1
|
Mardi S, Rashidian M, Bastan F, Molaverdi G, Mozhgani SH. The role of human leukocyte antigen in HTLV-1 infection and progression to ATLL and HAM/TSP: a systematic review and meta-analysis. Virol J 2025; 22:13. [PMID: 39833815 PMCID: PMC11749399 DOI: 10.1186/s12985-024-02612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that leads to lifelong infection and multiple diseases, including HAM/TSP and ATLL. Despite extensive research, the exact pathophysiology of HTLV infection and its related diseases is enigmatic. In this study, we aimed to review and analyze the effect of different HLA alleles as protective or predisposing factors in HTLV-1 infection and its progression to related diseases. METHOD Three databases (PubMed, Web of Science, and Scopus) were searched for eligible studies. Twenty-five papers with 7279 participants were included in the quantitative analysis. The relevant data were extracted, and 198 meta-analyses were conducted on each reported HLA and population. RESULTS The results of our investigation suggest 3 HLAs with preventive effects against HTLV infection, including HLA-B*35, DRB1*09, and DRB1*16. Also, HLA-DQB1*05:01 might prevent HTLV progression to ATLL. In contrast, HLA-DRB1*13 is more prevalent in ATLL patients than HTLV carriers. Additionally, our results propound that carriers of HLA-A*28, B*54, C*07, DQB1*03:01, and DRB1*07:01 are at higher risk, and carriers of HLA-A*30, B*37, B*40, B*44, C*08, DQB1*06:02, and DRB1*15:01 are in lower risk of HTLV progression to HAM/TSP. We concluded that the mentioned HLA alleles are potential biomarkers of HTLV infection and its progression to related diseases.
Collapse
Affiliation(s)
- Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Rashidian
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Fatemeh Bastan
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
2
|
Weterings DA, Rowan AG, Cook LB. Immunological aspects of HTLV-1 persistence; for the prevention and treatment of Adult T-cell leukaemia-lymphoma (ATL). Leuk Res 2025; 148:107635. [PMID: 39642764 DOI: 10.1016/j.leukres.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Human T-cell leukaemia virus type-1 (HTLV-1) causes the highly aggressive malignancy adult T-cell leukaemia-lymphoma (ATL) in approximately 5 % of chronically infected carriers. HTLV-1 persists in the host by enhancing survival of infected-T-cells despite the presence of a strong immune response. Therefore, asymptomatic HTLV-1 carriers have a lifelong balance between infected cell proliferation and the host antiviral immune response. However, this immunological balance is lost in patients with ATL. Reliable treatment options are lacking and there is urgent need for new treatment strategies to improve the dismal prognosis of ATL. In this review, we present a summary of the current knowledge on the immunological aspects of HTLV-1 persistence and the immune alterations observed in ATL, and discuss how the recent emerging advances in adoptive immunotherapy may offer a prevention and treatment option for ATL.
Collapse
Affiliation(s)
- Devon A Weterings
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Aileen G Rowan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, UK
| | - Lucy B Cook
- National Centre for Human Retrovirology and Department of Haematology, Imperial College Healthcare NHS Trust, UK; Department of Immunology & Inflammation, Imperial College London, UK.
| |
Collapse
|
3
|
Nakamura-Hoshi M, Ishii H, Nomura T, Nishizawa M, Hau TTT, Kuse N, Okazaki M, Ainai A, Suzuki T, Hasegawa H, Yoshida T, Yonemitsu K, Suzaki Y, Ami Y, Yamamoto H, Matano T. Prophylactic vaccination inducing anti-Env antibodies can result in protection against HTLV-1 challenge in macaques. Mol Ther 2024; 32:2328-2339. [PMID: 38734900 PMCID: PMC11286815 DOI: 10.1016/j.ymthe.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.
Collapse
Affiliation(s)
- Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nozomi Kuse
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takeshi Yoshida
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
4
|
Tanaka M, Takenouchi N, Arishima S, Matsuzaki T, Nozuma S, Matsuura E, Takashima H, Kubota R. HLA-A*24 Increases the Risk of HTLV-1-Associated Myelopathy despite Reducing HTLV-1 Proviral Load. Int J Mol Sci 2024; 25:6858. [PMID: 38999966 PMCID: PMC11241684 DOI: 10.3390/ijms25136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Increased human T-cell leukemia virus type 1 (HTLV-1) proviral load (PVL) is a significant risk factor for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is controversy surrounding whether HTLV-1-specific cytotoxic T lymphocytes (CTLs) are beneficial or harmful to HAM/TSP patients. Recently, HTLV-1 Tax 301-309 has been identified as an immunodominant epitope restricted to HLA-A*2402. We investigated whether HLA-A*24 reduces HTLV-1 PVL and the risk of HAM/TSP using blood samples from 152 HAM/TSP patients and 155 asymptomatic HTLV-1 carriers. The allele frequency of HLA-A*24 was higher in HAM/TSP patients than in asymptomatic HTLV-1 carriers (72.4% vs. 58.7%, odds ratio 1.84), and HLA-A*24-positive patients showed a 42% reduction in HTLV-1 PVL compared to negative patients. Furthermore, the PVL negatively correlated with the frequency of Tax 301-309-specific CTLs. These findings are opposite to the effects of HLA-A*02, which reduces HTLV-1 PVL and the risk of HAM/TSP. Therefore, we compared the functions of CTLs specific to Tax 11-19 or Tax 301-309, which are immunodominant epitopes restricted to HLA-A*0201 or HLA-A*2402, respectively. The maximum responses of these CTLs were not different in the production of IFN-γ and MIP-1β or in the expression of CD107a-a marker for the degranulation of cytotoxic molecules. However, Tax 301-309-specific CTLs demonstrated 50-fold higher T-cell avidity than Tax 11-19-specific CTLs, suggesting better antigen recognition at low expression levels of the antigens. These findings suggest that HLA-A*24, which induces sensitive HTLV-1-specific CTLs, increases the risk of HAM/TSP despite reducing HTLV-1 PVL.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shiho Arishima
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan (E.M.)
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; (M.T.)
| |
Collapse
|
5
|
Tu JJ, King E, Maksimova V, Smith S, Macias R, Cheng X, Vegesna T, Yu L, Ratner L, Green PL, Niewiesk S, Richner JM, Panfil AR. An HTLV-1 envelope mRNA vaccine is immunogenic and protective in New Zealand rabbits. J Virol 2024; 98:e0162323. [PMID: 38193692 PMCID: PMC10883802 DOI: 10.1128/jvi.01623-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited. In this study, we designed and synthesized a codon optimized HTLV-1 envelope (Env) mRNA encapsulated in a lipid nanoparticle (LNP) and evaluated its efficacy as a vaccine candidate in an established rabbit model of HTLV-1 infection and persistence. Immunization regimens included a prime/boost protocol using Env mRNA-LNP or control green fluorescent protein (GFP) mRNA-LNP. After immunization, rabbits were challenged by intravenous injection with irradiated HTLV-1 producing cells. Three rabbits were partially protected and three rabbits were completely protected against HTLV-1 challenge. These rabbits were then rechallenged 15 weeks later, and two rabbits maintained sterilizing immunity. In Env mRNA-LNP immunized rabbits, proviral load and viral gene expression were significantly lower. After viral challenge in the Env mRNA-LNP vaccinated rabbits, an increase in both CD4+/IFN-γ+ and CD8+/IFN-γ+ T-cells was detected when stimulating with overlapping Env peptides. Env mRNA-LNP elicited a detectable anti-Env antibody response after prime/boost vaccination in all animals and significantly higher levels of neutralizing antibody activity. Neutralizing antibody activity was correlated with a reduction in proviral load. These findings hold promise for the development of preventive strategies and therapeutic interventions against HTLV-1 infection and its associated diseases.IMPORTANCEmRNA vaccine technology has proven to be a viable approach for effectively triggering immune responses that protect against or limit viral infections and disease. In our study, we synthesized a codon optimized human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) mRNA that can be delivered in a lipid nanoparticle (LNP) vaccine approach. The HTLV-1 Env mRNA-LNP produced protective immune responses against viral challenge in a preclinical rabbit model. HTLV-1 is primarily transmitted through direct cell-to-cell contact, and the protection offered by mRNA vaccines in our rabbit model could have significant implications for optimizing the development of other viral vaccine candidates. This is particularly important in addressing the challenge of enhancing protection against infections that rely on cell-to-cell transmission.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily King
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ramon Macias
- Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Xiaogang Cheng
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tanmayee Vegesna
- Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, Illinois, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lee Ratner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, Illinois, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
7
|
Nakamura-Hoshi M, Nomura T, Nishizawa M, Hau TTT, Yamamoto H, Okazaki M, Ishii H, Yonemitsu K, Suzaki Y, Ami Y, Matano T. HTLV-1 Proliferation after CD8 + Cell Depletion by Monoclonal Anti-CD8 Antibody Administration in Latently HTLV-1-Infected Cynomolgus Macaques. Microbiol Spectr 2023; 11:e0151823. [PMID: 37367230 PMCID: PMC10434050 DOI: 10.1128/spectrum.01518-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.
Collapse
Affiliation(s)
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Clauze A, Enose-Akahata Y, Jacobson S. T cell receptor repertoire analysis in HTLV-1-associated diseases. Front Immunol 2022; 13:984274. [PMID: 36189294 PMCID: PMC9520328 DOI: 10.3389/fimmu.2022.984274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.
Collapse
|
9
|
Ruggieri M, Ducasa N, Juraske C, Polo VG, Berini C, Quiroga MF, Christopoulos P, Minguet S, Biglione M, Schamel WW. Phenotypic and functional analysis of γδ T cells in the pathogenesis of human T-cell lymphotropic virus type 1 infection. Front Immunol 2022; 13:920888. [PMID: 36032168 PMCID: PMC9403740 DOI: 10.3389/fimmu.2022.920888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the cause of serious malignant and inflammatory diseases, including adult T-cell leukemia and lymphoma and tropical spastic paraparesis. The potential protective role of γδ T cells in HTLV-1 infection remains unclear. Here, demonstrate that there is a decrease in the amount of Vγ9Vδ2 T cells in patients with HTLV-1, especially in those with HTLV-1 associated pathologies. This suggests that γδ T cells could be involved in controlling the virus. Indeed, we found that Vγ9Vδ2 T cells, expanded from non-infected individuals, can kill cells expressing the viral proteins HBZ and Tax and this phenotype is reversed in the presence of mevastatin. Cytotoxicity by Vγ9Vδ2 T cells was not associated with an increase of INF-γ production. In sharp contrast, killing by NK cells was reduced by Tax expression. Thus, our study provides initial evidence for a potential protective role of Vγ9Vδ2 T cells against HTLV-1 infection. Therapeutic exploitation of these insights is feasible with current technologies of T-cell therapies and could provide novel tools to prevent and treat HTLV-1-associated malignancies and neurologic complications.
Collapse
Affiliation(s)
- Matias Ruggieri
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Institute for Clinical Pathology, University Hospital Freiburg, Freiburg, Germany
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
- *Correspondence: Matias Ruggieri,
| | - Nicolás Ducasa
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Claudia Juraske
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Virginia Gonzalez Polo
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Carolina Berini
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoracic Clinic at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Mirna Biglione
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| |
Collapse
|
10
|
Kozako T, Kato N, Ohsugi T, Uchida Y, Yoshimitsu M, Ishitsuka K, Higaki Y, Sato H, Aikawa A, Honda S. SRT1720 induces SIRT1‐independent cell death in adult T‐cell leukemia/lymphoma. FEBS J 2022; 289:3477-3488. [DOI: 10.1111/febs.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Naho Kato
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science School of Veterinary Medicine Rakuno Gakuen University Hokkaido Japan
| | - Yu‐ichiro Uchida
- Division of Hematology and Immunology Graduate School of Medical and Dental Sciences Kagoshima University Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology Graduate School of Medical and Dental Sciences Kagoshima University Japan
- Department of Hematology and Immunology Kagoshima University Hospital Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology Graduate School of Medical and Dental Sciences Kagoshima University Japan
- Department of Hematology and Immunology Kagoshima University Hospital Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science Fukuoka University Japan
| | - Haruna Sato
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Akiyoshi Aikawa
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shin‐ichiro Honda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| |
Collapse
|
11
|
Abstract
HTLV-1 is a global infection with 5-20 million infected individuals. Although only a minority of infected individuals develop myelopathy, lymphoproliferative malignancy, or inflammatory disorders, infection is associated with immunosuppression and shorter survival. Transmission of HTLV-1 is through contaminated blood or needles, mother-to-child exposure through breast-feeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies have been identified directed against the surface envelope protein, and cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there have been few investigations of vaccines directed against each of these proteins, with limited responses, thus far. However, with new technologies developed in the last few years, a renewed investigation is warranted in search for a safe and effective HTLV-1 vaccine.
Collapse
|
12
|
Tan BJ, Sugata K, Reda O, Matsuo M, Uchiyama K, Miyazato P, Hahaut V, Yamagishi M, Uchimaru K, Suzuki Y, Ueno T, Suzushima H, Katsuya H, Tokunaga M, Uchiyama Y, Nakamura H, Sueoka E, Utsunomiya A, Ono M, Satou Y. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. J Clin Invest 2021; 131:e150472. [PMID: 34907908 PMCID: PMC8670839 DOI: 10.1172/jci150472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces chronic, persistent infection in infected individuals, with some developing adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells. In this study, we used single-cell RNA-sequencing and T cell receptor-sequencing to investigate the differentiation and HTLV-1-mediated transformation of T cells. We analyzed 87,742 PBMCs from 12 infected and 3 uninfected individuals. Using multiple independent bioinformatics methods, we demonstrated the seamless transition of naive T cells into activated T cells, whereby HTLV-1-infected cells in an activated state further transformed into ATL cells, which are characterized as clonally expanded, highly activated T cells. Notably, the greater the activation state of ATL cells, the more they acquire Treg signatures. Intriguingly, the expression of HLA class II genes in HTLV-1-infected cells was uniquely induced by the viral protein Tax and further upregulated in ATL cells. Functional assays revealed that HTLV-1-infected cells upregulated HLA class II molecules and acted as tolerogenic antigen-presenting cells to induce anergy of antigen-specific T cells. In conclusion, our study revealed the in vivo mechanisms of HTLV-1-mediated transformation and immune escape at the single-cell level.
Collapse
Affiliation(s)
- Benjy J.Y. Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
| | - Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Microbiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
| | | | - Paola Miyazato
- International Research Center for Medical Sciences (IRCMS), and
| | - Vincent Hahaut
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences and
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences and
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Suzushima
- Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Hiroo Katsuya
- International Research Center for Medical Sciences (IRCMS), and
- Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yoshikazu Uchiyama
- Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ono
- International Research Center for Medical Sciences (IRCMS), and
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection
- International Research Center for Medical Sciences (IRCMS), and
| |
Collapse
|
13
|
Status of humoral and cellular immune markers in human T-cell lymphotropic virus type 1 (HTLV-1) asymptomatic carriers in northeastern Iran, Mashhad. J Neurovirol 2020; 26:863-869. [PMID: 33025348 DOI: 10.1007/s13365-020-00910-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/26/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
It is estimated that about 10-20 million peoples are infected with human T-cell leukemia virus type 1 (HTLV-1) around the world and suffered from HTLV-related diseases. The present study was aimed to evaluate the cellular immunity, T-cell activation, humoral immunity, and inflammatory response hallmarks which affect HTLV-1-associated disease progression. A total of 78 participants were included in the study, comprising 39 HTLV-1 asymptomatic careers (ACs) and 39 healthy controls. The HTLV-proviral load (PVL) was determined via real-time PCR technique, and anti-HTLV antibody, sIL2R, sCD30, Neoptrin, hs-CRP, IgE, anti-VCA, anti-EBNA, and anti-EA were assessed by ELISA method. Mean PVL in ACs was 352.7 ± 418.7 copies/104 PBMCs. A significant higher level of sIL-2R was observed in ACs (P < 0.0001). Anti-VCA antibody titer in ACs and healthy controls was 80.72 ± 105.95 and 156.05 ± 130.71, respectively (P = 0.007). Intriguingly, suppression in ACs immune response was not observed. Resultantly, HTLV-1 infection has no effect on the humoral immune response in ACs but greater T-cell activation and function cellular responses were detected. Finally, more studies on various immune markers in adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients are greatly needed to illuminate the association of ACs' immune status with the development of the related diseases.
Collapse
|
14
|
Akbarin MM, Farhadi S, Allahyari A, Koshayar MM, Shirdel A, Rahimi H, Rezaee SA, Mahdifar M, Mozaheb Z, Mohamadi A, Bari A, Mohaddes S, Rafatpanah H. Interaction of perforin and granzyme B and HTLV-1 viral factors is associated with Adult T cell Leukemia development. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1007-1011. [PMID: 32952946 PMCID: PMC7478263 DOI: 10.22038/ijbms.2020.38454.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective(s): Human T cell leukaemia virus type 1 (HTLV-1) is associated with adult T cell leukaemia (ATL), a malignant lymphoproliferative disease that infects CD4 T cells. It is not clear why the majority of HTLV-1-infected individuals remain asymptomatic carries (ACs) and a minority develop ATL. Cellular immune response has a critical role in ATL and destroys malignant and HTLV-1-infected cells. Perforin and granzyme have important functional roles in apoptosis and destruction of infected cells. In the present study we examined the role of perforin and granzyme in ATL patients and ACs. Materials and Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from ATL patients and ACs by using Ficoll-hypaque density centrifugation. RNA was extracted and cDNA was synthesized. A real-time PCR TaqMan method was designed and optimized for evaluation of perforin, granzyme, tax, and HBZ gene expression. HTLV-1 proviral load (PVL) was quantified in patients with ATL and ACs. Results: The mRNA expression of tax and HBZ was significantly higher in ATL patients than ACs (P=0.011 and P=0.0001,respectively). The HTLV-1 PVL was higher in ATL patients compared to with AC group (P=0.015). There was a significant increase in perforin gene expression in ACs compared with ATL patients (P=0.002). Furthermore, the expression of granzyme was also higher in ACs compared with ATL patients, and significant differences were observed between the two groups (P=0.036). Conclusion: Low expression of perforin and granzyme in ATL patients seems to influence the efficiency of CTL function and destruction of HTLV-1-infected cells, which might contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Mohammad Mehdi Akbarin
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Farhadi
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Hematology Department, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mehdi Koshayar
- Hematology Department, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shirdel
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Rahimi
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mozaheb
- Hematology Department, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohamadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bari
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SeyedehTahereh Mohaddes
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Kozako T, Aikawa A, Ohsugi T, Uchida YI, Kato N, Sato K, Ishitsuka K, Yoshimitsu M, Honda SI. High expression of NAMPT in adult T-cell leukemia/lymphoma and anti-tumor activity of a NAMPT inhibitor. Eur J Pharmacol 2019; 865:172738. [PMID: 31614144 DOI: 10.1016/j.ejphar.2019.172738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature T lymphocytes induced by human T-cell leukemia virus-1 and has a poor outcome. New molecular targets for the prevention and treatment of ATL are needed urgently. We previously reported high expression of Sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylase, in primary acute-type ATL cells. NAD+ biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) modulates Sirtuin 1 activity. Here, we examined the expression and effects of inhibiting NAMPT, a rate-limiting enzyme in NAD+ biosynthesis, in ATL cells. We found that peripheral blood mononuclear cells from patients with acute-type ATL expressed significantly higher levels of NAMPT protein than cells from healthy subjects. FK866, a NAMPT inhibitor, induced apoptosis of freshly isolated ATL cells ex vivo and HTLV-1-infected T-cell lines in vitro, which was accompanied by activation of caspases, DNA fragmentation, and disruption of mitochondrial transmembrane potential. However, a pan-caspase inhibitor failed to prevent this FK866-induced cell death, while FK866 increased the caspase-independent cell death mediator endonuclease G. Intriguingly, FK866 also activated autophagy, as demonstrated by increases in protein levels of autophagosome marker LC3-II. Thus, FK866 simultaneously activated apoptosis and autophagy. Finally, FK866 treatment markedly decreased the growth of human ATL tumor xenografts in immunodeficient mice. We showed that NAMPT is highly expressed in primary ATL cells ex vivo, and that FK866 induces autophagy and caspase-dependent and -independent cell death pathways in vitro and has an anti-tumor activity in vivo. These results suggest a novel therapeutic strategy for patients with this fatal disease.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Yu-Ichiro Uchida
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keisuke Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
16
|
Kobata K, Mihashi Y, Nonaka S, Matsumoto S, Kawauchi S, Iwasaki H, Takamatsu Y, Takeshita M. Cytological tumour cell characteristics and reactive small lymphocytes influence patient prognosis in acute and lymphoma type adult T-cell leukaemia/lymphoma. Cytopathology 2019; 30:402-412. [PMID: 30907476 DOI: 10.1111/cyt.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Acute and lymphoma type adult T-cell leukaemia/lymphoma (ATLL) patients show an aggressive clinical course. While some clinical signs indicate good prognosis, definitive cytohistological prognostic factors have yet to be described. METHODS We classified 65 ATLL patients into three groups by tumour cell size and nuclear pleomorphism on fine-needle aspiration and tumour touch smear samples. Semi-quantitative analysis of background small lymphocytes, reactive CD20-positive B cells and CD8-positive T cells was performed. RESULTS Thirty-one patients had pleomorphic lymphoma with predominantly medium-sized cells and coarse granular nuclei. Another 24 patients showed pleomorphic large cell lymphoma with stippled chromatin. The remaining 10 demonstrated monomorphic large lymphoma cells with fine granular chromatin. Patients with pleomorphic lymphoma with medium-sized cells showed significantly higher serum lactate dehydrogenase and lower CD30 and C-MYC expression in lymphoma cells than the other two groups (P = .0216, P < 0.01, respectively). Patients with pleomorphic medium-sized ATLL had few usual small lymphocytes observed on routine morphological examination and showed less concurrent detection of CD20-positive B cells and CD8-positive T cells, both of which were lower than in the other two groups (P = .006, P = .019, respectively). Furthermore, ATLL patients with predominantly medium-sized lymphocytes exhibited a worse prognosis than patients with pleomorphic large cells (P = .0197). Background small lymphocytes and concurrent detection of CD20-positive B cells and CD8-positive T cells may thus be good prognostic factors (P = .011, P = .021, respectively). CONCLUSIONS Morphological features, size of neoplastic cells and background non-neoplastic lymphocyte (B cells and CD8-positive T cells) volume appear to influence the prognosis of patients with aggressive-type ATLL.
Collapse
Affiliation(s)
- Katsumi Kobata
- Pathology Laboratory, Fukuoka University Hospital, Fukuoka, Japan
| | - Yasuhito Mihashi
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Otolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shuichi Nonaka
- Department of Pathology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shinji Matsumoto
- Pathology Laboratory, Fukuoka University Hospital, Fukuoka, Japan
| | - Shigeto Kawauchi
- Department of Pathology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hiroki Iwasaki
- Department of Hematology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Morishige Takeshita
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
17
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
18
|
Kozako T, Mellini P, Ohsugi T, Aikawa A, Uchida YI, Honda SI, Suzuki T. Novel small molecule SIRT2 inhibitors induce cell death in leukemic cell lines. BMC Cancer 2018; 18:791. [PMID: 30081901 PMCID: PMC6091197 DOI: 10.1186/s12885-018-4710-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sirtuin 2 (SIRT2) is a member of the sirtuin family, nicotinamide adenine dinucleotide+-dependent deacylases, which participates in modulation of cell cycle control, neurodegeneration, and tumorigenesis. SIRT2 expression increases in acute myeloid leukemia blasts. Downregulation of SIRT2 using siRNA causes apoptosis of HeLa cells. Therefore, selective inhibitors of SIRT2 are candidate therapeutic agents for cancer. Adult T-cell leukemia/lymphoma (ATL) is a T-cell malignancy that has a poor prognosis and develops after long-term infection with human T-cell leukemia virus (HTLV)-1. Sirtuin 1 inhibition has been shown to induce apoptosis and autophagy in HTLV-1-infected cell lines, whereas the effects of SIRT2 inhibition alone have not been elucidated. METHODS We assessed the efficacy of our small molecule selective SIRT2 inhibitors NCO-90/141 to induce leukemic cell death. Cell viability was examined using the cell proliferation reagent Cell Count Reagent SF. Apoptotic cells were detected by annexin V-FITC and terminal deoxynucleotidyl transferase dUTP nick end labeling assays by flow cytometry. Caspase activity was detected using an APOPCYTO Intracellular Caspase Activity Detection Kit. The presence of autophagic vacuoles was assessed using a Cyto-ID Autophagy Detection Kit. RESULTS Our novel small molecule SIRT2-specific inhibitors NCO-90/141 inhibited cell growth of leukemic cell lines including HTLV-1-transformed T-cells. NCO-90/141 induced apoptosis via caspase activation and mitochondrial superoxide generation in leukemic cell lines. However, a caspase inhibitor did not prevent this caspase-associated cell death. Interestingly, NCO-90/141 increased the LC3-II level together with autophagosome accumulation, indicating autophagic cell death. Thus, NCO-90/141 simultaneously caused apoptosis and autophagy. CONCLUSIONS These results suggest that NCO-90/141 are highly effective against leukemic cells in caspase-dependent or -independent manners via autophagy, and they may have a novel therapeutic potential for treatment of leukemias including ATL.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Paolo Mellini
- Faculty of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yu-Ichiro Uchida
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takayoshi Suzuki
- Faculty of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.,CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
19
|
Kozako T, Sato K, Uchida Y, Kato N, Aikawa A, Ogata K, Kamimura H, Uemura H, Yoshimitsu M, Ishitsuka K, Higaki Y, Tanaka H, Honda SI, Soeda S. The small molecule STF-62247 induces apoptotic and autophagic cell death in leukemic cells. Oncotarget 2018; 9:27645-27655. [PMID: 29963226 PMCID: PMC6021257 DOI: 10.18632/oncotarget.25291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATL) is an aggressive malignant T cell disease caused by human T cell leukemia virus-I (HTLV-1). Treatment outcomes for aggressive subtypes of ATL remain poor, with little improvement in overall survival since HTLV-1 was discovered. Therefore, new therapeutic strategies for ATL are required. STF-62247 induces autophagy and selectively kills renal cell carcinoma without apoptotic cell death. Here, we demonstrate that STF-62247 reduced cell viability and resulted in autophagosome accumulation and autophagy in leukemic cell lines (S1T, MT-2, and Jurkat). Interestingly, STF-62247 induced apoptosis in HTLV-1-infected cell lines (S1T and MT-2), as indicated by DNA fragmentation and caspase activation, but not in non-HTLV-1-infected Jurkat cells; a caspase inhibitor did not prevent this caspase-associated cell death. STF-62247 also increased nuclear endonuclease G levels. Furthermore, STF-62247 reduced cell viability and increased the number of apoptotic cells in peripheral blood mononuclear cells collected from patients with acute ATL, which has a poor prognosis. Therefore, STF-62247 may have novel therapeutic potential for ATL. This is the first evidence to demonstrate the cell growth-inhibitory effect of an autophagy inducer by caspase-dependent apoptosis and caspase-independent cell death via autophagy and endonuclease G in leukemic cells.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keisuke Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.,Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan
| | - Yuichiro Uchida
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kentaro Ogata
- Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan.,Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hidetoshi Kamimura
- Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan.,Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Haruna Uemura
- Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinji Soeda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
20
|
Bellon M, Nicot C. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection. Viruses 2017; 9:v9100289. [PMID: 28981470 PMCID: PMC5691640 DOI: 10.3390/v9100289] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2 (HSV-1/2), and Varicella–Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Christophe Nicot
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
21
|
Akbarin MM, Shirdel A, Bari A, Mohaddes ST, Rafatpanah H, Karimani EG, Etminani K, Golabpour A, Torshizi R. Evaluation of the role of TAX, HBZ, and HTLV-1 proviral load on the survival of ATLL patients. Blood Res 2017; 52:106-111. [PMID: 28698846 PMCID: PMC5503887 DOI: 10.5045/br.2017.52.2.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy with very poor prognosis and short survival, caused by the human T-lymphotropic virus type-1 (HTLV-1). The HTLV-1 biomarkers trans-activator x (TAX) and HTLV-1 basic leucine zipper factor (HBZ) are main oncogenes and life-threatening elements. This study aimed to assess the role of the TAX and HBZ genes and HTLV-1 proviral load (PVL) in the survival of patients with ATLL. METHODS Forty-three HTLV-1-infected individuals, including 18 asymptomatic carriers (AC) and 25 ATLL patients (ATLL), were evaluated between 2011 and 2015. The mRNA expression of TAX and HBZ and the HTLV-1 PVL were measured by quantitative PCR. RESULTS Significant differences in the mean expression levels of TAX and HBZ were observed between the two study groups (ATLL and AC, P=0.014 and P=0.000, respectively). In addition, the ATLL group showed a significantly higher PVL than AC (P=0.000). There was a significant negative relationship between PVL and survival among all study groups (P=0.047). CONCLUSION The HTLV-1 PVL and expression of TAX and HBZ were higher in the ATLL group than in the AC group. Moreover, a higher PVL was associated with shorter survival time among all ATLL subjects. Therefore, measurement of PVL, TAX, and HBZ may be beneficial for monitoring and predicting HTLV-1-infection outcomes, and PVL may be useful for prognosis assessment of ATLL patients. This research demonstrates the possible correlation between these virological markers and survival in ATLL patients.
Collapse
Affiliation(s)
- Mohammad Mehdi Akbarin
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Abbas Shirdel
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciencess, Mashhad, Iran
| | - Alireza Bari
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciencess, Mashhad, Iran
| | - Seyedeh Tahereh Mohaddes
- Hematology Department, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciencess, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Ehsan Ghayour Karimani
- Molecular Diagnostic Unit, Research and Education Department, Razavi Hospitals, Mashhad, Iran
| | - Kobra Etminani
- Department of Medical Informatics, Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Amin Golabpour
- Department of Medical Informatics, Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| | - Reza Torshizi
- Department of Modern Sciences and Technologies, Molecular Medicine Department, Faculty of Medicine, Mashhad University of Medical sciences, Mashhad, Iran
| |
Collapse
|
22
|
Rowan AG, Witkover A, Melamed A, Tanaka Y, Cook LBM, Fields P, Taylor GP, Bangham CRM. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells. PLoS Pathog 2016; 12:e1006030. [PMID: 27893842 PMCID: PMC5125714 DOI: 10.1371/journal.ppat.1006030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.
Collapse
Affiliation(s)
- Aileen G. Rowan
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aviva Witkover
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Lucy B. M. Cook
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul Fields
- Guy’s and St Thomas’ Hospital, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Kozako T, Soeda S, Yoshimitsu M, Arima N, Kuroki A, Hirata S, Tanaka H, Imakyure O, Tone N, Honda SI, Soeda S. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio 2016; 6:442-60. [PMID: 27419050 PMCID: PMC4856423 DOI: 10.1002/2211-5463.12055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL), an aggressive T‐cell malignancy that develops after long‐term infection with human T‐cell leukemia virus (HTLV‐1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator‐activated receptor‐γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV‐1 carriers (ACs) or via caspase‐independent cell death in acute‐type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3‐II‐enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase‐dependent and ‐independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth‐inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shuhei Soeda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Immunology Kagoshima University Hospital Japan; Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Naomichi Arima
- Department of Hematology and Immunology Kagoshima University Hospital Japan; Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Ayako Kuroki
- Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Shinya Hirata
- Department of Rheumatology and Clinical Immunology Kumamoto University Hospital Japan
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science Fukuoka University Japan
| | - Osamu Imakyure
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Nanako Tone
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shinji Soeda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| |
Collapse
|
24
|
Masamoto I, Yoshimitsu M, Kuroki A, Horai S, Ezinne CC, Kozako T, Hachiman M, Kamada Y, Baba M, Arima N. Clinical significance of CD70 expression on T cells in human T-lymphotropic virus type-1 carriers and adult T cell leukemia/ lymphoma patients. Leuk Lymphoma 2015; 57:685-91. [PMID: 26077361 DOI: 10.3109/10428194.2015.1063140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). Miscellaneous host immune surveillance systems control T-cell growth/leukemogenesis during HTLV-1 infection. We characterized CD70 and CD27 expression on lymphocytes of HTLV-1 carriers and patients with ATL (study approved by the local Medical Ethical Committee). High CD70 expression was observed on CD4 + CD25+ T cells from patients with acute-type ATL, while patients with smoldering- or chronic-type ATL and HTLV-1 carriers exhibited lower expression. Furthermore, significantly higher CD27 expression was observed on HTLV-1-specific CTLs. We found an association between CD70 expression on CD4 + T cells and HTLV-1 infection; increased CD70 expression was observed after exposure to Tax. Moreover, addition of anti-CD70 antibodies enhanced the CD107a surface mobilization of HTLV-1 Tax-specific CTLs following Tax-peptide stimulation in the PBMCs of carriers. These data demonstrate the important role of the CD70/CD27 axis in immune responses in HTLV-1 carriers and ATL patients.
Collapse
Affiliation(s)
- Izumi Masamoto
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Makoto Yoshimitsu
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Ayako Kuroki
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Sawako Horai
- b Department of Regional Environment , Faculty of Regional Sciences, Tottori University , Yonago, Tottori , Japan
| | - Chibueze Chioma Ezinne
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Tomohiro Kozako
- c Department of Biochemistry , Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma Jonanku , Fukuoka , Japan
| | - Miho Hachiman
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Yuhei Kamada
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Masanori Baba
- d Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | - Naomichi Arima
- a Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| |
Collapse
|
25
|
Novel small-molecule SIRT1 inhibitors induce cell death in adult T-cell leukaemia cells. Sci Rep 2015; 5:11345. [PMID: 26091232 PMCID: PMC4473680 DOI: 10.1038/srep11345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/05/2015] [Indexed: 01/07/2023] Open
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukaemia virus (HTLV)-1. The identification of new molecular targets for ATL prevention and treatment is desired. SIRT1, a nicotinamide adenine dinucleotide(+) -dependent histone/protein deacetylase, plays crucial roles in various physiological processes, including aging and apoptosis. We previously reported that ATL patients had significantly higher SIRT1 protein levels than healthy controls. Here, we demonstrate that two novel small-molecule SIRT1 inhibitors, NCO-01/04, reduced cell viability and enhanced apoptotic cells in peripheral blood monocyte cells of patients with acute ATL, which has a poor prognosis. NCO-01/04 also reduced the cell viability with DNA fragmentation, Annexin V-positive cells, and caspase activation. However, a caspase inhibitor did not inhibit this caspase-dependent cell death. NCO-01/04 enhanced the endonuclease G level in the nucleus with loss of the mitochondrial transmembrane potential, which can promote caspase-independent death. Interestingly, NCO-01/04 increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation as well as autophagy. Thus, NCO-01/04 simultaneously caused caspase activation and autophagy. These results suggest that NCO-01/04 is highly effective against ATL cells in caspase-dependent or -independent manners with autophagy, and that its clinical application might improve the prognosis of patients with this fatal disease.
Collapse
|
26
|
Visualization of HTLV-1-specific cytotoxic T lymphocytes in the spinal cords of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neuropathol Exp Neurol 2015; 74:2-14. [PMID: 25470342 PMCID: PMC4336315 DOI: 10.1097/nen.0000000000000141] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Activated human T-lymphotropic virus type-1 (HTLV-1)–specific CD8-positive cytotoxic T lymphocytes (CTLs) are markedly increased in the periphery of patients with HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP), an HTLV-1–induced inflammatory disease of the CNS. Although virus-specific CTLs play a pivotal role to eliminate virus-infected cells, the potential role of HTLV-1–specific CTLs in the pathogenesis of HAM/TSP remains unclear. To address this issue, we evaluated the infiltration of HTLV-1–specific CTLs and the expression of HTLV-1 proteins in the spinal cords of 3 patients with HAM/TSP. Confocal laser scanning microscopy with our unique staining procedure made it possible to visualize HTLV-1–specific CTLs infiltrating the CNS of the HAM/TSP patients. The frequency of HTLV-1–specific CTLs was more than 20% of CD8-positive cells infiltrating the CNS. In addition, HTLV-1 proteins were detected in CD4-positive infiltrating T lymphocytes but not CNS resident cells. Although neurons were generally preserved, apoptotic oligodendrocytes were frequently in contact with CD8-positive cells; this likely resulted in demyelination. These findings suggest that the immune responses of the CTLs against HTLV-1–infected CD4-positive lymphocytes migrating into the CNS resulted in bystander neural damage.
Collapse
|
27
|
CD160 expression defines a uniquely exhausted subset of T lymphocytes in HTLV-1 infection. Biochem Biophys Res Commun 2014; 453:379-84. [PMID: 25277889 DOI: 10.1016/j.bbrc.2014.09.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/21/2014] [Indexed: 01/04/2023]
Abstract
HTLV-1 infection is a life-long retroviral infection. Chronic viral antigenic stimulation induces persistent infection which results in a clinically asymptomatic carrier state. Only a minor proportion of infected individuals develop adult T cell leukemia/lymphoma (ATLL) or HTLV-1-associated myelopathy/tropical spastic myelopathy (HAM/TSP). This is dependent on a balance of host and genetic factors. CD8+ cytotoxic T lymphocyte function is important in the immune response against viral infection; however, the contribution of CD160 receptor associated with CD8+ T lymphocytes is unclear. Thus, we sought to decipher its role on CTL function in HTLV-1 infection. Here, we report high frequencies of CD160 on CD8+ T cells, with significantly higher levels on HTLV-1 specific CD8+ T cells. Intercepting the CD160 pathway via blockade of the receptor or its ligand, herpes virus entry mediator (HVEM) resulted in improved perforin production and CD107a degranulation of HTLV-1 specific CD8+ T cells. Analysis of the CD160-expressing CD8+ cells demonstrated a unique subset associated with a highly differentiated effector memory based on CD45RA and CCR7 co-expression, increased expression of inhibitory molecules, 2B4 and PD1. Altogether, these results suggest a role for CD160/HVEM pathway in regulating immune response against HTLV-1 infection which may prove promising in the development of immune therapies for the treatment of HTLV-1 infection and other associated disorders.
Collapse
|
28
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
29
|
Sagar D, Masih S, Schell T, Jacobson S, Comber JD, Philip R, Wigdahl B, Jain P, Khan ZK. In vivo immunogenicity of Tax(11-19) epitope in HLA-A2/DTR transgenic mice: implication for dendritic cell-based anti-HTLV-1 vaccine. Vaccine 2014; 32:3274-84. [PMID: 24739247 DOI: 10.1016/j.vaccine.2014.03.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Viral oncoprotein Tax plays key roles in transformation of human T-cell leukemia virus (HTLV-1)-infected T cells leading to adult T-cell leukemia (ATL), and is the key antigen recognized during HTLV-associated myelopathy (HAM). In HLA-A2+ asymptomatic carriers as well as ATL and HAM patients, Tax(11-19) epitope exhibits immunodominance. Here, we evaluate CD8 T-cell immune response against this epitope in the presence and absence of dendritic cells (DCs) given the recent encouraging observations made with Phase 1 DC-based vaccine trial for ATL. To facilitate these studies, we first generated an HLA-A2/DTR hybrid mouse strain carrying the HLA-A2.1 and CD11c-DTR genes. We then studied CD8 T-cell immune response against Tax(11-19) epitope delivered in the absence or presence of Freund's adjuvant and/or DCs. Overall results demonstrate that naturally presented Tax epitope could initiate an antigen-specific CD8T cell response in vivo but failed to do so upon DC depletion. Presence of adjuvant potentiated Tax(11-19)-specific response. Elevated serum IL-6 levels coincided with depletion of DCs whereas decreased TGF-β was associated with adjuvant use. Thus, Tax(11-19) epitope is a potential candidate for the DC-based anti-HTLV-1 vaccine and the newly hybrid mouse strain could be used for investigating DC involvement in human class-I-restricted immune responses.
Collapse
Affiliation(s)
- Divya Sagar
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shet Masih
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Todd Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology & Virology Research, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Ezinne CC, Yoshimitsu M, White Y, Arima N. HTLV-1 specific CD8+ T cell function augmented by blockade of 2B4/CD48 interaction in HTLV-1 infection. PLoS One 2014; 9:e87631. [PMID: 24505299 PMCID: PMC3914814 DOI: 10.1371/journal.pone.0087631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/24/2013] [Indexed: 12/04/2022] Open
Abstract
CD8+ T cell response is important in the response to viral infections; this response though is regulated by inhibitory receptors. Expression of inhibitory receptors has been positively correlated with CD8+ T cell exhaustion; the consequent effect of simultaneous blockade of these inhibitory receptors on CD8+ T cell response in viral infections have been studied, however, the role of individual blockade of receptor-ligand pair is unclear. 2B4/CD48 interaction is involved in CD8+T cell regulation, its signal transducer SAP (signaling lymphocyte activation molecule (SLAM)-associated protein) is required for stimulatory function of 2B4/CD244 on lymphocytes hence, we analyzed 2B4/CD244 (natural killer cell receptor) and SAP (signaling lymphocyte activation molecule(SLAM)-associated protein) on total CD8+ and HTLV-1 specific CD8+T cells in HTLV-1 infection and the effect of blockade of interaction with ligand CD48 on HTLV-1 specific CD8+ T cell function. We observed a high expression of 2B4/CD244 on CD8+ T cells relative to uninfected and further upregulation on HTLV-1 specific CD8+ T cells. 2B4+ CD8+ T cells exhibited more of an effector and terminally differentiated memory phenotype. Blockade of 2B4/CD48 interaction resulted in improvement in function via perforin expression and degranulation as measured by CD107a surface mobilization on HTLV-1 specific CD8+ T cells. In the light of these findings, we thus propose an inhibitory role for 2B4/CD48 interaction on CD8+T cell function.
Collapse
Affiliation(s)
- Chibueze Chioma Ezinne
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
- * E-mail:
| | - Yohann White
- Department of Medicine, University of the West Indies, Mona, Kingston, Jamaica
| | - Naomichi Arima
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
31
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.
Collapse
|
32
|
Manuel SL, Sehgal M, Connolly J, Makedonas G, Khan ZK, Gardner J, Goedert JJ, Betts MR, Jain P. Lack of recall response to Tax in ATL and HAM/TSP patients but not in asymptomatic carriers of human T-cell leukemia virus type 1. J Clin Immunol 2013; 33:1223-39. [PMID: 23888327 PMCID: PMC3784618 DOI: 10.1007/s10875-013-9918-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE & METHODS The immunopathogenic mechanisms responsible for debilitating neurodegenerative and oncologic diseases associated with human T-cell leukemia virus type 1 (HTLV-1) are not fully understood. Quality of cytotoxic T lymphocytes (CTLs) is being increasingly associated with the outcome of persistent HTLV-1 infection. In this respect, a patient cohort (from HTLV-1 endemic region) consisting of seronegative controls (controls), asymptomatic carriers (ACs), and patients with adult T-cell leukemia (ATL) or HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) was analyzed for CD8(+) T cells polyfunctionality in response to the viral antigen Tax. RESULTS Compared to ACs, ATL and HAM/TSP patients had lower frequency and polyfunctionality of CTLs in response to Tax suggesting dysfunction of CD8(+) T cells in these individuals. As an underlying mechanism, programmed death-1 (PD-1) receptor was found to be highly unregulated in Tax-responsive as well as total CD8(+) T cells from ATL and HAM/TSP but not from ACs and directly correlated with the lack of polyfunctionality in these individuals. Further, PD-1 expression showed a direct whereas MIP-1α expression had an indirect correlation with the proviral load providing new insights about the immunopathogenesis of HTLV-associated diseases. Additionally, we identified key cytokine signatures defining the immune activation status of clinical samples by the luminex assay. CONCLUSIONS Collectively, our findings suggest that reconstitution of fully functional CTLs, stimulation of MIP-1α expression, and/or blockade of the PD-1 pathway are potential approaches for immunotherapy / therapeutic vaccine against HTLV-mediated diseases.
Collapse
Affiliation(s)
- Sharrón L. Manuel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Mohit Sehgal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | | | - George Makedonas
- Department of Microbiology and Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Jay Gardner
- Department of Microbiology and Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - James J. Goedert
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD 20892, USA
| | - Michael R. Betts
- Department of Microbiology and Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
White Y, Yoshimitsu M, Kozako T, Matsushita K, Koriyama C, Uozumi K, Suzuki S, Kofune H, Arima N. Effects of exogenous interleukin-7 on CD8(+) T-cell survival and function in human T-cell lymphotropic virus type 1 infection. Leuk Lymphoma 2013; 54:2243-50. [PMID: 23383601 DOI: 10.3109/10428194.2013.772174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interleukin-7 (IL-7) mediates T-cell homeostasis through its effects on T-cell development, survival and function. In human T-cell lymphotropic virus type 1 (HTLV-1) infection, which is causally implicated in adult T-cell leukemia (ATL), the efficiency with which CD8(+) cytotoxic T-lymphocytes (CTLs) clear HTLV-1-infected cells mediates viral control and may be related to disease progression. We report here that CD127 expression in CD8(+) T-cells is independently related to disease status, and that exogenous IL-7 enhances CD8(+) T-cell survival and clearance of HTLV-1 infected cells in vitro. We conclude that CD127 down-regulation may be associated with disease status in HTLV-1 infection, and propose that exogenous IL-7 may be useful immunotherapy or cytokine adjuvant for an anti-ATL therapeutic vaccine.
Collapse
Affiliation(s)
- Yohann White
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kozako T, Arima N, Yoshimitsu M, Honda SI, Soeda S. Liposomes and nanotechnology in drug development: focus on oncotargets. Int J Nanomedicine 2012; 7:4943-51. [PMID: 23028222 PMCID: PMC3446859 DOI: 10.2147/ijn.s30726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanotechnology is the development of an engineered device at the atomic, molecular, and macromolecular level in the nanometer range. Advances in nanotechnology have proven beneficial in therapeutic fields such as drug-delivery and gene/protein delivery. Antigen delivery systems are important for inducing and modifying immune responses. In cellular immunity, cytotoxic T lymphocytes (CTLs) are important in the host defense against tumors. Key to the development of CTL-inducible vaccines is the ability to deliver antigens to antigen-presenting cells efficiently and to induce the subsequent activation of T cell-mediated immunity without adjuvants, as they can induce excessive inflammation leading to systemic febrile disease. Since expression and cloning methods for tumor-associated antigens have been reported, cancer vaccines that induce effective cell immunity may be promising therapeutic candidates, but Th2 cells are undesirable for use in cancer immunotherapy. Peptide vaccines have immunological and economic advantages as cancer vaccines because CTL epitope peptides from tumor-associated antigens have high antigen-specificity. However, cancer vaccines have had limited effectiveness in clinical responses due to the ability of cancer cells to “escape” from cancer immunity and a low efficiency of antigen-specific CTL induction due to immunogenic-free synthetic peptides. In contrast, carbohydrate-decorated particles such as carbohydrate-coated liposomes with encapsulated antigens might be more suitable as antigen delivery vehicles to antigen-presenting cells. Oligomannose-coated liposomes (OML) can eliminate established tumors in mouse cancer models. In addition, OMLs with an encased antigen can induce antigen-specific CTLs from peripheral blood mononuclear cells obtained from patients. Feasibility studies of OML-based vaccines have revealed their potential for clinical use as vaccines for diseases where CTLs act as effector cells. Furthermore, use of the hepatitis B core particle, in which tumor-antigen epitopes are set, has consistently been shown to induce strong CTL responses without the use of an adjuvant. Thus, nanoparticles may provide a new prophylactic strategy for infectious disease and therapeutic approaches for cancer via the induction of T-cell immunity.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
35
|
Kawabata T, Higashimoto I, Takashima H, Izumo S, Kubota R. Human T-lymphotropic virus type I (HTLV-I)-specific CD8+ cells accumulate in the lungs of patients infected with HTLV-I with pulmonary involvement. J Med Virol 2012; 84:1120-7. [PMID: 22585731 DOI: 10.1002/jmv.23307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary involvement has been identified in human T-lymphotropic virus type I (HTLV-I) carriers and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, the relationship between HTLV-I infection and lung disease is poorly understood. The occurrence of HTLV-I-specific immune responses in the lungs of patients infected with HTLV-I with pulmonary involvement was investigated. The frequency of HTLV-I-specific CD8+ cells and the amount of HTLV-I proviral DNA were determined in bronchoalveolar lavage fluid cells and peripheral blood mononuclear cells (PBMCs) from five patients with HAM/TSP and one HTLV-I carrier who had pulmonary involvement. HTLV-I-specific CD8+ cells were detected by flow cytometry using human leukocyte antigen/antigen complex multimers. The analysis of bronchoalveolar lavage fluid revealed lymphocytosis in five of six patients. HTLV-I provirus was detected in the bronchoalveolar lavage fluid cells of all patients, and the proviral load in these cells was comparable to that in PBMCs. The frequency of HTLV-I-specific CD8+ cells in the bronchoalveolar lavage fluid cells was 5.1 times higher than that in PBMCs. Immunohistochemically, clusters formed by HTLV-I-specific CD8+ cells were detected in lung tissue by in situ tetramer staining. No samples were available from patients infected with HTLV-I without lung disorders. Whether accumulation of CD8+ cells is specific to patients with pulmonary involvement remains unclear. These results indicate that HTLV-I-specific CD8+ cells accumulate and HTLV-I-infected cells exist in the lungs of patients infected with HTLV-I with pulmonary involvement.
Collapse
Affiliation(s)
- Takashi Kawabata
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
36
|
Suzuki S, Masaki A, Ishida T, Ito A, Mori F, Sato F, Narita T, Ri M, Kusumoto S, Komatsu H, Fukumori Y, Nishikawa H, Tanaka Y, Niimi A, Inagaki H, Iida S, Ueda R. Tax is a potential molecular target for immunotherapy of adult T-cell leukemia/lymphoma. Cancer Sci 2012; 103:1764-73. [PMID: 22735080 DOI: 10.1111/j.1349-7006.2012.02371.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/30/2022] Open
Abstract
We expanded CTL specific for Tax (a human T-lymphotropic virus type-1-encoded gene product) in vitro from PBMC of several adult T-cell leukemia/lymphoma (ATL) patients, and document its potential significance as a target for ATL immunotherapy. Tax-specific CTL responses against tumor cells were restricted by Tax-expression and the appropriate human leukocyte antigen (HLA) type. Tax-specific CTL recognized HLA/Tax-peptide complexes on autologous ATL cells, even when their Tax expression was so low that it could only be detected by RT-PCR but not by flow cytometry. Recognition resulted in interferon gamma (IFN-γ) production and target cell lysis. This would be the first report that Tax-specific CTL from ATL patients specifically recognized and killed autologous tumor cells that expressed Tax. The Tax-specific CTL responded to as little as 0.01 pM of the corresponding peptide, indicating that their T-cell receptor avidity was much higher than that of any other CTL recognizing viral or other tumor antigens. This is presumably the reason why the Tax-specific CTL recognized and killed autologous ATL cells despite their very low Tax expression. In addition, cell cycle analyses and experiments with primary ATL cell-bearing mice demonstrated that ATL cells present at the site of active cell proliferation, such as in the tumor masses, expressed substantial amounts of Tax, but it was minimally expressed by the tumor cells in a quiescent state, such as in the blood. The present study not only provides a strong rationale for exploiting Tax as a possible target for ATL immunotherapy but also contributes to our understanding of the immunopathogenesis of ATL.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Medical Oncology & Immunology, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
El-Mallawany NK, Frazer JK, Van Vlierberghe P, Ferrando AA, Perkins S, Lim M, Chu Y, Cairo MS. Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies. Blood Cancer J 2012; 2:e65. [PMID: 22829967 PMCID: PMC3346681 DOI: 10.1038/bcj.2012.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/14/2011] [Accepted: 02/06/2012] [Indexed: 02/07/2023] Open
Abstract
T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms.
Collapse
Affiliation(s)
- N K El-Mallawany
- Department of Pediatrics, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
| | - J K Frazer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - P Van Vlierberghe
- Institute of Cancer Genetics, Columbia University, New York, NY, USA
| | - A A Ferrando
- Institute of Cancer Genetics, Columbia University, New York, NY, USA
- Department of Medicine, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, New York-Presbyterian, Morgan Stanley Children's Hospital, Columbia University, New York, NY, USA
| | - S Perkins
- Department of Hematopathology, University of Utah, Salt Lake City, UT, USA
| | - M Lim
- Department of Hematopathology, University of Michigan, Ann Arbor, MI, USA
| | - Y Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - M S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
- Departments of Medicine, Pathology, Microbiology, Immunology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
38
|
Kozako T, Aikawa A, Shoji T, Fujimoto T, Yoshimitsu M, Shirasawa S, Tanaka H, Honda SI, Shimeno H, Arima N, Soeda S. High expression of the longevity gene product SIRT1 and apoptosis induction by sirtinol in adult T-cell leukemia cells. Int J Cancer 2012; 131:2044-55. [PMID: 22322739 DOI: 10.1002/ijc.27481] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/27/2012] [Indexed: 12/27/2022]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm that develops after long-term infection with human T-cell leukemia virus (HTLV-1). SIRT1, a nicotinamide adenine dinucleotide(+)-dependent histone/protein deacetylase, plays a crucial role in various physiological processes, such as aging, metabolism, neurogenesis and apoptosis, owing to its ability to deacetylate numerous substrates, such as histone and NF-κB, which is implicated as an exacerbation factor in ATL. Here, we assessed how SIRT1 is regulated in primary ATL cells and leukemic cell lines. SIRT1 expression in ATL patients was significantly higher than that in healthy controls, especially in the acute type. Sirtinol, a SIRT1 inhibitor, induced significant growth inhibition or apoptosis in cells from ATL patients and leukemic cell lines, especially HTLV-1-related cell lines. Sirtinol-induced apoptosis was mediated by activation of the caspase family and degradation of SIRT1 in the nucleus. Furthermore, SIRT1 knockdown by SIRT1-specific small interfering RNA caused apoptosis via activation of caspase-3 and PARP in MT-2 cells, HTLV-1-related cell line. These results suggest that SIRT1 is a crucial antiapoptotic molecule in ATL cells and that SIRT1 inhibitors may be useful therapeutic agents for leukemia, especially in patients with ATL.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kozako T. [New treatment strategy for adult T-cell leukemia targeting for anti-tumor immunity and a longevity gene-encoded protein]. YAKUGAKU ZASSHI 2012; 131:1061-72. [PMID: 21720136 DOI: 10.1248/yakushi.131.1061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm with a poor prognosis, developing after long-term infection with human T-cell leukemia virus-1 (HTLV-1). Multiple factors (e.g., virus, host cells, epigenetic aberrations, and immune factors) have been implicated in the development of ATL, although the underlying mechanisms of leukemogenesis have not been fully elucidated. Despite recent progress in both chemotherapy and supportive care for hematological malignancies, the prognosis of ATL is still poor; overall survival at 3 years is only 24%. New strategies for the therapy and prophylaxis of ATL (e.g., vaccines and novel molecular target agents) are still required. This article reviews new strategy of ATL treatment targeted for HTLV-1-specific cytotoxic T-lymphocytes (CTLs) and SIRT1, a longevity gene-encoded protein. HTLV-1-specific CTLs play a critical role in the host immune response against HTLV-1. We have described here the decreased frequency and function of HTLV-1-specific CD8+ T cells in ATL patients and the efficient induction of the HTLV-1-specific CTLs response in human leukocyte antigen-A* 0201-transgenic mice by the HTLV-1/hepatitis B core chimeric particle and oligomannose-coated liposomes encapsulating HTLV-1 epitope without adjuvant, suggesting that the efficient antigen delivery system and CTL induction can be exploited to develop a prophylactic vaccine model against tumors and infectious diseases. Furthermore, our studies suggest that SIRT1, a longevity gene-encoded protein, is a crucial anti-apoptotic molecule in ATL cells, and that SIRT1 inhibitors may be useful therapeutic agents for leukemia, especially in patients with ATL. These studies targeted for anti-tumor immunity such as vaccine and SIRT1 may support the new prophylactic and therapeutic approach for ATL.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
40
|
Quantitative differences in HTLV-I antibody responses: classification and relative risk assessment for asymptomatic carriers and ATL and HAM/TSP patients from Jamaica. Blood 2012; 119:2829-36. [PMID: 22318200 DOI: 10.1182/blood-2011-11-390807] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia (ATL) and human T-cell lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) are known to be caused by HTLV-I infection. However, current methods used to determine HTLV-I infection do not differentiate between HTLV-I asymptomatic carriers (ACs) and ATL and HAM/TSP patients. Using the luciferase immunoprecipitation system, a highly sensitive, quantitative technology that can efficiently detect HTLV-I Ab responses, we examined Ab responses for HTLV-I in serum/plasma samples from 439 subjects in Jamaica, including HTLV-I-seronegative donors, ACs, and ATL and HAM/TSP patients. The Ab responses of HTLV-I-infected subjects differed significantly from those of seronegative donors for all 3 immunodominant proteins, Gag, Env, and Tax. HAM/TSP patients had significantly higher Ab responses for Gag and Env compared with ACs, and Ab responses for all 3 Ags were higher in HAM/TSP patients than in ATL patients. Moreover, immunoreactivities for HTLV-I Ags as determined by the luciferase immunoprecipitation system could distinguish HAM/TSP patients from ACs at a true-positive rate of 85.42% and from ATL patients at a true-positive rate of 75.00%, and modeled in conjunction with subject information to distinguish HAM/TSP patients from ACs (odds ratio = 14.12) and from ATL patients (odds ratio = 7.00). The relative risk assessment resulting from these significant differences between Ab responses in HTLV-I-infected groups may be a useful diagnostic tool in the future.
Collapse
|
41
|
Kozako T, Akimoto M, Toji S, White Y, Suzuki S, Arima T, Suruga Y, Matsushita K, Shimeno H, Soeda S, Kubota R, Izumo S, Uozumi K, Arima N. Target epitopes of HTLV-1 recognized by class I MHC-restricted cytotoxic T lymphocytes in patients with myelopathy and spastic paraparesis and infected patients with autoimmune disorders. J Med Virol 2011; 83:501-9. [PMID: 21264872 DOI: 10.1002/jmv.21985] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell lymphotropic virus type I (HTLV-1) causes adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The different patterns of clinical diseases are thought to be linked to immunogenetic host factors. A variety of autoimmune diseases, such as Sjögren's syndrome, have been reported in persons infected with HTLV-1, although the precise relationship between these disorders and HTLV-1 infection remains unknown. There is no report on the repertoire of HTLV-1-specific CD8+ T-cells in HAM/TSP patients or carriers with autoimmune diseases, both characterized by an abnormal immune state. In this study, to characterize HTLV-1-specific CD8+ T-cells in asymptomatic HTLV-1 carriers, HAM/TSP patients and carriers with autoimmune diseases, we examined the frequency and diversity of HTLV-1-specific CD8+ T-cells using HTLV-1 tetramers. HTLV-1 Env-specific CD8+ T-cells were significantly more frequent in HAM/TSP and carriers with autoimmune diseases compared with asymptomatic HTLV-1 carriers, while the frequency of HTLV-1 Tax-specific CD8+ T-cells was not significantly different among them. CD8+ cells binding to HTLV-1 Tax tetramers in carriers with autoimmune diseases were significantly reduced compared with HAM/TSP patients. This study demonstrates the importance of CD8+ T-cells recognizing HTLV-1 Env-tetramers in HAM/TSP patients and carriers with autoimmune diseases, thereby suggesting that the diversity, frequency and repertoire of HTLV-1 Env-specific CD8+ T-cell clones may be related to the hyperimmune response in HAM/TSP and carriers with autoimmune diseases, although different immunological mechanisms may mediate the hyperimmunity in these conditions.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takamori A, Hasegawa A, Utsunomiya A, Maeda Y, Yamano Y, Masuda M, Shimizu Y, Tamai Y, Sasada A, Zeng N, Choi I, Uike N, Okamura J, Watanabe T, Masuda T, Kannagi M. Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers. Retrovirology 2011; 8:100. [PMID: 22151736 PMCID: PMC3261825 DOI: 10.1186/1742-4690-8-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/07/2011] [Indexed: 12/17/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a small percentage of infected individuals. ATL is often associated with general immune suppression and an impaired HTLV-1-specific T-cell response, an important host defense system. We previously found that a small fraction of asymptomatic HTLV-1-carriers (AC) already showed impaired T-cell responses against the major target antigen, Tax. However, it is unclear whether the impaired HTLV-1 Tax-specific T-cell response in these individuals is an HTLV-1-specific phenomenon, or merely reflects general immune suppression. In this study, in order to characterize the impaired HTLV-1-specific T-cell response, we investigated the function of Tax-specific CD8+ T-cells in various clinical status of HTLV-1 infection. Results By using tetramers consisting of HLA-A*0201, -A*2402, or -A*1101, and corresponding Tax epitope peptides, we detected Tax-specific CD8+ T-cells in the peripheral blood from 87.0% of ACs (n = 20/23) and 100% of HAM/TSP patients (n = 18/18) tested. We also detected Tax-specific CD8+ T-cells in 38.1% of chronic type ATL (cATL) patients (n = 8/21), although its frequencies in peripheral blood CD8+ T cells were significantly lower than those of ACs or HAM/TSP patients. Tax-specific CD8+ T-cells detected in HAM/TSP patients proliferated well in culture and produced IFN-γ when stimulated with Tax peptides. However, such functions were severely impaired in the Tax-specific CD8+ T-cells detected in cATL patients. In ACs, the responses of Tax-specific CD8+ T-cells were retained in most cases. However, we found one AC sample whose Tax-specific CD8+ T-cells hardly produced IFN-γ, and failed to proliferate and express activation (CD69) and degranulation (CD107a) markers in response to Tax peptide. Importantly, the same AC sample contained cytomegalovirus (CMV) pp65-specific CD8+ T-cells that possessed functions upon CMV pp65 peptide stimulation. We further examined additional samples of two smoldering type ATL patients and found that they also showed dysfunctions of Tax-specific but not CMV-specific CD8+ T-cells. Conclusions These findings indicated that Tax-specific CD8+ T-cells were scarce and dysfunctional not only in ATL patients but also in a limited AC population, and that the dysfunction was selective for HTLV-1-specifc CD8+ T-cells in early stages.
Collapse
Affiliation(s)
- Ayako Takamori
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Is There a Role for HTLV-1-Specific CTL in Adult T-Cell Leukemia/Lymphoma? LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:391953. [PMID: 23259066 PMCID: PMC3504207 DOI: 10.1155/2012/391953] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
ATLL is an aggressive malignancy of T cells that affects about 5% of individuals infected with HTLV-1. The precise mechanism of oncogenesis is not known, but there is evidence that two regulatory viral proteins, Tax and HBZ, are involved. A high set point proviral load is associated with development of ATLL or a chronic inflammatory condition, HAM/TSP. Several lines of evidence, including HLA class 1 association studies and in vitro killing assays, indicate that cytotoxic T lymphocytes are instrumental in determining this proviral load set point. Prior studies have focused chiefly on the CTL response to the immunodominant Tax protein: efficient lysis of Tax-expressing cells inversely correlates with proviral load in nonmalignant infection. However, a recent study showed that strong binding of peptides from HBZ, but not Tax, to HLA class 1 molecules was associated with a low proviral load and a reduced risk of developing HAM/TSP, indicating an important role for HBZ-specific CTL in determining infection outcome. In comparison with nonmalignant infection, HTLV-1-specific CTLs in ATLL patients are reduced in frequency and functionally deficient. Here we discuss the nature of protective CTL responses in nonmalignant HTLV-1 infection and explore the potential of CTLs to protect against ATLL.
Collapse
|
44
|
Best I, López G, Talledo M, MacNamara A, Verdonck K, González E, Tipismana M, Asquith B, Gotuzzo E, Vanham G, Clark D. Short communication an interferon-γ ELISPOT assay with two cytotoxic T cell epitopes derived from HTLV-1 tax region 161-233 discriminates HTLV-1-associated myelopathy/tropical spastic paraparesis patients from asymptomatic HTLV-1 carriers in a Peruvian population. AIDS Res Hum Retroviruses 2011; 27:1207-12. [PMID: 21453202 DOI: 10.1089/aid.2011.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic and progressive disorder caused by the human T-lymphotropic virus type 1 (HTLV-1). In HTLV-1 infection, a strong cytotoxic T cell (CTL) response is mounted against the immunodominant protein Tax. Previous studies carried out by our group reported that increased IFN-γ enzyme-linked immunospot (ELISPOT) responses against the region spanning amino acids 161 to 233 of the Tax protein were associated with HAM/TSP and increased HTLV-1 proviral load (PVL). An exploratory study was conducted on 16 subjects with HAM/TSP, 13 asymptomatic carriers (AC), and 10 HTLV-1-seronegative controls (SC) to map the HAM/TSP-associated CTL epitopes within Tax region 161-233. The PVL of the infected subjects was determined and the specific CTL response was evaluated with a 6-h incubation IFN-γ ELISPOT assay using peripheral blood mononuclear cells (PBMCs) stimulated with 16 individual overlapping peptides covering the Tax region 161-233. Other proinflammatory and Th1/Th2 cytokines were also quantified in the supernatants by a flow cytometry multiplex assay. In addition, a set of human leukocyte antigen (HLA) class I alleles that bind with high affinity to the CTL epitopes of interest was determined using computational tools. Univariate analyses identified an association between ELISPOT responses to two new CTL epitopes, Tax 173-185 and Tax 181-193, and the presence of HAM/TSP as well as an increased PVL. The HLA-A*6801 allele, which is predicted to bind to the Tax 181-193 peptide, was overpresented in the HAM/TSP patients tested.
Collapse
Affiliation(s)
- Ivan Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni López
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael Talledo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Aidan MacNamara
- Department of Immunology, Imperial College School of Medicine, London, United Kingdom
| | - Kristien Verdonck
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Elsa González
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Medicina, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Martín Tipismana
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Medicina, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Becca Asquith
- Department of Immunology, Imperial College School of Medicine, London, United Kingdom
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Medicina, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Guido Vanham
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Clark
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
45
|
Programmed death-1 (PD-1)/PD-1 ligand pathway-mediated immune responses against human T-lymphotropic virus type 1 (HTLV-1) in HTLV-1-associated myelopathy/tropical spastic paraparesis and carriers with autoimmune disorders. Hum Immunol 2011; 72:1001-6. [PMID: 21851845 DOI: 10.1016/j.humimm.2011.07.308] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 02/03/2023]
Abstract
Human T-lymphotropic virus-1 (HTLV-1) causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia-lymphoma in individuals with dysfunctional immune responses. In this study, to characterize the HTLV-1-specific cytotoxic T lymphocyte (CTL) populations in asymptomatic HTLV-1 carriers (ACs), HAM/TSP patients, and carriers with autoimmune disorders (CAIDs), we examined the role of programmed death-1 and its ligand (PD-1/PD-L1) in HTLV-1-specific CTL functions using an HTLV-1 Tax/HLA-A*0201 tetramer and an HTLV-1 Tax/HLA-A*2402 tetramer. Interestingly, the percentage of HTLV-1 Tax301-309/HLA-A*2402 tetramer(+)CD8(+) cells expressing PD-1 in ACs was significantly higher than the percentage of HTLV-1 Tax11-19/HLA-A*0201 tetramer(+)CD8(+) cells expressing PD-1. PD-1 expression was significantly downregulated on HTLV-1-specific CTLs in HAM/TSP compared with ACs. PD-L1 expression was observed in a small proportion of unstimulated lymphocytes from ACs and was greater in ACs than in HAM/TSP and CAIDs after short-term culture. Furthermore, CTL degranulation was impaired in HAM/TSP, whereas anti-PD-L1 blockade significantly increased CTL function in ACs. Downregulation of PD-1 on HTLV-1-specific CTLs and loss of PD-L1 expression in HAM/TSP and CAIDs, along with impaired function of HTLV-1-specific CTLs in HAM/TSP, may underlie the apparently dysfunctional immune response against HTLV-1.
Collapse
|
46
|
Abdelbary NH, Abdullah HM, Matsuzaki T, Hayashi D, Tanaka Y, Takashima H, Izumo S, Kubota R. Reduced Tim-3 expression on human T-lymphotropic virus type I (HTLV-I) Tax-specific cytotoxic T lymphocytes in HTLV-I infection. J Infect Dis 2011; 203:948-59. [PMID: 21402546 DOI: 10.1093/infdis/jiq153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) and programmed cell death-1 (PD-1) are T cell exhaustion molecules. We investigated the expression of Tim-3 and PD-1 in human T-lymphotropic virus type I (HTLV-I) infection. Tim-3 expression, but not PD-1 expression, was reduced on CD4(+) and CD8(+) T cells of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients and HTLV-I carriers as compared with healthy controls. Tim-3 expression was also reduced in HTLV-I Tax-specific cytotoxic T lymphocytes (CTLs) as compared with cytomegalovirus-specific CTLs. Tim-3(+), but not PD-1(+), Tax-specific CTLs produced less interferon-γ and exhibited low cytolytic activity. However, we observed no difference in the expression of Tim-3 or cytolytic activity between Tax-specific CTLs of HAM/TSP patients or carriers. Moreover, HTLV-I-infected CD4(+) T cells showed decreased Tim-3 expression. These data suggest that Tim-3 expression is reduced in HTLV-I infection and that a high number of Tim-3(-) HTLV-I-specific CTLs preserves their cytolytic activity, thereby controlling viral replication.
Collapse
Affiliation(s)
- Nashwa H Abdelbary
- Division of Molecular Pathology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kozako T, Hirata S, Shimizu Y, Satoh Y, Yoshimitsu M, White Y, Lemonnier F, Shimeno H, Soeda S, Arima N. Oligomannose-coated liposomes efficiently induce human T-cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant. FEBS J 2011; 278:1358-66. [PMID: 21332943 DOI: 10.1111/j.1742-4658.2011.08055.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human T-cell leukemia virus-1 (HTLV-1) causes adult T-cell leukemia/lymphoma, which is an aggressive peripheral T-cell neoplasm. Insufficient T-cell response to HTLV-1 is a potential risk factor in adult T-cell leukemia/lymphoma. Efficient induction of antigen-specific cytotoxic T lymphocytes is important for immunological suppression of virus-infected cell proliferation and oncogenesis, but efficient induction of antigen-specific cytotoxic T lymphocytes has evaded strategies utilizing poorly immunogenic free synthetic peptides. Here, we examined the efficient induction of an HTLV-1-specific CD8+ T-cell response by oligomannose-coated liposomes (OMLs) encapsulating the human leukocyte antigen (HLA)-A*0201-restricted HTLV-1 Tax-epitope (OML/Tax). Immunization of HLA-A*0201 transgenic mice with OML/Tax induced an HTLV-1-specific gamma-interferon reaction, whereas immunization with epitope peptide alone induced no reaction. Upon exposure of dendritic cells to OML/Tax, the levels of CD86, major histocompatibility complex class I, HLA-A02 and major histocompatibility complex class II expression were increased. In addition, our results showed that HTLV-1-specific CD8+ T cells can be efficiently induced by OML/Tax from HTLV-1 carriers compared with epitope peptide alone, and these HTLV-1-specific CD8+ T cells were able to lyse cells presenting the peptide. These results suggest that OML/Tax is capable of inducing antigen-specific cellular immune responses without adjuvants and may be useful as an effective vaccine carrier for prophylaxis in tumors and infectious diseases by substituting the epitope peptide.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Neuroimmunity of HTLV-I Infection. J Neuroimmune Pharmacol 2010; 5:310-25. [PMID: 20437106 DOI: 10.1007/s11481-010-9216-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Human T-lymphotrophic virus type I (HTLV-I) is an oncogenic retrovirus and its infection is associated with a variety of human diseases including HTLV-I-associated myelopathy/tropic spastic paraparesis (HAM/TSP). Large numbers of epidemiological, virological, immunological, and clinical studies on HTLV-I- and HTLV-I-associated diseases have been published, although the pathogenesis of HAM/TSP remains to be fully understood. In the last several years, researchers have shown that several key factors are important in HTLV-I-associated neurologic disease including high HTLV-I proviral load and a strong immune response to HTLV-I. Here, we review pathophysiological findings on HAM/TSP and focus on viral-host immune responses to the virus in HTLV-I infected individuals. In particular, the role of HTLV-I-specific CD8+ T cell response is highlighted.
Collapse
|
49
|
Kozako T, Fukada K, Hirata S, White Y, Harao M, Nishimura Y, Kino Y, Soeda S, Shimeno H, Lemonnier F, Sonoda S, Arima N. Efficient induction of human T-cell leukemia virus-1-specific CTL by chimeric particle without adjuvant as a prophylactic for adult T-cell leukemia. Mol Immunol 2009; 47:606-13. [PMID: 19889459 DOI: 10.1016/j.molimm.2009.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 01/05/2023]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm that develops after long-term infection with the human T-cell leukemia virus-1 (HTLV-1). HTLV-1-specific cytotoxic T lymphocytes (CTLs) play an important role in suppressing proliferation of HTLV-1-infected or transformed T-cells in vitro. Efficient induction of antigen-specific CTLs is important for immunologic suppression of oncogenesis, but has evaded strategies utilizing poorly immunogenic free synthetic peptides. In the present study, we examined the efficient induction of HTLV-1-specific CD8+ T-cell response by an HTLV-1/hepatitis B virus core (HBc) chimeric particle incorporating the HLA-A*0201-restricted HTLV-1 Tax-epitope. The immunization of HLA-A*0201-transgenic mice with the chimeric particle induced antigen-specific gamma-interferon reaction, whereas immunization with epitope peptide only induced no reaction as assessed by enzyme-linked immunospot assay. Immunization with the chimeric particle also induced HTLV-1-specific CD8+ T-cells in spleen and inguinal lymph nodes. Furthermore, upon exposure of dendritic cells from HLA-A*0201-transgenic mice to the chimeric particle, the expression of CD86, HLA-A02, TLR4 and MHC class II was increased. Additionally, our results show that HTLV-1-specific CD8+ T-cells can be induced by peptide with HTLV-1/HBc particle from ATL patient, but not by peptide only and these HTLV-1-specific CD8+ T-cells were able to lyse cells presenting the peptide. These results suggest that HTLV-1/HBc chimeric particle is capable of inducing strong cellular immune responses without adjuvants via effective maturation of dendritic cells and is potentially useful as an effective carrier for therapeutic vaccines in tumors, or in infectious diseases by substituting the epitope peptide.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oliveira ALA, Hayakawa H, Schor D, Leite ACCB, Espíndola OM, Waters A, Dean J, Doherty DG, Araújo AQC, Hall WW. High frequencies of functionally competent circulating Tax-specific CD8+ T cells in human T lymphotropic virus type 2 infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:2957-65. [PMID: 19657093 DOI: 10.4049/jimmunol.0900508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human T lymphotropic virus type 2 (HTLV-2) is characterized by a clinically asymptomatic persistent infection in the vast majority of infected individuals. In this study, we have characterized for the first time ex vivo specific CTL responses against the HTLV-2 Tax protein. We could detect CTL responses only against a single HLA-A*0201-restricted Tax2 epitope, comprising residues 11-19 (LLYGYPVYV), among three alleles screened. Virus-specific CTLs could be detected in most evaluated subjects, with frequencies as high as 24% of circulating CD8(+) T cells. The frequency of specific CTLs had a statistically significant positive correlation with proviral load levels. The majority of virus-specific CD8(+) T cells exhibited an effector memory/terminally differentiated phenotype, expressed high levels of cytotoxicity mediators, including perforin and granzyme B, and lysed in vitro target cells pulsed with Tax2((11-19)) synthetic peptide in a dose-dependent manner. Our findings suggest that a strong, effective CTL response may control HTLV-2 viral burden and that this may be a significant factor in maintaining persistent infection and in the prevention of disease in infected individuals.
Collapse
Affiliation(s)
- André L A Oliveira
- Centre for Research in Infectious Diseases, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|