1
|
Chen M, Wang Y, Wang M, Xu S, Tan Z, Cai Y, Xiao X, Wang B, Deng Z, Li J. Keratin 6A promotes skin inflammation through JAK1-STAT3 activation in keratinocytes. J Biomed Sci 2025; 32:47. [PMID: 40346694 PMCID: PMC12065298 DOI: 10.1186/s12929-025-01143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Skin barrier dysfunction and immune activation are hallmarks of inflammatory skin diseases such as rosacea and psoriasis, suggesting shared pathogenic mechanisms. While barrier disruption may trigger or exacerbate skin inflammation, the precise underlying mechanisms remain unclear. Notably, epidermal barrier compromise leads to a marked increase in barrier alarmin expression. Among these, keratin 6A (KRT6A) plays a role in maintaining skin barrier integrity. METHODS We treated mouse skin and human keratinocytes, with and without KRT6A expression, with LL37/TNF-α and assessed the severity of inflammation. The specific mechanism by which KRT6A promotes skin inflammation was investigated using mass spectrometry and immunoprecipitation assays. RESULTS KRT6A expression was elevated in lesional skin from patients and mouse models of rosacea and psoriasis. In mice with LL37-induced rosacea-like and imiquimod (IMQ)-induced psoriasis-like skin inflammation, KRT6A knockdown alleviated inflammation, whereas KRT6A overexpression exacerbated inflammatory responses. Mechanistically, KRT6A activated signal transducer and activator of transcription 3 (STAT3) and enhanced proinflammatory cytokine expression in keratinocytes by reducing Janus kinase 1 (JAK1) ubiquitination. This occurred through inhibition of ring finger protein 41 (RNF41)-mediated JAK1 binding. CONCLUSIONS Our findings indicate that KRT6A expression increases following epidermal barrier disruption and contributes to exacerbated skin inflammation in disease conditions. Targeting KRT6A may represent a novel therapeutic approach for inflammatory skin diseases associated with epidermal dysfunction.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Wang
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
3
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
4
|
Huynh C, Brussee JM, Pouzol L, Fonseca M, Meyer Zu Schwabedissen HE, Dingemanse J, Sidharta PN. Target engagement of the first-in-class CXCR7 antagonist ACT-1004-1239 following multiple-dose administration in mice and humans. Biomed Pharmacother 2021; 144:112363. [PMID: 34794236 DOI: 10.1016/j.biopha.2021.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022] Open
Abstract
Antagonism of the chemokine receptor CXCR7 has shown promising effects in diverse disease areas through modulation of its ligands, CXCL11 and CXCL12. Preclinical data of the first-in-class CXCR7 antagonist, ACT-1004-1239, showed efficacy in animal models of multiple sclerosis and acute lung injury. In healthy humans, single-dose administration of ACT-1004-1239 revealed a favorable clinical profile. Here, we report the target engagement of ACT-1004-1239 in healthy mice and humans after multiple doses using CXCL11 and CXCL12 as biomarkers. In addition, safety/tolerability, concentration-QTc relationship, and pharmacokinetics (PK) were assessed in a randomized, double-blind, placebo-controlled Phase 1 clinical study. Multiple-dose ACT-1004-1239 dose-dependently increased CXCL12 plasma concentration across the investigated dose range in mice and humans (mice: 1-100 mg/kg b.i.d.; humans: 30-200 mg o.d.) when compared to vehicle/placebo demonstrating target engagement. Mouse and human PK/PD models predicted that CXCL12 concentration approached a plateau within these dose ranges. In humans, ACT-1004-1239 was rapidly absorbed (tmax: 1.75-3.01 h) and the terminal t1/2 was approximately 19 h. Steady-state conditions were reached by Day 3 with an accumulation index of 1.2. Female subjects had overall higher exposure compared to males. Multiple-dose ACT-1004-1239 was well tolerated up to 200 mg once daily in humans. There was no evidence of ACT-1004-1239-mediated QTc interval prolongation. Overall, multiple oral doses of ACT-1004-1239 showed target engagement with CXCR7 in healthy mice and humans, therefore, assessment of CXCL12 as translational tool for further investigations in patients is warranted. Favorable safety/tolerability and PK profiles allow for further clinical development.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland.
| | - Janneke M Brussee
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, 4123 Allschwil, Switzerland
| | - Laetitia Pouzol
- Idorsia Pharmaceuticals Ltd, Department of Pharmacology Immunology, 4123 Allschwil, Switzerland
| | - Marlene Fonseca
- BlueClinical Phase 1, Hospital de Prelada, 4250-449 Porto, Portugal
| | | | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, 4123 Allschwil, Switzerland
| | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, 4123 Allschwil, Switzerland
| |
Collapse
|
5
|
McFadden MJ, Sacco MT, Murphy KA, Park M, Gokhale NS, Somfleth KY, Horner SM. FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression. J Mol Biol 2021; 434:167247. [PMID: 34537236 PMCID: PMC8924017 DOI: 10.1016/j.jmb.2021.167247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022]
Abstract
Signaling initiated by type I interferon (IFN) results in the induction of hundreds of IFN-stimulated genes (ISGs). The type I IFN response is important for antiviral restriction, but aberrant activation of this response can lead to inflammation and autoimmunity. Regulation of this response is incompletely understood. We previously reported that the mRNA modification m6A and its deposition enzymes, METTL3 and METTL14 (METTL3/14), promote the type I IFN response by directly modifying the mRNA of a subset of ISGs to enhance their translation. Here, we determined the role of the RNA demethylase fat mass and obesity-associated protein (FTO) in the type I IFN response. FTO, which can remove either m6A or cap-adjacent m6Am RNA modifications, has previously been associated with obesity and body mass index, type 2 diabetes, cardiovascular disease, and inflammation. We found that FTO suppresses the transcription of a distinct set of ISGs, including many known pro-inflammatory genes, and that this regulation requires its catalytic activity but is not through the actions of FTO on m6Am. Interestingly, depletion of FTO led to activation of the transcription factor STAT3, whose role in the type I IFN response is not well understood. This activation of STAT3 increased the expression of a subset of ISGs. Importantly, this increased ISG induction resulting from FTO depletion was partially ablated by depletion of STAT3. Together, these results reveal that FTO negatively regulates STAT3-mediated signaling that induces proinflammatory ISGs during the IFN response, highlighting an important role for FTO in suppression of inflammatory genes.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Matthew T Sacco
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kristen A Murphy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Moonhee Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Kim Y Somfleth
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Martin SK, Tomida J, Wood RD. Disruption of DNA polymerase ζ engages an innate immune response. Cell Rep 2021; 34:108775. [PMID: 33626348 PMCID: PMC7990024 DOI: 10.1016/j.celrep.2021.108775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
In mammalian cells, specialized DNA polymerase ζ (pol ζ) contributes to genomic stability during normal DNA replication. Disruption of the catalytic subunit Rev3l is toxic and results in constitutive chromosome damage, including micronuclei. As manifestations of this genomic stress are unknown, we examined the transcriptome of pol ζ-defective cells by RNA sequencing (RNA-seq). Expression of 1,117 transcripts is altered by ≥4-fold in Rev3l-disrupted cells, with a pattern consistent with an induction of an innate immune response. Increased expression of interferon-stimulated genes at the mRNA and protein levels in pol ζ-defective cells is driven by the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-signaling partner stimulator of interferon genes (STING) pathway. Expression of key interferon-stimulated chemokines is elevated in basal epithelial mouse skin cells with a disruption of Rev3l. These results indicate that the disruption of pol ζ may simultaneously increase sensitivity to genotoxins and potentially engage parts of the innate immune response, which could add an additional benefit to targeting pol ζ in cancer therapies.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA; The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Junya Tomida
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA; The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Huynh C, Henrich A, Strasser DS, Boof ML, Al-Ibrahim M, Meyer Zu Schwabedissen HE, Dingemanse J, Ufer M. A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker. Clin Pharmacol Ther 2021; 109:1648-1659. [PMID: 33406277 DOI: 10.1002/cpt.2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022]
Abstract
The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous 14 C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Mike Ufer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
8
|
Kumagai S, Togashi Y, Sakai C, Kawazoe A, Kawazu M, Ueno T, Sato E, Kuwata T, Kinoshita T, Yamamoto M, Nomura S, Tsukamoto T, Mano H, Shitara K, Nishikawa H. An Oncogenic Alteration Creates a Microenvironment that Promotes Tumor Progression by Conferring a Metabolic Advantage to Regulatory T Cells. Immunity 2020; 53:187-203.e8. [PMID: 32640259 DOI: 10.1016/j.immuni.2020.06.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.
| | - Chika Sakai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Akihito Kawazoe
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
Xu S, Xie F, Tian L, Fallah S, Babaei F, Manno SHC, Manno FAM, Zhu L, Wong KF, Liang Y, Ramalingam R, Sun L, Wang X, Plumb R, Gethings L, Lam YW, Cheng SH. Estrogen accelerates heart regeneration by promoting the inflammatory response in zebrafish. J Endocrinol 2020; 245:39-51. [PMID: 31977314 PMCID: PMC7040496 DOI: 10.1530/joe-19-0413] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.
Collapse
Affiliation(s)
- Shisan Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Fangjing Xie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Samane Fallah
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Fatemeh Babaei
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Sinai H C Manno
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Francis A M Manno
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Kin Fung Wong
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yimin Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Rajkumar Ramalingam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Lei Sun
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Robert Plumb
- Waters Technologies Corporation, Milford, Massachusetts, USA
| | - Lee Gethings
- Waters Technologies Corporation, Milford, Massachusetts, USA
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Correspondence should be addressed to Y W Lam or S H Cheng: or
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Correspondence should be addressed to Y W Lam or S H Cheng: or
| |
Collapse
|
10
|
Kumaravel S, Singh S, Roy S, Venkatasamy L, White TK, Sinha S, Glaser SS, Safe SH, Chakraborty S. CXCL11-CXCR3 Axis Mediates Tumor Lymphatic Cross Talk and Inflammation-Induced Tumor, Promoting Pathways in Head and Neck Cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:900-915. [PMID: 32035061 PMCID: PMC7180517 DOI: 10.1016/j.ajpath.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis to the draining lymph nodes is critical in patient prognosis and is tightly regulated by molecular interactions mediated by lymphatic endothelial cells (LECs). The underlying mechanisms remain undefined in the head and neck squamous cell carcinomas (HNSCCs). Using HNSCC cells and LECs we determined the mechanisms mediating tumor-lymphatic cross talk. The effects of a pentacyclic triterpenoid, methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me), a potent anticancer agent, were studied on cancer-lymphatic interactions. In response to inflammation, LECs induced the chemokine (C-X-C motif) ligand 9/10/11 chemokines with a concomitant increase in the chemokine (C-X-C motif) receptor 3 (CXCR3) in tumor cells. CF3DODA-Me showed antiproliferative effects on tumor cells, altered cellular bioenergetics, suppressed matrix metalloproteinases and chemokine receptors, and the induction of CXCL11-CXCR3 axis and phosphatidylinositol 3-kinase/AKT pathways. Tumor cell migration to LECs was inhibited by blocking CXCL11 whereas recombinant CXCL11 significantly induced tumor migration, epithelial-to-mesenchymal transition, and matrix remodeling. Immunohistochemical analysis of HNSCC tumor arrays showed enhanced expression of CXCR3 and increased lymphatic vessel infiltration. Furthermore, The Cancer Genome Atlas RNA-sequencing data from HNSCC patients also showed a positive correlation between CXCR3 expression and lymphovascular invasion. Collectively, our data suggest a novel mechanism for cross talk between the LECs and HNSCC tumors through the CXCR3-CXCL11 axis and elucidate the role of the triterpenoid CF3DODA-Me in abrogating several of these tumor-promoting pathways.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Sumeet Singh
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Lavanya Venkatasamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Tori K White
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, Texas
| | - Shannon S Glaser
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Stephen H Safe
- Department Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, Texas.
| |
Collapse
|
11
|
Ardanuy J, Scanlon K, Skerry C, Fuchs SY, Carbonetti NH. Age-Dependent Effects of Type I and Type III IFNs in the Pathogenesis of Bordetella pertussis Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:2192-2202. [PMID: 32152071 PMCID: PMC7141952 DOI: 10.4049/jimmunol.1900912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Type I and III IFNs play diverse roles in bacterial infections, being protective for some but deleterious for others. Using RNA-sequencing transcriptomics we investigated lung gene expression responses to Bordetella pertussis infection in adult mice, revealing that type I and III IFN pathways may play an important role in promoting inflammatory responses. In B. pertussis-infected mice, lung type I/III IFN responses correlated with increased proinflammatory cytokine expression and with lung inflammatory pathology. In mutant mice with increased type I IFN receptor (IFNAR) signaling, B. pertussis infection exacerbated lung inflammatory pathology, whereas knockout mice with defects in type I IFN signaling had lower levels of lung inflammation than wild-type mice. Curiously, B. pertussis-infected IFNAR1 knockout mice had wild-type levels of lung inflammatory pathology. However, in response to infection these mice had increased levels of type III IFN expression, neutralization of which reduced lung inflammation. In support of this finding, B. pertussis-infected mice with a knockout mutation in the type III IFN receptor (IFNLR1) and double IFNAR1/IFNLR1 knockout mutant mice had reduced lung inflammatory pathology compared with that in wild-type mice, indicating that type III IFN exacerbates lung inflammation. In marked contrast, infant mice did not upregulate type I or III IFNs in response to B. pertussis infection and were protected from lethal infection by increased type I IFN signaling. These results indicate age-dependent effects of type I/III IFN signaling during B. pertussis infection and suggest that these pathways represent targets for therapeutic intervention in pertussis.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
12
|
Harris BD, Schreiter J, Chevrier M, Jordan JL, Walter MR. Human interferon-ϵ and interferon-κ exhibit low potency and low affinity for cell-surface IFNAR and the poxvirus antagonist B18R. J Biol Chem 2018; 293:16057-16068. [PMID: 30171073 DOI: 10.1074/jbc.ra118.003617] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/16/2018] [Indexed: 01/23/2023] Open
Abstract
IFNϵ and IFNκ are interferons that induce microbial immunity at mucosal surfaces and in the skin. They are members of the type-I interferon (IFN) family, which consists of 16 different IFNs, that all signal through the common IFNAR1/IFNAR2 receptor complex. Although IFNϵ and IFNκ have unique expression and functional properties, their biophysical properties have not been extensively studied. In this report, we describe the expression, purification, and characterization of recombinant human IFNϵ and IFNκ. In cellular assays, IFNϵ and IFNκ exhibit ∼1000-fold lower potency than IFNα2 and IFNω. The reduced potency of IFNϵ and IFNκ are consistent with their weak affinity for the IFNAR2 receptor chain. Despite reduced IFNAR2-binding affinities, IFNϵ and IFNκ exhibit affinities for the IFNAR1 chain that are similar to other IFN subtypes. As observed for cellular IFNAR2 receptor, the poxvirus antagonist, B18R, also exhibits reduced affinity for IFNϵ and IFNκ, relative to the other IFNs. Taken together, our data suggest IFNϵ and IFNκ are specialized IFNs that have evolved to weakly bind to the IFNAR2 chain, which allows innate protection of the mucosa and skin and limits neutralization of IFNϵ and IFNκ biological activities by viral IFN antagonists.
Collapse
Affiliation(s)
- Bethany D Harris
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35243 and
| | | | - Marc Chevrier
- Janssen Research & Development, LLC, Raritan, New Jersey 08869
| | - Jarrat L Jordan
- Janssen Research & Development, LLC, Raritan, New Jersey 08869
| | - Mark R Walter
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35243 and
| |
Collapse
|
13
|
Tan G, Xiao Q, Song H, Ma F, Xu F, Peng D, Li N, Wang X, Niu J, Gao P, Qin FXF, Cheng G. Type I IFN augments IL-27-dependent TRIM25 expression to inhibit HBV replication. Cell Mol Immunol 2018; 15:272-281. [PMID: 28194021 PMCID: PMC5843613 DOI: 10.1038/cmi.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) can cause chronic hepatitis B, which may lead to cirrhosis and liver cancer. Type I interferon (IFN) is an approved drug for the treatment of chronic hepatitis B. However, the fundamental mechanisms of antiviral action by type I IFN and the downstream signaling pathway are unclear. TRIM25 is an IFN-stimulated gene (ISG) that has an important role in RIG-I ubiquitination and activation. Whether TRIM25 is induced in liver cells by type I IFN to mediate anti-HBV function remains unclear. Here we report that interleukin-27 (IL-27) has a critical role in IFN-induced TRIM25 upregulation. TRIM25 induction requires both STAT1 and STAT3. In TRIM25 knockout HepG2 cells, type I IFN production was consistently attenuated and HBV replication was increased, whereas overexpression of TRIM25 in HepG2 cells resulted in elevated IFN production and reduced HBV replication. More interestingly, we found that TRIM25 expression was downregulated in HBV patients and the addition of serum samples from HBV patients could inhibit TRIM25 expression in HepG2 cells, suggesting that HBV might have involved a mechanism to inhibit antiviral ISG expression and induce IFN resistance. Collectively, our results demonstrate that type I IFN -induced TRIM25 is an important factor in inhibiting HBV replication, and the IFN-IL-27-TRIM25 axis may represent a new target for treating HBV infection.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Feng Ma
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, PR China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Di Peng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, PR China
| | - Na Li
- Department of Obstetrics, The First Hospital, Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaosong Wang
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - F Xiao-Feng Qin
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, PR China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130061, PR China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, PR China
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Pfeffer SR, Fan M, Du Z, Yang CH, Pfeffer LM. Unphosphorylated STAT3 regulates the antiproliferative, antiviral, and gene-inducing actions of type I interferons. Biochem Biophys Res Commun 2017. [PMID: 28642132 DOI: 10.1016/j.bbrc.2017.06.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Type I interferon (IFNα/β) induces antiviral and antiproliferative responses in cells through the induction of IFN-stimulated genes (ISGs). Although the roles of IFN-activated STAT1 and STAT2 in the IFN response are well described, the function of STAT3 is poorly characterized. We investigated the role of STAT3 in the biological response to IFNα/β in mouse embryonic fibroblasts (MEFs) with a germ line deletion of STAT3. These STAT3 knockout (STAT3-KO) MEFs were reconstituted with STAT3 or the F705-STAT3 mutant (unphosphorylated STAT3) where the canonical Y705 tyrosine phosphorylation site was mutated. We show that both STAT3 and unphosphorylated STAT3 expression enhance the sensitivity of MEFs to the antiviral, antiproliferative and gene-inducing actions of IFN. By chromatin immunoprecipitation assays, unphosphorylated STAT3 appears to bind, albeit weakly, to select gene promoters to enhance their expression. These results suggest that unphosphorylated STAT3 plays an important role in the IFN response pathway.
Collapse
Affiliation(s)
- Susan R Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center and Memphis, TN 38163, USA
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center and Memphis, TN 38163, USA
| | - Ziyun Du
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center and Memphis, TN 38163, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center and Memphis, TN 38163, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center and Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Thaney VE, O'Neill AM, Hoefer MM, Maung R, Sanchez AB, Kaul M. IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury. Sci Rep 2017; 7:46514. [PMID: 28425451 PMCID: PMC5397848 DOI: 10.1038/srep46514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Graduate School of Biomedical Sciences, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| |
Collapse
|
16
|
Zhong J, Allen K, Rao X, Ying Z, Braunstein Z, Kankanala SR, Xia C, Wang X, Bramble LA, Wagner JG, Lewandowski R, Sun Q, Harkema JR, Rajagopalan S. Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice. Inhal Toxicol 2016; 28:383-392. [PMID: 27240593 PMCID: PMC4911226 DOI: 10.1080/08958378.2016.1179373] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. OBJECTIVES To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. METHODS Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and Oil-Red-O staining. Inflammatory responses were detected using flow cytometry and real-time PCR. RESULTS KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4 + T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4 + T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. CONCLUSIONS Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katryn Allen
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Xiaoquan Rao
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Saumya R. Kankanala
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chang Xia
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoke Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lori A. Bramble
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - James G. Wagner
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Ryan Lewandowski
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Qinghua Sun
- Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jack R. Harkema
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes. Cytokine 2016; 83:19-26. [DOI: 10.1016/j.cyto.2016.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
|
18
|
Xu F, Song H, Li N, Tan G. HBsAg blocks TYPE I IFN induced up-regulation of A3G through inhibition of STAT3. Biochem Biophys Res Commun 2016; 473:219-223. [PMID: 27003258 DOI: 10.1016/j.bbrc.2016.03.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
Interferon (IFN) is a regularly utilized therapeutic for the treatment of chronic hepatitis B and appears to induce superior HBeAg seroconversion comparing nucleos/tide analogs. However, the mechanisms underlying IFN inhibition of HBV replication, as well as poor responses to IFN are unclear. Apobec3G has been reported to be involved in regulating HBV replication. In this study, we investigated Apobec3G expression and regulatory pathways during HBV infection. We show that over-expression of A3G leads to inhibition of HBV replication. We also show that IFN induces a significant increase in A3G protein expression, which is associated with STAT3 activation. We further show that A3G expression in HBV patients is lower compared to non-infected controls, possibly by HBsAg which inhibits IFN induced A3G up-regulation in a dose dependent manner. This process is likely mediated through inhibition of STAT3-Ser727 phosphorylation. The results presented in this study indicate that STAT3 plays an important role in IFN-induced A3G production, and HBsAg may correlated with poor response to IFN treatment.
Collapse
Affiliation(s)
- Fengchao Xu
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China
| | - Hongxiao Song
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China
| | - Na Li
- Department of Obstetric, The First Hospital, Jilin University, Changchun, Jilin, 130021, PR China
| | - Guangyun Tan
- Institute of Translational Medicine, Department of Immunology, The First Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
19
|
Zheng M, Turton KB, Zhu F, Li Y, Grindle KM, Annis DS, Lu L, Drennan AC, Tweardy DJ, Bharadwaj U, Mosher DF, Rui L. A mix of S and ΔS variants of STAT3 enable survival of activated B-cell-like diffuse large B-cell lymphoma cells in culture. Oncogenesis 2016; 4:e184. [PMID: 26727576 PMCID: PMC4728674 DOI: 10.1038/oncsis.2015.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
Activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL) is characterized by increased expression and activator of signal transducer and activator of transcription 3 (STAT3). ABC DLBCL cells require STAT3 for growth in culture. In ABC DLBCL cells, eosinophils and perhaps all cells, four variant STAT3 mRNAs (Sα, ΔSα, Sβ and ΔSβ) are present as a result of two alternative splicing events, one that results in the inclusion of a 55-residue C-terminal transactivation domain (α) or a truncated C-terminal domain with 7 unique residues (β) and a second that includes (S) or excludes (ΔS) the codon for Ser-701 in the linker between the SH2 and C-terminal domains. A substantial literature indicates that both α and β variants are required for optimal STAT3 function, but nothing is known about functions of ΔS variants. We used a knockdown/re-expression strategy to explore whether survival of ABC DLBCL cells requires that the four variants be in an appropriate ratio. No single variant rescued survival as well as STAT3Sα-C, Sα with activating mutations (A661C and N663C) in the SH2 domain. Better rescue was achieved when all four variants were re-expressed or Sα and ΔSα or Sβ and ΔSβ were re-expressed in pairs. Rescue correlated with expression of STAT3-sensitive genes NFKBIA and NFKBIZ. We consider a variety of explanations why a mix of S and ΔS variants of STAT3 should enable survival of ABC DLBCL cells.
Collapse
Affiliation(s)
- M Zheng
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - K B Turton
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - F Zhu
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Y Li
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - K M Grindle
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - D S Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - L Lu
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - A C Drennan
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - D J Tweardy
- Department of Internal Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - U Bharadwaj
- Department of Internal Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - D F Mosher
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - L Rui
- Division of Hematology-Oncology, Department of Medicine, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Yang CH, Li K, Pfeffer SR, Pfeffer LM. The Type I IFN-Induced miRNA, miR-21. Pharmaceuticals (Basel) 2015; 8:836-47. [PMID: 26610525 PMCID: PMC4695812 DOI: 10.3390/ph8040836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 01/21/2023] Open
Abstract
The interferon (IFN) family of cytokines not only has antiviral properties at various steps in the viral replication cycle, but also anticancer activity through multiple pathways that include inhibiting cell proliferation, regulating cellular responses to inducers of apoptosis and modulating angiogenesis and the immune system. IFNs are known to induce their biological activity through the induction of protein encoding IFN-stimulated genes. However, recent studies have established that IFNs also induce the expression of microRNAs (miRNAs), which are small endogenous non-coding RNAs that suppress gene expression at the post-transcriptional level. MiRNAs play critical roles in tumorigenesis and have been implicated to act as either oncogenes or tumor suppressors in various human cancers. Therefore, IFN-induced miRNAs play an important role, not only in the host response to innate immune response to cancer, but also in the tumorigenic process itself. Furthermore, IFN-induced miRNAs may participate in and/or orchestrate antiviral defense in certain viral infections. In this review, we describe our recent studies on the induction of miR-21 by type I IFN, the role of the STAT3 and NFκB signaling pathways in IFN-induced miR-21 expression, the role of miR-21 in different cancers and the role of miR-21 in regulating the antiviral response.
Collapse
Affiliation(s)
- Chuan He Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA.
| | - Susan R Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Menheniott TR, Judd LM, Giraud AS. STAT3: a critical component in the response to Helicobacter pylori infection. Cell Microbiol 2015; 17:1570-82. [PMID: 26332850 DOI: 10.1111/cmi.12518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/16/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
STAT3 imparts a profound influence on both the epithelial and immune components of the gastric mucosa, and through regulation of key intracellular signal transduction events, is well placed to control inflammatory and oncogenic outcomes in the context of Helicobacter (H.) pylori infection. Here we review the roles of STAT3 in the host immune response to H. pylori infection, from both gastric mucosal and systemic perspectives, as well as alluding more specifically to STAT3-dependent mechanisms that might be exploited as drug targets.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Judd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew S Giraud
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Cerny KL, Van Fleet M, Slepenkin A, Peterson EM, Bridges PJ. Differential Expression of mRNA Encoding Cytokines and Chemokines in the Reproductive Tract after Infection of Mice with Chlamydia trachomatis. ACTA ACUST UNITED AC 2015; 4. [PMID: 26779389 PMCID: PMC4712740 DOI: 10.4172/2161-038x.1000152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with Chlamydia trachomatis targets epithelial cells within the genital tract which respond by secreting chemokines and cytokines. Persistent inflammation can lead to fibrosis, tubal infertility and/or ectopic pregnancy; many infections are asymptomatic. Most studies have investigated the inflammatory response in the initial stages of infection, less is known about the later stages of infection, especially with a low, potentially asymptomatic, bacterial load. Our objective was to determine the inflammatory mediators involved in clearance of low-grade infection and the potential involvement in chronic inflammation. Six to eight week old C3H/HeJ mice were pretreated with 2.5 mg medroxyprogesterone acetate on day -10 and -3 before infection. Mice (n=3 for 28 d, n=3 for 35 d) were infected with 5 × 102 inclusion-forming units of C. trachomatis, serovar D; vaginal cultures were obtained weekly to monitor infection. Control mice (n=3 for 28 d, n=3 for 35 d) were sham infected. Mice were killed on day 28 (experiment 1) and day 35 (experiment 2) post-infection and vaginal tissue, uterine horns and oviducts collected for analysis of mRNAs encoding inflammatory cytokines and chemokines. Total RNA was isolated and a superarray analysis performed using mouse Cytokines and Chemokines PCR arrays (Qiagen, Valencia, CA). Statistical differences in gene expression were determined using a paired Students t-test. At 28 days after infection, the expression of mRNA encoding 6, 35 and 3 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). At 35 days after infection, the expression of mRNA encoding 16, 38 and 14 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). Understanding the mechanisms involved in the inflammatory response at later stages of infection should aid in the development of treatment options that minimize the development of asymptomatic, chronic inflammation-induced infertility.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Maranda Van Fleet
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Ellena M Peterson
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
23
|
Fenwick PS, Macedo P, Kilty IC, Barnes PJ, Donnelly LE. Effect of JAK Inhibitors on Release of CXCL9, CXCL10 and CXCL11 from Human Airway Epithelial Cells. PLoS One 2015; 10:e0128757. [PMID: 26090665 PMCID: PMC4474874 DOI: 10.1371/journal.pone.0128757] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/01/2015] [Indexed: 12/16/2022] Open
Abstract
Background CD8+ T-cells are located in the small airways of COPD patients and may contribute to pathophysiology. CD8+ cells express the chemokine receptor, CXCR3 that binds CXCL9, CXCL10 and CXCL11, which are elevated in the airways of COPD patients. These chemokines are released from airway epithelial cells via activation of receptor associated Janus kinases (JAK). This study compared the efficacy of two structurally dissimilar pan-JAK inhibitors, PF956980 and PF1367550, and the glucocorticosteroid dexamethasone, in BEAS-2B and human primary airway epithelial cells from COPD patients and control subjects. Methods Cells were stimulated with either IFNγ alone or with TNFα, and release of CXCL9, CXCL10 and CXCL11 measured by ELISA and expression of CXCL9, CXCL10 and CXCL11 by qPCR. Activation of JAK signalling was assessed by STAT1 phosphorylation and DNA binding. Results There were no differences in the levels of release of CXCL9, CXCL10 and CXCL11 from primary airway epithelial cells from any of the subjects or following stimulation with either IFNγ alone or with TNFα. Dexamethasone did not inhibit CXCR3 chemokine release from stimulated BEAS-2B or primary airway epithelial cells. However, both JAK inhibitors suppressed this response with PF1367550 being ~50-65-fold more potent than PF956980. The response of cells from COPD patients did not differ from controls with similar responses regardless of whether inhibitors were added prophylactically or concomitant with stimuli. These effects were mediated by JAK inhibition as both compounds suppressed STAT1 phosphorylation and DNA-binding of STAT1 and gene transcription. Conclusions These data suggest that the novel JAK inhibitor, PF1367550, is more potent than PF956980 and that JAK pathway inhibition in airway epithelium could provide an alternative anti-inflammatory approach for glucocorticosteroid-resistant diseases including COPD.
Collapse
Affiliation(s)
- Peter S Fenwick
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patricia Macedo
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Iain C Kilty
- Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Pfeffer SR, Yang CH, Pfeffer LM. The Role of miR-21 in Cancer. Drug Dev Res 2015; 76:270-7. [PMID: 26082192 DOI: 10.1002/ddr.21257] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNAs that suppress gene expression at the post-transcriptional level. In the past decade, miRNAs have been extensively studied in a number of different human cancers. MiRNAs have been identified to act both as oncogenes and as tumor suppressors. In addition, miRNAs are associated with the intrinsic resistance of cancer to various forms of therapy, and they are implicated in both tumor progression and metastasis. The characterization of the specific alterations in the patterns of miRNA expression in cancer has great potential for identifying biomarkers for early cancer detection, as well as for potential therapeutic intervention in cancer treatment. In this chapter, we describe the ever-expanding role of miR-21 and its target genes in different cancers, and provide insight into how this oncogenic miRNA regulates cancer cell proliferation, migration, and apoptosis by suppressing the expression of tumor suppressors.
Collapse
Affiliation(s)
- Susan R Pfeffer
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
25
|
Parainflammation associated with advanced glycation endproduct stimulation of RPE in vitro: implications for age-related degenerative diseases of the eye. Cytokine 2013; 62:369-81. [PMID: 23601964 DOI: 10.1016/j.cyto.2013.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 12/22/2022]
Abstract
Age related macular degeneration (AMD) is one of the leading causes of blindness in Western society. A hallmark of early stage AMD are drusen, extracellular deposits that accumulate in the outer retina. Advanced glycation endproducts (AGE) accumulate with aging and are linked to several age-related diseases such as Alzheimer's disease, osteoarthritis, atherosclerosis and AMD. AGE deposits are found in drusen and in Bruch's membrane of the eye and several studies have suggested its role in promoting oxidative stress, apoptosis and lipofuscin accumulation. Recently, complement activation and chronic inflammation have been implicated in the pathogenesis of AMD. While AGEs have been shown to promote inflammation in other diseases, whether it plays a similar role in AMD is not known. This study investigates the effects of AGE stimulation on pro- and anti-inflammatory pathways in primary culture of human retinal pigment epithelial cells (RPE). Differential gene expression studies revealed a total of 41 up- and 18 down-regulated RPE genes in response to AGE stimulation. These genes fell into three categories as assessed by gene set enrichment analysis (GSEA). The main categories were inflammation (interferon-induced, immune response) and proteasome degradation, followed by caspase signaling. Using suspension array technology, protein levels of secreted cytokines and growth factors were also examined. Anti-inflammatory cytokines including IL10, IL1ra and IL9 were all overexpressed. Pro-inflammatory cytokines including IL4, IL15 and IFN-γ were overexpressed, while other pro-inflammatory cytokines including IL8, MCP1, IP10 were underexpressed after AGE stimulation, suggesting a para-inflammation state of the RPE under these conditions. Levels of mRNA of chemokine, CXCL11, and viperin, RSAD2, were up-regulated and may play a role in driving the inflammatory response via the NF-kB and JAK-STAT pathways. CXCL11 was strongly immunoreactive and associated with drusen in the AMD eye. The pathways and novel genes identified here highlight inflammation as a key response to AGE stimulation in primary culture of human RPE, and identify chemokine CXCL11 as putative novel agent associated with the pathogenesis of AMD.
Collapse
|
26
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
27
|
Du Z, Whitt MA, Baumann J, Garner JM, Morton CL, Davidoff AM, Pfeffer LM. Inhibition of type I interferon-mediated antiviral action in human glioma cells by the IKK inhibitors BMS-345541 and TPCA-1. J Interferon Cytokine Res 2012; 32:368-77. [PMID: 22509977 DOI: 10.1089/jir.2012.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nuclear factor-kappa B (NFκB) signal transduction pathway plays an important role in immunity, inflammation, cell growth, and survival. Since dysregulation of this pathway results in high, constitutive NFκB activation in various cancers and immune disorders, the development of specific drugs to target this pathway has become a focus for treating these diseases. NFκB regulates various aspects of the cellular response to interferon (IFN). However, the role of the upstream regulator of the NFκB signaling pathway, the inhibitor of κB kinase (IKK) complex, on IFN function has not been examined. In the present study, we examined the effects of 2 IKK inhibitors, N-(1,8-Dimethylimidazo[1,2-a]quinoxalin-4-yl)-1,2-ethanediamine hydrochloride (BMS-345541) and 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), on IFN action in several human glioma cell lines. IKK inhibitors inhibit glioma cell proliferation, as well as TNF-induced RelA (p65) nuclear translocation and NFκB-dependent IL8 gene expression. Importantly, BMS-345541 and TPCA-1 differentially inhibit IFN-induced gene expression, completely suppressing MX1 and GBP1 gene expression, while having only a minor effect on ISG15 expression. Furthermore, these IKK inhibitors displayed marked differences in blocking IFN-induced antiviral action against cytopathic effects and replication of vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV). Our results show that the IKK complex plays an important function in IFN-induced gene expression and antiviral activity. Since VSV and EMCV are oncolytic viruses used in cancer therapy, our results indicate the potential synergy in combining IKK inhibitors with oncolytic viruses.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Balasubramanian S, Fan M, Messmer-Blust AF, Yang CH, Trendel JA, Jeyaratnam JA, Pfeffer LM, Vestal DJ. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem 2011; 286:20054-64. [PMID: 21502320 PMCID: PMC3103378 DOI: 10.1074/jbc.m111.249326] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 04/15/2011] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is important in numerous normal and pathological processes, including the angiogenic switch during tumor development and tumor metastasis. Whereas TNF-α and other cytokines up-regulate MMP-9 expression, interferons (IFNs) inhibit MMP-9 expression. We found that IFN-γ treatment or forced expression of the IFN-induced GTPase, mGBP-2, inhibit TNF-α-induced MMP-9 expression in NIH 3T3 fibroblasts, by inhibiting MMP-9 transcription. The NF-κB transcription factor is required for full induction of MMP-9 by TNF-α. Both IFN-γ and mGBP-2 inhibit the transcription of a NF-κB-dependent reporter construct, suggesting that mGBP-2 inhibits MMP-9 induction via inhibition of NF-κB-mediated transcription. Interestingly, mGBP-2 does not inhibit TNF-α-induced degradation of IκBα or p65/RelA translocation into the nucleus. However, mGBP-2 inhibits p65 binding to a κB oligonucleotide probe in gel shift assays and to the MMP-9 promoter in chromatin immunoprecipitation assays. In addition, TNF-α activation of NF-κB in NIH 3T3 cells is dependent on Rac activation, as evidenced by the inhibition of TNF-α induction of NF-κB-mediated transcription by a dominant inhibitory form of Rac1. A role for Rac in the inhibitory action of mGBP-2 on NF-κB is further shown by the findings that mGBP-2 inhibits TNF-α activation of endogenous Rac and constitutively activate Rac can restore NF-κB transcription in the presence of mGBP-2. This is a novel mechanism by which IFNs can inhibit the cytokine induction of MMP-9 expression.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Meiyun Fan
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Chuan H. Yang
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jill A. Trendel
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Jonathan A. Jeyaratnam
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Lawrence M. Pfeffer
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Deborah J. Vestal
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| |
Collapse
|
29
|
Pfeffer LM. The role of nuclear factor κB in the interferon response. J Interferon Cytokine Res 2011; 31:553-9. [PMID: 21631354 DOI: 10.1089/jir.2011.0028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nuclear factor κB (NF-κB) transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel interferon (IFN)-activated signaling pathway that leads to NF-κB activation and demonstrate that a subset of IFN-stimulated genes and microRNAs that play key roles in cellular response to IFN is regulated by NF-κB. This review focuses on the IFN-induced NF-κB activation pathway and the role of NF-κB in the expression of IFN-induced coding and noncoding genes, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease.
Collapse
Affiliation(s)
- Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| |
Collapse
|
30
|
Bartolomei G, Cevik RE, Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J Gen Virol 2011; 92:2072-2081. [PMID: 21593278 DOI: 10.1099/vir.0.032706-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several clinical observations point to an intricate crosstalk between iron (Fe) metabolism and chronic hepatitis C virus (HCV) infection. In this study, we wanted to investigate the molecular control that Fe levels exert on HCV replication at the hepatocyte level. In keeping with previous observations we confirmed that supra-physiological intracellular Fe induced by haemin treatment down-modulated HCV replication from subgenomic replicons. We also found that RNAi-mediated knockdown of the key Fe modulator hepcidin increased intracellular ferritin and inhibited HCV replication. Conversely, HCV replication did not modulate ferritin content in hepatocytes. Finally, we demonstrated that hepcidin is modulated at the mRNA level by alpha interferon through STAT3. We propose that in Huh7 cells hepcidin modulation leads to an unfavourable intracellular environment for HCV replication. These data may therefore contribute to a better understanding of the complex interplay between HCV and cellular physiology during infection.
Collapse
Affiliation(s)
- Giody Bartolomei
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Recep Emrah Cevik
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
31
|
Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 2011; 89:207-15. [PMID: 21221121 DOI: 10.1038/icb.2010.158] [Citation(s) in RCA: 734] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CXCR3 is a chemokine receptor that is rapidly induced on naïve T cells following activation, and preferentially remains highly expressed on type-1 helper (Th1)-type CD4(+) T cells, effector CD8(+) T cells and innate-type lymphocytes, such as natural killer (NK) and NKT cells. CXCR3 is activated by three interferon (IFN)-γ-inducible ligands CXCL9 (monokine induced by gamma-interferon), CXCL10 (interferon-induced protein-10) and CXCL11 (interferon-inducible T-cell alpha chemoattractant). Although some studies have revealed that these ligands have redundant functions in vivo, other studies have demonstrated that the three CXCR3 ligands can also collaborate and even compete with each other. Differential regulation of the three ligands at specific times in defined anatomically restricted locations in vivo likely participates in the fine control of T-cell trafficking over the course of an immune response. Among the differences in regulation, CXCL10 is induced by a variety of innate stimuli that induce IFN-α/β as well as the adaptive immune cell cytokine IFN-γ, whereas CXCL9 induction is restricted to IFN-γ. In this review, we will discuss how the balance, timing and pattern of CXCR3 ligand expression appears to regulate the generation of effector T cells in the lymphoid compartment and subsequent migration into peripheral sites of Th1-type inflammation in which the CXCR3 ligands also then regulate the interactions and migratory behavior of effector T cells in an inflamed peripheral tissue.
Collapse
Affiliation(s)
- Joanna R Groom
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
32
|
Distinct roles for the NF-kappa B RelA subunit during antiviral innate immune responses. J Virol 2011; 85:2599-610. [PMID: 21209118 DOI: 10.1128/jvi.02213-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Production of type I interferons (IFNs; prominently, IFN-α/β) following virus infection is a pivotal antiviral innate immune response in higher vertebrates. The synthesis of IFN-β proceeds via the virus-induced assembly of the transcription factors IRF-3/7, ATF-2/c-Jun, and NF-κB on the ifnβ promoter. Surprisingly, recent data indicate that the NF-κB subunit RelA is not essential for virus-stimulated ifnβ expression. Here, we show that RelA instead sustains autocrine IFN-β signaling prior to infection. In the absence of RelA, virus infection results in significantly delayed ifnβ induction and consequently defective secondary antiviral gene expression. While RelA is not required for ifnβ expression after infection, it is nonetheless essential for fully one-fourth of double-stranded RNA (dsRNA)-activated genes, including several mediators of inflammation and immune cell recruitment. Further, RelA directly regulates a small subset of interferon-stimulated genes (ISGs). Finally, RelA also protects cells from dsRNA-triggered RIP1-dependent programmed necrosis. Taken together, our findings suggest distinct roles for RelA in antiviral innate immunity: RelA maintains autocrine IFN-β signaling in uninfected cells, facilitates inflammatory and adaptive immune responses following infection, and promotes infected-cell survival during this process.
Collapse
|
33
|
Hashioka S, Klegeris A, Qing H, McGeer PL. STAT3 inhibitors attenuate interferon-γ-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiol Dis 2010; 41:299-307. [PMID: 20888416 DOI: 10.1016/j.nbd.2010.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 01/05/2023] Open
Abstract
Activation of signal transducer and activator of transcription (STAT) 3 is observable in reactive astrocytes under certain neuropathological conditions. Interferon (IFN)-γ is shown to activate STAT3 in cultured rodent astrocytes. Here we investigated the effects of inhibiting STAT3 signaling on IFNγ-activated human astrocytes since we have recently demonstrated that human astrocytes become neurotoxic when stimulated by IFNγ. We found that 5'-deoxy-5'-(methylthio)adenosine (MTA) (300 μM), S3I-201 (10 μM), STAT3 inhibitor VII (3 μM) and JAK-inhibitor I (0.3 μM) had anti-neurotoxic effects on IFN-γ (50 U/ml)-activated astrocytes and U373-MG astrocytoma cells. Another inhibitor, AG490 (30 μM) had no significant effect. The active inhibitors also attenuated IFN-γ-induced phosphorylation of Tyr(705)-STAT3 and astrocytic expression of intercellular adhesion molecule-1 (ICAM-1). They also decreased astrocytic production of IFN-γ-inducible T cell α chemoattractant (I-TAC). AG490, which did not affect the Tyr(705)-STAT3 phosphorylation or ICAM-1 expression, nevertheless reduced the I-TAC secretion. Because these results indicate that pharmacological inhibition of STAT3 signaling correlates with reduced astrocytic neurotoxicity and ICAM-1 expression, but not that of I-TAC secretion, we consider that STAT3 activation mediates, at least in part, the IFN-γ-induced neurotoxicity and ICAM-1 expression by human astrocytes.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
34
|
Yang CH, Yue J, Fan M, Pfeffer LM. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res 2010; 70:8108-16. [PMID: 20813833 DOI: 10.1158/0008-5472.can-10-2579] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The microRNA miR-21 is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. Here, we report that the cytokine IFN rapidly induces miR-21 expression in human and mouse cells. Signal transducer and activator of transcription 3 (STAT3) was implicated in this pathway based on the lack of IFN effect on miR-21 expression in prostate cancer cells with a deletion in the STAT3 gene. STAT3 ablation abrogated IFN induction of miR-21, confirming the important role of STAT3 in regulating miR-21. Chromatin immunoprecipitation analysis showed that STAT3 directly bound the miR-21 promoter in response to IFN. Experiments in mouse embryo fibroblasts with a genetic deletion of the p65 NF-κB subunit showed that IFN-induced miR-21 expression was also dependent on NF-κB. STAT3 silencing blocked both IFN-induced p65 binding to the miR-21 promoter and p65 nuclear translocation. Thus, IFN-induced miR-21 expression is coregulated by STAT3 and NF-κB at the level of the miR-21 promoter. Several cell death regulators were identified as downstream targets of miR-21, including PTEN and Akt. Functional experiments in prostate cancer cells directly showed that miR-21 plays a critical role in suppressing IFN-induced apoptosis. Our results identify miR-21 as a novel IFN target gene that functions as a key feedback regulator of IFN-induced apoptosis.
Collapse
Affiliation(s)
- Chuan He Yang
- Departments of Pathology and Laboratory Medicine and Physiology and Center for Integrative Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
35
|
Chen LC, Wu JL, Shiau CY, Chen JY. Organization and promoter analysis of the zebrafish (Danio rerio) chemokine gene (CXC-64) promoter. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:511-521. [PMID: 19381848 DOI: 10.1007/s10695-009-9321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
Zebrafish CXC-64, a chemokine representing a superfamily of chemotactic cytokines present in fish, is involved in recruitment, activation, and response to inflammatory stimulation. We cloned and sequenced the genomic DNA of the zebrafish CXC-64 chemokine; it was most similar to CXCL11 from humans and CXCL10 from a catfish. The zebrafish CXC-64 gene is approximately 4.0 kb long and has a four-exon, three-intron structure common to the human CXCL11 gene. However, the promoter region includes a typical TATA box and multi-transcription factor-binding sequences. To understand the roles of lipopolysaccharide (LPS), poly I:poly C, and tumor necrosis factor (TNF)-alpha in regulating zebrafish CXC-64 expression, serial deletions were made in the promoter region of this clone. Different fragments of the zebrafish CXC-64 5'-flanking region were transfected into RAW264.7 (mouse macrophage; Abelson murine leukemia virus transformed) and zfl (zebrafish liver) cells and then treated with 0, 10, 50, 100, and 200 ng/ml LPS, poly I:poly C, or TNF-alpha. The results showed that the promoter activity presented dose-dependent effects in LPS-treated RAW264.7 cells, TNF-alpha-treated RAW264.7 cells, and LPS-treated zfl cells. These results reveal that the zebrafish CXC-64 chemokine gene promoter region can be induced by LPS in both human and fish cell lines, which suggests that it plays an important role in regulating LPS.
Collapse
Affiliation(s)
- Li-Chen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
- Department of Food Science, National I-Lan University, Ilan, 260, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chyuan-Yuan Shiau
- Department of Food Science, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
| |
Collapse
|
36
|
Du Z, Fan M, Kim JG, Eckerle D, Lothstein L, Wei L, Pfeffer LM. Interferon-resistant Daudi cell line with a Stat2 defect is resistant to apoptosis induced by chemotherapeutic agents. J Biol Chem 2009; 284:27808-27815. [PMID: 19687011 DOI: 10.1074/jbc.m109.028324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interferon-alpha (IFNalpha) has shown promise in the treatment of various cancers. However, the development of IFN resistance is a significant drawback. Using conditions that mimic in vivo selection of IFN-resistant cells, the RST2 IFN-resistant cell line was isolated from the highly IFN-sensitive Daudi human Burkitt lymphoma cell line. The RST2 cell line was resistant to the antiviral, antiproliferative, and gene-induction actions of IFNalpha. Although STAT2 mRNA was present, STAT2 protein expression was deficient in RST2 cells. A variant STAT2 mRNA, which resulted from alternative splicing within the intron between exon 19 and 20, was expressed in several human cell lines but at relatively high levels in RST2 cells. Most importantly, the RST2 line showed an intrinsic resistance to apoptosis induced by a number of chemotherapeutic agents (camptothecin, staurosporine, and doxorubicin). Expression of STAT2 in RST2 cells not only rescued their sensitivity to the biological activities of IFNs but also restored sensitivity to apoptosis induced by these chemotherapeutic agents. The intrinsic resistance of the RST2 cells to IFN as well as chemotherapeutic agents adds a new dimension to our knowledge of the role of STAT2 as it relates to not only biological actions of IFN but also resistance to chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Meiyun Fan
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Jong-Gwan Kim
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Dara Eckerle
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Leonard Lothstein
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Lai Wei
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center and Center for Cancer Research, Memphis, Tennessee 38163.
| |
Collapse
|
37
|
Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G, Rosenfeld MG, Glass CK. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 2009; 23:681-93. [PMID: 19299558 DOI: 10.1101/gad.1773109] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Innate immune responses to bacterial or viral infection require rapid transition of large cohorts of inflammatory response genes from poised/repressed to actively transcribed states, but the underlying repression/derepression mechanisms remain poorly understood. Here, we report that, while the nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors establish repression checkpoints on broad sets of inflammatory response genes in macrophages and are required for nearly all of the transrepression activities of liver X receptors (LXRs), they can be selectively recruited via c-Jun or the Ets repressor Tel, respectively, establishing NCoR-specific, SMRT-specific, and NCoR/SMRT-dependent promoters. Unexpectedly, the binding of NCoR and SMRT to NCoR/SMRT-dependent promoters is frequently mutually dependent, establishing a requirement for both proteins for LXR transrepression and enabling inflammatory signaling pathways that selectively target NCoR or SMRT to also derepress/activate NCoR/SMRT-dependent genes. These findings reveal a combinatorial, corepressor-based strategy for integration of inflammatory and anti-inflammatory signals that play essential roles in immunity and homeostasis.
Collapse
Affiliation(s)
- Serena Ghisletti
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, Liao DF, Xiang J, Tang CK. IFN-γ down-regulates ABCA1 expression by inhibiting LXRα in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 2009; 203:417-28. [DOI: 10.1016/j.atherosclerosis.2008.07.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/08/2008] [Accepted: 07/24/2008] [Indexed: 12/30/2022]
|
39
|
Wei L, Fan M, Xu L, Heinrich K, Berry MW, Homayouni R, Pfeffer LM. Bioinformatic analysis reveals cRel as a regulator of a subset of interferon-stimulated genes. J Interferon Cytokine Res 2009; 28:541-51. [PMID: 18715197 DOI: 10.1089/jir.2007.0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) are critical to the host innate immune response by inducing the expression of a family of early response genes, denoted as IFN-stimulated genes (ISGs). The role of tyrosine phosphorylation of STAT proteins in the transcription activation of ISGs is well-documented. Recent studies have indicated that other transcription factors (TFs) are likely to play a role in regulating ISG expression. Here, we describe a novel integrative approach that combines gene expression profiling, promoter sequence analysis, and literature mining to screen candidate regulatory factors in the IFN signal transduction pathway. Application of this method identified the nuclear factor kappaB (NFkappaB) protein, cRel, as a candidate regulatory factor for a subset of ISGs in mouse embryo fibroblasts. Chromatin immunoprecipitation (ChIP) and real-time PCR assays confirmed that cRel directly binds to the promoters of several ISGs, including Cxcl10, Isg15, Gbp2, Ifit3, and Ifi203, and regulates their expression. Thus, our studies identify cRel as an important TF for ISGs, and validate the approach of using Latent Semantic Indexing (LSI)-based methods to identify regulatory factors from microarray data.
Collapse
Affiliation(s)
- Lai Wei
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang CH, Murti A, Pfeffer SR, Fan M, Du Z, Pfeffer LM. The role of TRAF2 binding to the type I interferon receptor in alternative NF kappaB activation and antiviral response. J Biol Chem 2008; 283:14309-16. [PMID: 18362156 DOI: 10.1074/jbc.m708895200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferons (IFNs) play critical roles in the host defense by modulating gene expression through the IFN-dependent activation of STAT and NFkappaB transcription factors. Previous studies established that IFN activates NFkappaB through a classical NFkappaB pathway that results in IkappaBalpha degradation and formation of p50-containing NFkappaB complexes, as well as an alternative pathway that involves NFkappaB-inducing kinase and TRAF2, which results in the formation of p52-containing NFkappaB complexes. In this study, we examined the interaction of TRAF proteins with the type I IFN receptor. We found that TRAF2 was directly coupled to the signal-transducing IFNAR1 subunit of the IFN receptor. By immunoprecipitation, overexpression of epitope-tagged IFNAR1 constructs, and glutathione S-transferase pulldown experiments, we demonstrate that TRAF2 rapidly binds to the IFNAR1 subunit of the IFN receptor upon IFN binding. The membrane proximal half of the IFNAR1 subunit was found to directly bind TRAF2. Moreover, analysis of mouse embryo fibroblasts derived from TRAF2 knock-out mice demonstrated that TRAF2 plays a critical role in the activation of the alternative NFkappaB pathway by IFN, but not the classical NFkappaB pathway, as well as in the antiviral action of IFN. Our results place TRAF2 directly in the signaling pathway transduced through the IFNAR1 subunit of the IFN receptor. These findings provide an important insight into the molecular mechanisms by which IFN generates signals to induce its biological effects.
Collapse
Affiliation(s)
- Chuan He Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, and the Center for Cancer Research, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gharavi NM, Alva JA, Mouillesseaux KP, Lai C, Yeh M, Yeung W, Johnson J, Szeto WL, Hong L, Fishbein M, Wei L, Pfeffer LM, Berliner JA. Role of the Jak/STAT pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo. J Biol Chem 2007; 282:31460-8. [PMID: 17726017 DOI: 10.1074/jbc.m704267200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and its component phospholipid, 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine, induce endothelial cells (EC) to synthesize chemotactic factors, such as interleukin 8 (IL-8). Previously, we demonstrated a role for c-Src kinase activation in Ox-PAPC-induced IL-8 transcription. In this study, we have examined the mechanism regulating IL-8 transcription by Ox-PAPC downstream of c-Src. Our findings demonstrate an important role for JAK2 in the regulation of IL-8 transcription by Ox-PAPC. Treatment of human aortic EC with Ox-PAPC and 1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine induced a rapid yet sustained activation of JAK2; activation of JAK2 by Ox-PAPC was dependent on c-Src kinase activity. Furthermore, pretreatment with selective JAK2 inhibitors significantly reduced Ox-PAPC-induced IL-8 transcription. In previous studies, we also demonstrated activation of STAT3 by Ox-PAPC. Here we provide evidence that STAT3 activation by Ox-PAPC is dependent on JAK2 activation and that STAT3 activation regulates IL-8 transcription by Ox-PAPC in human EC. Transfection with small interfering RNA against STAT3 significantly reduced Ox-PAPC-induced IL-8 transcription. Using chromatin immunoprecipitation assays, we demonstrated binding of activated STAT3 to the sequence flanking the consensus gamma-interferon activation sequence (GAS) in the IL-8 promoter; site-directed mutagenesis of GAS inhibited IL-8 transcription by Ox-PAPC. Finally, these studies demonstrate a role for STAT3 activation in atherosclerosis in vivo. We found increased staining for activated STAT3 in the inflammatory regions of human atherosclerotic lesions and reduced fatty streak formation in EC-specific STAT3 knock-out mice on the atherogenic diet. Taken together, these data demonstrate an important role for the JAK2/STAT3 pathway in Ox-PAPC-induced IL-8 transcription in vitro and in atherosclerosis in vivo.
Collapse
Affiliation(s)
- Nima M Gharavi
- Division of Cardiology, Department of Medicine, Department of Pathology, Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Simeone-Penney MC, Severgnini M, Tu P, Homer RJ, Mariani TJ, Cohn L, Simon AR. Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. THE JOURNAL OF IMMUNOLOGY 2007; 178:6191-9. [PMID: 17475846 DOI: 10.4049/jimmunol.178.10.6191] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The STAT3 transcription factor is critical for cytokine signaling and the acute phase response, but its role in allergic asthma is largely undefined. To investigate the role of STAT3 in mediating allergic inflammation, we used chemical and genetic approaches to inactivate STAT3 in the airway epithelium of mice. In a murine model of chronic asthma, we demonstrate that the administration of house dust mite (HDM) leads to robust STAT3 activation in the airway epithelium, smooth muscle, and immune cells in the lungs of C57BL/6 mice. To investigate the role of STAT3 in HDM-induced airway inflammation, a conditional knockout of STAT3 in the airway epithelium was generated, e-STAT3-/-. We determined that e-STAT3-/- mice had a significant decrease in HDM-induced airway eosinophilia, lung Th2 accumulation, and chemokines compared with wild-type animals. Importantly, the e-STAT3-/- mice had a significant decrease in airway hyperresponsiveness to methacholine. The administration of two STAT kinase inhibitors diminished STAT3 activation and markedly abrogated the HDM-induced lung inflammation. These findings suggest that STAT3 acts as a novel epithelial regulator of the allergic response by altering Th2 cell recruitment and effector function, and thus, targeting this molecule may provide the basis for a novel asthma therapy.
Collapse
Affiliation(s)
- Marina C Simeone-Penney
- Department of Physiology, Tufts University School of Medicine, and Pulmonary Division, Brigham and Women's Hospital, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Du Z, Wei L, Murti A, Pfeffer SR, Fan M, Yang CH, Pfeffer LM. Non-conventional signal transduction by type 1 interferons: The NF-κB pathway. J Cell Biochem 2007; 102:1087-94. [PMID: 17910035 DOI: 10.1002/jcb.21535] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type I interferons (IFNs) regulate diverse cellular functions by modulating the expression of IFN-stimulated genes (ISGs) through the activation of the well established signal transduction pathway of the Janus Kinase (JAK) and signal transducers and activators of transcription (STAT) proteins. Although the JAK-STAT signal transduction pathway is critical in mediating IFN's antiviral and antiproliferative activities, other signaling pathways are activated by IFNs and regulate cellular response to IFN. The NF-kappaB transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel IFN mediated signal pathway that leads to NF-kappaB activation and demonstrate that a subset of ISGs that play key roles in cellular response to IFN is regulated by NF-kappaB. This review focuses on the IFN-induced NF-kappaB activation pathway and the role of NF-kappaB in ISG expression, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, University of Tennessee Cancer Institute, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|