1
|
McNitt DH, Williams JM, Santitoro JG, Kim J, Thomas JW, Bonami RH. Type 1 Diabetes Depends on CD4-Driven Expression of the Transcriptional Repressor Bcl6. Diabetes 2025; 74:921-932. [PMID: 39556799 PMCID: PMC12097460 DOI: 10.2337/db23-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
High-affinity islet autoantibodies predict type 1 diabetes in mice and humans and implicate germinal centers (GCs) in disease pathogenesis. T follicular helper (Tfh) cells are increased in individuals with type 1 diabetes and alterations in Tfh-like cells in the peripheral blood predicted individual responses to abatacept. Tfh cells support GC responses and depend on the transcriptional repressor BCL6 for their maturation. Therefore, we hypothesized that CD4-driven deletion of Bcl6 would disrupt essential T- and B-cell interactions in GCs to prevent type 1 diabetes. To test this hypothesis, we generated Bcl6fl/fl-CD4.Cre.NOD mice and found they were completely protected against diabetes. Insulitis severity and tertiary lymphoid structure organization were preserved in the pancreas of Bcl6fl/fl-CD4.Cre.NOD mice, which did not show decreases in CD4+, CD8+, and B-cell numbers in the pancreas and draining lymph nodes, relative to control Bcl6fl/fl.NOD mice. CD4-driven loss of functional BCL6 resulted in significantly reduced GC B-cell and Tfh-cell numbers in the pancreatic lymph nodes and pancreas at late prediabetic intervals. Spontaneous anti-insulin autoantibody was blunted in Bcl6fl/fl-CD4.Cre.NOD mice. These data highlight BCL6 as a novel therapeutic target in type 1 diabetes. ARTICLE HIGHLIGHTS Germinal center B cells and CD4+ T follicular helper cells are implicated in the pathogenesis of type 1 diabetes and depend upon the transcriptional repressor BCL6 for their maturation. This study tests the dependence of type 1 diabetes development on BCL6 expression in CD4+ cells. Data presented here show that CD4-driven loss of Bcl6 blocks germinal center formation, spontaneous insulin autoantibody production, and type 1 diabetes in nonobese diabetic mice, despite normal tertiary lymphoid structure formation in pancreatic islets. This study highlights BCL6 as a potential immunomodulatory target in type 1 diabetes.
Collapse
Affiliation(s)
- Dudley H. McNitt
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan M. Williams
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph G. Santitoro
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jacob Kim
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - James W. Thomas
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Hilliard BK, Prendergast JE, Smith MJ. Dia-B-Ties: B Cells in the Islet-Immune-Cell Interface in T1D. Biomolecules 2025; 15:332. [PMID: 40149868 PMCID: PMC11940010 DOI: 10.3390/biom15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that affects an estimated 30 million people worldwide and results in a lifelong dependency of exogenous insulin treatments. While T1D is characterized by T-cell driven-destruction of the insulin-secreting β cells, B lymphocytes play a key role in the islet-immune interface. B cells are an essential intermediary between islet cells and other immune-cell populations. Through antigen presentation, cytokine secretion, and antibody production, B cells play a role in activating autoreactive islet-specific T cells, thus potentiating pancreatic inflammation in the early stages of T1D. Despite this, their role in disease development remains an understudied feature of T1D with significant therapeutic potential. Herein, we will discuss the current knowledge of the islet-immune-cell interface within T1D through the lens of B lymphocytes. We will also consider knowledge gaps that may be limiting further therapeutic opportunities.
Collapse
Affiliation(s)
- Brandon K. Hilliard
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E. Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Liu X, Li D, Zhang Y, Liu H, Chen P, Zhao Y, Sun G, Zhao W, Dong G. Multi-Algorithm-Integrated Tertiary Lymphoid Structure Gene Signature for Immune Landscape Characterization and Prognosis in Colorectal Cancer Patients. Biomedicines 2024; 12:2644. [PMID: 39595209 PMCID: PMC11592260 DOI: 10.3390/biomedicines12112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a common malignancy with a low survival rate as well as a low response rate to immunotherapy. This study aims to develop a risk model based on tertiary lymphoid structure (TLS)-associated gene signatures to enhance predictions of prognosis and immunotherapy response. METHODS TLS-associated gene data were obtained from TCGA-CRC and GEO cohorts. A comprehensive analysis using univariate Cox regression identified TLS-associated genes with significant prognostic implications. Subsequently, multiple algorithms were employed to select the most influential genes, and a stepwise Cox regression model was constructed. The model's predictive performance was validated using independent datasets (GSE39582, GSE17536, and GSE38832). To further investigate the immune microenvironment, immune cell infiltration in high-risk (HRG) and low-risk (LRG) groups was assessed using the CIBERSORT and ssGSEA algorithms. Additionally, we evaluated the model's potential to predict immune checkpoint blockade therapy response using data from The Cancer Imaging Archive, the TIDE algorithm, and external immunotherapy cohorts (GSE35640, GSE78200, and PRJEB23709). Immunohistochemistry (IHC) was employed to characterize TLS presence and CCL2 gene expression. RESULTS A three-gene (CCL2, PDCD1, and ICOS) TLS-associated model was identified as strongly associated with prognosis and demonstrated predictive power for CRC patient outcomes and immunotherapy efficacy. Notably, patients in the low-risk group (LRG) had a higher overall survival rate as well as a higher re-response rate to immunotherapy compared to the high-risk group (HRG). Finally, IHC results confirmed significantly elevated CCL2 expression in the TLS regions. CONCLUSIONS The multi-algorithm-integrated model demonstrated robust performance in predicting patient prognosis and immunotherapy response, offering a novel perspective for assessing immunotherapy efficacy. CCL2 may function as a TLS modulator and holds potential as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yue Zhang
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guanchao Sun
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.)
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Zaongo SD, Zongo AW, Chen Y. Mechanisms underlying the development of type 1 diabetes in ART-treated people living with HIV: an enigmatic puzzle. Front Immunol 2024; 15:1470308. [PMID: 39257582 PMCID: PMC11383789 DOI: 10.3389/fimmu.2024.1470308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The immunopathogenesis of HIV infection remains poorly understood. Despite the widespread use of effective modern antiretroviral therapy (ART), people living with HIV (PLWH) are known to develop several comorbidities, including type 1 diabetes (T1DM). However, the etiology and critical mechanisms accounting for the onset of T1DM in the preceding context remain unknown. This article proposes to address this topic in order to provide further understanding and future research directions.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Abel W Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
5
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
6
|
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies (Basel) 2024; 13:27. [PMID: 38651407 PMCID: PMC11036271 DOI: 10.3390/antib13020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis.
Collapse
Affiliation(s)
- Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
8
|
Dong Y, Wang T, Wu H. Tertiary lymphoid structures in autoimmune diseases. Front Immunol 2024; 14:1322035. [PMID: 38259436 PMCID: PMC10800951 DOI: 10.3389/fimmu.2023.1322035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid-like aggregations in non-lymphoid tissues. Tissues with chronic and persistent inflammation infiltration may drive and form ectopic germinal center-like structures, which are very common in autoimmune diseases, chronic infections, and tumor microenvironments. However, the mechanisms governing the formation of TLSs are still being explored. At present, it is not clear whether the formation of TLSs is associated with local uncontrolled immune inflammatory responses. While TLSs suggest a good prognosis in tumors, the opposite is true in autoimmune diseases. This review article will discuss the current views on initiating and maintaining TLSs and the potential therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Bruggeman Y, Martens PJ, Sassi G, Viaene M, Wasserfall CH, Mathieu C, Gysemans C. Footprint of pancreas infiltrating and circulating immune cells throughout type 1 diabetes development. Front Endocrinol (Lausanne) 2023; 14:1275316. [PMID: 38027120 PMCID: PMC10667927 DOI: 10.3389/fendo.2023.1275316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 1 diabetes (T1D) is defined by immune cell infiltration of the pancreas, in particular the islets of Langerhans, referred to as insulitis, which is especially prominent during the early disease stages in association with decreased beta cell mass. An in-depth understanding of the dynamics and phenotype of the immune cells infiltrating the pancreas and the accompanying changes in their profiles in peripheral blood during T1D development is critical to generate novel preventive and therapeutic approaches, as well as to find biomarkers for the disease process. Methods Using multi-parameter flow cytometry, we explored the dynamic changes of immune cells infiltrating the pancreas and the pancreatic draining lymph nodes (PLN), compared to those in peripheral blood in female and male non-obese diabetic (NOD) mice during T1D progression. Results The early stages of T1D development were characterized by an influx of innate dendritic cells and neutrophils in the pancreas. While dendritic cells seemed to move in and out (to the PLN), neutrophils accumulated during the pre-symptomatic phase and reached a maximum at 8 weeks of age, after which their numbers declined. During disease progression, CD4+ and CD8+ T cells appeared to continuously migrate from the PLN to the pancreas, which coincided with an increase in beta cell autoimmunity and insulitis severity, and a decline in insulin content. At 12 weeks of age, CD4+ and especially CD8+ T cells in the pancreas showed a dramatic shift from naïve to effector memory phenotype, in contrast to the PLN, where most of these cells remained naïve. A large proportion of pancreas infiltrating CD4+ T cells were naïve, indicating that antigenic stimulation was not necessary to traffic and invade the pancreas. Interestingly, a pre-effector-like T cell dominated the peripheral blood. These cells were intermediates between naïve and effector memory cells as identified by single cell RNA sequencing and might be a potential novel therapeutic target. Conclusion These time- and tissue-dependent changes in the dynamics and functional states of CD4+ and CD8+ T cells are essential steps in our understanding of the disease process in NOD mice and need to be considered for the interpretation and design of disease-modifying therapies.
Collapse
Affiliation(s)
- Ylke Bruggeman
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Pieter-Jan Martens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Gabriele Sassi
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Marijke Viaene
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Clive H. Wasserfall
- Diabetes Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
New JS, Dizon BL, King RG, Greenspan NS, Kearney JF. B-1 B Cell-Derived Natural Antibodies against N-Acetyl-d-Glucosamine Suppress Autoimmune Diabetes Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1320-1331. [PMID: 37747293 PMCID: PMC10592000 DOI: 10.4049/jimmunol.2300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Environmental factors and host microbiota strongly influence type 1 diabetes (T1D) progression. We report that neonatal immunization with group A Streptococcus suppresses T1D development in NOD mice by promoting clonal expansion of N-acetyl-d-glucosamine (GlcNAc)-specific B-1 B cells that recognize pancreatic β cell-derived Ags bearing GlcNAc-containing posttranslational modifications. Early exposure to Lancefield group A cell-wall carbohydrate Ags increased production of GlcNAc-reactive serum Abs and enhanced localization of innate-like GlcNAc-specific B cells to pancreatic tissue during T1D pathogenesis. We show that B-1 B cell-derived GlcNAc-specific IgM engages apoptosis-associated β cell Ags, thereby suppressing diabetogenic T cell activation. Likewise, adoptively transferring GlcNAc-reactive B-1 B cells significantly delayed T1D development in naive recipients. Collectively, these data underscore potentially protective involvement of innate-like B cells and natural Abs in T1D progression. These findings suggest that previously reported associations of reduced T1D risk after GAS infection are B cell dependent and demonstrate the potential for targeting the natural Ab repertoire in considering therapeutic strategies for T1D.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brian L.P. Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Neil. S. Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
11
|
Jung S, Ben Nasr M, Bahmani B, Usuelli V, Zhao J, Sabiu G, Seelam AJ, Naini SM, Balasubramanian HB, Park Y, Li X, Khalefa SA, Kasinath V, Williams MD, Rachid O, Haik Y, Tsokos GC, Wasserfall CH, Atkinson MA, Bromberg JS, Tao W, Fiorina P, Abdi R. Nanotargeted Delivery of Immune Therapeutics in Type 1 Diabetes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300812. [PMID: 37357903 PMCID: PMC10629472 DOI: 10.1002/adma.202300812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Immune therapeutics holds great promise in the treatment of type 1 diabetes (T1D). Nonetheless, their progress is hampered by limited efficacy, equipoise, or issues of safety. To address this, a novel and specific nanodelivery platform for T1D that targets high endothelial venules (HEVs) presented in the pancreatic lymph nodes (PLNs) and pancreas is developed. Data indicate that the pancreata of nonobese diabetic (NOD) mice and patients with T1D are unique in their expression of newly formed HEVs. Anti-CD3 mAb is encapsulated in poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles (NPs), the surfaces of which are conjugated with MECA79 mAb that recognizes HEVs. Targeted delivery of these NPs improves accumulation of anti-CD3 mAb in both the PLNs and pancreata of NOD mice. Treatment of hyperglycemic NOD mice with MECA79-anti-CD3-NPs results in significant reversal of T1D compared to those that are untreated, treated with empty NPs, or provided free anti-CD3. This effect is associated with a significant reduction of T effector cell populations in the PLNs and a decreased production of pro-inflammatory cytokine in the mice treated with MECA79-anti-CD3-NPs. In summary, HEV-targeted therapeutics may be used as a means by which immune therapeutics can be delivered to PLNs and pancreata to suppress autoimmune diabetes effectively.
Collapse
Affiliation(s)
- Sungwook Jung
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Moufida Ben Nasr
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, 20157, Milan, Italy
| | - Baharak Bahmani
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, 20157, Milan, Italy
| | - Jing Zhao
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gianmarco Sabiu
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andy Joe Seelam
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Said Movahedi Naini
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, 20157, Milan, Italy
| | - Youngrong Park
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaofei Li
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Salma Ayman Khalefa
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, 20157, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - MacKenzie D Williams
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Yousef Haik
- Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272, Sharjah, UAE
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan S Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Paolo Fiorina
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, 20157, Milan, Italy
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401:2149-2162. [PMID: 37030316 DOI: 10.1016/s0140-6736(23)00223-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 04/10/2023]
Abstract
Type 1 diabetes is a chronic disease caused by autoimmune destruction of pancreatic β cells. Individuals with type 1 diabetes are reliant on insulin for survival. Despite enhanced knowledge related to the pathophysiology of the disease, including interactions between genetic, immune, and environmental contributions, and major strides in treatment and management, disease burden remains high. Studies aimed at blocking the immune attack on β cells in people at risk or individuals with very early onset type 1 diabetes show promise in preserving endogenous insulin production. This Seminar will review the field of type 1 diabetes, highlighting recent progress within the past 5 years, challenges to clinical care, and future directions in research, including strategies to prevent, manage, and cure the disease.
Collapse
Affiliation(s)
- Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA.
| | - Lucy D Mastrandrea
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
13
|
McNitt DH, Joosse BA, Thomas JW, Bonami RH. Productive Germinal Center Responses Depend on the Nature of Stimuli Received by Anti-Insulin B Cells in Type 1 Diabetes-Prone Mice. Immunohorizons 2023; 7:384-397. [PMID: 37261716 PMCID: PMC10448785 DOI: 10.4049/immunohorizons.2300036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Islet autoantibodies, including those directed at insulin, predict type 1 diabetes (T1D) in mice and humans and signal immune tolerance breach by B lymphocytes. High-affinity insulin autoantibodies and T follicular helper cell involvement implicate germinal centers (GCs) in T1D. The VH125SD BCR transgenic model, in which 1-2% of peripheral B lymphocytes recognize insulin, enables direct study of insulin-binding B cells. Our prior studies showed that anti-insulin B cell receptor transgene site-directed to H chain locus mice fail to generate insulin Ab following T-dependent immunization, but it was unclear whether anti-insulin B cells were blocked for GC initiation, survival, or differentiation into Ab-secreting cells. Here, we show that insulin-binding B cells in T1D-prone anti-insulin B cell receptor transgene site-directed to H chain locus mice can spontaneously adopt a GC phenotype and undergo class switching to the IgG1 isotype, with little if any switching to IgG2b. T-dependent immunizations with insulin SRBC or insulin CFA drove anti-insulin B lymphocytes to adopt a GC phenotype, despite blunted insulin Ab production. Dual immunization against self (insulin) and foreign (4-hydroxy-3-nitrophenylacetyl hapten conjugated to keyhole limpet hemocyanin) Ags showed an anti-insulin (but not anti-4-hydroxy-3-nitrophenylacetyl) Ab block that tracked with increased expression of the apoptosis marker, activated caspase 3, in self-reactive GC B cells. Finally, T-independent immunization with insulin conjugated to Brucella abortus ring test Ag released immune tolerance to allow robust expansion of anti-insulin GC B cells and IgG-switched insulin Ab production. Overall, these data pinpoint GC survival and Ab-secreting cell differentiation as immune tolerance blocks that limit T-dependent, but not T-independent, stimulation of anti-insulin B cell responses.
Collapse
Affiliation(s)
- Dudley H. McNitt
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bryan A. Joosse
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - James W. Thomas
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of
Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Banach M, Harley ITW, Getahun A, Cambier JC. Comparative analysis of the repertoire of insulin-reactive B cells in type 1 diabetes-prone and resistant mice. Front Immunol 2022; 13:961209. [PMID: 36275764 PMCID: PMC9579539 DOI: 10.3389/fimmu.2022.961209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Seropositivity for autoantibodies against multiple islet antigens is associated with development of autoimmune type 1 diabetes (T1D), suggesting a role for B cells in disease. The importance of B cells in T1D is indicated by the effectiveness of B cell-therapies in mouse models and patients. B cells contribute to T1D by presenting islet antigens, including insulin, to diabetogenic T cells that kill pancreatic beta cells. The role of B cell receptor (BCR) affinity in T1D development is unclear. Here, we employed single cell RNA sequencing to define the relationship between BCR affinity for insulin and B cell phenotype during disease development. We utilized immunoglobulin (Ig) heavy chain (VH125) mouse models in which high-affinity insulin-reactive B cells (IBCs) were previously shown to be anergic in diabetes-resistant VH125.C57BL/6-H2g7 and activated in VH125. NOD mice developing disease. Here, high-affinity IBCs were found in the spleen of prediabetic VH125. NOD mice and exhibited marginal zone or follicular phenotypes. Ig light chains expressed by these B cells are unmutated and biased toward Vκ4-74 and Vκ4-57 usage. Receptors expressed by anergic high-affinity IBCs of diabetes-resistant VH125.C57BL/6-H2g7 are also unmutated; however, in this genetic background light chains are polymorphic relative to those of NOD. Light chains derived from NOD and C57BL/6-H2g7 genetic backgrounds conferred divergent kinetics of binding to insulin when paired with the VH125 heavy chain. These findings suggest that relaxation of tolerance mechanisms in the NOD mouse leads to accumulation and partial activation of B cells expressing germline encoded high-affinity BCRs that support development of autoimmunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Isaac T. W. Harley
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
16
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
17
|
Korpos É, Kadri N, Loismann S, Findeisen CR, Arfuso F, Burke GW, Richardson SJ, Morgan NG, Bogdani M, Pugliese A, Sorokin L. Identification and characterisation of tertiary lymphoid organs in human type 1 diabetes. Diabetologia 2021; 64:1626-1641. [PMID: 33912981 PMCID: PMC8187221 DOI: 10.1007/s00125-021-05453-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS We and others previously reported the presence of tertiary lymphoid organs (TLOs) in the pancreas of NOD mice, where they play a role in the development of type 1 diabetes. Our aims here are to investigate whether TLOs are present in the pancreas of individuals with type 1 diabetes and to characterise their distinctive features, in comparison with TLOs present in NOD mouse pancreases, in order to interpret their functional significance. METHODS Using immunofluorescence confocal microscopy, we examined the extracellular matrix (ECM) and cellular constituents of pancreatic TLOs from individuals with ongoing islet autoimmunity in three distinct clinical settings of type 1 diabetes: at risk of diabetes; at/after diagnosis; and in the transplanted pancreas with recurrent diabetes. Comparisons were made with TLOs from 14-week-old NOD mice, which contain islets exhibiting mild to heavy leucocyte infiltration. We determined the frequency of the TLOs in human type 1diabetes with insulitis and investigated the presence of TLOs in relation to age of onset, disease duration and disease severity. RESULTS TLOs were identified in preclinical and clinical settings of human type 1 diabetes. The main characteristics of these TLOs, including the cellular and ECM composition of reticular fibres (RFs), the presence of high endothelial venules and immune cell subtypes detected, were similar to those observed for TLOs from NOD mouse pancreases. Among 21 donors with clinical type 1 diabetes who exhibited insulitis, 12 had TLOs and had developed disease at younger age compared with those lacking TLOs. Compartmentalised TLOs with distinct T cell and B cell zones were detected in donors with short disease duration. Overall, TLOs were mainly associated with insulin-containing islets and their frequency decreased with increasing severity of beta cell loss. Parallel studies in NOD mice further revealed some differences in so far as regulatory T cells were essentially absent from human pancreatic TLOs and CCL21 was not associated with RFs. CONCLUSIONS/INTERPRETATION We demonstrate a novel feature of pancreas pathology in type 1 diabetes. TLOs represent a potential site of autoreactive effector T cell generation in islet autoimmunity and our data from mouse and human tissues suggest that they disappear once the destructive process has run its course. Thus, TLOs may be important for type 1 diabetes progression.
Collapse
Affiliation(s)
- Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Clais R Findeisen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Frank Arfuso
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - George W Burke
- Department of Surgery, Division of Transplantation, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sarah J Richardson
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK
| | - Noel G Morgan
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK
| | - Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Division of Endocrinology and Metabolism, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
18
|
Palm AKE, Kleinau S. Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun 2021; 119:102627. [PMID: 33640662 DOI: 10.1016/j.jaut.2021.102627] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Zakharov PN, Hu H, Wan X, Unanue ER. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J Exp Med 2021; 217:151619. [PMID: 32251514 PMCID: PMC7971127 DOI: 10.1084/jem.20192362] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue-specific autoimmune diseases are driven by activation of diverse immune cells in the target organs. However, the molecular signatures of immune cell populations over time in an autoimmune process remain poorly defined. Using single-cell RNA sequencing, we performed an unbiased examination of diverse islet-infiltrating cells during autoimmune diabetes in the nonobese diabetic mouse. The data revealed a landscape of transcriptional heterogeneity across the lymphoid and myeloid compartments. Memory CD4 and cytotoxic CD8 T cells appeared early in islets, accompanied by regulatory cells with distinct phenotypes. Surprisingly, we observed a dramatic remodeling in the islet microenvironment, in which the resident macrophages underwent a stepwise activation program. This process resulted in polarization of the macrophage subpopulations into a terminal proinflammatory state. This study provides a single-cell atlas defining the staging of autoimmune diabetes and reveals that diabetic autoimmunity is driven by transcriptionally distinct cell populations specialized in divergent biological functions.
Collapse
Affiliation(s)
- Pavel N Zakharov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Hao Hu
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Felton JL, Conway H, Bonami RH. B Quiet: Autoantigen-Specific Strategies to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1 Diabetes. Biomedicines 2021; 9:biomedicines9010042. [PMID: 33418839 PMCID: PMC7824835 DOI: 10.3390/biomedicines9010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Islet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.
Collapse
Affiliation(s)
- Jamie L. Felton
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Holly Conway
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
21
|
Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein RG, Amit I, Schwartz M. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Sci Alliance 2020; 4:4/1/e202000907. [PMID: 33277355 PMCID: PMC7723261 DOI: 10.26508/lsa.202000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022] Open
Abstract
We found that acute insult to the central nervous system induces the formation of lymphocyte aggregates reminiscent of tertiary lymphoid structures within the spinal cord meninges. Unlike draining CNS-cervical lymph nodes, meningeal lymphocytes are locally activated during neuro-inflammtion and neurodegeneration. Tertiary lymphoid structures (TLS) are organized aggregates of B and T cells formed ectopically during different stages of life in response to inflammation, infection, or cancer. Here, we describe formation of structures reminiscent of TLS in the spinal cord meninges under several central nervous system (CNS) pathologies. After acute spinal cord injury, B and T lymphocytes locally aggregate within the meninges to form TLS-like structures, and continue to accumulate during the late phase of the response to the injury, with a negative impact on subsequent pathological conditions, such as experimental autoimmune encephalomyelitis. Using a chronic model of spinal cord pathology, the mSOD1 mouse model of amyotrophic lateral sclerosis, we further showed by single-cell RNA-sequencing that a meningeal lymphocyte niche forms, with a unique organization and activation state, including accumulation of pre-B cells in the spinal cord meninges. Such a response was not found in the CNS-draining cervical lymph nodes. The present findings suggest that a special immune response develops in the meninges during various neurological pathologies in the CNS, a possible reflection of its immune privileged nature.
Collapse
Affiliation(s)
- Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Catarina Raposo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Ruckh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Boaz Mohar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Shechter
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel .,Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| |
Collapse
|
22
|
Bonami RH, Nyhoff LE, McNitt DH, Hulbert C, Felton JL, Kendall PL, Thomas JW. T-B Lymphocyte Interactions Promote Type 1 Diabetes Independently of SLAM-Associated Protein. THE JOURNAL OF IMMUNOLOGY 2020; 205:3263-3276. [PMID: 33199538 DOI: 10.4049/jimmunol.1900464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2020] [Indexed: 01/05/2023]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), a critical intracellular signaling molecule for T-B lymphocyte interactions, drives T follicular helper (Tfh) cell development in germinal centers (GCs). High-affinity islet autoantibodies predict type 1 diabetes (T1D) but do not cause β cell destruction. This paradox intimates Tfh cells as key pathologic effectors, consistent with an observed Tfh signature in T1D. To understand how fully developed Tfh (GC Tfh) contribute to different autoimmune processes, we investigated the role of SAP in T1D and autoantibody-mediated arthritis. Whereas spontaneous arthritis depended on SAP in the autoantibody-mediated K/BxN model, organized insulitis and diabetes onset were unabated, despite a blocked anti-insulin vaccine response in SAP-deficient NOD mice. GC Tfh and GC B cell development were blocked by loss of SAP in K/BxN mice. In contrast, although GC B cell formation was markedly reduced in SAP-deficient NOD mice, T cells with a GC Tfh phenotype were found at disease sites. CXCR3+ CCR6- (Tfh1) subset bias was observed among GC Tfh cells infiltrating the pancreas of NOD mice, which was enhanced by loss of SAP NOD T cells override SAP requirement to undergo activation and proliferation in response to Ag presentation, demonstrating the potential for productive cognate T-B lymphocyte interactions in T1D-prone mice. We find that SAP is essential when autoantibody-driven immune complexes promote inflammation but is not required for effective organ-specific autoimmune attack. Thus, Tfh induced in classic GC reactions are dispensable for T1D, but the autoimmune process in the NOD model retains pathogenic Tfh without SAP.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Dudley H McNitt
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chrys Hulbert
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jamie L Felton
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Peggy L Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
23
|
Insulitis and lymphoid structures in the islets of Langerhans of a 66-year-old patient with long-standing type 1 diabetes. Virchows Arch 2020; 478:1209-1214. [PMID: 32833039 PMCID: PMC8203531 DOI: 10.1007/s00428-020-02915-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Insulitis is a characteristic inflammatory lesion consisting of immune cell infiltrates around and within the pancreatic islets of patients with recent-onset type 1 diabetes (T1D). The infiltration is typically mild, both in terms of the number of infiltrating cells and the number of islets affected. Here, we present an unusual histopathological case study of a 66-year-old female patient with long-standing T1D, insulitis, and islet-associated lymphoid tissue. Most islets in the head of the pancreas of this patient were insulin-deficient, whereas the islets in the tail appeared normal. Insulitis was present in 0.84% of the insulin-containing islets and three islets had large lymphocytic infiltrates resembling tertiary lymphoid structures (TLS). Of note, this is the first description of potential TLS in the endocrine pancreas of a patient with T1D. Their association with a marked residual beta cell mass is of interest and may hint at new insights into disease progression and regulation of autoimmunity.
Collapse
|
24
|
Vandamme C, Kinnunen T. B cell helper T cells and type 1 diabetes. Scand J Immunol 2020; 92:e12943. [PMID: 32697399 PMCID: PMC7583378 DOI: 10.1111/sji.12943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes is an autoimmune disease typically starting in childhood that culminates in the destruction of insulin‐producing beta cells in the pancreas. Although type 1 diabetes is considered to be a primarily T cell–mediated disease, B cells clearly participate in the autoimmune process, as autoantibodies recognizing pancreatic islet antigen commonly appear in circulation before the onset of the disease. T cells providing helper functions to B cells have recently been shown to be involved in the pathogenesis of a wide range of antibody‐associated immune disorders. These T cells include CXCR5‐positive follicular T helper (Tfh) cells, and a recently described closely related CXCR5‐negative subset coined peripheral T helper (Tph) cells. Here, we review the current state of knowledge on different B cell helper T cell subsets, focusing on their potential involvement in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland
| |
Collapse
|
25
|
Shao F, Zheng P, Yu D, Zhou Z, Jia L. Follicular helper T cells in type 1 diabetes. FASEB J 2019; 34:30-40. [PMID: 31914661 DOI: 10.1096/fj.201901637r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Feng Shao
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Di Yu
- The University of Queensland Diamantina Institute, Translational Research Institute Brisbane Queensland Australia
- Shandong Analysis and Test Center Shandong Academy of Sciences Jinan China
- China‐Australia Centre for Personalised Immunology Shanghai Renji Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology The Second Xiangya HospitalCentral South University Changsha China
- Key Laboratory of Diabetes Immunology Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases Changsha China
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People’s Hospital The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| |
Collapse
|
26
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
27
|
Boldison J, Da Rosa LC, Buckingham L, Davies J, Wen L, Wong FS. Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia 2019; 62:2052-2065. [PMID: 31444529 PMCID: PMC6805803 DOI: 10.1007/s00125-019-04974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Autoreactive B cells escape immune tolerance and contribute to the pathogenesis of type 1 diabetes. While global B cell depletion is a successful therapy for autoimmune disease, the fate of autoreactive cells during this treatment in autoimmune diabetes is unknown. We aimed to identify and track anti-insulin B cells in pancreatic islets and understand their repopulation after anti-CD20 treatment. METHODS We generated a double transgenic system, the VH125.hCD20/NOD mouse. The VH125 transgenic mouse, expressing an increased frequency of anti-insulin B cells, was crossed with a human CD20 (hCD20) transgenic mouse, to facilitate B cell depletion using anti-CD20. B cells were analysed using multiparameter and ImageStream flow cytometry. RESULTS We demonstrated that anti-insulin B cells were recruited to the pancreas during disease progression in VH125.hCD20/NOD mice. We identified two distinct populations of anti-insulin B cells in pancreatic islets, based on CD19 expression, with both populations enriched in the CD138int fraction. Anti-insulin B cells were not identified in the plasma-cell CD138hi fraction, which also expressed the transcription factor Blimp-1. After anti-CD20 treatment, anti-insulin B cells repopulated the pancreatic islets earlier than non-specific B cells. Importantly, we observed that a CD138intinsulin+CD19- population was particularly enriched after B cell depletion, possibly contributing to the persistence of disease still observed in some mice after anti-CD20 treatment. CONCLUSIONS/INTERPRETATION Our observations may indicate why the loss of C-peptide is only temporarily delayed following anti-CD20 treatment in human type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Larissa C Da Rosa
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lucy Buckingham
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| |
Collapse
|
28
|
Gonzalez Badillo FE, Zisi Tegou F, Abreu MM, Masina R, Sha D, Najjar M, Wright SH, Bayer AL, Korpos É, Pugliese A, Molano RD, Tomei AA. CCL21 Expression in β-Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice. Diabetes 2019; 68:1990-2003. [PMID: 31371518 PMCID: PMC6754241 DOI: 10.2337/db19-0239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022]
Abstract
Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic β-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of β-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing β-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.
Collapse
Affiliation(s)
- Freddy E Gonzalez Badillo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Flavia Zisi Tegou
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Maria M Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Riccardo Masina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Divya Sha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Shane H Wright
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion, Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
29
|
Ekman I, Ihantola EL, Viisanen T, Rao DA, Näntö-Salonen K, Knip M, Veijola R, Toppari J, Ilonen J, Kinnunen T. Circulating CXCR5 -PD-1 hi peripheral T helper cells are associated with progression to type 1 diabetes. Diabetologia 2019; 62:1681-1688. [PMID: 31270583 PMCID: PMC6677711 DOI: 10.1007/s00125-019-4936-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is preceded by a period of asymptomatic autoimmunity characterised by positivity for islet autoantibodies. Therefore, T helper cell responses that induce B cell activation are likely to play a critical role in the disease process. Here, we aimed to evaluate the role of a recently described subset, C-X-C motif chemokine receptor type 5-negative, programmed cell death protein 1-positive (CXCR5-PD-1hi) peripheral T helper (Tph) cells, in human type 1 diabetes. METHODS The phenotype of blood CXCR5-PD-1hi CD4+ T cells was analysed by multicolour flow cytometry. The frequencies of circulating CXCR5-PD-1hi T cells were analysed in a cohort of 44 children with newly diagnosed type 1 diabetes, 40 autoantibody-positive (AAb+) at-risk children and 84 autoantibody-negative healthy control children, and the findings were replicated in a separate cohort of 15 children with newly diagnosed type 1 diabetes and 15 healthy control children. RESULTS Circulating CXCR5-PD-1hi Tph cells share several features associated with B cell helper function with circulating CXCR5+PD-1hi follicular T helper (Tfh) cells. Moreover, the frequency of circulating Tph cells was increased in children with newly diagnosed type 1 diabetes, especially in those who are positive for multiple autoantibodies. Importantly, circulating Tph cells were also increased in autoantibody-positive at-risk children who later progressed to type 1 diabetes. CONCLUSIONS/INTERPRETATION Our results demonstrate that circulating CXCR5-PD-1hi Tph cells are associated with progression to clinical type 1 diabetes. Consequently, Tph cells could have potential both as a biomarker of disease progression and as a target for immunotherapy in type 1 diabetes.
Collapse
Affiliation(s)
- Ilse Ekman
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1 C, FIN-70210, Kuopio, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1 C, FIN-70210, Kuopio, Finland
| | - Tyyne Viisanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1 C, FIN-70210, Kuopio, Finland
| | - Deepak A Rao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1 C, FIN-70210, Kuopio, Finland.
- Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland.
| |
Collapse
|
30
|
Tan HX, Esterbauer R, Vanderven HA, Juno JA, Kent SJ, Wheatley AK. Inducible Bronchus-Associated Lymphoid Tissues (iBALT) Serve as Sites of B Cell Selection and Maturation Following Influenza Infection in Mice. Front Immunol 2019; 10:611. [PMID: 30984186 PMCID: PMC6450362 DOI: 10.3389/fimmu.2019.00611] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Seasonally recurrent influenza virus infections are a significant cause of global morbidity and mortality. In murine models, primary influenza infection in the respiratory tract elicits potent humoral responses concentrated in the draining mediastinal lymph node and the spleen. In addition to immunity within secondary lymphoid organs (SLO), pulmonary infection is also associated with formation of ectopic inducible bronchus-associated tissues (iBALT) in the lung. These structures display a lymphoid organization, but their function and protective benefits remain unclear. Here we examined the phenotype, transcriptional profile and antigen specificity of B cell populations forming iBALT in influenza infected mice. We show that the cellular composition of iBALT was comparable to SLO, containing populations of follicular dendritic cells (FDC), T-follicular helper (Tfh) cells, and germinal center (GC)-like B cells with classical dark- and light-zone polarization. Transcriptional profiles of GC B cells in iBALT and SLO were conserved regardless of anatomical localization. The architecture of iBALT was pleiomorphic and less structurally defined than SLO. Nevertheless, we show that GC-like structures within iBALT serve as a distinct niche that independently support the maturation and selection of B cells primarily targeted against the influenza virus nucleoprotein. Our findings suggest that iBALT, which are positioned at the frontline of the lung mucosa, drive long-lived, and unique GC reactions that contribute to the diversity of the humoral response targeting influenza.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Smirnova NF, Conlon TM, Morrone C, Dorfmuller P, Humbert M, Stathopoulos GT, Umkehrer S, Pfeiffer F, Yildirim AÖ, Eickelberg O. Inhibition of B cell-dependent lymphoid follicle formation prevents lymphocytic bronchiolitis after lung transplantation. JCI Insight 2019; 4:123971. [PMID: 30728330 DOI: 10.1172/jci.insight.123971] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lung transplantation (LTx) is the only therapeutic option for many patients with chronic lung disease. However, long-term survival after LTx is severely compromised by chronic rejection (chronic lung allograft dysfunction [CLAD]), which affects 50% of recipients after 5 years. The underlying mechanisms for CLAD are poorly understood, largely due to a lack of clinically relevant animal models, but lymphocytic bronchiolitis is an early sign of CLAD. Here, we report that lymphocytic bronchiolitis occurs early in a long-term murine orthotopic LTx model, based on a single mismatch (grafts from HLA-A2:B6-knockin donors transplanted into B6 recipients). Lymphocytic bronchiolitis is followed by formation of B cell-dependent lymphoid follicles that induce adjacent bronchial epithelial cell dysfunction in a spatiotemporal fashion. B cell deficiency using recipient μMT-/- mice prevented intrapulmonary lymphoid follicle formation and lymphocytic bronchiolitis. Importantly, selective inhibition of the follicle-organizing receptor EBI2, using genetic deletion or pharmacologic inhibition, prevented functional and histological deterioration of mismatched lung grafts. In sum, we provided what we believe to be a mouse model of chronic rejection and lymphocytic bronchiolitis after LTx and identified intrapulmonary lymphoid follicle formation as a target for pharmacological intervention of long-term allograft dysfunction after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Peter Dorfmuller
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Stephan Umkehrer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
32
|
Brix SR, Noriega M, Herden EM, Goldmann B, Langbehn U, Busch M, Jabs WJ, Steinmetz OM, Panzer U, Huber TB, Stahl RAK, Wiech T. Organisation of lymphocytic infiltrates in ANCA-associated glomerulonephritis. Histopathology 2018; 72:1093-1101. [PMID: 29453894 DOI: 10.1111/his.13487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
AIMS Renal involvement in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis contributes to significant morbidity and mortality in patients. In chronic inflammation, B cells are recruited to the inflamed tissue and organised lymphoid structures have been described in several autoimmune diseases. The aim of this study was to correlate the lymphoid organisation in renal biopsies with renal outcome in ANCA-associated glomerulonephritis (GN). METHODS AND RESULTS We investigated 112 renal biopsies from patients with newly diagnosed ANCA-associated necrotising GN. We identified four different levels of the intrarenal organisation of lymphocytes: T cells without B cells, scattered B and T cells, clustered lymphocytic infiltrates and nodular compartmentally arranged B and T cell aggregates. Almost half the patients showed clusters of B and T lymphocytes in their biopsies. In 15 of these biopsies, a higher degree of organisation with lymphocytic compartments was detected. Inflammatory cell organisation was associated with renal failure, but not with tubular atrophy and interstitial fibrosis. Patients with organised lymphocytic infiltrates in their biopsy had worse renal function during follow-up and were more likely to develop end stage renal disease. CONCLUSIONS In the present study, we show that the renal lymphocytic organisation is associated with renal outcome in ANCA-associated GN. The organisation of the lymphocytic infiltrate may be a morphological correlate of a perpetual and exaggerated inflammation in renal ANCA disease. Classifying the lymphocytic infiltrate could help to predict renal outcome, and might therefore be used for individualised adjustments in the intensity and duration of immunosuppressive therapy.
Collapse
Affiliation(s)
- Silke R Brix
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Mercedes Noriega
- Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth M Herden
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Goldmann
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Langbehn
- Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Busch
- Klinik für Innere Medizin III, Universitätsklinikum Jena, Jena, Germany
| | - Wolfram J Jabs
- Klinik für Nephrologie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Oliver M Steinmetz
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf A K Stahl
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Mahmoud TI, Wang J, Karnell JL, Wang Q, Wang S, Naiman B, Gross P, Brohawn PZ, Morehouse C, Aoyama J, Wasserfall C, Carter L, Atkinson MA, Serreze DV, Braley-Mullen H, Mustelin T, Kolbeck R, Herbst R, Ettinger R. Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Sci Transl Med 2017; 8:361ra137. [PMID: 27798262 DOI: 10.1126/scitranslmed.aag0367] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren's pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks of age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed that early anti-CD40L greatly repressed B cell function while having a broader effect on multiple biological pathways, including interleukin-12 and interferon signaling. A single prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and nonobese diabetic mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest that early peripheral immune dysregulation gives rise to autoimmune manifestations later in life, and for diseases predated by autoantibodies, early prophylactic intervention with biologics may prove efficacious.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jingya Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jodi L Karnell
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Brian Naiman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Phillip Gross
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Philip Z Brohawn
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Chris Morehouse
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jordan Aoyama
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Clive Wasserfall
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Laura Carter
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tomas Mustelin
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
34
|
Akhavanpoor M, Gleissner CA, Akhavanpoor H, Lasitschka F, Doesch AO, Katus HA, Erbel C. Adventitial tertiary lymphoid organ classification in human atherosclerosis. Cardiovasc Pathol 2017; 32:8-14. [PMID: 29078120 DOI: 10.1016/j.carpath.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of the arterial wall. Adjacent to lamina intima lesion progression, a cellular compound develops in the lamina adventitia, defined as tertiary lymphoid organs (TLO) in mice. But in human system, it remains unknown whether these adventitial cellular accumulations represent these highly organized immunological structures. PATIENTS AND METHODS In this study, we investigated whether the adventitial cellular compounds represent TLOs in 72 human coronary artery samples by immunoenzyme staining. RESULTS The study showed that the adventitial cellular compound partly represented TLOs in human coronary arteries affected by atherogenesis in patients suffering from ischemic heart disease (56%) or a fatal myocardial infarction (100%), but not dilated cardiomyopathy. In addition, we established a classification for human TLOs, stage I-III, and showed that all stages were present in diseased coronary arteries. The stage of TLOs highly correlated with lesion size as well as plaque instability and rupture, and all patients with a myocardial infarction had stage III. Additionally, there were cellular infiltration and destruction of the lamina media, which were restricted to TLOs next to ruptured plaques in patients with a fatal myocardial infarction. CONCLUSIONS TLOs are present in patients with a coronary artery disease and highly correlated with lesion size, plaque instability, and rupture. Further studies are needed to investigate whether TLOs might be a specific diagnostic and drug target to modify plaque instability/rupture.
Collapse
Affiliation(s)
- Mohammadreza Akhavanpoor
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany
| | - Christian A Gleissner
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany
| | - Hamidreza Akhavanpoor
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany
| | | | - Andreas O Doesch
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany
| | - Christian Erbel
- Department of Cardiology, University of Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Mannheim, Germany.
| |
Collapse
|
35
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
36
|
Packard TA, Smith MJ, Conrad FJ, Johnson SA, Getahun A, Lindsay RS, Hinman RM, Friedman RS, Thomas JW, Cambier JC. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. J Clin Med 2016; 5:E98. [PMID: 27834793 PMCID: PMC5126795 DOI: 10.3390/jcm5110098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity.
Collapse
Affiliation(s)
- Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Francis J Conrad
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Sara A Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - James W Thomas
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
37
|
Jing F, Choi EY. Potential of Cells and Cytokines/Chemokines to Regulate Tertiary Lymphoid Structures in Human Diseases. Immune Netw 2016; 16:271-280. [PMID: 27799872 PMCID: PMC5086451 DOI: 10.4110/in.2016.16.5.271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune diseases, transplant rejection and cancer. They exhibit almost all the characteristics of secondary lymphoid organs (SLO), which are associated with adaptive immune responses; as such, they contain organized B-cell follicles with germinal centers, distinct areas containing T cells and dendritic cells, high endothelial venules, and lymphatics. In this review, we briefly describe the formation of SLO, and describe the cellular subsets and molecular cues involved in the formation and maintenance of TLS. Finally, we discuss the associations of TLS with human diseases, especially autoimmune diseases, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Feifeng Jing
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
38
|
Corsiero E, Nerviani A, Bombardieri M, Pitzalis C. Ectopic Lymphoid Structures: Powerhouse of Autoimmunity. Front Immunol 2016; 7:430. [PMID: 27799933 PMCID: PMC5066320 DOI: 10.3389/fimmu.2016.00430] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
Ectopic lymphoid structures (ELS) often develop at sites of inflammation in target tissues of autoimmune diseases, such as rheumatoid arthritis, Sjögren’s syndrome, multiple sclerosis, myasthenia gravis, and systemic lupus erythematosus. ELS are characterized by the formation of organized T/B cells aggregates, which can acquire follicular dendritic cells network supporting an ectopic germinal center response. In this review, we shall summarize the mechanisms that regulate the formation of ELS in tertiary lymphoid organs, with particular emphasis on the role of lymphoid chemokines in both formation and maintenance of ELS, the role of emerging positive and negative regulators of ELS development and function, including T follicular helper cells and IL-27, respectively. Finally, we shall discuss the main functions of ELS in supporting the affinity maturation, clonal selection, and differentiation of autoreactive B cells contributing to the maintenance and perpetuation of humoral autoimmunity.
Collapse
Affiliation(s)
- Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| |
Collapse
|
39
|
Hwang JY, Randall TD, Silva-Sanchez A. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Front Immunol 2016; 7:258. [PMID: 27446088 PMCID: PMC4928648 DOI: 10.3389/fimmu.2016.00258] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Aaron Silva-Sanchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
40
|
Wan X, Thomas JW, Unanue ER. Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. J Exp Med 2016; 213:967-78. [PMID: 27139492 PMCID: PMC4886365 DOI: 10.1084/jem.20151869] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/09/2016] [Indexed: 01/03/2023] Open
Abstract
Unanue and colleagues show that activation of anti-insulin lymphocytes can occur at diverse anatomical sites in response to circulating insulin and may be driven by unconventional antigen presentation by germinal center B cells. Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node–islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - James W Thomas
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
41
|
Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL. The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol 2016; 12:763-73. [PMID: 26864273 DOI: 10.1586/1744666x.2016.1152888] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bruton's tyrosine kinase (BTK) mediates B cell signaling and is also present in innate immune cells but not T cells. BTK propagates B cell receptor (BCR) responses to antigen-engagement as well as to stimulation via CD40, toll-like receptors (TLRs), Fc receptors (FCRs) and chemokine receptors. Importantly, BTK can modulate signaling, acting as a "rheostat" rather than an "on-off" switch; thus, overexpression leads to autoimmunity while decreased levels improve autoimmune disease outcomes. Autoreactive B cells depend upon BTK for survival to a greater degree than normal B cells, reflected as loss of autoantibodies with maintenance of total antibody levels when BTK is absent. This review describes contributions of BTK to immune tolerance, including studies testing BTK-inhibitors for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Leslie J Crofford
- a Division of Rheumatology & Immunology, Department of Medicine , Vanderbilt University , Nashville , TN , USA.,b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA
| | - Lindsay E Nyhoff
- b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA
| | - Jonathan H Sheehan
- c Center for Structural Biology, Department of Biochemistry , Vanderbilt University , Nashville , TN , USA
| | - Peggy L Kendall
- b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA.,d Division of Allergy, Pulmonary and Critical Care, Department of Medicine , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
42
|
Kielczewski JL, Horai R, Jittayasothorn Y, Chan CC, Caspi RR. Tertiary Lymphoid Tissue Forms in Retinas of Mice with Spontaneous Autoimmune Uveitis and Has Consequences on Visual Function. THE JOURNAL OF IMMUNOLOGY 2015; 196:1013-25. [PMID: 26712943 DOI: 10.4049/jimmunol.1501570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
During chronic inflammation, tertiary lymphoid tissue (TLT) can form within an inflamed organ, including the CNS. However, little is known about TLT formation in the neuroretina. In a novel spontaneous autoimmune mouse model of uveitis (R161H), we identified well-organized lymphoid aggregates in the retina and examined them for TLT characteristics. Presence of immune cells, tissue-specific markers, and gene expression patterns typically associated with germinal centers and T follicular helper cells were examined using immunohistochemistry and gene analysis of laser capture microdissected retina. Our data revealed the retinal lymphoid structures contained CD4(+) T cells and B cells in well-defined zonal areas that expressed classic germinal center markers, peanut lectin (agglutinin) and GL-7. Gene expression analysis showed upregulation of T follicular helper cell markers, most notably CXCR5 and its ligand CXCL13, and immunohistochemical analysis confirmed CXCR5 expression, typically associated with CD4(+) T follicular helper cells. Highly organized stromal cell networks, a hallmark of organized lymphoid tissue, were also present. Positive staining for phospho-Zap70 in retina-specific T cells indicated CD4(+) T cells were being activated within these lymphoid structures. CD138(+)/B220(+) plasma cells were detected, suggesting the retinal lymphoid aggregates give rise to functional germinal centers, which produce Abs. Interestingly, eyes with lymphoid aggregates exhibited lower inflammatory scores by fundus examination and a slower initial rate of loss of visual function by electroretinography, compared with eyes without these structures. Our findings suggest that the lymphoid aggregates in the retina of R161H mice represent organized TLT, which impact the course of chronic uveitis.
Collapse
Affiliation(s)
- Jennifer L Kielczewski
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Bonami RH, Thomas JW. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:4730-41. [PMID: 26432895 DOI: 10.4049/jimmunol.1500438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or whether this process is dysregulated in related autoimmunity. To resolve these issues, we developed an editing-competent model in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a nonautoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, because selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab')2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
44
|
Williams JM, Bonami RH, Hulbert C, Thomas JW. Reversing Tolerance in Isotype Switch-Competent Anti-Insulin B Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:853-64. [PMID: 26109644 PMCID: PMC4506889 DOI: 10.4049/jimmunol.1403114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/30/2015] [Indexed: 12/22/2022]
Abstract
Autoreactive B lymphocytes that escape central tolerance and mature in the periphery are a liability for developing autoimmunity. IgG insulin autoantibodies that predict type 1 diabetes and complicate insulin therapies indicate that mechanisms for tolerance to insulin are flawed. To examine peripheral tolerance in anti-insulin B cells, we generated C57BL/6 mice that harbor anti-insulin VDJH-125 site directed to the native IgH locus (VH125(SD)). Class switch-competent anti-insulin B cells fail to produce IgG Abs following T cell-dependent immunization of VH125(SD) mice with heterologous insulin, and they exhibit markedly impaired proliferation to anti-CD40 plus insulin in vitro. In contrast, costimulation with LPS plus insulin drives robust anti-insulin B cell proliferation. Furthermore, VH125(SD) mice produce both IgM and IgG2a anti-insulin Abs following immunization with insulin conjugated to type 1 T cell-independent Brucella abortus ring test Ag (BRT). Anti-insulin B cells undergo clonal expansion in vivo and emerge as IgM(+) and IgM(-) GL7(+)Fas(+) germinal center (GC) B cells following immunization with insulin-BRT, but not BRT alone. Analysis of Igκ genes in VH125(SD) mice immunized with insulin-BRT reveals that anti-insulin Vκ from the preimmune repertoire is selected into GCs. These data demonstrate that class switch-competent anti-insulin B cells remain functionally silent in T cell-dependent immune responses, yet these B cells are vulnerable to reversal of anergy following combined BCR/TLR engagement that promotes Ag-specific GC responses and Ab production. Environmental factors that lead to infection and inflammation could play a critical yet underappreciated role in driving loss of tolerance and promoting autoimmune disease.
Collapse
Affiliation(s)
- Jonathan M Williams
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Chrys Hulbert
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - James W Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
45
|
Ballesteros-Tato A. Beyond regulatory T cells: the potential role for IL-2 to deplete T-follicular helper cells and treat autoimmune diseases. Immunotherapy 2015; 6:1207-20. [PMID: 25496335 DOI: 10.2217/imt.14.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Low-dose IL-2 administration suppresses unwanted immune responses in mice and humans, thus evidencing the potential of IL-2 to treat autoimmune disorders. Increased Tregs activity is one of the potential mechanisms by which low-dose IL-2 immunotherapy induces immunosuppression. In addition, recent data indicate that IL-2 may contribute to prevent unwanted self-reactive responses by preventing the developing of T-follicular helper cells, a CD4(+) T-cell subset that expands in autoimmune disease patients and promotes long-term effector B-cell responses. Here we discuss the mechanisms underlying the clinical benefits of low-dose IL-2 administration, focusing on the role of this cytokine in promoting Treg-mediated suppression and preventing self-reactive T-follicular helper cell responses.
Collapse
|
46
|
Walker LSK, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol 2015; 183:16-29. [PMID: 26102289 DOI: 10.1111/cei.12672] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2015] [Indexed: 12/27/2022] Open
Abstract
Susceptibility to type 1 diabetes is associated strongly with human leucocyte antigen (HLA) genes, implicating T cells in disease pathogenesis. In humans, CD8 T cells predominantly infiltrate the islets, yet their activation and propagation probably requires CD4 T cell help. CD4 T cells can select from several differentiation fates following activation, and this choice has profound consequences for their subsequent cytokine production and migratory potential. In turn, these features dictate which other immune cell types T cells interact with and influence, thereby determining downstream effector functions. Obtaining an accurate picture of the type of CD4 T cell differentiation associated with a particular immune-mediated disease therefore constitutes an important clue when planning intervention strategies. Early models of T cell differentiation focused on the dichotomy between T helper type 1 (Th1) and Th2 responses, with type 1 diabetes (T1D) being viewed mainly as a Th1-mediated pathology. However, several additional fate choices have emerged in recent years, including Th17 cells and follicular helper T cells. Here we revisit the issue of T cell differentiation in autoimmune diabetes, highlighting new evidence from both mouse models and patient samples. We assess the strengths and the weaknesses of the Th1 paradigm, review the data on interleukin (IL)-17 production in type 1 diabetes and discuss emerging evidence for the roles of IL-21 and follicular helper T cells in this disease setting. A better understanding of the phenotype of CD4 T cells in T1D will undoubtedly inform biomarker development, improve patient stratification and potentially reveal new targets for therapeutic intervention.
Collapse
Affiliation(s)
- L S K Walker
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - M von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA and Novo Nordisk Diabetes Research and Development Center, Seattle, WA, USA
| |
Collapse
|
47
|
Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 2015; 297:69-79. [PMID: 26163773 DOI: 10.1016/j.cellimm.2015.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges.
Collapse
|
48
|
Case JB, Bonami RH, Nyhoff LE, Steinberg HE, Sullivan AM, Kendall PL. Bruton's Tyrosine Kinase Synergizes with Notch2 To Govern Marginal Zone B Cells in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:61-70. [PMID: 26034172 DOI: 10.4049/jimmunol.1400803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Expansion of autoimmune-prone marginal zone (MZ) B cells has been implicated in type 1 diabetes. To test disease contributions of MZ B cells in NOD mice, Notch2 haploinsufficiency (Notch2(+/-)) was introduced but failed to eliminate the MZ, as it does in C57BL/6 mice. Notch2(+/-)/NOD have MZ B cell numbers similar to those of wild-type C57BL/6, yet still develop diabetes. To test whether BCR signaling supports Notch2(+/-)/NOD MZ B cells, Bruton's tyrosine kinase (Btk) deficiency was introduced. Surprisingly, MZ B cells failed to develop in Btk-deficient Notch2(+/-)/NOD mice. Expression of Notch2 and its transcriptional target, Hes5, was increased in NOD MZ B cells compared with C57BL/6 MZ B cells. Btk deficiency reduced Notch2(+/-) signaling exclusively in NOD B cells, suggesting that BCR signaling enhances Notch2 signaling in this autoimmune model. The role of BCR signaling was further investigated using an anti-insulin transgenic (Tg) BCR (125Tg). Anti-insulin B cells in 125Tg/Notch2(+/-)/NOD mice populate an enlarged MZ, suggesting that low-level BCR signaling overcomes reliance on Notch2. Tracking clonotypes of anti-insulin B cells in H chain-only VH125Tg/NOD mice showed that BTK-dependent selection into the MZ depends on strength of antigenic binding, whereas Notch2-mediated selection does not. Importantly, anti-insulin B cell numbers were reduced by Btk deficiency, but not Notch2 haploinsufficiency. These studies show that 1) Notch2 haploinsufficiency limits NOD MZ B cell expansion without preventing type 1 diabetes, 2) BTK supports the Notch2 pathway in NOD MZ B cells, and 3) autoreactive NOD B cell survival relies on BTK more than Notch2, regardless of MZ location, which may have important implications for disease-intervention strategies.
Collapse
Affiliation(s)
- James B Case
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H Bonami
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Hannah E Steinberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Allison M Sullivan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Peggy L Kendall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
49
|
Tsai S, Clemente-Casares X, Revelo XS, Winer S, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes 2015; 64:1886-97. [PMID: 25999531 DOI: 10.2337/db14-1488] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and associated insulin resistance predispose individuals to develop chronic metabolic diseases, such as type 2 diabetes and cardiovascular disease. Although these disorders affect a significant proportion of the global population, the underlying mechanisms of disease remain poorly understood. The discovery of elevated tumor necrosis factor-α in adipose tissue as an inducer of obesity-associated insulin resistance marked a new era of understanding that a subclinical inflammatory process underlies the insulin resistance and metabolic dysfunction that precedes type 2 diabetes. Advances in the field identified components of both the innate and adaptive immune response as key players in regulating such inflammatory processes. As antigen specificity is a hallmark of an adaptive immune response, its role in modulating the chronic inflammation that accompanies obesity and type 2 diabetes begs the question of whether insulin resistance and type 2 diabetes can have autoimmune components. In this Perspective, we summarize current data that pertain to the activation and perpetuation of adaptive immune responses during obesity and discuss key missing links and potential mechanisms for obesity-related insulin resistance and type 2 diabetes to be considered as potential autoimmune diseases.
Collapse
Affiliation(s)
- Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier Clemente-Casares
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier S Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Daniel A Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada Department of Pathology, University Health Network, Toronto, Ontario, Canada Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Hauser AE, Höpken UE. B Cell Localization and Migration in Health and Disease. MOLECULAR BIOLOGY OF B CELLS 2015:187-214. [DOI: 10.1016/b978-0-12-397933-9.00012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|