1
|
Adenovirus Type 6: Subtle Structural Distinctions from Adenovirus Type 5 Result in Essential Differences in Properties and Perspectives for Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13101641. [PMID: 34683934 PMCID: PMC8540711 DOI: 10.3390/pharmaceutics13101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Adenovirus vectors are the most frequently used agents for gene therapy, including oncolytic therapy and vaccine development. It’s hard to overestimate the value of adenoviruses during the COVID-19 pandemic as to date four out of four approved viral vector-based SARS-CoV-2 vaccines are developed on adenovirus platform. The vast majority of adenoviral vectors are based on the most studied human adenovirus type 5 (HAdV-C5), however, its immunogenicity often hampers the clinical translation of HAdV-C5 vectors. The search of less seroprevalent adenovirus types led to another species C adenovirus, Adenovirus type 6 (HAdV-C6). HAdV-C6 possesses high oncolytic efficacy against multiple cancer types and remarkable ability to induce the immune response towards carrying antigens. Being genetically very close to HAdV-C5, HAdV-C6 differs from HAdV-C5 in structure of the most abundant capsid protein, hexon. This leads to the ability of HAdV-C6 to evade the uptake by Kupffer cells as well as to distinct opsonization by immunoglobulins and other blood proteins, influencing the overall biodistribution of HAdV-C6 after systemic administration. This review describes the structural features of HAdV-C6, its interaction with liver cells and blood factors, summarizes the previous experiences using HAdV-C6, and provides the rationale behind the use of HAdV-C6 for vaccine and anticancer drugs developments.
Collapse
|
2
|
Kataoka K, Kawabata S, Koyanagi K, Hashimoto Y, Miyake T, Fujihashi K. Respiratory FimA-Specific Secretory IgA Antibodies Upregulated by DC-Targeting Nasal Double DNA Adjuvant Are Essential for Elimination of Porphyromonas gingivalis. Front Immunol 2021; 12:634923. [PMID: 33717178 PMCID: PMC7948520 DOI: 10.3389/fimmu.2021.634923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous studies showed that a combination of a DNA plasmid encoding Flt3 ligand (pFL) and CpG oligodeoxynucleotides 1826 (CpG ODN) (FL/CpG) as a nasal adjuvant provoked antigen-specific immune responses. In this study, we investigated the efficacy of a nasal vaccine consisting of FimA as the structural subunit of Porphyromonas gingivalis (P. gingivalis) fimbriae and FL/CpG for the induction of FimA-specific antibody (Ab) responses and their protective roles against nasal and lung infection by P. gingivalis, a keystone pathogen in the etiology of periodontal disease. C57BL/6 mice were nasally immunized with recombinant FimA (rFimA) plus FL/CpG three times at weekly intervals. As a control, mice were given nasal rFimA alone. Nasal washes (NWs) and bronchoalveolar lavage fluid (BALF) of mice given nasal rFimA plus FL/CpG resulted in increased levels of rFimA-specific secretory IgA (SIgA) and IgG Ab responses when compared with those in controls. Significantly increased numbers of CD8- or CD11b-expressing mature-type dendritic cells (DCs) were detected in the respiratory inductive and effector tissues of mice given rFimA plus FL/CpG. Additionally, significantly upregulated Th1/Th2-type cytokine responses by rFimA-stimulated CD4+ T cells were noted in the respiratory effector tissues. When mice were challenged with live P. gingivalis via the nasal route, mice immunized nasally with rFimA plus FL/CpG inhibited P. gingivalis colonization in the nasal cavities and lungs. In contrast, controls failed to show protection. Of interest, when IgA-deficient mice given nasal rFimA plus FL/CpG were challenged with nasal P. gingivalis, the inhibition of bacterial colonization in the respiratory tracts was not seen. Taken together, these results show that nasal FL/CpG effectively enhanced DCs and provided balanced Th1- and Th2-type cytokine response-mediated rFimA-specific IgA protective immunity in the respiratory tract against P. gingivalis. A nasal administration with rFimA and FL/CpG could be a candidate for potent mucosal vaccines for the elimination of inhaled P. gingivalis in periodontal patients.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/metabolism
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/microbiology
- Bacteroidaceae Infections/prevention & control
- Disease Models, Animal
- Female
- Fimbriae Proteins/administration & dosage
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Immunity, Mucosal/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Immunoglobulin A, Secretory/metabolism
- Membrane Proteins/administration & dosage
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice, Inbred C57BL
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/pathogenicity
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Respiratory System/drug effects
- Respiratory System/immunology
- Respiratory System/metabolism
- Respiratory System/microbiology
- Time Factors
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Mice
Collapse
Affiliation(s)
- Kosuke Kataoka
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Kayo Koyanagi
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Yoshiya Hashimoto
- Department of Biomaterials, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Kohtaro Fujihashi
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
|
4
|
Bae HD, Lee J, Jin XH, Lee K. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery. Mol Pharm 2016; 13:3196-205. [PMID: 27454469 DOI: 10.1021/acs.molpharmaceut.6b00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant.
Collapse
Affiliation(s)
- Hae-Duck Bae
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Xing-Hai Jin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 03760, Korea
| |
Collapse
|
5
|
Aso K, Tsuruhara A, Takagaki K, Oki K, Ota M, Nose Y, Tanemura H, Urushihata N, Sasanuma J, Sano M, Hirano A, Aso R, McGhee JR, Fujihashi K. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice. PLoS One 2016; 11:e0148185. [PMID: 26840058 PMCID: PMC4740412 DOI: 10.1371/journal.pone.0148185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022] Open
Abstract
It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice.
Collapse
Affiliation(s)
- Kazuyoshi Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Akitoshi Tsuruhara
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | | | | | - Megumi Ota
- BioMimetics Sympathies Inc., Tokyo, Japan
| | | | | | | | - Jinichi Sasanuma
- Department of Neurosurgery, Shinyurigaoka General Hospital, Kawasaki, Japan
| | | | | | - Rio Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jerry R. McGhee
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
6
|
Phenotype and function of nasal dendritic cells. Mucosal Immunol 2015; 8:1083-98. [PMID: 25669151 PMCID: PMC4532662 DOI: 10.1038/mi.2014.135] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/25/2014] [Indexed: 02/04/2023]
Abstract
Intranasal (i.n.) vaccination generates immunity across local, regional, and distant sites. However, nasal dendritic cells (DCs), pivotal for the induction of i.n. vaccine-induced immune responses, have not been studied in detail. Here, by using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of "classical" DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were Fms-related tyrosine 3 kinase ligand responsive and displayed unique phenotypic and functional characteristics, including the ability to present antigen, induce an allogeneic T-cell response, and migrate in response to lipopolysaccharide or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1(+) DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1(+) and BDCA-3(hi) DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic, and functional properties of nasal DCs, and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis.
Collapse
|
7
|
Sato S, Kiyono H, Fujihashi K. Mucosal Immunosenescence in the Gastrointestinal Tract: A Mini-Review. Gerontology 2014; 61:336-42. [PMID: 25531743 DOI: 10.1159/000368897] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023] Open
Abstract
It has been shown that pathogen-specific secretory IgA (SIgA) antibody (Ab) is the major player at mucosal surfaces for host defense. However, alterations in the mucosal immune system occur in advanced aging, which results in a failure of induction of SIgA Abs for the protection from infectious diseases. Signs of mucosal senescence first appear in the gut immune system. Further, changes in the intestinal microbiota most likely influence mucosal immunity. To overcome the immunological aging decline in mucosal immunity, several adjuvant systems including mucosal dendritic cell targeting have been shown to be attractive and effective immunological strategies. Similarly, microfold (M) cells involved in the antigen (Ag) uptake are ideal targets for facilitating Ag-specific mucosal immune responses. However, the numbers of M cells are reduced in aged mice. In this regard, Spi-B, an essential transcription factor for the functional and structural differentiation of M cells, could be a potent strategy for the induction of effective mucosal immunity in aging.
Collapse
Affiliation(s)
- Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
8
|
Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2014; 6:170-84. [PMID: 25503634 PMCID: PMC4348248 DOI: 10.1007/s13238-014-0125-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
Vaccination is an effective strategy to prevent infectious or immune related diseases, which has made remarkable contribution in human history. Recently increasing attentions have been paid to mucosal vaccination due to its multiple advantages over conventional ways. Subunit or peptide antigens are more reasonable immunogens for mucosal vaccination than live or attenuated pathogens, however adjuvants are required to augment the immune responses. Many mucosal adjuvants have been developed to prime desirable immune responses to different etiologies. Compared with pathogen derived adjuvants, innate endogenous molecules incorporated into mucosal vaccines demonstrate prominent adjuvanticity and safety. Nowadays, cytokines are broadly used as mucosal adjuvants for participation of signal transduction of immune responses, activation of innate immunity and polarization of adaptive immunity. Desired immune responses are promptly and efficaciously primed on basis of specific interactions between cytokines and corresponding receptors. In addition, some other innate molecules are also identified as potent mucosal adjuvants. This review focuses on innate endogenous mucosal adjuvants, hoping to shed light on the development of mucosal vaccines.
Collapse
Affiliation(s)
- Xiaoguang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | |
Collapse
|
9
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
10
|
Enhancement of serum and mucosal immune responses to a Haemophilus influenzae Type B vaccine by intranasal delivery. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1690-6. [PMID: 23986319 DOI: 10.1128/cvi.00215-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intranasal (i.n.) vaccination is potentially the most direct method for conveying upper respiratory and mucosal immunity to respiratory pathogens. However, for unclear reasons, vaccines introduced into the nasal sinuses often have lower efficacy than vaccines administered by the more frequently used parenteral routes. We examined i.n. vaccination in a mouse immune-response model with a commonly used Haemophilus influenzae type B vaccine (Hibv) composed of the polyribosylribitol phosphate (PRP) capsule antigen conjugated to tetanus toxoid. Intranasal vaccination with Hibv using a Toll-like receptor 4 (TLR4) agonist as an adjuvant significantly increased the levels of IgA specific for the PRP capsule antigen in blood serum, saliva, and mucosal secretion specimens. In contrast, control mice vaccinated transdermally (t.d.) with Hibv did not produce significant levels of PRP-specific IgA in the blood serum and saliva, and anti-PRP IgG was increased only in serum. The i.n. and t.d. vaccinations resulted in equivalent bactericidal antibody responses in blood serum, suggesting that vaccine-derived IgG is protective against infection. Elevated levels of IgG specific for the tetanus toxoid carrier protein were measured in nasal sinuses and vaginal secretions in mice vaccinated by either the t.d. or i.n. route. Tissue culture studies confirmed that the nasopharynx-associated lymphoid tissue (NALT) was at least one of the sources of PRP-specific IgA and carrier-specific IgG within the nasal sinuses. We conclude that i.n. vaccination aided by a TLR4 agonist results in robust immune responses to both the carrier protein and bacterial polysaccharide components of the Hibv.
Collapse
|
11
|
Potential roles of CCR5(+) CCR6(+) dendritic cells induced by nasal ovalbumin plus Flt3 ligand expressing adenovirus for mucosal IgA responses. PLoS One 2013; 8:e60453. [PMID: 23565250 PMCID: PMC3615010 DOI: 10.1371/journal.pone.0060453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/26/2013] [Indexed: 12/30/2022] Open
Abstract
We assessed the role of CCR5+/CCR6+/CD11b+/CD11c+ dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5+/CCR6+/CD11b+/CD11c+ DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b+/CD11c+ DCs were markedly decreased in both CCR5−/− and CCR6−/− mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5−/− or CD11c-DTR and CCR6−/− mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5+CCR6+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.
Collapse
|
12
|
|
13
|
Fujkuyama Y, Tokuhara D, Kataoka K, Gilbert RS, McGhee JR, Yuki Y, Kiyono H, Fujihashi K. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 2012; 11:367-79. [PMID: 22380827 DOI: 10.1586/erv.11.196] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed.
Collapse
Affiliation(s)
- Yoshiko Fujkuyama
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Asanuma H, Zamri NB, Sekine SI, Fukuyama Y, Tokuhara D, Gilbert RS, Fukuiwa T, Sata T, Tashiro M, Fujihashi K. A novel combined adjuvant for nasal delivery elicits mucosal immunity to influenza in aging. Vaccine 2012; 30:803-12. [PMID: 22100889 PMCID: PMC3253905 DOI: 10.1016/j.vaccine.2011.10.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/24/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
Abstract
Since a combination of flt3 ligand plasmid (pFL) and CpG-oligodeoxynucleotides (ODN)(3) as a dendritic cell (DC)-targeting double mucosal adjuvant elicited ovalbumin-specific secretory IgA (S-IgA) antibody (Ab) responses, we examined whether this double adjuvant could induce influenza-specific protective immunity in aged mice. A double adjuvant plus A/Puerto Rico/8/34 (PR8) hemagglutinin (HA) induced increased numbers of CD11b(+) CD11c(+) DCs and both CD4(+) Th1- and Th2-type responses in the nasopharyngeal-associated lymphoreticular tissue, nasal passages and cervical lymph nodes. Further, increased levels of PR8 HA-specific S-IgA Ab responses were detected in the upper respiratory tact (URT) of aged and young adult mice given nasal PR8 HA with this double adjuvant. Thus, when mice were challenged with PR8 virus via the nasal route, both aged and young adult mice given nasal vaccine exhibited complete protection. Further, IgA-deficient mice nasally immunized with a double adjuvant influenza vaccine failed to provide protection against PR8 challenge. These results indicate that a nasal double adjuvant successfully induces PR8 HA-specific IgA Ab responses in both young adult and aged mice, which are essential for the prevention of influenza infection in the murine URT.
Collapse
Affiliation(s)
- Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, JAPAN
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Normaiza Binti Zamri
- Department of Applied Biochemistry, School or Engineering, Tokai University, Hiratsuka-shi, Kanagawa, JAPAN
| | - Shin-ichi Sekine
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Yoshiko Fukuyama
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Daisuke Tokuhara
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Rebekah S. Gilbert
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Tatsuya Fukuiwa
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, JAPAN
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, JAPAN
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| |
Collapse
|
15
|
Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses. Biochem Biophys Res Commun 2011; 418:6-11. [PMID: 22200492 DOI: 10.1016/j.bbrc.2011.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 02/07/2023]
Abstract
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.
Collapse
|
16
|
Kataoka K, Fujihashi K, Terao Y, Gilbert RS, Sekine S, Kobayashi R, Fukuyama Y, Kawabata S, Fujihashi K. Oral-nasopharyngeal dendritic cells mediate T cell-independent IgA class switching on B-1 B cells. PLoS One 2011; 6:e25396. [PMID: 21980444 PMCID: PMC3183055 DOI: 10.1371/journal.pone.0025396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/01/2023] Open
Abstract
Native cholera toxin (nCT) as a nasal adjuvant was shown to elicit increased levels of T-independent S-IgA antibody (Ab) responses through IL-5- IL-5 receptor interactions between CD4+ T cells and IgA+ B-1 B cells in murine submandibular glands (SMGs) and nasal passages (NPs). Here, we further investigate whether oral-nasopharyngeal dendritic cells (DCs) play a central role in the induction of B-1 B cell IgA class switch recombination (CSR) for the enhancement of T cell-independent (TI) mucosal S-IgA Ab responses. High expression levels of activation-induced cytidine deaminase, Iα-Cμ circulation transcripts and Iμ-Cα transcripts were seen on B-1 B cells purified from SMGs and NPs of both TCRβ−/− mice and wild-type mice given nasal trinitrophenyl (TNP)-LPS plus nCT, than in the same tissues of mice given nCT or TNP-LPS alone. Further, DCs from SMGs, NPs and NALT of mice given nasal TNP-LPS plus nCT expressed significantly higher levels of a proliferation-inducing ligand (APRIL) than those in mice given TNP-LPS or nCT alone, whereas the B-1 B cells in SMGs and NPs showed elevated levels of transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI) expression. Interestingly, high frequencies of IgA+ B-1 B cells were induced when peritoneal IgA− IgM+ B cells were stimulated with mucosal DCs from mice given nasal TNP-LPS plus nCT. Taken together, these findings show that nasal nCT plays a key role in the enhancement of mucosal DC-mediated TI IgA CSR by B-1 B cells through their interactions with APRIL and TACI.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Keiko Fujihashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Yutaka Terao
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Rebekah S. Gilbert
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Shinichi Sekine
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ryoki Kobayashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Yoshiko Fukuyama
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohtaro Fujihashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
17
|
Thompson AL, Staats HF. Cytokines: the future of intranasal vaccine adjuvants. Clin Dev Immunol 2011; 2011:289597. [PMID: 21826181 PMCID: PMC3150188 DOI: 10.1155/2011/289597] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/22/2011] [Indexed: 01/09/2023]
Abstract
Due to its potential as an effective, needle-free route of immunization for use with subunit vaccines, nasal immunization continues to be evaluated as a route of immunization in both research and clinical studies. However, as with other vaccination routes, subunit vaccines often require the addition of adjuvants to induce potent immune responses. Unfortunately, many commonly used experimental vaccine adjuvants, such as cholera toxin and E. coli heat-labile toxin, are too toxic for use in humans. Because new adjuvants are needed, cytokines have been evaluated for their ability to provide effective adjuvant activity when delivered by the nasal route in both animal models and in limited human studies. It is the purpose of this paper to discuss the potential of cytokines as nasal vaccine adjuvants.
Collapse
Affiliation(s)
- Afton L. Thompson
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, NC 27710, USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Lee CH, Masso-Welch P, Hajishengallis G, Connell TD. TLR2-dependent modulation of dendritic cells by LT-IIa-B5, a novel mucosal adjuvant derived from a type II heat-labile enterotoxin. J Leukoc Biol 2011; 90:911-21. [PMID: 21791597 DOI: 10.1189/jlb.0511236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A host of human pathogens invades the body at mucosal surfaces. Yet, strong, protective mucosal immune responses directed against those pathogens routinely cannot be induced without the use of adjuvants. Although the strongest mucosal adjuvants are members of the family of HLTs, the inherent toxicities of HLT holotoxins preclude their clinical use. Herein, it is shown that LT-IIa-B(5) enhances mucosal immune responses by modulating activities of DCs. i.n. immunization of mice with OVA in the presence of LT-IIa-B(5) recruited DCs to the NALT and significantly increased uptake of OVA by those DCs. Furthermore, LT-IIa-B(5) increased expression of CCR7 by DCs, which mediated enhanced migration of the cells from the NALT to the draining CLNs. LT-IIa-B(5) also enhanced maturation of DCs, as revealed by increased surface expression of CD40, CD80, and CD86. Ag-specific CD4(+) T cell proliferation was augmented in the CLNs of mice that had received i.n. LT-IIa-B(5). Finally, when used as an i.n. adjuvant, LT-IIa-B(5) dramatically increased the levels of OVA-specific salivary IgA and OVA-specific serum IgG. Strikingly, each of the activities induced by LT-IIa-B(5) was strictly TLR2-dependent. The data strongly suggest that the immunomodulatory properties of LT-IIa-B(5) depend on the productive modulation of mucosal DCs. Notably, this is the first report for any HLT to demonstrate in vivo the elicitation of strong, TLR2-dependent modulatory effects on DCs with respect to adjuvanticity.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
19
|
Baatarjav T, Kataoka K, Gilbert RS, Terao Y, Fukui M, Goto M, Kawabata S, Yamamoto M, Fujihashi K, Ito HO. Mucosal immune features to phosphorylcholine by nasal Flt3 ligand cDNA-based vaccination. Vaccine 2011; 29:5747-57. [PMID: 21683111 DOI: 10.1016/j.vaccine.2011.05.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 11/16/2022]
Abstract
Phosphorylcholine (PC) is an immunodominant epitope in some pathogens including Streptococcus pneumoniae and it is well-known that PC-specific antibodies (Abs) play a key role in the induction of protective immunity against pneumococcal infection. In this study, we examined whether nasal administration of DNA plasmid encoding Flt3 ligand gene (pFL) as a mucosal adjuvant plus PC-conjugated keyhole limpet hemocyanin (PC-KLH), would elicit PC-specific immune responses, and characterized mucosal immune responses to PC induced by this nasal vaccination. Nasal immunization with pFL plus PC-KLH enhanced induction of PC-specific IgA and IgM Abs in airway secretions when compared with mice given PC-KLH with or without empty plasmid gene (pORF) as controls; in addition to the mucosal immune responses, PC-specific immune responses in serum were also induced. Furthermore, the mucosal and serum IgA and IgM Abs in mice given pFL plus PC-KLH nasally, exhibited high-specificity for the PC molecule. Of interest, the PC-specific Abs bound dose-dependently to anti-T15 idiotype (AB1-2). Thus, the inhibition of S. pneumoniae colonization on the nasal cavity and lungs after nasal challenge with the live organism was significantly elicited in mice immunized with pFL plus PC-KLH compared to that of mice immunized with antigen with pORF. Taken together, these findings show that nasal administration of pFL with PC-KLH elicited T15-like anti-PC IgA and IgM Abs in the respiratory tracts, and further attenuated S. pneumoniae colonization on the respiratory tracts. Nasal administration of Flt3 ligand cDNA with PC may contribute to the development of nasal vaccination for prevention of S. pneumoniae infection.
Collapse
Affiliation(s)
- Tselmeg Baatarjav
- Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The nasal dendritic cell-targeting Flt3 ligand as a safe adjuvant elicits effective protection against fatal pneumococcal pneumonia. Infect Immun 2011; 79:2819-28. [PMID: 21536790 DOI: 10.1128/iai.01360-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that a pneumococcal surface protein A (PspA)-based vaccine containing DNA plasmid encoding the Flt3 ligand (FL) gene (pFL) as a nasal adjuvant prevented nasal carriage of Streptococcus pneumoniae. In this study, we further investigated the safety and efficacy of this nasal vaccine for the induction of PspA-specific antibody (Ab) responses against lung infection with S. pneumoniae. C57BL/6 mice were nasally immunized with recombinant PspA/Rx1 (rPspA) plus pFL three times at weekly intervals. When dynamic translocation of pFL was initially examined, nasal pFL was taken up by nasal dendritic cells (DCs) and epithelial cells (nECs) but not in the central nervous systems, including olfactory nerve and epithelium. Of importance, nasal pFL induced FL protein synthesis with minimum levels of inflammatory cytokines in the nasal washes (NWs) and bronchoalveolar lavage fluid (BALF). NWs and BALF as well as plasma of mice given nasal rPspA plus pFL contained increased levels of rPspA-specific secretory IgA and IgG Ab responses that were correlated with elevated numbers of CD8(+) and CD11b(+) DCs and interleukin 2 (IL-2)- and IL-4-producing CD4(+) T cells in the nasal mucosa-associated lymphoid tissues (NALT) and cervical lymph nodes (CLNs). The in vivo protection by rPspA-specific Abs was evident in markedly reduced numbers of CFU in the lungs, airway secretions, and blood when mice were nasally challenged with Streptococcus pneumoniae WU2. Our findings show that nasal pFL is a safe and effective mucosal adjuvant for the enhancement of bacterial antigen (Ag) (rPspA)-specific protective immunity through DC-induced Th2-type and IL-2 cytokine responses.
Collapse
|
21
|
Tutykhina IL, Logunov DY, Shcherbinin DN, Shmarov MM, Tukhvatulin AI, Naroditsky BS, Gintsburg AL. Development of adenoviral vector-based mucosal vaccine against influenza. J Mol Med (Berl) 2011; 89:331-41. [PMID: 21104066 DOI: 10.1007/s00109-010-0696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/24/2010] [Accepted: 10/13/2010] [Indexed: 12/25/2022]
Abstract
The recent pandemic threat of the influenza virus makes the increased safety and efficiency of vaccination against the pathogen a most important issue. It has been well established that for maximum protective effect, the vaccination should mimic natural infection. Therefore, recent efforts to develop a new influenza vaccine have focused on intranasal immunization strategies. Intranasal immunization is capable of inducing secretory IgA and serum IgG responses to provide a double defense against mucosal pathogens. On the other hand, it is desirable that a live pathogen is not present in the vaccine. In addition, for optimal induction of the immune responses via the nasal route, efficient and safe mucosal adjuvants are also required. This is possible to attain using an adenoviral vector for vaccine development. Adenoviral vectors are capable of delivering and protecting the antigen encoding sequence. They also possess a natural mechanism for penetrating into the nasal mucous membrane and are capable of activating the innate immune response. This review describes the basic prerequisites for the involvement of recombinant adenoviruses for mucosal (nasal) vaccine development against the influenza virus.
Collapse
Affiliation(s)
- Irina L Tutykhina
- Laboratory of Molecular Biotechnology, Gamaleya Research Institute of Epidemiology and Microbiology, ul. Gamaleya 18, Moscow 123098, Russia
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim DY, Sato A, Fukuyama S, Sagara H, Nagatake T, Kong IG, Goda K, Nochi T, Kunisawa J, Sato S, Yokota Y, Lee CH, Kiyono H. The airway antigen sampling system: respiratory M cells as an alternative gateway for inhaled antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:4253-62. [PMID: 21357262 DOI: 10.4049/jimmunol.0903794] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we demonstrated a new airway Ag sampling site by analyzing tissue sections of the murine nasal passages. We revealed the presence of respiratory M cells, which had the ability to take up OVA and recombinant Salmonella typhimurium expressing GFP, in the turbinates covered with single-layer epithelium. These M cells were also capable of taking up respiratory pathogen group A Streptococcus after nasal challenge. Inhibitor of DNA binding/differentiation 2 (Id2)-deficient mice, which are deficient in lymphoid tissues, including nasopharynx-associated lymphoid tissue, had a similar frequency of M cell clusters in their nasal epithelia to that of their littermates, Id2(+/-) mice. The titers of Ag-specific Abs were as high in Id2(-/-) mice as in Id2(+/-) mice after nasal immunization with recombinant Salmonella-ToxC or group A Streptococcus, indicating that respiratory M cells were capable of sampling inhaled bacterial Ag to initiate an Ag-specific immune response. Taken together, these findings suggest that respiratory M cells act as a nasopharynx-associated lymphoid tissue-independent alternative gateway for Ag sampling and subsequent induction of Ag-specific immune responses in the upper respiratory tract.
Collapse
Affiliation(s)
- Dong-Young Kim
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nasal immunity to staphylococcal toxic shock is controlled by the nasopharynx-associated lymphoid tissue. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:667-75. [PMID: 21325486 DOI: 10.1128/cvi.00477-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nasopharynx-associated lymphoid tissue (NALT) of humans and other mammals is associated with immunity against airborne infections, though it is generally considered to be a secondary component of the mucosa-associated lymphoid system. We found that protective immunity to a virulence factor of nasal mucosa-colonizing Staphylococcus aureus, staphylococcal enterotoxin B (SEB), requires a functional NALT. We examined the role of NALT using intranasal (IN) vaccination with a recombinant SEB vaccine (rSEBv) combined with an adjuvant in a mouse model of SEB-induced toxic shock. The rSEBv was rapidly internalized by NALT cells at the mucosal barrier, and transport into NALT was accelerated by inclusion of a Toll-like receptor 4 (TLR4) agonist. Vaccine-induced germinal centers of B cells formed within NALT, accompanied by elevated levels of IgA(+) and IgG(+) cells, and these were further increased by TLR4 activation. The NALT was the site of specific anti-rSEBv IgA and IgG production but was also influenced by intraperitoneal (IP) inoculation and perhaps other isolated lymphoid follicles observed within the nasal cavity. Vaccination by the IN route generated robust levels of anti-rSEBv IgA in saliva, nasal secretions, and blood compared to much lower levels after IP vaccination. IN vaccination also induced secretion of anti-rSEBv IgG in the blood and nasal secretions. Significantly, the efficacy of IN vaccination was dependent on NALT, as surgical removal resulted in greater sensitivity to IN challenge with wild-type SEB. Thus, protective immunity to SEB within the nasal sinuses was elicited by responses originating in NALT.
Collapse
|
24
|
Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Hollingshead SK, Briles DE, Fujihashi K. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:2454-61. [PMID: 21242514 DOI: 10.4049/jimmunol.1002837] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous study showed that a combination of a plasmid-expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotides (CpG ODN) as a combined nasal adjuvant elicited mucosal immune responses in aged (2-y-old) mice. In this study, we investigated whether a combination of pFL and CpG ODN as a nasal adjuvant for a pneumococcal surface protein A (PspA) would enhance PspA-specific secretory-IgA Ab responses, which could provide protective mucosal immunity against Streptococcus pneumoniae infection in aged mice. Nasal immunization with PspA plus a combination of pFL and CpG ODN elicited elevated levels of PspA-specific secretory-IgA Ab responses in external secretions and plasma in both young adult and aged mice. Significant levels of PspA-specific CD4(+) T cell proliferative and PspA-induced Th1- and Th2- type cytokine responses were noted in nasopharyngeal-associated lymphoreticular tissue, cervical lymph nodes, and spleen of aged mice, which were equivalent to those in young adult mice. Additionally, increased numbers of mature-type CD8, CD11b-expressing dendritic cells were detected in mucosal inductive and effector lymphoid tissues of aged mice. Importantly, aged mice given PspA plus a combination of pFL and CpG ODN showed protective immunity against nasal S. pneumoniae colonization. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for protection against S. pneumoniae in the elderly.
Collapse
Affiliation(s)
- Yoshiko Fukuyama
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, Institute of Oral Health Research, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Oishi K, Hollingshead SK, Briles DE, Fujihashi K. Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae. THE JOURNAL OF IMMUNOLOGY 2010; 185:1755-62. [PMID: 20585031 DOI: 10.4049/jimmunol.1000831] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was designed to investigate whether secretory-IgA (S-IgA) Abs induced by a pneumococcal surface protein A (PspA)-based nasal vaccine are necessary for prevention of streptococcal colonization. Mice nasally immunized with PspA plus a plasmid expressing Flt3 ligand (pFL) cDNA as a mucosal adjuvant showed significantly higher levels of PspA-specific S-IgA and IgG Ab responses in both plasma and nasal washes when compared with naive mice. Although IgA(-/-) mice given nasal PspA plus pFL had significantly high levels of PspA-specific IgG Abs, high numbers of CFUs were detected in nasal washes and nasal passages. In contrast, vaccinated wild-type mice showed essentially no bacteria in the nasal cavity. Further, a nasal vaccine consisting of PspA plus pFL effectively reduced pre-existing Streptococcus pneumoniae in the nasal cavity. These results show that PspA-based vaccine-induced specific S-IgA Abs play a necessary role in the regulation of S. pneumoniae colonization in the nasal cavity.
Collapse
Affiliation(s)
- Yoshiko Fukuyama
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, Institute of Oral Health Research, University of Alabama at Birmingham, SDB 801A1, 1919 7th Avenue South, Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lasaro MO, Ertl HCJ. New insights on adenovirus as vaccine vectors. Mol Ther 2009; 17:1333-9. [PMID: 19513019 PMCID: PMC2835230 DOI: 10.1038/mt.2009.130] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/20/2009] [Indexed: 12/15/2022] Open
Abstract
Adenovirus (Ad) vectors were initially developed for treatment of genetic diseases. Their usefulness for permanent gene replacement was limited by their high immunogenicity, which resulted in rapid elimination of transduced cells through induction of T and B cells to antigens of Ad and the transgene product. The very trait that excluded their use for sustained treatment of genetic diseases made them highly attractive as vaccine carriers. Recently though results showed that Ad vectors based on common human serotypes, such as serotype 5, may not be ideal as vaccine carriers. A recently conducted phase 2b trial, termed STEP trial, with an AdHu5-based vaccine expressing antigens of human immunodeficiency virus 1 (HIV-1) not only showed lack of efficacy in spite of the vaccine's immunogenicity, but also suggested an increased trend for HIV acquisition in individuals that had circulating AdHu5 neutralizing antibodies prior to vaccination. Alternative serotypes from humans or nonhuman primates (NHPs), to which most humans lack pre-existing immunity, have been vectored and may circumvent the problems encountered with the use of AdHu5 vectors in humans. In summary, although Ad vectors have seen their share of setbacks in recent years, they remain viable tools for prevention or treatment of a multitude of diseases.
Collapse
Affiliation(s)
- Marcio O Lasaro
- The Wistar Institute Vaccine Center, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
27
|
Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol Med 2009; 15:263-74. [DOI: 10.1016/j.molmed.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
28
|
Fukuiwa T, Sekine S, Kobayashi R, Suzuki H, Kataoka K, Gilbert RS, Kurono Y, Boyaka PN, Krieg AM, McGhee JR, Fujihashi K. A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 2008; 26:4849-59. [PMID: 18625280 PMCID: PMC2601556 DOI: 10.1016/j.vaccine.2008.06.091] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022]
Abstract
We explore cellular and molecular mechanisms of nasal adjuvant of a combination of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligodeoxynucleotides (CpG ODN). The double DNA adjuvant given with OVA maintained prolonged OVA-specific secretory IgA (S-IgA) Ab responses in external secretions for more than 25 weeks after the final immunization. Further, both Th1- and Th2-type cytokine responses were induced by this combined adjuvant regimen. The frequencies of plasmacytoid DCs (pDCs) and CD8(+) DCs were significantly increased in nasopharyngeal-associated lymphoreticular tissue (NALT) of mice given the combined adjuvant. Importantly, when we examined adjuvanticity of pFL plus CpG ODN in 2-year-old mice, significant levels of mucosal IgA Ab responses were also induced. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for the development of an effective mucosal vaccine for the elderly.
Collapse
Affiliation(s)
- Tatsuya Fukuiwa
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
- Departments of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, JAPAN
| | - Shinichi Sekine
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Ryoki Kobayashi
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Hideaki Suzuki
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Kosuke Kataoka
- Department of Preventive Dentistry, Faculty of Dentistry, Osaka University, Suita, Osaka 162-8655, JAPAN
| | - Rebekah S. Gilbert
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Yuichi Kurono
- Departments of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, JAPAN
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, VMAB Room 354, 1900 Coffey Road, Columbus, OH 43210 USA
| | | | - Jerry R. McGhee
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Kohtaro Fujihashi
- The Immunobiology Vaccine Center, Departments of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| |
Collapse
|