, significantly high numbers of chlamydial organisms were detected in the upper genital tract tissues of MyD88 KO mice. Consequently, MyD88 KO mice developed more severe pathology in the upper genital tract. These results together have demonstrated that MyD88-dependent signaling pathway is not only required for inflammatory cytokine production in the early phase of host response to chlamydial infection but also plays a critical role in the development of Th1/Th17 adaptive immunity, both of which may be essential for limiting ascending infection and reducing pathology of the upper genital tract by chlamydial organisms.
Collapse
Affiliation(s)
- Lili Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prantner D, Darville T, Nagarajan UM. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:2551-60. [PMID: 20107183 DOI: 10.4049/jimmunol.0903704] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type I IFN signaling has recently been shown to be detrimental to the host during infection with Chlamydia muridarum in both mouse lung and female genital tract. However, the pattern recognition receptor and the signaling pathways involved in chlamydial-induced IFN-beta are unclear. Previous studies have demonstrated no role for TLR4 and a partial role for MyD88 in chlamydial-induced IFN-beta. In this study, we demonstrate that mouse macrophages lacking TLR3, TRIF, TLR7, or TLR9 individually or both TLR4 and MyD88, still induce IFN-beta equivalent to wild type controls, leading to the hypothesis that TLR-independent cytosolic pathogen receptor pathways are crucial for this response. Silencing nucleotide-binding oligomerization domain 1 in HeLa cells partially decreased chlamydial-induced IFN-beta. Independently, small interfering RNA-mediated knockdown of the stimulator of IFN gene (STING) protein in HeLa cells and mouse oviduct epithelial cells significantly decreased IFN-beta mRNA expression, suggesting a critical role for STING in chlamydial-induced IFN-beta induction. Conversely, silencing of mitochondria-associated antiviral signaling proteins and the Rig-I-like receptors, RIG-I, and melanoma differentiation associated protein 5, had no effect. In addition, induction of IFN-beta depended on the downstream transcription IFN regulatory factor 3, and on activation of NF-kappaB and MAPK p38. Finally, STING, an endoplasmic reticulum-resident protein, was found to localize in close proximity to the chlamydial inclusion membrane during infection. These results indicate that C. muridarum induces IFN-beta via stimulation of nucleotide-binding oligomerization domain 1 pathway, and TLR- and Rig-I-like receptor-independent pathways that require STING, culminating in activation of IFN regulatory factor 3, NF-kappaB, and p38 MAPK.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
49
|
Chlamydia muridarum-specific CD4 T-cell clones recognize infected reproductive tract epithelial cells in an interferon-dependent fashion. Infect Immun 2009; 77:4469-79. [PMID: 19667042 DOI: 10.1128/iai.00491-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During natural infections Chlamydia trachomatis urogenital serovars replicate predominantly in the epithelial cells lining the reproductive tract. This tissue tropism poses a unique challenge to host cellar immunity and future vaccine development. In the experimental mouse model, CD4 T cells are necessary and sufficient to clear Chlamydia muridarum genital tract infections. This implies that resolution of genital tract infection depends on CD4 T-cell interactions with infected epithelial cells. However, no laboratory has shown that Chlamydia-specific CD4 T cells can recognize Chlamydia antigens presented by major histocompatibility complex class II (MHC-I) molecules on epithelial cells. In this report we show that MHC-II-restricted Chlamydia-specific CD4 T-cell clones recognize infected upper reproductive tract epithelial cells as early as 12 h postinfection. The timing of recognition and degree of T-cell activation are dependent on the interferon (IFN) milieu. Beta IFN (IFN-beta) and IFN-gamma have different effects on T-cell activation, with IFN-beta blunting IFN-gamma-induced upregulation of epithelial cell surface MHC-II and T-cell activation. Individual CD4 T-cell clones differed in their degrees of dependence on IFN-gamma-regulated MHC-II for controlling Chlamydia replication in epithelial cells in vitro. We discuss our data as they relate to published studies with IFN knockout mice, proposing a straightforward interpretation of the existing literature based on CD4 T-cell interactions with the infected reproductive tract epithelium.
Collapse
|
50
|
Zhang X, Gao L, Lei L, Zhong Y, Dube P, Berton MT, Arulanandam B, Zhang J, Zhong G. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:1291-300. [PMID: 19542374 PMCID: PMC2810512 DOI: 10.4049/jimmunol.0803075] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We found that IL-17, a signature cytokine of Th17, was produced early in the innate immunity phase after an intranasal infection with the obligate intracellular pathogen Chlamydia muridarum. The airway IL-17, which peaked at 48 h after infection, was dependent on live chlamydial organism replication and MyD88-mediated signaling pathways. Treatment with antibiotics or knockout of the MyD88 gene, but not Toll/IL receptor domain-containing adapter-inducing IFN-beta, can block the early IL-17 production. Treatment of mice with an anti-IL-17-neutralizing mAb enhanced growth of chlamydial organisms in the lung, dissemination to other organs, and decreased mouse survival, whereas treatment with an isotype-matched control IgG had no effect. Although IL-17 did not directly affect chlamydial growth in cell culture, it enhanced the production of other inflammatory cytokines and chemokines by Chlamydia-infected cells and promoted neutrophil infiltration in mouse airways during chlamydial infection, which may contribute to the antichlamydial effect of IL-17. These observations suggest that an early IL-17 response as an innate immunity component plays an important role in initiating host defense against infection with intracellular bacterial pathogens in the airway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
- Department of Biochemistry, Hebei North University, Zhangjiakou Hebei, China
| | - Lifen Gao
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| | - Youmin Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| | - Peter Dube
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| | - Michael T. Berton
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| | | | - Jinshun Zhang
- Department of Biochemistry, Hebei North University, Zhangjiakou Hebei, China
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|