1
|
Gharbi D, Neumann FH, Staats J, McDonald M, Linde JH, Mmatladi T, Podile K, Piketh S, Burger R, Garland RM, Bester P, Lebre PH, Ricci C. Prevalence of aeroallergen sensitization in a polluted and industrialized area: a pilot study in South Africa's Vaal Triangle. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:287. [PMID: 39945937 PMCID: PMC11825541 DOI: 10.1007/s10661-025-13718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
This pioneering study evaluates the prevalence of aeroallergens reactivity among atopic populations living in the Vaal Triangle Airshed Priority Area (VTAPA), South Africa. A total of 138 volunteers (51 males and 87 females), of African, colored, white, and Asian ethnicity, and with a mean (range) age of 22 (18-56) years were participating in the study. The study was conducted on the North-West University (NWU) campus in Vanderbijlpark/VTAPA. The International Study of Asthma and Allergies in Childhood questionnaire was utilized for pre-screening to identify individuals with probable allergic dispositions. Subsequently, skin prick testing was conducted using commercial aeroallergen extracts for all confirmed participants with allergy symptoms. One hundred six participants were clinically diagnosed with pollen and fungal spore allergies. The highest allergy prevalence was attributed to Cynodon dactylon ((L.) Pers) (Bermuda grass) (41.5%), followed by Lolium perenne (L.) (ryegrass), grass mix, and Zea mays (L.) (maize) (31.1%), respectively. Moreover, among the tree allergens, Olea (L.) (olive tree) was the most prevalent allergen (20; 18.8%), followed by Platanus (L.) (plane tree) (18; 16.9%). Among the weeds, 16 (15.1%) participants were allergic to the weed mix (Artemisia (L.) (wormwood), Chenopodium (Link) (goosefoot), Salsola (L.) (saltwort), Plantago (L.) (plantain), and 11 (10.3%) to Ambrosia (L.) (ragweed)). Regarding the fungal spores, Alternaria (Fr.) (9; 8.5%) followed by Cladosporium (Link) (5; 4.7%) had the highest skin sensitivity. In this pilot study, our findings provide insights into the prevalence of allergic responses in the study population-underlining the strong impact of allergens of exotic plants-and contribute to the existing aerobiological data in South Africa.
Collapse
Affiliation(s)
- Dorra Gharbi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa.
| | - Frank Harald Neumann
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Jurgens Staats
- Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | | | - Jo-Hanné Linde
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Tshiamo Mmatladi
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Keneilwe Podile
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Stuart Piketh
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Roelof Burger
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Science, North-West University, Potchefstroom, South Africa
| | - Rebecca M Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Petra Bester
- Africa Unit for Transdisciplinary Health Research, North-West University, Potchefstroom, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Cristian Ricci
- Africa Unit for Transdisciplinary Health Research, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Shin JM, Jeong Y, Kim J, Lee J, Kim TH. Assessing the Complex Impact of Smoking Habits on Allergic Rhinitis: A National Cross-Sectional Study. Clin Exp Otorhinolaryngol 2025; 18:30-39. [PMID: 39581678 PMCID: PMC11917198 DOI: 10.21053/ceo.2024.00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVES Allergic rhinitis (AR) significantly impacts quality of life and incurs socioeconomic costs. The influence of smoking habits, including the use of conventional cigarettes (CCs) and electronic cigarettes (ECs), on the prevalence and management of AR remains a subject of debate. This study aims to explore the association between smoking status (CC and EC use) and the prevalence and management of AR among Koreans by analyzing data from the Korea National Health and Nutrition Examination Survey (KNHANES) VII (2018) and VIII (2019-2021). METHODS This cross-sectional study involved 22,290 participants aged 19 years and older from the KNHANES. Participants self-reported their smoking status, and urinary cotinine levels were measured to assess nicotine exposure. We employed statistical analyses, including logistic regression, to examine the relationships between smoking status, cotinine levels, and the prevalence and management of AR. RESULTS In univariable logistic regression analysis, EC users exhibited a 35.8% increased risk of AR compared to non-smokers, whereas CC users experienced a 27.7% reduced risk. Multivariable logistic regression analysis showed a 20.3% lower risk of AR among CC users; however, no significant association was observed for EC users. Higher cotinine levels (>500 ng/mL) were associated with a lower prevalence of AR. Specifically, heavy CC users with high cotinine levels demonstrated a 35% reduced risk of AR. Nonetheless, after adjusting for confounders, this association was no longer significant, indicating that other variables might influence this relationship. CONCLUSION Smoking status is associated with the prevalence of AR in Koreans. Notably, heavy use of CCs is negatively correlated with the prevalence of AR.
Collapse
Affiliation(s)
- Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul, Korea
| | - Yujin Jeong
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul, Korea
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
YAMASHITA S, MIURA K, MATSUURA A, YAMASAKI N, UDA N, OGATA S, HOSOMI N, NAKAJIMA S, KITAMURA N, GOTOH M, MORI A, KAMINUMA O. α7 nicotinic acetylcholine receptor agonist attenuates allergen-induced immediate nasal response in murine model of allergic rhinitis. J Vet Med Sci 2024; 86:824-827. [PMID: 38839347 PMCID: PMC11251814 DOI: 10.1292/jvms.24-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The expression of nicotinic acetylcholine receptor (nAChR) subunits on various immune cells suggests their involvement in allergic rhinitis. However, how exactly they contribute to this pathogenesis is not yet confirmed. Our present study examined the therapeutic potential of GTS-21, an α7 nAChR agonist, for treating allergic rhinitis by employing its mouse models. GTS-21 treatment reduced allergen-induced immediate nasal response in ovalbumin (OVA)-sensitized model. However, nasal hyperresponsiveness or eosinophil infiltration elicited in either the OVA-sensitized or T helper 2 cell-transplanted model was not affected by GTS-21. GTS-21 did not alter allergen-induced passive cutaneous anaphylaxis response in anti-dinitrophenyl IgE-sensitized mice. This evidence implies GTS-21's potential to alleviate allergic rhinitis without perturbing T cells or mast cells.
Collapse
Affiliation(s)
- Shuhei YAMASHITA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kento MIURA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Anna MATSUURA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Norimasa YAMASAKI
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naoto UDA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Sawako OGATA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Naohisa HOSOMI
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shotaro NAKAJIMA
- Departments of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Noriko KITAMURA
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan
| | - Minoru GOTOH
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan
| | - Akio MORI
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Osamu KAMINUMA
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Scieszka DP, Garland D, Hunter R, Herbert G, Lucas S, Jin Y, Gu H, Campen MJ, Cannon JL. Multi-omic assessment shows dysregulation of pulmonary and systemic immunity to e-cigarette exposure. Respir Res 2023; 24:138. [PMID: 37231407 PMCID: PMC10209577 DOI: 10.1186/s12931-023-02441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Electronic cigarette (Ecig) use has become more common, gaining increasing acceptance as a safer alternative to tobacco smoking. However, the 2019 outbreak of Ecig and Vaping-Associated Lung Injury (EVALI) alerted the community to the potential for incorporation of deleterious ingredients such as vitamin E acetate into products without adequate safety testing. Understanding Ecig induced molecular changes in the lung and systemically can provide a path to safety assessment and protect consumers from unsafe formulations. While vitamin E acetate has been largely removed from commercial and illicit products, many Ecig products contain additives that remain largely uncharacterized. In this study, we determined the lung-specific effects as well as systemic immune effects in response to exposure to a common Ecig base, propylene glycol and vegetable glycerin (PGVG), with and without a 1% addition of phytol, a diterpene alcohol that has been found in commercial products. We exposed animals to PGVG with and without phytol and assessed metabolite, lipid, and transcriptional markers in the lung. We found both lung-specific as well as systemic effects in immune parameters, metabolites, and lipids. Phytol drove modest changes in lung function and increased splenic CD4 T cell populations. We also conducted multi-omic data integration to better understand early complex pulmonary responses, highlighting a central enhancement of acetylcholine responses and downregulation of palmitic acid connected with conventional flow cytometric assessments of lung, systemic inflammation, and pulmonary function. Our results demonstrate that Ecig exposure not only leads to changes in pulmonary function but also affects systemic immune and metabolic parameters.
Collapse
Affiliation(s)
- David P Scieszka
- Department of Pharmaceutical Sciences, University of New Mexico School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Devon Garland
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Vasques AMV, da Silva ACR, Bueno CRE, Cury MTS, Ervolino E, Cintra LTA, Dezan Junior E. Inflammatory profile of apical periodontitis exacerbated by cigarette smoke inhalation: Histological and immunohistochemical analysis in rats. Int Endod J 2023; 56:465-474. [PMID: 36585248 DOI: 10.1111/iej.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
AIM The aim of this study was to evaluate the effects of cigarette smoke inhalation (CSI) on inflammation, pro-inflammatory mediators and haematological parameters in rats with induced apical periodontitis (AP). METHODOLOGY Thirty-two 3-month-old male Wistar rats were divided into four experimental groups (n = 8): C-Control; S-rats with CSI; AP-rats with AP; and SAP-rats with CSI + AP. Animals in groups S and SAP inhaled cigarette smoke by remaining inside a smoking chamber for 8 min, three times daily, for 50 days. After 20 days of smoke inhalation, animals in AP and SAP groups had the pulps of the lower right first molar exposed to oral environment for 30 days to induce AP. In these subsequent 30 days, animals in group S and SAP continued with CSI. On Day 50, animals were euthanized and mandibles were histologically processed to assess inflammatory infiltrate, immunohistochemical interleukins (IL-1β, IL-6 and TNF-α), and blood samples collected for laboratory analysis. The Mann-Whitney test was performed for non-parametric data and the pairwise analyses of Student's t-test for parametric data, with a significance level of p < .050. RESULTS Inflammatory infiltrate was moderate in AP group and more severe in the SAP (p = .010). The interleukins IL-6, IL-1β and TNF-α were higher in SAP group (p < .001) when compared to the AP group. A greater number of red blood cells (p = .010), haemoglobin (p = .007) and neutrophils (p = .014) were observed in the SAP group in comparison with the AP group. CONCLUSION Cigarette smoke inhalation induced a more severe inflammatory infiltrate, with increased levels of pro-inflammatory cytokines and changes in haematological parameters in rats with induced AP. Thus, CSI aggravated AP, exacerbating the inflammatory response.
Collapse
Affiliation(s)
- Ana Maria Veiga Vasques
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Ana Claudia Rodrigues da Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Carlos Roberto Emerenciano Bueno
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Marina Tolomei Sandoval Cury
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Eloi Dezan Junior
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
6
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
7
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
8
|
Choi BS, Kim HH, Kim HB, Rha YH, Park Y, Sung M, Shin YH, Yum HY, Lee KS, Lee YJ, Chun YH, Jee HM, Kim M, Park YM, Choi SH. Smoking exposure and allergic rhinitis in children and adolescents. ALLERGY ASTHMA & RESPIRATORY DISEASE 2022. [DOI: 10.4168/aard.2022.10.4.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bong Seok Choi
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Yeong-Ho Rha
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, Korea
| | - Yang Park
- Department of Pediatrics, Wonkwang University School of Medicine, Iksan, Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Hye Yung Yum
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Kyung Suk Lee
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Yoon Hong Chun
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Yong Mean Park
- Department of Pediatrics, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sun Hee Choi
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, Korea
| | | |
Collapse
|
9
|
Chun YH, Kim M, Kim HB, Rha YH, Park Y, Park YM, Sung M, Shin YH, Yum HY, Lee KS, Lee YJ, Jee HM, Choi BS, Choi SH, Kim HH. Risk factors and protective factors in pediatric patients with allergic rhinitis. ALLERGY ASTHMA & RESPIRATORY DISEASE 2022. [DOI: 10.4168/aard.2022.10.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoon Hong Chun
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Yeong-Ho Rha
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yang Park
- Department of Pediatrics, Wonkwang University School of Medicine, Iksan, Korea
| | - Yong Mean Park
- Department of Pediatrics, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Hye Yung Yum
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Kyung Suk Lee
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Bong Seok Choi
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sun Hee Choi
- Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
10
|
Smoking Status Modifies the Relationship between Th2 Biomarkers and Small Airway Obstruction in Asthma. Can Respir J 2021; 2021:1918518. [PMID: 34876944 PMCID: PMC8645388 DOI: 10.1155/2021/1918518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Cigarette smoking and Th2-inflammation are both crucial in the pathogenesis of asthma. However, it is unknown whether smoking can affect the association between Th2-inflammation and small airway obstruction in adults with asthma. Methods Adults diagnosed with asthma by a pulmonologist according to Global Initiative for Asthma guidelines were recruited from September 2016 to April 2018 to participate in this study. Participants were divided into two groups, the small airway obstruction group (those with FEF25–75% predicted value ≤ 65%) and the normal small airway function group (those with FEF25–75% predicted value > 65%). Final data analysis included 385 and 93 people in the Obstructive Group and the Normal Group, respectively. Total serum IgE level and blood eosinophil count were used as biomarkers of the Th2 phenotype. Results The Obstructive Group had a larger fraction of smokers, higher blood eosinophil count, and lower lung function than the Normal Group. Current-smoking status was associated with an increased risk of small airway obstruction (adjusted odds ratio = 4.677, 95% confidence interval [1.593–13.730]); and log-IgE level was associated with a decreased risk of small airway obstruction (0.403 [0.216–0.754]). Smoking status stratified analysis showed an association between log-IgE level and a decreased risk of small airway obstruction only in never-smoker asthmatics (0.487 [0.249–0.954]). Conclusions Current-smoking status and total serum IgE are, respectively, associated with small airway obstruction. Smoking status modifies the relationship between Th2 biomarkers and small airway function. These findings contribute to the understanding of risk factors associated with asthma endotyping.
Collapse
|
11
|
Olguín-Martínez E, Ruiz-Medina BE, Licona-Limón P. Tissue-Specific Molecular Markers and Heterogeneity in Type 2 Innate Lymphoid Cells. Front Immunol 2021; 12:757967. [PMID: 34759931 PMCID: PMC8573327 DOI: 10.3389/fimmu.2021.757967] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently described group of lymphoid subpopulations. These tissue-resident cells display a heterogeneity resembling that observed on different groups of T cells, hence their categorization as cytotoxic NK cells and helper ILCs type 1, 2 and 3. Each one of these groups is highly diverse and expresses different markers in a context-dependent manner. Type 2 innate lymphoid cells (ILC2s) are activated in response to helminth parasites and regulate the immune response. They are involved in the etiology of diseases associated with allergic responses as well as in the maintenance of tissue homeostasis. Markers associated with their identification differ depending on the tissue and model used, making the study and understanding of these cells a cumbersome task. This review compiles evidence for the heterogeneity of ILC2s as well as discussion and analyses of molecular markers associated with their identity, function, tissue-dependent expression, and how these markers contribute to the interaction of ILC2s with specific microenvironments to maintain homeostasis or respond to pathogenic challenges.
Collapse
Affiliation(s)
- Enrique Olguín-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Blanca E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
12
|
Escobar YNH, Morrison CB, Chen Y, Hickman E, Love CA, Rebuli ME, Surratt JD, Ehre C, Jaspers I. Differential responses to e-cig generated aerosols from humectants and different forms of nicotine in epithelial cells from nonsmokers and smokers. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1064-L1073. [PMID: 33825493 DOI: 10.1152/ajplung.00525.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY). Mucin levels were examined in the apical washes, and cytokine levels were assessed in the basolateral supernatants 24 h postexposure. The aerosol from the GLY exposure increased mucin 5, subtype AC (MUC5AC) levels in the apical wash of hNECs from nonsmokers, but not smokers. However, the aerosol from GLY induced pro-inflammatory responses in hNECs from smokers. We also exposed hNECs from nonsmokers and smokers to e-cig generated aerosol from PG:GLY with freebase nicotine or nicotine salt. The PG:GLY with freebase nicotine exposure increased MUC5AC and mucin 5, subtype B (MUC5B) levels in hNECs from nonsmokers, but the nicotine salt exposure did not. The PG:GLY with nicotine salt exposure increased pro-inflammatory cytokines in hNECs from smokers, which was not seen with the freebase nicotine exposure. Taken together, these data indicate that the e-cig generated aerosols from the humectants, mostly GLY, and the type of nicotine used cause differential effects in airway epithelial cells from nonsmokers and smokers. As e-cig use is increasing, it is important to understand that the biological effects of e-cig use are likely dependent on prior cigarette smoke exposure.
Collapse
Affiliation(s)
- Yael-Natalie H Escobar
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Cameron B Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, North Carolina
| | - Elise Hickman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Charlotte A Love
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, North Carolina.,Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
13
|
Gómez RM, Croce VH, Zernotti ME, Muiño JC. Active smoking effect in allergic rhinitis. World Allergy Organ J 2021; 14:100504. [PMID: 33510834 PMCID: PMC7816023 DOI: 10.1016/j.waojou.2020.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/03/2022] Open
Abstract
Background Tobacco smoke has been described as causing increased prevalence of rhinitis symptoms and decreased atopy. Furthermore, these nasal symptoms and quality of life in smokers with Allergic Rhinitis (AR) were not significantly different to non-smokers. As a result of this duality, a comparison study between the quality of life and inflammatory markers of atopy among active smokers and non-smokers having AR was put forward. Material and methods Cross-sectional study in adult smokers and non-smokers, with a clinical diagnosis of AR and positive Skin Prick Test (SPT). Smoking status was confirmed by salivary cotinine measurements. Functional respiratory evaluation was performed, and quality of life between groups was compared using Mini-RQLQ questionnaire. Immunological markers in serum and nasal washes (IgE, IL-4, IL 5, IL 13, IL 17, IL 33) were evaluated, while samples from a third group of passive smokers was incorporated for serological comparison exclusively. The statistical analysis included Student T test, x2, Mann Whitney U (Anova 2-way), and Kruskal Wallis for 3 groups analysis. Values of P < 0.05 were considered significant. Results Twenty-two patients per group with similar demographics and allergen sensitivity were studied. Regarding inflammatory markers, a reduction of IL 33 in the serum of smokers (P < 0.001) was the only statistically significant different parameter revealed, showing a remarkable trend in nasal lavage. Salivary cotinine levels were absolutely different (P < 0.0001), but pulmonary function evaluations were not statistically significant after multiple adjusting. There were no significant differences in quality of life parameters. Conclusions In our study of AR, active smokers do not demonstrate impaired nasal related quality of life or impact on atopic inflammatory parameters, compared to non-smokers. Reduced levels of IL33 could explain a lack of symptoms alerting smokers of the harmful consequences of smoking.
Collapse
Affiliation(s)
| | - Víctor Hugo Croce
- Pediatric Allergy Dept., Instituto Modelo Cardiología, Córdoba, Argentina
| | | | | |
Collapse
|
14
|
Quinones Tavarez Z, Li D, Croft DP, Gill SR, Ossip DJ, Rahman I. The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction. Front Microbiol 2020; 11:589501. [PMID: 33391205 PMCID: PMC7772214 DOI: 10.3389/fmicb.2020.589501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the last decade. ENDS are non-combustible tobacco products that heat and aerosolize a liquid containing humectants, with added flavorings and often nicotine. Though ENDS are promoted as a less harmful alternative to smoking, current evidence links their use to a wide range of deleterious health effects including acute and chronic lung damage. ENDS can elicit an inflammatory response and impair the innate immune response in the lungs. Exposure to ENDS flavorings results in abnormal activation of the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be associated with allergies and asthma through activation of transient receptor potential ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship between the homeostasis of lung innate immunity and the immunomodulatory effect of the host-microbiota interaction. Alterations of the normal respiratory microbiota have been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy and cystic fibrosis complications which are strongly associated with smoking and potentially with ENDS use. Little is known about the short-and long-term effects of ENDS on the respiratory microbiota, their impact on the innate immune response and their link to pulmonary health and disease. Here we review the interaction between the innate immune system and the respiratory microbiota in the pathogenesis of ENDS-induced pulmonary dysfunction and identify future areas of research.
Collapse
Affiliation(s)
- Zahira Quinones Tavarez
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P. Croft
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
15
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
16
|
Chen W, Shu Q, Fan J. Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front Immunol 2020; 11:576929. [PMID: 33193374 PMCID: PMC7658006 DOI: 10.3389/fimmu.2020.576929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence supports the involvement of nervous system in the regulation of immune responses. Group 2 innate lymphoid cells (ILC2), which function as a crucial bridge between innate and adaptive immunity, are present in large numbers in barrier tissues. Neuropeptides and neurotransmitters have been found to participate in the regulation of ILC2, adding a new dimension to neuroimmunity. However, a comprehensive and detailed overview of the mechanisms of neural regulation of ILC2, associated with previous findings and prospects for future research, is still lacking. In this review, we compile existing information that supports neurons as yet poorly understood regulators of ILC2 in the field of lung innate and adaptive immunity, focusing on neural regulation of the interaction between ILC2 and pulmonary immune cells.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Heyn J, Luchting B, Azad SC. Smoking Associated T-Cell Imbalance in Patients With Chronic Pain. Nicotine Tob Res 2020; 22:111-117. [PMID: 30247701 DOI: 10.1093/ntr/nty199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/18/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Smoking is associated with several diseases and affects the immune system. Recently, published data demonstrate an involvement of T helper 17 cells (Th17) and regulatory T cells (Tregs) in the pathogenesis of chronic pain and pain intensity. The role of these T-cell subsets in smoking patients with chronic pain is nebulous so far. We therefore analyzed Th17 cells and Tregs in smokers and nonsmokers with chronic pain. METHODS Analyses of T-cell subsets, mRNA expression and T-cell related cytokine profiles were done in 44 patients with chronic pain. Twenty-two of these patients were smokers. Numbers of T-cell subsets were quantified by flow cytometry. mRNA expression of the Th17- (RAR-related orphan receptor gamma) and Treg (forkhead box protein P3)-specific transcription factors was determined by quantitative real-time PCR, and levels of cytokines were measured by Human Cytokine Multiplex Immunoassay. RESULTS Compared to nonsmokers, smokers showed significantly enhanced pain levels. On cellular basis, the number of pro-inflammatory Th17 cells (smokers: 2.2 ± 2.5% vs. nonsmokers: 0.5 ± 0.4%; p = .04) was increased, whereas the number of anti-inflammatory Tregs (smokers: 2.5 ± 0.9% vs. nonsmokers: 3.1 ± 1.1%; p = .02) was significantly decreased, resulting in an altered Th17/Treg ratio (Th17/Treg ratio: 0.9 ± 1.0 in smokers vs. 0.2 ± 0.1 in nonsmokers; p < .01). These findings were confirmed by quantitative real-time PCR. Analyses of cytokines revealed only marginal changes. CONCLUSIONS In patients with chronic pain, smoking is associated with enhanced pain levels together with an imbalance of the Th17/Treg ratio. The shift of the Th17/Treg ratio toward inflammation may explain in part the increased pain intensity in these patients. IMPLICATIONS Smoking is associated with increased pain levels and a pro-inflammatory Th17/Treg shift. The altered Th17/Treg ratio in smoking patients with chronic pain may partly explain their increased pain intensity. GERMAN CLINICAL TRIAL REGISTER (DRKS) Registration Trial DRKS00005954.
Collapse
Affiliation(s)
- Jens Heyn
- Department of Anaesthesiology, University of Munich (LMU), Munich, Germany
| | - Benjamin Luchting
- Department of Anaesthesiology, University of Munich (LMU), Munich, Germany
| | - Shahnaz C Azad
- Department of Anaesthesiology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
18
|
Pinheiro NM, Miranda CJCP, Santana FR, Bittencourt-Mernak M, Arantes-Costa FM, Olivo C, Perini A, Festa S, Caperuto LC, Tibério IFLC, Prado MAM, Martins MA, Prado VF, Prado CM. Effects of VAChT reduction and α7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation. Eur J Pharmacol 2020; 882:173239. [PMID: 32619677 DOI: 10.1016/j.ejphar.2020.173239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
The cholinergic anti-inflammatory pathway has been shown to regulate lung inflammation and cytokine release in acute models of inflammation, mainly via α7 nicotinic receptor (α7nAChR). We aimed to evaluate the role of endogenous acetylcholine in chronic allergic airway inflammation in mice and the effects of therapeutic nAChR stimulation in this model. We first evaluated lung inflammation and remodeling on knock-down mice with 65% of vesicular acetylcholine transport (VAChT) gene reduction (KDVAChT) and wild-type(WT) controls that were subcutaneously sensitized and then inhaled with ovalbumin(OVA). We then evaluated the effects of PNU-282987(0.5-to-2mg/kg),(α7nAChR agonist) treatment in BALB/c male mice intraperitoneal sensitized and then inhaled with OVA. Another OVA-sensitized-group was treated with PNU-282987 plus Methyllycaconitine (MLA,1 mg/kg, α7nAChR antagonist) to confirm that the effects observed by PNU were due to α7nAChR. We showed that KDVAChT-OVA mice exhibit exacerbated airway inflammation when compared to WT-OVA mice. In BALB/c, PNU-282987 treatment reduced the number of eosinophils in the blood, BAL fluid, and around airways, and also decreased pulmonary levels of IL-4,IL-13,IL-17, and IgE in the serum of OVA-exposed mice. MLA pre-treatment abolished all the effects of PNU-282987. Additionally, we showed that PNU-282987 inhibited STAT3-phosphorylation and reduced SOCS3 expression in the lung. These data indicate that endogenous cholinergic tone is important to control allergic airway inflammation in a murine model. Moreover, α7nAChR is involved in the control of eosinophilic inflammation and airway remodeling, possibly via inhibition of STAT3/SOCS3 pathways. Together these data suggest that cholinergic anti-inflammatory system mainly α7nAChR should be further considered as a therapeutic target in asthma.
Collapse
Affiliation(s)
- Nathalia M Pinheiro
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil; Department of Bioscience, Federal University of Sao Paulo, Santos, Brazil
| | - Claudia J C P Miranda
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Fernanda R Santana
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | | | | | - Clarice Olivo
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Adenir Perini
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Sérgio Festa
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Marco Antônio M Prado
- Molecular Medicine Group, Robarts Research Institute, Canada; Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Vânia F Prado
- Molecular Medicine Group, Robarts Research Institute, Canada; Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil; Department of Bioscience, Federal University of Sao Paulo, Santos, Brazil.
| |
Collapse
|
19
|
Muthumalage T, Lucas JH, Wang Q, Lamb T, McGraw MD, Rahman I. Pulmonary Toxicity and Inflammatory Response of E-Cigarette Vape Cartridges Containing Medium-Chain Triglycerides Oil and Vitamin E Acetate: Implications in the Pathogenesis of EVALI. TOXICS 2020; 8:toxics8030046. [PMID: 32605182 PMCID: PMC7560420 DOI: 10.3390/toxics8030046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Recently, there has been an outbreak of a condition named e-cigarette or vaping products-associated lung injury (EVALI). The primary components of vaping products include tetrahydrocannabinol (THC), vitamin E acetate (VEA) and medium-chain triglycerides (MCT), may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these CBD/counterfeit vape cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of CBD/counterfeit vape cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse BALF, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to CBD/counterfeit vape cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined SARS-CoV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific CBD/counterfeit vape cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated proinflammatory markers in the pathogenesis of EVALI.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Joseph H. Lucas
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Qixin Wang
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Thomas Lamb
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
| | - Matthew D. McGraw
- Division of Pediatric Pulmonology, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.M.); (J.H.L.); (Q.W.); (T.L.)
- Correspondence: ; Tel.: +1-(585)-275-6911
| |
Collapse
|
20
|
Muthumalage T, Lucas JH, Wang Q, Lamb T, McGraw MD, Rahman I. Pulmonary toxicity and inflammatory response of e-cigarettes containing medium-chain triglyceride oil and vitamin E acetate: Implications in the pathogenesis of EVALI but independent of SARS-COV-2 COVID-19 related proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32587960 DOI: 10.1101/2020.06.14.151381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT) may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these e-cig cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges, and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse plasma, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to e-cig cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined at SARS-COV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific e-cig cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated pro-inflammatory markers in the pathogenesis of EVALI.
Collapse
|
21
|
Nishimura T, Kaminuma O, Saeki M, Kitamura N, Mori A, Hiroi T. Suppressive effect of environmental tobacco smoke on murine Th2 cell-mediated nasal eosinophilic inflammation. Asia Pac Allergy 2020; 10:e18. [PMID: 32411583 PMCID: PMC7203434 DOI: 10.5415/apallergy.2020.10.e18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 11/04/2022] Open
Abstract
Background Environmental tobacco smoke (ETS) exposure is recognized as a risk factor for the development of various respiratory diseases. Objective In this study, the effect of ETS on allergen-immunized and allergen-specific Th2 cell-transferred murine eosinophilic inflammation models and that of cigarette smoke extract (CSE) and nicotine on allergen-induced Th2 cell proliferation and interleukin (IL)-4 production were investigated. Methods Ovalbumin (OVA)-immunized and OVA-specific Th2 cell-transferred BALB/c mice were exposed to ETS and were challenged with OVA. Then, the number of inflammatory cells in the nasal mucosa and nasal hyperresponsiveness (NHR) were assessed. The effects of CSE and nicotine on the allergen-induced proliferative response of and IL-4 production by Th2 cells were determined in vitro. Results In OVA-immunized and Th2 cell-transferred mice, allergen-induced NHR and nasal eosinophil infiltration were significantly suppressed by ETS exposure, whereas the accumulation of neutrophils was rather enhanced. Allergen-specific Th2 cell proliferation and IL-4 production were inhibited by coculture with CSE. The same effects were induced by nicotine, though the effect on proliferation was relatively weak. Conclusion Regardless of its harmful effect, ETS suppresses NHR, probably through the inhibition of Th2 cell responses.
Collapse
Affiliation(s)
- Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akio Mori
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
22
|
Singh SP, Chand HS, Banerjee S, Agarwal H, Raizada V, Roy S, Sopori M. Acetylcholinesterase Inhibitor Pyridostigmine Bromide Attenuates Gut Pathology and Bacterial Dysbiosis in a Murine Model of Ulcerative Colitis. Dig Dis Sci 2020; 65:141-149. [PMID: 31643033 PMCID: PMC6943409 DOI: 10.1007/s10620-019-05838-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a Th2 inflammatory bowel disease characterized by increased IL-5 and IL-13 expression, eosinophilic/neutrophilic infiltration, decreased mucus production, impaired epithelial barrier, and bacterial dysbiosis of the colon. Acetylcholine and nicotine stimulate mucus production and suppress Th2 inflammation through nicotinic receptors in lungs but UC is rarely observed in smokers and the mechanism of the protection is unclear. METHODS In order to evaluate whether acetylcholine can ameliorate UC-associated pathologies, we employed a mouse model of dextran sodium sulfate (DSS)-induced UC-like conditions, and a group of mice were treated with Pyridostigmine bromide (PB) to increase acetylcholine availability. The effects on colonic tissue morphology, Th2 inflammatory factors, MUC2 mucin, and gut microbiota were analyzed. RESULTS DSS challenge damaged the murine colonic architecture, reduced the MUC2 mucin and the tight-junction protein ZO-1. The PB treatment significantly attenuated these DSS-induced responses along with the eosinophilic infiltration and the pro-Th2 inflammatory factors. Moreover, PB inhibited the DSS-induced loss of commensal Clostridia and Flavobacteria, and the gain of pathogenic Erysipelotrichia and Fusobacteria. CONCLUSIONS Together, these data suggest that in colons of a murine model, PB promotes MUC2 synthesis, suppresses Th2 inflammation and attenuates bacterial dysbiosis therefore, PB has a therapeutic potential in UC.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr SE, Albuquerque, NM, 87108, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Santanu Banerjee
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Hemant Agarwal
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Veena Raizada
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Sabita Roy
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Mohan Sopori
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr SE, Albuquerque, NM, 87108, USA.
| |
Collapse
|
23
|
Moriyama S, Artis D. Neuronal regulation of group 2 innate lymphoid cells and type 2 inflammation. Adv Immunol 2019; 143:1-9. [PMID: 31607366 DOI: 10.1016/bs.ai.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diverse infectious, inflammatory, and environmental stimuli induce type 2 inflammation in the body. Group 2 innate lymphoid cells (ILC2s) are potent producers of type 2 cytokines and play important roles in promoting type 2 inflammation. In addition to alarmins and other cytokines which are known to regulate ILC2 responses, emerging studies identified the regulation of ILC2s by the nervous system through neurotransmitter and neuropeptides. In this review, we highlight recent advances in the regulation of ILC2s and type 2 inflammation by the nervous system.
Collapse
Affiliation(s)
- Saya Moriyama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| |
Collapse
|
24
|
Grillo C, La Mantia I, Grillo CM, Ciprandi G, Ragusa M, Andaloro C. Influence of cigarette smoking on allergic rhinitis: a comparative study on smokers and non-smokers. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:45-51. [PMID: 31292427 PMCID: PMC6776172 DOI: 10.23750/abm.v90i7-s.8658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/27/2019] [Indexed: 11/07/2022]
Abstract
It has been described that exposure to tobacco smoke causes worsening of allergic rhinitis symptoms. Otherwise, some studies have demonstrated a negative association between cigarette smoke and allergic rhinitis (AR). Given this inconsistency, this study evaluated the quality of life and immuno-inflammatory parameters in current smokers and nonsmokers suffering from AR. A comparative cross-sectional study was conducted in patients who presented symptoms of AR. Patients were categorized into two groups: current smokers and non-smokers based on salivary cotinine measurements. Primary outcomes were the levels of immuno-inflammatory biomarkers (IgE, IL-4, IL-5, IL-13, IL-17, and IL-33) in serum and nasal lavage and the quality of life assessed by the Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ). Secondary outcomes included salivary cotinine levels, and pulmonary function parameters, such as forced vital capacity (FVC), forced expiratory volume in 1s (FEV1), and FEV1/FVC ratio. Twenty-two patients per group were included in the analysis, with no significant difference regarding demographic characteristics. Statistically significant higher values in salivary cotinine levels (p<0.001) and lower lung function FEV1 (p=0.044) and FEV1/FVC (p=0.047) were found in smokers than in nonsmokers. Only serum IL-33 was significantly different in the 2 groups (p<0.001): smokers had higher values compared to non-smokers. There were no significant differences in MiniRQLQ parameters. Although cigarette smoking was not associated with more severe symptoms, smoking could be associated with increased risk of developing airway remodeling and decreased lung function in AR patients, thus appropriate treatment should be prescribed if smoke avoidance is unfeasible.
Collapse
Affiliation(s)
- Calogero Grillo
- Otolayngology Unit, Department of Medical Sciences, Surgical and Advanced Technologies, University of Catania, Catania, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Mazloomi E, Ilkhanizadeh B, Zare A, Mohammadzadeh A, Delirezh N, Shahabi S. Nicotine, as a novel tolerogenic adjuvant, enhances the efficacy of immunotherapy in a mouse model of allergic asthma. Res Pharm Sci 2019; 14:308-319. [PMID: 31516507 PMCID: PMC6714111 DOI: 10.4103/1735-5362.263555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An increasing trend in the incidence of allergic diseases including asthma and related morbidity and mortality is observed worldwide during the last decades. Allergen-specific immunotherapy is suggested for the treatment of some allergic diseases; nevertheless, there is always a menace of uncommon, but life-treating reactions due to increasing the administration of allergen extract doses. Hence, improving its efficacy may reduce the required doses as well as the risk of such reactions. The current study aimed at examining the effects of nicotine (NIC), as a tolerogenic adjuvant, on the improvement of immunotherapy efficacy in a mouse model of allergic asthma. BALB/c mice were sensitized using alum and ovalbumin (OVA) on the days 0 and 7. Mice received OVA either alone or together with NIC (1 or 10 mg/kg) on the days 21, 23, and 25. Then, the mice were challenged with OVA 5% using a nebulizer on the days 35, 38, and 41 and sacrificed the next day. Co-administration of OVA and NIC decreased the inflammation of the lung tissue, eosinophils count in the bronchoalveolar lavage (BAL) fluid, the serum level of OVA-specific immunoglobulin E, as well as interleukin (IL)-4 production, while increasing the population of antigen-specific regulatory T-cells (Treg cells) and transforming growth factor-β/IL-4 (TGF-β/IL-4) ratio compared to the OVA and control groups in a dose-dependent manner. Collectively, the findings suggest that administration of NIC plus the allergen increased immunotherapy efficacy through decreasing allergic inflammation and allergic responses intensity, and increasing Treg cells population.
Collapse
Affiliation(s)
- Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Behrooz Ilkhanizadeh
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical sciences, Tehran, I.R. Iran
| | - Adel Mohammadzadeh
- Department of Genetics and Immunology, School of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, I.R. Iran
| | - Shahram Shahabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
26
|
Rodríguez-Rabassa M, López P, Rodríguez-Santiago RE, Cases A, Felici M, Sánchez R, Yamamura Y, Rivera-Amill V. Cigarette Smoking Modulation of Saliva Microbial Composition and Cytokine Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2479. [PMID: 30405010 PMCID: PMC6266915 DOI: 10.3390/ijerph15112479] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/18/2022]
Abstract
Tobacco use has been implicated as an immunomodulator in the oral cavity and contributes to the development of oral cancer. In the present study, we investigated the effects of cigarette smoking on bacterial diversity and host responses compared to healthy nonsmoking controls. Saliva samples were collected from eighteen smokers and sixteen nonsmoking individuals by passive drool. The 16S rRNA gene was used to characterize the salivary microbiome by using the Illumina MiSeq platform. Cytokine and chemokine expression analyses were performed to evaluate the host response. Significant differences in cytokine and chemokine expression levels of MDC, IL-10, IL-5, IL-2, IL-4, IL-7, adrenocorticotropic hormone (ACTH), insulin, and leptin were observed between smokers and nonsmokers. Taxonomic analyses revealed differences between the two groups, and some bacterial genera associated with the smokers group had correlations with hormones and cytokines identified as statistically different between smokers and nonsmokers. These factors have been associated with inflammation and carcinogenesis in the oral cavity. The data obtained may aid in the identification of the interactions between the salivary microbiome, host inflammatory responses, and metabolism in smokers.
Collapse
Affiliation(s)
- Mary Rodríguez-Rabassa
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
- Clinical Psychology Program, School of Behavioral & Brain Science, Ponce Health Sciences University, Ponce, PR 00716-2348, USA.
| | - Pablo López
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
| | - Ronald E Rodríguez-Santiago
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
| | - Antonio Cases
- Tobacco Control and Oral Health Division, Department of Health, Commonwealth of Puerto Rico, San Juan, PR 00716-2348, USA.
| | - Marcos Felici
- Tobacco Control and Oral Health Division, Department of Health, Commonwealth of Puerto Rico, San Juan, PR 00716-2348, USA.
| | - Raphael Sánchez
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
| | - Yasuhiro Yamamura
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
| | - Vanessa Rivera-Amill
- AIDS Research Infrastructure Program, Ponce Research Institute, Ponce Health Sciences University, 395 Dr. Luis F. Sala Street, Ponce, PR 00716-2348, USA.
| |
Collapse
|
27
|
Goudarzi H, Konno S, Kimura H, Araki A, Miyashita C, Itoh S, Ait Bamai Y, Kimura H, Shimizu K, Suzuki M, Ito YM, Nishimura M, Kishi R. Contrasting associations of maternal smoking and pre-pregnancy BMI with wheeze and eczema in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1601-1609. [PMID: 29929322 DOI: 10.1016/j.scitotenv.2018.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Childhood allergies are dynamic and associated with environmental factors. The influence of prenatal maternal smoking and obesity on childhood allergies and their comorbidities remains unclear, especially in prospective cohorts with serial longitudinal observations. OBJECTIVE We examined time trends in the prevalence and comorbidity of childhood allergies, including wheeze, eczema, and rhinoconjunctivitis, using a large-scale, population-based birth cohort in Japan, and assessed the effects of prenatal maternal smoking and BMI on the risk of childhood allergies. METHODS Parents completed the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaires about symptoms of allergies and their risk factors at age 1, 2, 4, and 7 years. Complete data from all pre- and postnatal questionnaires at age 1, 2, 4, and 7 were available for 3296 mother-child pairs. RESULTS We observed significant overlap of childhood allergies at 1, 2, 4, and 7 years. Maternal serum cotinine during pregnancy was associated with increased risk of wheezing in the children at age 1, 2, and 4 but disappeared at age 7. In contrast, maternal cotinine levels were inversely associated with the prevalence of eczema in children at age 7. We additionally observed that maternal pre-pregnancy BMI, not children's BMI, had a positive association with wheeze and an inverse association with eczema in 7-year-old children, respectively. We did not find any association of examined maternal factors and rhinoconjunctivitis. CONCLUSIONS We demonstrated contrasting association of prenatal maternal smoking and high BMI with postnatal wheeze and eczema. For precise assessment of allergy-associated risk factors, we need to contrast risk factors for different allergic diseases since focusing solely on one allergic disease may result in misleading information on the role of different risk factors.
Collapse
Affiliation(s)
- Houman Goudarzi
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Hirokazu Kimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kaoruko Shimizu
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Masaru Suzuki
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Mazloomi E, Ilkhanizadeh B, Zare A, Mohammadzadeh A, Delirezh N, Shahabi S. Evaluation of the efficacy of nicotine in treatment of allergic asthma in BALB/c mice. Int Immunopharmacol 2018; 63:239-245. [PMID: 30114604 DOI: 10.1016/j.intimp.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023]
Abstract
Nicotine, an nAChR agonist, shows prominent anti-inflammatory properties, and some studies have illustrated its suppressive effects on inflammation. Here, we have examined whether nicotine as a medicine may have beneficial effects on the treatment of asthma in a mouse model of allergic asthma. BALB/c mice were sensitized with OVA and alum. Two weeks later, the mice received nicotine with concentrations of 1 and 10 mg/kg three times every other day. After 10 days, the mice were challenged with OVA (5%) using an ultrasonic nebulizer and died the next day. Our results showed that the administration of nicotine reduced lung-tissue inflammation, the number of eosinophils in bronchoalveolar fluid, allergen-specific IgE and IL-4 production, while it increased the TGF-β/IL-4 ratio and the number of Treg cells. Our results showed that nicotine applies its suppressive effects in a dose-dependent manner: administration of 10 mg/kg of nicotine showed more suppressive effects than 1 mg/kg. Such data suggested that nicotine might be a good candidate to be used as a medicine in the treatment of allergic asthma by decreasing allergic inflammation severity and potentiating Treg cells proliferation against the allergen.
Collapse
Affiliation(s)
- Ebrahim Mazloomi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Behrooz Ilkhanizadeh
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Adel Mohammadzadeh
- Departments of Genetics and Immunology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Shahram Shahabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol 2018; 142:1618-1627.e9. [PMID: 29678746 DOI: 10.1016/j.jaci.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thirdhand smoke (THS) represents the accumulation of secondhand smoke on indoor surfaces and in dust, which, over time, can become more toxic than secondhand smoke. Although it is well known that children of smokers are at increased risk for asthma or asthma exacerbation if the disease is already present, how exposure to THS can influence the development or exacerbation of asthma remains unknown. OBJECTIVE We investigated whether epicutaneous exposure to an important component of THS, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), can influence asthma pathology in a mouse model elicited by means of repeated intranasal challenge with cockroach antigen (CRA). METHODS Wild-type mice, α7 nicotinic acetylcholine receptor (nAChR)- or mast cell (MC)-deficient mice, and mice with MCs that lacked α7 nAChRs or were the host's sole source of α7 nAChRs were subjected to epicutaneous NNK exposure, intranasal CRA challenge, or both, and the severity of features of asthma pathology, including airway hyperreactivity, airway inflammation, and airway remodeling, was assessed. RESULTS We found that α7 nAChRs were required to observe adverse effects of epicutaneous NNK exposure on multiple features of CRA-induced asthma pathology. Moreover, MC expression of α7 nAChRs contributed significantly to the ability of epicutaneous NNK exposure to exacerbate airway hyperreactivity to methacholine, airway inflammation, and airway remodeling in this model. CONCLUSION Our results show that skin exposure to NNK, a component of THS, can exacerbate multiple features of a CRA-induced model of asthma in mice and define MCs as key contributors to these adverse effects of NNK.
Collapse
Affiliation(s)
- Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
30
|
Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, Tantilipikorn P, Tversky JR, Veling MC, Wang DY, Westman M, Wickman M, Zacharek M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol 2018; 8:108-352. [PMID: 29438602 PMCID: PMC7286723 DOI: 10.1002/alr.22073] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding.
Collapse
Affiliation(s)
| | | | | | | | - Cezmi A. Akdis
- Allergy/Asthma, Swiss Institute of Allergy and Asthma Research, Switzerland
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, USA
| | | | | | | | | | - Cemal Cingi
- Otolaryngology, Eskisehir Osmangazi University, Turkey
| | | | | | | | | | | | | | - Adam DeConde
- Otolaryngology, University of California San Diego, USA
| | | | | | | | | | | | | | - Jan Gosepath
- Otorhinolaryngology, Helios Kliniken Wiesbaden, Germany
| | | | | | | | - Jens M. Hohlfeld
- Respiratory Medicine, Hannover Medical School, Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine, German Center for Lung Research, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amber U. Luong
- Otolaryngology, McGovern Medical School at the University of Texas Health Science Center Houston, USA
| | | | | | | | - Erik Melén
- Pediatric Allergy, Karolinska Institutet, Sweden
| | | | | | - Joaquim Mullol
- Otolaryngology, Universitat de Barcelona, Hospital Clinic, IDIBAPS, Spain
| | | | | | | | - Oliver Pfaar
- Rhinology/Allergy, Medical Faculty Mannheim, Heidelberg University, Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | | | - Carmen Rondón
- Allergy, Regional University Hospital of Málaga, Spain
| | - Luke Rudmik
- Otolaryngology, University of Calgary, Canada
| | - Matthew Ryan
- Otolaryngology, University of Texas Southwestern, USA
| | - Joaquin Sastre
- Allergology, Hospital Universitario Fundacion Jiminez Diaz, Spain
| | | | | | - Hemant P. Sharma
- Allergy/Immunology, Children's National Health System, George Washington University School of Medicine, USA
| | | | | | | | | | | | - De Yun Wang
- Otolaryngology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
31
|
Yamada M, Ichinose M. The cholinergic anti-inflammatory pathway: an innovative treatment strategy for respiratory diseases and their comorbidities. Curr Opin Pharmacol 2018; 40:18-25. [PMID: 29331768 DOI: 10.1016/j.coph.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
Abstract
Over the past few decades, it has been clarified that the nervous system and immune system have overlapping distributions and their interactions are critical in the regulation of immunological and inflammatory responses. The cholinergic anti-inflammatory pathway, including the parasympathetic nerve systems and humoral factors orchestrate the immune responses to protect the body during infection and tissue injury. Recent investigations have attempted to clarify how the parasympathetic nerve systems attenuate the systemic inflammatory responses and identified the α7 nicotinic acetylcholine receptor (α7nAChR) as a crucial target for attenuating the release of inflammatory cytokines from inflammatory cells including macrophages and dendritic cells. This modulatory circuit pathway possibly exists in the lungs and might be involved in regulating inflammation and immunity during infection and other inflammatory lung diseases including asthma and COPD, which means that modulation of the cholinergic anti-inflammatory pathway is a possible therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Vaping is gaining popularity in the USA, particularly among teens and young adults. While e-cigs are commonly represented as safer alternatives to tobacco cigarettes, little is known regarding the health effects of their short- or long-term use, especially in individuals with pre-existing respiratory diseases such as asthma. Flavored e-cig liquids (e-liquids) and e-cig aerosols contain airway irritants and toxicants that have been implicated in the pathogenesis and worsening of lung diseases. In this review, we will summarize existing data on potential health effects of components present in e-cig aerosols, such as propylene glycol, vegetable glycerin, nicotine, and flavorings, and discuss their relevance in the context of asthma. RECENT FINDINGS Recent survey data indicate that adolescents with asthma had a higher prevalence of current e-cig use (12.4%) compared to their non-asthmatics peers (10.2%) and conveyed positive beliefs about tobacco products, especially e-cigs. Similarly, a study conducted among high school students from Ontario, Canada, indicated a greater likelihood of e-cig use in asthmatics as compared to their non-asthmatic peers. Availability of different flavorings is often cited as the main reason among youth/adolescents for trying e-cigs or switching from cigarettes to e-cigs. Occupational inhalation of some common food-safe flavoring agents is reported to cause occupational asthma and worsen asthmatic symptoms. Moreover, workplace inhalation exposures to the flavoring agent diacetyl have caused irreversible obstructive airway disease in healthy workers. Additionally, recent studies report that thermal decomposition of propylene glycol (PG) and vegetable glycerin (VG), the base constituents of e-liquids, produces reactive carbonyls, including acrolein, formaldehyde, and acetaldehyde, which have known respiratory toxicities. Furthermore, recent nicotine studies in rodents reveal that prenatal nicotine exposures lead to epigenetic reprogramming in the offspring, abnormal lung development, and multigenerational transmission of asthmatic-like symptoms. Comparisons of the toxicity and health effects of e-cigs and conventional cigarettes often focus on toxicants known to be present in cigarette smoke (CS) (i.e., formaldehyde, nitrosamines, etc.), as well as smoking-associated clinical endpoints, such as cancer, bronchitis, and chronic obstructive pulmonary disease (COPD). However, this approach disregards potential toxicity of components unique to flavored e-cigs, such as PG, VG, and the many different flavoring chemicals, which likely induce respiratory effects not usually observed in cigarette smokers.
Collapse
Affiliation(s)
- Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Eltony SA, Ali SS. Histological study on the effect of nicotine on adult male guinea pig thin skin. Anat Cell Biol 2017; 50:187-199. [PMID: 29043097 PMCID: PMC5639173 DOI: 10.5115/acb.2017.50.3.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/14/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Tobacco smoking has been identified as an important factor in premature skin aging to detect the histological changes occurred in adult male guinea pig thin skin under the influence of low and high doses of nicotine; which constitutes approximately 0.6%–3.0% of the dry weight of tobacco. Fifteen adult male pigmented guinea pigs were equally divided into three groups: group I, control; group IIA, low dose nicotine treated; 3 mg/kg subcutaneously for 4 weeks; and group IIB, high dose nicotine treated; 6 mg/kg subcutaneously for 4 weeks. Specimens from the back thin skin were processed for light and electron microscopy. Nicotine administration revealed flattened dermo-epidermal junction and reduced rete ridges formation. Collagen bundles were disorganized with increased spaces between them. A reduction in the amount of elastic fibers in the dermis were also observed compared to group I. Ultrastructurally, keratinocytes had hyperchromatic nuclei, intracytoplasmic vacuoles, disruption of desmosomal junctions, irregular tonofilaments distribution, and increased inter-cellular spaces. These changes were more pronounced with high dose nicotine administration. The epidermal thickness was reduced in low dose nicotine administration. But, high dose nicotine administration revealed increased epidermal thickness compared to the control group. Nicotine induced structural changes of adult male guinea pig thin skin. These changes were more pronounced with high dose nicotine administration.
Collapse
Affiliation(s)
- Sohair A Eltony
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
34
|
Abstract
Historically, the inhaled route has been used for the delivery of locally-acting drugs for the treatment of respiratory conditions, such as asthma, COPD, and airway infections. Targeted delivery of substances to the lungs has some key advantages over systemic administration, including a more rapid onset of action, an increased therapeutic effect, and, depending on the agent inhaled, reduced systemic side effects since the required local concentration in the lungs can be obtained with a lower dose. Fortunately, when designed properly, inhaled drug delivery devices can be very effective and safe for getting active agents directly to their site of action.
Collapse
Affiliation(s)
| | - Ben Forbes
- King's College London, London, SEI 9NH, UK.
| |
Collapse
|
35
|
Xu Y, Cardell LO. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways. Am J Physiol Lung Cell Mol Physiol 2017; 313:L516-L523. [PMID: 28546155 DOI: 10.1152/ajplung.00222.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg-1·day-1) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections.
Collapse
Affiliation(s)
- Yuan Xu
- Division of Ear, Nose, and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; and .,Department of Ear, Nose, and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of Ear, Nose, and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; and.,Department of Ear, Nose, and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Singh SP, Chand HS, Langley RJ, Mishra N, Barrett T, Rudolph K, Tellez C, Filipczak PT, Belinsky S, Saeed AI, Sheybani A, Exil V, Agarwal H, Sidhaye VK, Sussan T, Biswal S, Sopori M. Gestational Exposure to Sidestream (Secondhand) Cigarette Smoke Promotes Transgenerational Epigenetic Transmission of Exacerbated Allergic Asthma and Bronchopulmonary Dysplasia. THE JOURNAL OF IMMUNOLOGY 2017; 198:3815-3822. [PMID: 28381639 DOI: 10.4049/jimmunol.1700014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Embryonic development is highly sensitive to xenobiotic toxicity and in utero exposure to environmental toxins affects physiological responses of the progeny. In the United States, the prevalence of allergic asthma (AA) is inexplicably rising and in utero exposure to cigarette smoke increases the risk of AA and bronchopulmonary dysplasia (BPD) in children and animal models. We reported that gestational exposure to sidestream cigarette smoke (SS), or secondhand smoke, promoted nicotinic acetylcholine receptor-dependent exacerbation of AA and BPD in mice. Recently, perinatal nicotine injections in rats were reported to induce peroxisome proliferator-activated receptor γ-dependent transgenerational transmission of asthma. Herein, we show that first generation and second generation progeny from gestationally SS-exposed mice exhibit exacerbated AA and BPD that is not dependent on the decrease in peroxisome proliferator-activated receptor γ levels. Lungs from these mice show strong eosinophilic infiltration, excessive Th2 polarization, marked airway hyperresponsiveness, alveolar simplification, decreased lung compliance, and decreased lung angiogenesis. At the molecular level, these changes are associated with increased RUNX3 expression, alveolar cell apoptosis, and the antiangiogenic factor GAX, and decreased expression of HIF-1α and proangiogenic factors NF-κB and VEGFR2 in the 7-d first generation and second generation lungs. Moreover, the lungs from these mice exhibit lower levels of microRNA (miR)-130a and increased levels of miR-16 and miR-221. These miRs regulate HIF-1α-regulated apoptotic, angiogenic, and immune pathways. Thus the intergenerational effects of gestational SS involve epigenetic regulation of HIF-1α through specific miRs contributing to increased incidence of AA and BPD in the progenies.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Hitendra S Chand
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108.,Florida International University, Miami, FL 33199
| | - Raymond J Langley
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108.,University of Southern Alabama, Mobile, AL 36688
| | - Neerad Mishra
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Ted Barrett
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Karin Rudolph
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Carmen Tellez
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | | | - Steve Belinsky
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108
| | - Ali I Saeed
- Pulmonary and Critical Care Medicine, University of New Mexico Medical Center, Albuquerque, NM 87131
| | - Aryaz Sheybani
- Department of Pediatrics, University of New Mexico Medical Center, Albuquerque, NM 87131; and
| | - Vernat Exil
- Department of Pediatrics, University of New Mexico Medical Center, Albuquerque, NM 87131; and
| | - Hemant Agarwal
- Department of Pediatrics, University of New Mexico Medical Center, Albuquerque, NM 87131; and
| | | | - Thomas Sussan
- Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205
| | - Shyam Biswal
- Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205
| | - Mohan Sopori
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108;
| |
Collapse
|
37
|
Qiu F, Fan P, Nie GD, Liu H, Liang CL, Yu W, Dai Z. Effects of Cigarette Smoking on Transplant Survival: Extending or Shortening It? Front Immunol 2017; 8:127. [PMID: 28239383 PMCID: PMC5300974 DOI: 10.3389/fimmu.2017.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/25/2017] [Indexed: 01/23/2023] Open
Abstract
Cigarette smoking (CS) regulates both innate and adaptive immunity and causes numerous diseases, including cardiovascular, respiratory, and autoimmune diseases, allergies, cancers, and transplant rejection. Therefore, smoking poses a serious challenge to the healthcare system worldwide. Epidemiological studies have always shown that CS is one of the major risk factors for transplant rejection, even though smoking plays redundant roles in regulating immune responses. The complex roles for smoking in immunoregulation are likely due to molecular and functional diversities of cigarette smoke components, including carbon monoxide (CO) and nicotine. Especially, CO has been shown to induce immune tolerance. Although CS has been shown to impact transplantation by causing complications and subsequent rejection, it is overlooked whether CS interferes with transplant tolerance. We have previously demonstrated that cigarette smoke exposure reverses long-term allograft survival induced by costimulatory blockade. Given that CS impacts both adaptive and innate immunity and that it hinders long-term transplant survival, our perspective is that CS impacts transplant tolerance. Here, we review impacts of CS on major immune cells that are critical for transplant outcomes and propose the cellular and molecular mechanisms underlying its effects on alloimmunity and transplant survival. Further investigations are warranted to fully understand why CS exerts deleterious rather than beneficial effects on transplant survival even if some of its components are immunosuppressive.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Ping Fan
- Department of Nephrology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Golay D. Nie
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wanlin Yu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
38
|
Qiu F, Liang CL, Liu H, Zeng YQ, Hou S, Huang S, Lai X, Dai Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017; 8:268-284. [PMID: 27902485 PMCID: PMC5352117 DOI: 10.18632/oncotarget.13613] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-Qun Zeng
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, Maazi H, Chen L, Akbari O. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat Commun 2016; 7:13202. [PMID: 27752043 PMCID: PMC5071851 DOI: 10.1038/ncomms13202] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. Airway hyperreactivity is driven by type 2 cytokines produced by ILC2 and Th2 cells. Here the authors show that an α7-nicotinic receptor agonist (GTS-21) inhibits ILC2 responses and is therapeutic against Alternaria-induced airway hyperreactivity in a humanized mouse model.
Collapse
Affiliation(s)
- Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Yuzo Suzuki
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Nisheel Patel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Jennifer L Aron
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Lin Chen
- Departments of Biological Science and Chemistry, University of Southern California, 1050 Childs Way RIH 201, Los Angeles, California 90089, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| |
Collapse
|
40
|
Cahn A, Boyce M, Mistry S, Musani N, Rambaran C, Storey J, Ventresca P, Michel O. Randomized trial of allergen-induced asthmatic response in smokers and non-smokers: effects of inhaled corticosteroids. Clin Exp Allergy 2016; 45:1531-41. [PMID: 26251958 DOI: 10.1111/cea.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND It is thought that asthmatics who smoke cigarettes respond less well to inhaled corticosteroid (ICS) therapy than asthmatics who do not smoke. OBJECTIVE To evaluate the effects of smoking on allergen-induced airway responses in asthmatics treated with ICS. METHODS Randomized, double-blind, crossover study evaluating twice daily fluticasone propionate (FP) 100 μg, FP 500 μg and placebo, for 7 days, on allergen-induced asthmatic responses in 18 non-smoking and 17 smoking atopic asthmatics (NCT01400906). At 1 h post-morning dose on Day 6, forced expiratory volume in 1 sec (FEV1 ) was measured up to 10 h post-challenge. Exhaled nitric oxide (eNO), induced sputum cell counts, and responsiveness to methacholine were assessed the following day. RESULTS The late asthmatic response (LAR) was suppressed by FP in smokers and non-smokers; with placebo, the LAR was also attenuated in smokers versus non-smokers (adjusted mean minimum change in FEV1 (L) over 4-10 h [95% CI] in non-smokers: placebo -1.01 [1.31, 0.70], FP 100 μg -0.38 [0.54, 0.22], FP 500 μg -0.35 [0.54-0.22]; and in smokers: placebo -0.63 [0.84, 0.43]; FP 100 μg -0.44 [0.65, 0.23]; FP 500 μg -0.46 [0.59-0.32]). The Early AR was suppressed by FP treatment in non-smokers, but was not impacted in smokers. The reduction in methacholine hyperresponsiveness after FP was greater in non-smokers (1.5- and twofold doubling dose difference from placebo after FP 100 μg and FP 500 μg) than smokers (1.0 and 1.3 difference, respectively). Allergen-induced increases in eNO and sputum eosinophils were lower in smokers than non-smokers and were suppressed in both groups by FP. CONCLUSION AND CLINICAL RELEVANCE Allergen-induced LARs were of a similar amplitude in both smoking and non-smoking atopic asthmatics at the end of ICS treatment, but attenuation of the LAR in smokers was only partly associated with ICS treatment. The marked attenuation of the LAR observed in smokers in the absence of ICS treatment is a novel observation.
Collapse
Affiliation(s)
- A Cahn
- GlaxoSmithKline, Stevenage, UK
| | - M Boyce
- Hammersmith Medicines Research Ltd, London, UK
| | - S Mistry
- GlaxoSmithKline, Stockley Park, UK
| | - N Musani
- GlaxoSmithKline, Stockley Park, UK
| | | | | | | | - O Michel
- Clinic of Immuno-allergology, CHU Brugmann (ULB Université Libre de Bruxelles), Brussels, Belgium
| |
Collapse
|
41
|
Zychowski KE, Lucas SN, Sanchez B, Herbert G, Campen MJ. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure. Toxicol Appl Pharmacol 2016; 305:40-45. [PMID: 27286659 DOI: 10.1016/j.taap.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.
Collapse
Affiliation(s)
- Katherine E Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131, United States
| | - Selita N Lucas
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131, United States
| | - Bethany Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131, United States
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131, United States
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131, United States.
| |
Collapse
|
42
|
Tilp C, Bucher H, Haas H, Duechs MJ, Wex E, Erb KJ. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma. Clin Exp Allergy 2016; 46:957-72. [PMID: 26502779 DOI: 10.1111/cea.12665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. OBJECTIVE We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. METHODS Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. RESULTS tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. CONCLUSION Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2 responses through nicotine and other products released by burning tobacco.
Collapse
Affiliation(s)
- C Tilp
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Bucher
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Haas
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - M J Duechs
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - E Wex
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - K J Erb
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| |
Collapse
|
43
|
Dittrich NP, Kummer W, Clauss WG, Fronius M. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. Int Immunopharmacol 2015; 29:166-72. [DOI: 10.1016/j.intimp.2015.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
|
44
|
The mediating effect of body mass index on the relationship between cigarette smoking and atopic sensitization in Chinese adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3381-94. [PMID: 25807148 PMCID: PMC4377972 DOI: 10.3390/ijerph120303381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND It is unclear whether the relationship between cigarette smoking and atopy is mediated by body fat mass, such as the Body Mass Index (BMI). We assessed the mediating role of BMI on the relationship between smoking and atopy in Chinese adults. METHODS A hospital-based case-control study of 786 atopic cases and 2771 controls was conducted in adults aged 18 years or older from March 2010 to September 2014 in Harbin, China. Mediation models were used to estimate the indirect effects of smoking on atopic sensitization through BMI. RESULTS Compared to non-smokers, light smokers and moderate smokers had a lower risk of inhalant allergen sensitization. The indirect effect of smoking and sensitization to aeroallergens were only observed in light smokers (point estimate, -0.026; 95% CI, -0.062 to -0.004). The mediating roles of BMI on the relationships between smoking and other types of allergic sensitization were not statistically significant. CONCLUSION BMI appeared to partially mediate the effect of light smoking on sensitization to aeroallergens. However, considering the other harmful health effects of cigarette smoking, the effective method to lower the incidence of atopy would be to decrease body fat mass by physical exercise and employing other more healthy ways of living rather than smoking.
Collapse
|
45
|
Peters EMJ, Michenko A, Kupfer J, Kummer W, Wiegand S, Niemeier V, Potekaev N, Lvov A, Gieler U. Mental stress in atopic dermatitis--neuronal plasticity and the cholinergic system are affected in atopic dermatitis and in response to acute experimental mental stress in a randomized controlled pilot study. PLoS One 2014; 9:e113552. [PMID: 25464511 PMCID: PMC4252053 DOI: 10.1371/journal.pone.0113552] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
RATIONALE In mouse models for atopic dermatitis (AD) hypothalamus pituitary adrenal axis (HPA) dysfunction and neuropeptide-dependent neurogenic inflammation explain stress-aggravated flares to some extent. Lately, cholinergic signaling has emerged as a link between innate and adaptive immunity as well as stress responses in chronic inflammatory diseases. Here we aim to determine in humans the impact of acute stress on neuro-immune interaction as well as on the non-neuronal cholinergic system (NNCS). METHODS Skin biopsies were obtained from 22 individuals (AD patients and matched healthy control subjects) before and after the Trier social stress test (TSST). To assess neuro-immune interaction, nerve fiber (NF)-density, NF-mast cell contacts and mast cell activation were determined by immunohistomorphometry. To evaluate NNCS effects, expression of secreted mammal Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP) 1 and 2 (endogenous nicotinic acetylcholine receptor ligands) and their main corresponding receptors were assessed by quantitative RT-PCR. RESULTS With respect to neuro-immune interaction we found higher numbers of NGF+ dermal NF in lesional compared to non-lesional AD but lower numbers of Gap43+ growing NF at baseline. Mast cell-NF contacts correlated with SCORAD and itch in lesional skin. With respect to the NNCS, nicotinic acetylcholine receptor α7 (α7nAChR) mRNA was significantly lower in lesional AD skin at baseline. After TSST, PGP 9.5+ NF numbers dropped in lesional AD as did their contacts with mast cells. NGF+ NF now correlated with SCORAD and mast cell-NF contacts with itch in non-lesional skin. At the same time, SLURP-2 levels increased in lesional AD skin. CONCLUSIONS In humans chronic inflammatory and highly acute psycho-emotional stress interact to modulate cutaneous neuro-immune communication and NNCS marker expression. These findings may have consequences for understanding and treatment of chronic inflammatory diseases in the future.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/metabolism
- Biopsy
- Dermatitis, Atopic/complications
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/physiopathology
- Humans
- Immunity, Innate
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/physiopathology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mice
- Middle Aged
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Neuronal Plasticity/immunology
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/metabolism
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Eva Milena Johanne Peters
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
| | - Anna Michenko
- Psychoneuroimmunology Laboratory, Joint appointment a) Center for Internal Medicine and Dermatology, Universitätsmedizin-Charité, Berlin, and b) Department of Psychosomatic Medicine, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Jörg Kupfer
- Institute of Medical Psychology, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Volker Niemeier
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Nikolay Potekaev
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, Moscow, Russia
| | - Andrey Lvov
- Department of Dermatology, I. M. Sechenov Moscow Medical University, Moscow, Russia
| | - Uwe Gieler
- Department of Psychosomatics and Psychotherapy, Justus-Liebig-University, Giessen, Germany
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
46
|
Sannigrahi MK, Singh V, Sharma R, Panda NK, Khullar M. Role of autophagy in head and neck cancer and therapeutic resistance. Oral Dis 2014; 21:283-91. [DOI: 10.1111/odi.12254] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/19/2022]
Affiliation(s)
- MK Sannigrahi
- Department of Otolaryngology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - V Singh
- Department of Otolaryngology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - R Sharma
- Department of Experimental Medicine and Biotechnology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - NK Panda
- Department of Otolaryngology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| | - M Khullar
- Department of Experimental Medicine and Biotechnology; Post Graduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
47
|
Pavuluri S, Hanus V, Bergren DR. Interaction of tobacco smoke exposure and ovalbumin-sensitization promotes goblet cell and submucosal gland metaplasia in guinea pigs. Respir Physiol Neurobiol 2013; 189:639-45. [DOI: 10.1016/j.resp.2013.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022]
|
48
|
Singh SP, Gundavarapu S, Smith KR, Chand HS, Saeed AI, Mishra NC, Hutt J, Barrett EG, Husain M, Harrod KS, Langley RJ, Sopori ML. Gestational exposure of mice to secondhand cigarette smoke causes bronchopulmonary dysplasia blocked by the nicotinic receptor antagonist mecamylamine. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:957-64. [PMID: 23757602 PMCID: PMC3734504 DOI: 10.1289/ehp.1306611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/07/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cigarette smoke (CS) exposure during gestation may increase the risk of bronchopulmonary dysplasia (BPD)-a developmental lung condition primarily seen in neonates that is characterized by hypoalveolarization, decreased angiogenesis, and diminished surfactant protein production and may increase the risk of chronic obstructive pulmonary disease. OBJECTIVE We investigated whether gestational exposure to secondhand CS (SS) induced BPD and sought to ascertain the role of nicotinic acetylcholine receptors (nAChRs) in this response. METHODS We exposed BALB/c and C57BL/6 mice to filtered air (control) or SS throughout the gestation period or postnatally up to 10 weeks. Lungs were examined at 7 days, 10 weeks, and 8 months after birth. RESULTS Gestational but not postnatal exposure to SS caused a typical BPD-like condition: suppressed angiogenesis [decreased vascular endothelial growth factor (VEGF), VEGF receptor, and CD34/CD31 (hematopoietic progenitor cell marker/endothelial cell marker)], irreversible hypoalveolarization, and significantly decreased levels of Clara cells, Clara cell secretory protein, and surfactant proteins B and C, without affecting airway ciliated cells. Importantly, concomitant exposure to SS and the nAChR antagonist mecamylamine during gestation blocked the development of BPD. CONCLUSIONS Gestational exposure to SS irreversibly disrupts lung development leading to a BPD-like condition with hypoalveolarization, decreased angiogenesis, and diminished lung secretory function. Nicotinic receptors are critical in the induction of gestational SS-induced BPD, and the use of nAChR antagonists during pregnancy may block CS-induced BPD.
Collapse
Affiliation(s)
- Shashi P Singh
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Narumoto O, Niikura Y, Ishii S, Morihara H, Okashiro S, Nakahari T, Nakano T, Matsumura H, Shimamoto C, Moriwaki Y, Misawa H, Yamashita N, Nagase T, Kawashima K, Yamashita N. Effect of secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) on airway epithelial cells. Biochem Biophys Res Commun 2013; 438:175-9. [PMID: 23876317 DOI: 10.1016/j.bbrc.2013.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 01/13/2023]
Abstract
Acetylcholine (ACh) exerts various anti-inflammatory effects through α7 nicotinic ACh receptors (nAChRs). We have previously shown that secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), a positive allosteric modulator of α7 nAChR signaling, is down-regulated both in an animal model of asthma and in human epithelial cells treated with an inflammatory cytokine related to asthma. Our aim of this study was to explore the effect of SLURP-1, signal through α7 nAChR, in the pathophysiology of airway inflammation. Cytokine production was examined using human epithelial cells. Ciliary beat frequency of murine trachea was measured using a high speed camera. The IL-6 and TNF-α production by human epithelial cells was augmented by siRNA of SLURP-1 and α7 nicotinic ACh receptor. The cytokine production was also dose-dependently suppressed by human recombinant SLURP-1 (rSLURP-1). The ciliary beat frequency and amplitude of murine epithelial cells were augmented by PNU282987, a selective α7 nAChR agonist. Those findings suggested that SLURP-1 and stimulus through α7 nicotinic ACh receptors actively controlled asthmatic condition by stimulating ciliary beating and also by suppressing airway inflammation.
Collapse
Affiliation(s)
- Osamu Narumoto
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Many diseases are due to gene-environment or epigenetic-environment interactions resulting in a change in the program that controls tissue structure and function. Changes in the in utero and external environment during perinatal development due to parental smoking, or nicotine exposure, may reduce the capacity of the offspring to protect themselves against environmental stressors. Nicotine is genotoxic and also induces reactive oxygen species [ROS] production. It also reduces the antioxidant capacity of the lung. The lungs of the offspring are therefore developing in an environment of an oxidant-antioxidant imbalance with the concomitant adverse effects of the oxidants and nicotine on cell integrity. Consequently, they are more prone to develop respiratory diseases such as asthma and emphysema later in life. The use of NRT by pregnant or lactating females is therefore not an appropriate strategy to quit smoking.
Collapse
Affiliation(s)
- Gert S Maritz
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|