1
|
Tanigawa K, Redmond WL. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology 2025; 14:2452654. [PMID: 39812092 PMCID: PMC11740684 DOI: 10.1080/2162402x.2025.2452654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8+ T cells and NK cells and can generate durable responses in a subset of patients. Moreover, HD IL-2 may have potential efficacy in patients whose disease has progressed following ICB and plays a vital role in expanding tumor-infiltrating lymphocyte (TIL) in TIL therapy. Despite its potential, the use of HD IL-2 is limited by severe toxicities such as hypotension and vascular leak syndrome. Additionally, only a few patients achieve a good outcome after HD IL-2 therapy. To address these challenges, numerous next-generation IL-2 receptor (IL-2 R) agonists have been developed to exhibit treatment effects while minimizing adverse events. This review will explore IL-2 biology, the clinical application of HD IL-2 therapy, and the development of novel IL-2 R agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kengo Tanigawa
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
2
|
Zhu Y, Li X, Wen D, Huang Z, Yan J, Zhang Z, Wang Y, Guo Z. Remote Ischemic Post-conditioning Reduces Cognitive Impairment in Rats Following Subarachnoid Hemorrhage: Possible Involvement in STAT3/STAT5 Phosphorylation and Th17/Treg Cell Homeostasis. Transl Stroke Res 2025; 16:600-611. [PMID: 38356020 DOI: 10.1007/s12975-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.
Collapse
Affiliation(s)
- Yajun Zhu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Xiaoguo Li
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - DaoChen Wen
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zichao Huang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jin Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zhaosi Zhang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Yingwen Wang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zongduo Guo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Li Y, Wang T, Gan Y, Zhang X, Xue L, Xu B, Sun X, Li Z. IL-2 detected by flow cytometry and its significance in systemic lupus erythematosus. Clin Rheumatol 2025:10.1007/s10067-025-07478-w. [PMID: 40402317 DOI: 10.1007/s10067-025-07478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/05/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE Low-dose interleukin 2 (IL-2) administration has been shown to selectively modulate regulatory T (Treg) cell abundance and alleviate the progression of systemic lupus erythematosus (SLE). IL-2 level could be indicator of low-dose IL-2 usage in SLE patients. However, current methods for IL-2 detection are generally not sensitive to be used in clinic. This study aims to establish flow cytometry-based IL-2 detection as a feasible approach in determining IL-2 in peripheral blood of SLE patients. METHODS Flow cytometry was used to quantify the relative mean fluorescence intensity (MFI) of IL-2 in CD3+T cells and other lymphocyte subsets in peripheral blood mononuclear cell (PBMCs) from a cohort of 134 SLE patients and 112 healthy controls (HC). Correlations between IL-2 MFI and clinical or laboratory parameters in SLE patients were also investigated. RESULTS MFI of IL-2 represented IL-2 expression in CD3+T cells. IL-2 MFI was significantly lower in SLE patients compared to the HC group and negatively associated with anti-ribosomal protein antibodies, erythrocyte sedimentation rate (ESR), and blood urea. Conversely, it was positively correlated with IgA and hemoglobin. These associations with IgA, hemoglobin, ESR, and blood urea remained significant after adjusting for age and disease duration. IL-2 level was also positively correlated with the relative abundance of Th1, Th2, and Th17 cells. Furthermore, MFI of IL-2 recovered with effective treatment in SLE patients. CONCLUSIONS MFI of IL-2 serves as a feasible marker of IL-2, which is significantly decreased in SLE patients and recovered with treatment, suggesting its potential for assessing short-term disease status and treatment response in SLE patients. Key Points • IL-2 MFI can be used to estimate IL-2 expression level in SLE patients. • IL-2 MFI is significantly reduced in SLE patients. • IL-2 MFI can serve as a marker for monitoring SLE activity and short-term status.
Collapse
Affiliation(s)
- Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Tingting Wang
- Department of Rheumatology, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yuzhou Gan
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China
| | - Leixi Xue
- Department of Rheumatology, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Boyi Xu
- Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China.
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), 11 Xizhimen South St, Beijing, 100044, China.
| |
Collapse
|
4
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
5
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
6
|
Wang X, Liu Y, Zhang S, Zhang J, Lin X, Liang Y, Zong M, Hanley KL, Lee J, Karin M, Feng GS. Genomic and transcriptomic analyses of chemical hepatocarcinogenesis aggravated by oncoprotein loss. Hepatology 2025; 81:1181-1196. [PMID: 39397357 DOI: 10.1097/hep.0000000000001037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS We generated mutant mouse lines with hepatocyte-specific deletions of Met , Ptpn11 / Shp2 , Ikkβ , or Ctnnb1/β-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Shuo Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jiemeng Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Xiaoxue Lin
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yan Liang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Min Zong
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Kaisa L Hanley
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Al-Janabi A, Martin P, Simpson C, Rhys H, Khan AR, Eyre S, Christofi M, Foulkes AC, Skelton A, Viatte S, Barton A, Morris AP, Smith CH, Griffiths CEM, Warren RB. Blood Single-Cell Transcriptomic and Proteomic Signatures of Paradoxical Eczema in Patients with Psoriasis Treated with Biologics. J Invest Dermatol 2025:S0022-202X(25)00370-7. [PMID: 40157420 DOI: 10.1016/j.jid.2025.02.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/10/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Biologics targeting the TNF and IL-17/23 axis are highly effective treatments for psoriasis but can result in cutaneous adverse events. The pathogenesis of paradoxical eczema, the occurrence of an atopic dermatitis phenotype after biologic initiation in people with psoriasis, is unknown. Using single-cell RNA sequencing and mass cytometry, we found increased expression of TNF, IFN-γ, and IFN-α and their signaling pathways in paradoxical eczema case cell clusters compared with that in matched psoriasis controls. Genetic variants influencing the expression of chemokine signaling and TNF pathway genes were associated with paradoxical eczema in a separate genotyped cohort, and this association was independent of known atopic risk loci. This suggests that paradoxical eczema has a predominantly type 1 systemic inflammatory signature and that genetic susceptibility to aberrant chemokine and TNF pathway signaling could contribute to development of this phenotype during biologic treatment.
Collapse
Affiliation(s)
- Ali Al-Janabi
- Centre for Dermatology Research, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | - Steve Eyre
- Centre for Dermatology Research, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - Maria Christofi
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - Amy C Foulkes
- Centre for Dermatology Research, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | | | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Catherine H Smith
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; St. John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Christopher E M Griffiths
- Centre for Dermatology Research, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; Department of Dermatology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Richard B Warren
- Centre for Dermatology Research, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Palzer KA, Bolduan V, Lakus J, Tubbe I, Montermann E, Clausen BE, Bros M, Pautz A. The RNA-binding protein KSRP reduces asthma-like characteristics in a murine model. Inflamm Res 2025; 74:54. [PMID: 40095032 PMCID: PMC11914311 DOI: 10.1007/s00011-025-02024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a chronic inflammatory disease characterized by dysregulated cytokine expression. The RNA-binding protein KSRP reduces the expression of several pro-inflammatory mediators. Therefore, we investigated whether KSRP modulates Th2-associated immune responses in vivo in an ovalbumin-induced (OVA) allergic asthma model in C57BL/6 KSRP-deficient mice (KSRP-/-). METHODS Asthma severity in OVA-immunized wild type or KSRP-/- mice was determined by airway hyperresponsiveness (AHR), structural changes of lung tissue, and OVA-specific antibody production. Cytokine expression in bronchoalveolar lavage fluid (BALF) was measured by Cytometric Bead Array (CBA) analysis. Cellular signaling pathways involved in KSRP-mediated effects in asthma pathogenesis were analyzed in vitro in cell culture models using specific inhibitors. RESULTS KSRP deficiency exacerbates OVA-induced allergic asthma compared to wild type mice, as indicated by increased AHR, more severe lung damage, goblet cell hyperplasia and increased OVA-specific antibody production. CBA analyses confirmed, that KSRP deficiency enhances IL-4, IL-5 and IL-13 production in BALF. The effect of KSRP on Th2-associated cytokine expression appears to be mediated by modulation of the STAT6 and NFAT signaling pathway rather than by inhibiting the stability of cytokine-encoding mRNA species. CONCLUSION Our data demonstrate that KSRP dampens Th2 immune cell activity and therefore seems to be important for the pathogenesis of Th2-mediated diseases.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jelena Lakus
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
9
|
Bi Z, Zhang Q, Gao H, Ge H, Zhan J, Yang M, Bu B. The JAK1/3 Inhibitor Tofacitinib Regulates Th Cell Profiles and Humoral Immune Responses in Myasthenia Gravis. Muscle Nerve 2025; 71:474-486. [PMID: 39821232 DOI: 10.1002/mus.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
INTRODUCTION/AIMS Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG. METHODS Flow cytometry, enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot were used to evaluate the effects of tofacitinib on T helper (Th) cell profiles, humoral immune responses, and the JAK-signal transducer and activator of transcription (STAT) pathway proteins. RESULTS In vivo, tofacitinib significantly ameliorated EAMG severity in rats, reducing the proportions of Th1, Th17 and memory B cells, and anti-acetylcholine receptor (AChR) antibodies levels, while increasing the proportions of regulatory T (Treg) cells. In vitro, tofacitinib administration resulted in a significant decrease in the proportions of Th1 and IgG-secreting B cell, and a significant upregulation of Treg cells in mononuclear cells (MNCs) from EAMG rats, which was consistent with findings in PBMCs from MG patients. Further analysis revealed that tofacitinib inhibited CD4+ T cell differentiation into Th1 by decreasing phosphorylated STAT1 levels, while promoting Treg differentiation via increased phosphorylated STAT5 levels in MNCs from EAMG rats. DISCUSSION Tofacitinib modulates Th cell profiles and humoral immune responses by targeting the JAK-STAT pathway, suggesting its potential as a therapeutic candidate for MG. Further clinical studies are warranted to evaluate the efficacy and safety of tofacitinib in MG patients.
Collapse
Affiliation(s)
- Zhuajin Bi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huajie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayang Zhan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Olsthoorn SEM, van Krimpen A, Hendriks RW, Stadhouders R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol Rev 2025; 330:e70010. [PMID: 40016948 PMCID: PMC11868696 DOI: 10.1111/imr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Asthma is a common chronic inflammatory disease of the airways. A substantial number of patients present with severe and therapy-resistant asthma, for which the underlying biological mechanisms remain poorly understood. In most asthma patients, airway inflammation is characterized by chronic activation of type 2 immunity. CD4+ T helper 2 (Th2) cells are the canonical producers of the cytokines that fuel type 2 inflammation: interleukin (IL)-4, IL-5, IL-9, and IL-13. However, more recent findings have shown that other lymphocyte subsets, in particular group 2 innate lymphoid cells (ILC2s) and type 2 CD8+ cytotoxic T (Tc2) cells, can also produce large amounts of type 2 cytokines. Importantly, a substantial number of severe therapy-resistant asthma patients present with chronic type 2 inflammation, despite the high sensitivity of Th2 cells for suppression by corticosteroids-the mainstay drugs for asthma. Emerging evidence indicates that ILC2s and Tc2 cells are more abundant in severe asthma patients and can adopt corticosteroid-resistance states. Moreover, many severe asthma patients do not present with overt type 2 airway inflammation, implicating non-type 2 immunity as a driver of disease. In this review, we will discuss asthma pathophysiology and focus on the roles played by ILC2s, Tc2 cells, and non-type 2 lymphocytes, placing special emphasis on severe disease forms.
Collapse
Affiliation(s)
- Simone E. M. Olsthoorn
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
11
|
Joshi JC, Joshi B, Zhang C, Banerjee S, Vellingiri V, Raghunathrao VAB, Anwar M, Rokade TP, Zhang L, Amin R, Song Y, Mehta D. RGS2 is an innate immune checkpoint for suppressing Gαq-mediated IFNγ generation and lung injury. iScience 2025; 28:111878. [PMID: 40041768 PMCID: PMC11876898 DOI: 10.1016/j.isci.2025.111878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/01/2024] [Accepted: 01/20/2025] [Indexed: 03/12/2025] Open
Abstract
Interferon gamma (IFNγ), a type II interferon, augments tissue inflammation following infections, leading to lethal acute lung injury (ALI), yet the mechanisms controlling IFNγ generation in the lungs remain elusive. Here, we identified regulator of G protein signaling 2 (RGS2) as a gatekeeper of the lung's IFNγ levels during infections. Deletion of RGS2 sustained an increase in IFNγ levels in macrophages, leading to unresolvable inflammatory lung injury. This response was not seen in RGS2 null chimeric mice receiving wild-type (WT) bone marrow or the RGS2 gene in alveolar macrophages (AMs) or IFNγ-blocking antibody. RGS2 functioned by suppressing Gαq-mediated IFNγ generation and AM inflammatory signaling. Thus, the inhibition of Gαq blocked IFNγ generation in AMs and rewired AM transcriptomes from an inflammatory to a reparative phenotype in RGS2 null mice, pointing to the RGS2-Gαq axis as a potential target for suppressing inflammatory injury.
Collapse
Affiliation(s)
- Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Erie, PA, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Somenath Banerjee
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vigneshwaran Vellingiri
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vijay Avin Balaji Raghunathrao
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Tejas Pravin Rokade
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Vascular Medicine Institute, Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ruhul Amin
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Su X, Zhang M, Zhu H, Cai J, Wang Z, Xu Y, Wang L, Shen C, Cai M. Mechanisms of T-cell Depletion in Tumors and Advances in Clinical Research. Biol Proced Online 2025; 27:5. [PMID: 39905296 PMCID: PMC11792740 DOI: 10.1186/s12575-025-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system that play a vital role in identifying and eliminating infected and tumor cells. In tumor immunotherapy, T cells have emerged as a promising therapeutic strategy due to their high specificity, potent cytotoxic capability, long-lasting immune memory, and adaptability within immunotherapeutic approaches. However, tumors can evade the immune system by depleting T cells through various mechanisms, such as inhibitory receptor signaling, metabolic exhaustion, and physical barriers within the tumor microenvironment. This review provided an overview of the mechanisms underlying T-cell depletion in tumors and discussed recent advances in clinical research related to T-cell immunotherapy for tumors. It highlighted the need for in-depth studies on key issues such as indications, dosage, and sequencing of combined therapeutic strategies tailored to different patients and tumor types, providing practical guidance for individualized treatment. Future research on T-cell depletion would be necessary to uncover the fundamental mechanisms and laws of T-cell depletion, offering both theoretical insights and practical guidance for the selection and optimization of tumor immunotherapy. Furthermore, interdisciplinary, cross-disciplinary, and international collaborative innovations are necessary for developing more effective and safer treatments for tumor patients.
Collapse
Affiliation(s)
- Xiangfei Su
- China Association of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hong Zhu
- Tongling People's Hospital, Tongling, Anhui, China
| | - Jingwen Cai
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhen Wang
- Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Yuewei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Chen Shen
- Key Laboratory of Data Science and Innovation and Development of Traditional Chinese Medicine and Social Sciences of Anhui Province, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Hefei, Anhui, 230012, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
13
|
Zhang TH, Chen X, Wei YY, Tang XC, Xu LH, Cui HR, Liu HC, Wang ZX, Chen T, Li CB, Wang JJ. Associations between cytokine levels and cognitive function among individuals at clinical high risk for psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111166. [PMID: 39383934 DOI: 10.1016/j.pnpbp.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE To explore the intricate interplay among cytokines, cognitive functioning, and conversion to psychosis in individuals at clinical high-risk (CHR) for psychosis. METHOD We initially enrolled 385 individuals at CHR and 95 healthy controls (HCs). Subsequently, 102 participants at CHR completed the 1-year follow-up assessments, and 47 participants transitioned to psychosis. We assessed the levels of interleukins (IL-1β, IL-2, IL-6, IL-8, IL-10), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). We comprehensively evaluated cognitive performance across six domains, including speed of processing (SP), attention/vigilance (AV), working memory (WM), verbal learning (VeL), visual learning (ViL), and reasoning and problem-solving (RPS). RESULTS Higher baseline cognitive domain scores were associated with elevated GM-CSF and reduced VEGF levels. In the follow-up analysis, significant time effects were observed for IL-1β and IL-2. We also observed significant interaction effects between specific cognitive domains (AV, WM, VeL, and OCS) and levels of cytokine (GM-CSF, IL-1β, IL-6, and TNF-α). Changes in WM were negatively correlated with changes in TNF-α levels and positively correlated with changes in VEGF levels. Variations in VeL were inversely correlated with changes in GM-CSF and IL-10 levels, whereas changes in RPS were positively associated with changes in GM-CSF and IL-8 levels. CONCLUSIONS Our results revealed intricate associations among cytokine levels, cognitive performance, and psychosis progression.
Collapse
Affiliation(s)
- Tian Hong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China.
| | - Xing Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China
| | - Yan Yan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Xiao Chen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Li Hua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hui Ru Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Hai Chun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi Xuan Wang
- Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - Chun Bo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Ji Jun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; Department of Psychiatry, Nantong Fourth People's Hospital and Nantong Brain Hospital, NanTong, Jiangsu, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
14
|
Sato S, Ogawa Y, Asai K, Shimizu E, Shimizu S, Taniguchi H, Okazaki T, Shimmura S, Negishi K, Hirayama M. Exploratory study on the efficacy of topical pan-JAK inhibitor in ocular and skin GVHD in a sclerodermatous GVHD mouse model. Sci Rep 2025; 15:532. [PMID: 39748084 PMCID: PMC11696563 DOI: 10.1038/s41598-024-84380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Systemic administration of Janus kinase (JAK) inhibitors is effective in treating chronic graft-versus-host disease (cGVHD) but is associated with side effects. Topical drug administration effectively minimizes side effects. We aimed to investigate potential trends of the efficacy of topical delgocitinib administration in a mouse model. Allogenic bone-marrow transplantation (BMT) was performed from B10.D2. to BALB/c mice, leading to sclerodermatous GVHD. GVHD mice were treated with delgocitinib eye drops or ointment with samples analyzed at 4 weeks post-BMT. Topical delgocitinib ointment and eye-drop administration significantly increased the meibomian gland (MG) area and attenuated corneal epithelial damage. Pathological and immunohistochemical analyses revealed a substantial reduction in inflammation and pathological fibrosis of the skin and eyelids in delgocitinib-treated GVHD mice. Signal transducer and activator of transcription (STAT)1, STAT3, and STAT5A phosphorylation was significantly increased in the back skin and eyelids of vehicle-treated GVHD mice; topical delgocitinib administration significantly reduced the expression of these phosphorylated STAT molecules. Delgocitinib eye drops significantly attenuated corneal epithelial damage, MG acinar depletion, and inflammatory cells infiltration in GVHD mouse corneas. The JAK/STAT signaling pathway was significantly upregulated in GVHD mice. In summary, our data suggested that topical delgocitinib administration had the potential to attenuate cGVHD phenotype severity in the skin and eyes of sclerodermatous GVHD mice.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
- Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
15
|
Lu Z, Liao H, Zhang M, Huang M, Du M, Wang Y, Zhao Z, Shi S, Zhu Z. Tanshinone I inhibits the functions of T lymphocytes and exerts therapeutic effects on delayed-type hypersensitivity reaction via blocking STATs signaling pathways. Eur J Pharmacol 2024; 985:177128. [PMID: 39536856 DOI: 10.1016/j.ejphar.2024.177128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Delayed-type hypersensitivity (DTH) reactions are a kind of chronic inflammatory diseases initiated by antigens and antigen-specific T cells. Currently, the therapy of DTH reactions is limited by the poor curative effects and serious adverse reactions of existing agents. In this study, we investigated the regulatory effects of tanshinone Ⅰ, a natural compound isolated from Salvia miltiorrhiza, on the functions of multiple immune cells and its therapeutic effects on DNFB-induced DTH reaction, and then explored its immunosuppressive mechanisms. The results showed that tanshinone Ⅰ at 5-20 μM moderately inhibited the activation of macrophages and dendritic cells, but did not weaken the activation of neutrophils. Tanshinone Ⅰ at 1-4 μM intensively suppressed the activation, proliferation, and differentiation of CD4+ and CD8+ T cells, and slightly affected the functions of B cells. Tanshinone Ⅰ administration markedly alleviated the edema, inflammatory response, and the infiltrations of CD4+ T cells, CD8+ T cells, and CD11b+ cells in ear tissues of mice which were induced DTH reactions by DNFB. Transcriptome analysis revealed that tanshinone Ⅰ strongly inhibited CD4+ T cells to express genes involving in cell proliferation, metabolism, activation, and differentiation. Furthermore, immunoblotting analysis showed that tanshinone Ⅰ selectively inhibited the phosphorylation of STAT3 and STAT5 in CD4+ T cells stimulated by anti-CD3e and anti-CD28 antibodies or IL-2. Collectively, tanshinone Ⅰ can strongly inhibit the functions of T lymphocytes, exert therapeutic effects on DTH reaction by blocking STATs signaling pathways, and has potential to be developed into therapeutic drug for DTH reactions.
Collapse
Affiliation(s)
- Zihan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hanjing Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingliang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Manjing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yaqin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zongjie Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shepo Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhixiang Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Kießling M, Cole JJ, Kübel S, Klein P, Korn K, Henry AR, Laboune F, Fourati S, Harrer E, Harrer T, Douek DC, Überla K, Nganou-Makamdop K. Chronic inflammation degrades CD4 T cell immunity to prior vaccines in treated HIV infection. Nat Commun 2024; 15:10200. [PMID: 39587133 PMCID: PMC11589758 DOI: 10.1038/s41467-024-54605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
To date, our understanding of how HIV infection impacts vaccine-induced cellular immunity is limited. Here, we investigate inflammation, immune activation and antigen-specific T cell responses in HIV-uninfected and antiretroviral-treated HIV-infected people. Our findings highlight lower recall responses of antigen-specific CD4 T cells that correlate with high plasma cytokines levels, T cell hyperactivation and an altered composition of the T subsets enriched with more differentiated cells in the HIV-infected group. Transcriptomic analysis reveals that antigen-specific CD4 T cells of the HIV-infected group have a reduced expression of gene sets previously reported to correlate with vaccine-induced pathogen-specific protective immunity and further identifies a consistent impairment of the IFNα and IFNγ response pathways as mechanism for the functional loss of recall CD4 T cell responses in antiretroviral-treated people. Lastly, in vitro treatment with drugs that reduce inflammation results in higher memory CD4 T cell IFNγ responses. Together, our findings suggest that vaccine-induced cellular immunity may benefit from strategies to counteract inflammation in HIV infection.
Collapse
Affiliation(s)
- Melissa Kießling
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John J Cole
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Sabrina Kübel
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paulina Klein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Slim Fourati
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Ellen Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
19
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
20
|
Liu L, Hao S, Gou S, Tang X, Zhang Y, Cai D, Xiao M, Zhang X, Zhang D, Shen J, Li Y, Chen Y, Zhao Y, Deng S, Wu X, Li M, Zhang Z, Xiao Z, Du F. Potential applications of dual haptoglobin expression in the reclassification and treatment of hepatocellular carcinoma. Transl Res 2024; 272:19-40. [PMID: 38815898 DOI: 10.1016/j.trsl.2024.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene within a subgroup of HCC malignant cells. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yan Li
- Public Center of Experimental Technology, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646000, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China; South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646000, China.
| |
Collapse
|
21
|
Li M, Liu N, Zhu J, Wu Y, Niu L, Liu Y, Chen L, Bai B, Miao Y, Yang Y, Chen Q. Engineered probiotics with sustained release of interleukin-2 for the treatment of inflammatory bowel disease after oral delivery. Biomaterials 2024; 309:122584. [PMID: 38735180 DOI: 10.1016/j.biomaterials.2024.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.
Collapse
Affiliation(s)
- Maoyi Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Nanhui Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jiafei Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yumin Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Le Niu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yi Liu
- Department of Thoracic Surgery Shanghai Pulmonary Hospital School of Medicine Tong ji University, Shanghai, 200433, China
| | - Linfu Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Boxiong Bai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yu Miao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital School of Medicine Tong ji University, Shanghai, 200433, China
| | - Qian Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
23
|
Al-Aghbar MA, Espino Guarch M, van Panhuys N. IL-2 amplifies quantitative TCR signalling inputs to drive Th1 and Th2 differentiation. Immunology 2024; 173:196-208. [PMID: 38887097 DOI: 10.1111/imm.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Meritxell Espino Guarch
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, NIH, Bethesda, Maryland, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
24
|
Lou J, Luo G, Zhao L, Zhang H. CONSORT article: Single-cell sequencing analysis revealed CMKLR1+ macrophage as a subpopulation of macrophage with tumor-suppressive characteristics in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e39399. [PMID: 39183397 PMCID: PMC11346892 DOI: 10.1097/md.0000000000039399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive oral malignancy. Metastasis and postoperative recurrence are major causes of a high mortality of OSCC. The landscape of immune cells in OSCC remained to be comprehensively explored. METHODS Tumor tissues of OSCC patients were collected from the Gene Expression Omnibus database, based on which single-cell sequencing analysis was performed to identify subtypes of macrophages and to annotate the subpopulations according to the expression levels of cell marker genes. Functional enrichment analysis was performed to explore the biological processes involved in each cell subcluster. Gene regulatory networks driven by SPECIFIC transcription factors (TFs) were developed applying single-cell regulatory network inference and clustering (SCENIC) analysis. Binding strength between receptors and ligands between different cells was analyzed using cell communication analysis. RESULTS A single-cell landscape in OSCC was successfully developed and a total of 11 cell clusters were identified. Specifically, CD163 + macrophages were a crucial type of macrophage with 4 cell subpopulations, namely, SAT1 + macrophages, IDO1 + macrophages, TRIM29 + macrophages, and CMKLR1 + macrophages. IDO1 + macrophages and CMKLR1 + macrophages mainly had the characteristics of M1-type macrophages. CMKLR1 + macrophages fulfilled the function of M1-type macrophages to inhibit OSCC progression. IDO1 + macrophages and CMKLR1 + macrophages were both involved in the activation response of T cells. CMLKR1 + macrophages had a stronger activating effect on T cells. CMKLR1 + macrophages directly regulated the proliferation of epithelial cells and inhibited the progression of OSCC. CONCLUSION CMKLR1 + macrophages in OSCC were identified as a crucial cell subpopulation of macrophages in inhibiting tumor progression. Adjusting the infiltration abundance and cell activity of CMKLR1 + macrophages may be a novel therapeutic direction to improve OSCC prognosis.
Collapse
Affiliation(s)
- Jiaqi Lou
- Department of Stomatology, School of Medicine, Lishui University, Lishui, China
| | - Guanghui Luo
- Department of Stomatology, School of Medicine, Lishui University, Lishui, China
| | - Lei Zhao
- Department of Prosthodontics and Oral Implantology, Yiwu Tomatological Hospital, Yiwu, China
| | - Huiya Zhang
- Department of Stomatology, Affiliated Hospital of Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
25
|
Guzylack-Piriou L, Gausseres B, Tasca C, Hassel C, Tabouret G, Foucras G. A loss of function mutation in SOCS2 results in increased inflammatory response of macrophages to TLR ligands and Staphylococcus aureus. Front Immunol 2024; 15:1397330. [PMID: 39185412 PMCID: PMC11341364 DOI: 10.3389/fimmu.2024.1397330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction The role of suppressor of cytokine signaling (SOCS)2 in anti-infective bacterial immunity has been poorly investigated compared to other members of the SOCS family. Methods We characterized the previously identified loss of function R96C point mutation of SOCS2 using a genome-edited mouse model that resumes the phenotype of Socs2 knockout mice. The response of macrophages to TLR-ligands and Staphylococcus aureus was examined. Results and discussion Conversely to previously published data using human monocyte-derived macrophages, the stimulation of bone-marrow-derived macrophages with various TLR ligands did not show any difference according to the SOCS2 variant. Upregulation of IL-6 and TNF-α pro-inflammatory cytokines production was only seen when the SOCS2 expression was promoted by the culture of macrophages in the presence of GM-CSF. Furthermore, we showed that the SOCS2 point mutation is associated with heightened STAT5 phosphorylation in a short time frame upon GM-CSF incubation. In mice, recruitment of neutrophil and F4/80int Ly6C+ inflammatory macrophage, as well as IFN-γ and IL-10 concentrations, are significantly increased upon S. aureus peritoneal infection. Altogether, these data support the idea that by lowering the pro-inflammatory environment, SOCS2 favors better control of bacterial burden during a systemic infection caused by S. aureus.
Collapse
|
26
|
Luozhong S, Li R, Tian Z, Cao Z, Bhashyam D, Zhang P, McIlhenny K, Fang L, McMullen P, Jiang S. A De Novo Strategy To Improve Pharmacokinetics of Proteins from mRNA Therapeutics via Zwitterionic Polypeptide Fusion. J Am Chem Soc 2024; 146:21245-21249. [PMID: 39074299 DOI: 10.1021/jacs.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Achieving therapeutic efficacy in protein replacement therapies requires sustaining pharmacokinetic (PK) profiles, while maintaining the bioactivity of circulating proteins. This is often achieved via PEGylation in protein-based therapies, but it remains challenging for proteins produced in vivo in mRNA-based therapies due to the lack of a suitable post-translational modification method. To address this issue, we integrated a genetically encoded zwitterionic polypeptide, EKP, into mRNA constructs to enhance the PK properties of product proteins. Composed of alternating glutamic acid (E), lysine (K), and proline (P), EKP exhibits unique superhydrophilic properties and low immunogenicity. Our results demonstrate that EKP fusion significantly extends the circulation half-life of proteins expressed from mRNA while preserving their bioactivity using human interferon alpha and Neoleukin-2/15 as examples. This EKP fusion technology offers a new approach to overcoming the current limitations in mRNA therapeutics and has the potential to significantly advance the development of mRNA-based protein replacement therapy.
Collapse
Affiliation(s)
- Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhen Tian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zeyu Cao
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dani Bhashyam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Prince Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kay McIlhenny
- Department of Molecular Biology and Genetic, Cornell University, Ithaca, New York 14853, United States
| | - Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Younis N, Puigmal N, Kurdi AE, Badaoui A, Zhang D, Morales-Garay C, Saad A, Cruz D, Rahy NA, Daccache A, Huerta T, Deban C, Halawi A, Choi J, Dosta P, Guo Lian C, Artzi N, Azzi JR. Microneedle-Mediated Delivery of Immunomodulators Restores Immune Privilege in Hair Follicles and Reverses Immune-Mediated Alopecia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312088. [PMID: 38638030 DOI: 10.1002/adma.202312088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Disorders in the regulatory arm of the adaptive immune system result in autoimmune-mediated diseases. While systemic immunosuppression is the prevailing approach to manage them, it fails to achieve long-lasting remission due to concomitant suppression of the regulatory arm and carries the risk of heightened susceptibility to infections and malignancies. Alopecia areata is a condition characterized by localized hair loss due to autoimmunity. The accessibility of the skin allows local rather than systemic intervention to avoid broad immunosuppression. It is hypothesized that the expansion of endogenous regulatory T cells (Tregs) at the site of antigen encounter can restore the immune balance and generate a long-lasting tolerogenic response. A hydrogel microneedle (MN) patch is therefore utilized for delivery of CCL22, a Treg-chemoattractant, and IL-2, a Treg survival factor to amplify them. In an immune-mediated murine model of alopecia, local bolstering of Treg numbers is shown, leading to sustained hair regrowth and attenuation of inflammatory pathways. In a humanized skin transplant mouse model, expansion of Tregs within human skin is confirmed without engendering peripheral immunosuppression. The patch offers high-loading capacity and shelf-life stability for prospective clinical translation. By harmonizing immune responses locally, the aim is to reshape the landscape of autoimmune skin disease management.
Collapse
Affiliation(s)
- Nour Younis
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Núria Puigmal
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, 11-0236, Lebanon
| | - Andrew Badaoui
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Dongliang Zhang
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Morales-Garay
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Anis Saad
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane Cruz
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadim Al Rahy
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Daccache
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Triana Huerta
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Christa Deban
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Ahmad Halawi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - John Choi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| | - Pere Dosta
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Christine Guo Lian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Jamil R Azzi
- Brigham and Woman's Hospital, Department of Medicine, Renal Division, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Cebi M, Yilmaz Y. Immune system dysregulation in the pathogenesis of non-alcoholic steatohepatitis: unveiling the critical role of T and B lymphocytes. Front Immunol 2024; 15:1445634. [PMID: 39148730 PMCID: PMC11324455 DOI: 10.3389/fimmu.2024.1445634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat within the cytoplasm of hepatocytes (exceeding 5% of liver weight) in individuals without significant alcohol consumption, has rapidly evolved into a pressing global health issue, affecting approximately 25% of the world population. This condition, closely associated with obesity, type 2 diabetes, and the metabolic syndrome, encompasses a spectrum of liver disorders ranging from simple steatosis without inflammation to non-alcoholic steatohepatitis (NASH) and cirrhotic liver disease. Recent research has illuminated the complex interplay between metabolic and immune responses in the pathogenesis of NASH, underscoring the critical role played by T and B lymphocytes. These immune cells not only contribute to necroinflammatory changes in hepatic lobules but may also drive the onset and progression of liver fibrosis. This narrative review aims to provide a comprehensive exploration of the effector mechanisms employed by T cells, B cells, and their respective subpopulations in the pathogenesis of NASH. Understanding the immunological complexity of NASH holds profound implications for the development of targeted immunotherapeutic strategies to combat this increasingly prevalent and burdensome metabolic liver disease.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
29
|
Hyung KE, Yoo HK, Ham JE, Choi JY, Lee S, Park SY, Hwang KW. Lactobacillus plantarum isolated from kimchi regulates inflammation by increasing interleukin-10 secretion by antigen-presenting cells, leading to diminishing of STAT5 phosphorylation in Th2 cells. J Food Sci 2024; 89:3802-3815. [PMID: 38685880 DOI: 10.1111/1750-3841.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
The relationship between allergic inflammation and gut microbiota has been elucidated, and the effect of probiotics on immune disorders has been studied as well. Identifying the role of probiotics in individual diseases and immune responses and selecting and applying specific microorganisms based on these findings can be an effective strategy for using probiotics. Herein, lactobacilli isolated from kimchi were investigated in depth, focusing on their immune regulatory effects and the mechanisms involved. Lactic acid bacteria (LAB) effectively diminished the increased secretion of T helper 2 cytokines, such as IL-4, IL-5, and IL-13, from ovalbumin (OVA)-sensitized mouse splenocytes. The gene expression of GATA3, IL-4, IL-5, IL-9, and IL-13 was confirmed to be regulated by LAB. LAB also suppressed IL-2 production and STAT5 phosphorylation. An IL-10-neutralizing antibody attenuated these effects, indicating that LAB-induced upregulation of IL-10 in antigen-presenting cells was responsible at least partially for the increased IL-2 production and STAT5 phosphorylation in CD4+ T cells. In conclusion, the current study identified one immunomodulatory mechanism that allows LAB to regulate allergic immune reactions and the potential of LAB from kimchi to modulate various immune reactions.
Collapse
Affiliation(s)
- Kyeong Eun Hyung
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea
| | - Hyui Kyeong Yoo
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea
| | - Ju Eon Ham
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea
| | - Jee Yeon Choi
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea
| | - Sanggyu Lee
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - So-Young Park
- College of Pharmacy, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| | - Kwang Woo Hwang
- Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
31
|
Wu H, Yang Z, Chang C, Wang Z, Zhang D, Guo Q, Zhao B. A novel disulfide death-related genes prognostic signature identifies the role of IPO4 in glioma progression. Cancer Cell Int 2024; 24:168. [PMID: 38734657 PMCID: PMC11088110 DOI: 10.1186/s12935-024-03358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND "Disulfide death," a form of cellular demise, is triggered by the abnormal accumulation of intracellular disulfides under conditions of glucose deprivation. However, its role in the prognosis of glioma remains undetermined. Therefore, the main objective of this study is to establish prognostic signature based on disulfide death-related genes (DDRGs) and to provide new solutions in choosing the effective treatment of glioma. METHODS The RNA transcriptome, clinical information, and mutation data of glioma samples were sourced from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), while normal samples were obtained from the Genotype-Tissue Expression (GTEx). DDRGs were compiled from previous studies and selected through differential analysis and univariate Cox regression analysis. The molecular subtypes were determined through consensus clustering analysis. Further, LASSO analysis was employed to select characteristic genes, and subsequently, a risk model comprising seven DDRGs was constructed based on multivariable Cox analysis. Kaplan-Meier survival curves were employed to assess survival differences between high and low-risk groups. Additionally, functional analyses (GO, KEGG, GSEA) were conducted to explore the potential biological functions and signaling pathways of genes associated with the model. The study also explored immune checkpoint (ICP) genes, immune cell infiltration levels, and immune stromal scores. Finally, the effect of Importin-4(IPO4) on glioma has been further confirmed through RT-qPCR, Western blot, and cell functional experiments. RESULTS 7 genes associated with disulfide death were obtained and two subgroups of patients with different prognosis and clinical characteristics were identified. Risk signature was subsequently developed and proved to serve as an prognostic predictor. Notably, the high-risk group exhibited an immunosuppressive microenvironment characterized by a high concentration of M2 macrophages and regulatory T cells (Tregs). In contrast, the low-risk group showed lower half-maximal inhibitory concentration (IC50) values. Therefore, patients in the high-risk group may benefit more from immunotherapy, while patients in the low-risk group may benefit more from chemotherapy. In addition, in vitro experiments have shown that inhibition of the expression of IPO4 leads to a significant reduction in the proliferation, migration, and invasion of glioma cells. CONCLUSION This study identified two glioma subtypes and constructed a prognostic signature based on DDRGs. The signature has the potential to optimize the selection of patients for immune- and chemotherapy and provided a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- HaoYuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ZhiHao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ChenXi Chang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - ZhiWei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - DeRan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - QingGuo Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
32
|
Zheng K, Zhang XX, Yu X, Yu B, Yang YF. Identification and validation of a prognostic anoikis-related gene signature in papillary thyroid carcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Medicine (Baltimore) 2024; 103:e38144. [PMID: 38728457 PMCID: PMC11081552 DOI: 10.1097/md.0000000000038144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu-Xia Zhang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Fei Yang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Read KA, Amici SA, Farsi S, Cutcliffe M, Lee B, Lio CWJ, Wu HJJ, Guerau-de-Arellano M, Oestreich KJ. PRMT5 Promotes T follicular helper Cell Differentiation and Germinal Center Responses during Influenza Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1442-1449. [PMID: 38436421 PMCID: PMC11018492 DOI: 10.4049/jimmunol.2300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Protein arginine methyltransferases (PRMTs) modify diverse protein targets and regulate numerous cellular processes; yet, their contributions to individual effector T cell responses during infections are incompletely understood. In this study, we identify PRMT5 as a critical regulator of CD4+ T follicular helper cell (Tfh) responses during influenza virus infection in mice. Conditional PRMT5 deletion in murine T cells results in an almost complete ablation of both Tfh and T follicular regulatory populations and, consequently, reduced B cell activation and influenza-specific Ab production. Supporting a potential mechanism, we observe elevated surface expression of IL-2Rα on non-T regulatory effector PRMT5-deficient T cells. Notably, IL-2 signaling is known to negatively impact Tfh differentiation. Collectively, our findings identify PRMT5 as a prominent regulator of Tfh programming, with potential causal links to IL-2 signaling.
Collapse
Affiliation(s)
- Kaitlin A. Read
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Stephanie A. Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| | - Sadaf Farsi
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| | - Madeline Cutcliffe
- Department of Internal Medicine, Division of Rheumatology-Immunology, The Ohio State University, Columbus, OH
| | - Bella Lee
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| | - Hsin-Jung Joyce Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Internal Medicine, Division of Rheumatology-Immunology, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| | - Mireia Guerau-de-Arellano
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
34
|
Kang C, Yun D, Yoon H, Hong M, Hwang J, Shin HM, Park S, Cheon S, Han D, Moon KC, Kim HY, Choi EY, Lee EY, Kim MH, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Lee DS, Kim YS, Han SS. Glutamyl-prolyl-tRNA synthetase (EPRS1) drives tubulointerstitial nephritis-induced fibrosis by enhancing T cell proliferation and activity. Kidney Int 2024; 105:997-1019. [PMID: 38320721 DOI: 10.1016/j.kint.2024.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.
Collapse
Affiliation(s)
- Chaelin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Haein Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minki Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyeon Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seokwoo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Tripathi A, Dasgupta D, Pant A, Bugbee A, Yellapu NK, Choi BHY, Giri S, Pyaram K. Nrf2 regulates the activation-driven expansion of CD4 + T-cells by differentially modulating glucose and glutamine metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590146. [PMID: 38712097 PMCID: PMC11071319 DOI: 10.1101/2024.04.18.590146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Upon antigenic stimulation, CD4 + T-cells undergo clonal expansion, elevating their bioenergetic demands and utilization of nutrients like glucose and glutamine. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known regulator of oxidative stress, but its involvement in modulating the metabolism of CD4 + T-cells remains unexplored. Here, we elucidate the role of Nrf2 beyond the traditional antioxidation, in modulating activation-driven expansion of CD4 + T-cells by influencing their nutrient metabolism. T-cell-specific activation of Nrf2 enhances early activation and IL-2 secretion, upregulates TCR-signaling, and increases activation-driven proliferation of CD4 + T-cells. Mechanistically, high Nrf2 inhibits glucose metabolism through glycolysis but promotes glutamine metabolism via glutaminolysis to support increased T-cell proliferation. Further, Nrf2 expression is temporally regulated in activated CD4 + T-cells with elevated expression during the early activation, but decreased expression thereafter. Overall, our findings uncover a novel role of Nrf2 as a metabolic modulator of CD4 + T-cells, thus providing a framework for improving Nrf2-targeting therapies and T-cell immunotherapies.
Collapse
|
36
|
Zhang SX, Chen HR, Wang J, Shao HF, Cheng T, Pei RM, Su QY, Zhang HY, Li XF. The efficacy and safety of short-term and low-dose IL-2 combined with tocilizumab to treat rheumatoid arthritis. Front Immunol 2024; 15:1359041. [PMID: 38711497 PMCID: PMC11070481 DOI: 10.3389/fimmu.2024.1359041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Background Immunotherapy targeting factors related to immune imbalance has been widely employed for RA treatment. This study aimed to evaluate the efficacy and safety of low-dose interleukin (IL)-2 combined with tocilizumab (TCZ), a biologics targeting IL-6, in RA patients. Methods Fifty adults with active RA who met the criteria with complete clinical data were recruited, and divided into three groups: control group (n=15), IL-2 group (n=26), and IL-2+TCZ group (n=9). In addition to basic treatment, participants in the IL-2 group received IL-2 (0.5 MIU/day), while participants in the IL-2+TCZ group received IL-2 (0.5 MIU/day) along with one dose of TCZ (8 mg/kg, maximum dose: 800 mg). All subjects underwent condition assessment, laboratory indicators and safety indicators detection, and records before treatment and one week after treatment. Results Compared with the baseline, all three groups showed significant improvement in disease conditions, as evidenced by significantly reduced disease activity indicators. The low-dose IL-2 and combination treatment groups demonstrated a violent proliferation of Tregs, while the absolute number of Th1, Th2, and Th17 cells in the latter group showed a decreasing trend. The decrease in the Th17/Treg ratio was more pronounced in the IL-2+TCZ groups. No significant adverse reactions were observed in any of the patients. Conclusion Exogenous low doses of IL-2 combined TCZ were found to be safe and effective in reducing effector T cells and appropriately increasing Treg levels in RA patients with high effector T cell levels. This approach helps regulate immune homeostasis and contributes to the prevention of disease deterioration. Clinical trial registration https://www.chictr.org.cn/showprojEN.html?proj=13909, identifier ChiCTR-INR-16009546.
Collapse
Affiliation(s)
- Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao-Ran Chen
- School of Management, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong-Fang Shao
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Cheng
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruo-Meng Pei
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Qin-Yi Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Feng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
37
|
Chen L, Zhu M, Zhang C, Wang Z, Lyu X, Xu W, Wu B. Osteopontin interacts with dendritic cells and macrophages in pulp inflammation: Comprehensive transcriptomic analysis and laboratory investigations. Int Endod J 2024; 57:464-476. [PMID: 38279773 DOI: 10.1111/iej.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
AIM To investigate novel diagnostic markers for pulpitis and validate by clinical samples from normal and inflamed pulp. To explore the relationship between diagnostic markers and immune cells or their phenotypes during pulp inflammation. METHODOLOGY Two microarray datasets, GSE77459 and GSE92681, and identified differential expression genes were integrated. To understand immune features, gene functions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO) and ImmuneSigDB Gene Set Enrichment Analysis (GSEA) were analysed. For predictive purposes, machine learning techniques were applied to detect diagnostic markers. Immune infiltration in inflamed pulp was studied using CIBERSORT. The relationship between diagnostic markers and immune cells was investigated and validated their gene expression in clinical samples from the normal or inflamed pulp by qRT-PCR. Finally, the correlation between one marker, secreted phosphoprotein 1 (SPP1), encoding osteopontin (OPN), and dendritic cells (DCs)/macrophages was identified via HE staining and multiplex immunohistochemistry. An in vitro inflammatory dental pulp microenvironment model of THP-1 macrophages cocultured with dental pulp cells derived conditioned media (DPCs-CM) to investigate OPN production and macrophage phenotypes was established. RESULTS Analysis revealed unique immunologic features in inflamed pulp. Three diagnostic markers for pulpitis: endothelin-1 (EDN1), SPP1, and purine nucleoside phosphorylase (PNP), and validated them using qRT-PCR were predicted. Multiplex immunohistochemistry demonstrated OPN co-localized with activated DCs and M2 macrophages during pulp inflammation. In vitro experiments showed that THP-1 macrophages produced the highest levels of OPN when stimulated with DPCs-CM derived from the 20 μg/mL LPS pre-conditioned group, suggesting an M2b-like phenotype by increasing surface marker CD86 and expression of IL6, TNFα, IL10, and CCL1 but not CCL17 and MerTK. Levels of CCL1 and IL10 elevated significantly in the macrophages' supernatant from the 20 μg/mL LPS pre-conditioned CM group. OPN was proven co-localizing with CD86 in the inflamed pulp by immunofluorescence. CONCLUSIONS The current findings suggest that OPN can serve as a promising biomarker for pulpitis, correlated with DCs and macrophages. OPN+ macrophages in the inflamed pulp are associated with M2b-like phenotypes. These insights offer the potential for improved diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Leyi Chen
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqi Zhu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuhan Zhang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Ziting Wang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaolin Lyu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Wenan Xu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Buling Wu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Carbone F, Russo C, Colamatteo A, La Rocca C, Fusco C, Matarese A, Procaccini C, Matarese G. Cellular and molecular signaling towards T cell immunological self-tolerance. J Biol Chem 2024; 300:107134. [PMID: 38432631 PMCID: PMC10981134 DOI: 10.1016/j.jbc.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The binding of a cognate antigen to T cell receptor (TCR) complex triggers a series of intracellular events controlling T cell activation, proliferation, and differentiation. Upon TCR engagement, different negative regulatory feedback mechanisms are rapidly activated to counterbalance T cell activation, thus preventing excessive signal propagation and promoting the induction of immunological self-tolerance. Both positive and negative regulatory processes are tightly controlled to ensure the effective elimination of foreign antigens while limiting surrounding tissue damage and autoimmunity. In this context, signals deriving from co-stimulatory molecules (i.e., CD80, CD86), co-inhibitory receptors (PD-1, CTLA-4), the tyrosine phosphatase CD45 and cytokines such as IL-2 synergize with TCR-derived signals to guide T cell fate and differentiation. The balance of these mechanisms is also crucial for the generation of CD4+ Foxp3+ regulatory T cells, a cellular subset involved in the control of immunological self-tolerance. This review provides an overview of the most relevant pathways induced by TCR activation combined with those derived from co-stimulatory and co-inhibitory molecules implicated in the cell-intrinsic modulation of T cell activation. In addition to the latter, we dissected mechanisms responsible for T cell-mediated suppression of immune cell activation through regulatory T cell generation, homeostasis, and effector functions. We also discuss how imbalanced signaling derived from TCR and accessory molecules can contribute to autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II", Napoli, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy.
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
39
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Na K, Lee S, Kim DK, Kim YS, Hwang JY, Kang SS, Baek S, Lee CY, Yang SM, Han YJ, Kim MH, Han H, Kim Y, Kim JH, Jeon S, Byeon Y, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. CD81 and CD82 expressing tumor-infiltrating lymphocytes in the NSCLC tumor microenvironment play a crucial role in T-cell activation and cytokine production. Front Immunol 2024; 15:1336246. [PMID: 38515751 PMCID: PMC10954780 DOI: 10.3389/fimmu.2024.1336246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.
Collapse
Affiliation(s)
- Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Seob Kim
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Jeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngseon Byeon
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Charley KR, Ramstead AG, Matous JG, Kumaki Y, Sircy LM, Hale JS, Williams MA. Effector-Phase IL-2 Signals Drive Th1 Effector and Memory Responses Dependently and Independently of TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:586-595. [PMID: 38149929 PMCID: PMC10872735 DOI: 10.4049/jimmunol.2300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Following viral infection, CD4+ T cell differentiation is tightly regulated by cytokines and TCR signals. Although most activated CD4+ T cells express IL-2Rα after lymphocytic choriomeningtis virus infection, by day 3 postinfection, only half of activated T cells maintain expression. IL-2Rα at this time point distinguishes precursors for terminally differentiated Th1 cells (IL-2Rαhi) from precursors for Tfh cells and memory T cells (IL-2Rαlo) and is linked to strong TCR signals. In this study, we test whether TCR-dependent IL-2 links the TCR to CD4+ T cell differentiation. We employ a mixture of anti-IL-2 Abs to neutralize IL-2 throughout the primary CD4+ T cell response to lymphocytic choriomeningitis virus infection in mice or only after the establishment of lineage-committed effector cells (day 3 postinfection). We report that IL-2 signals drive the formation of Th1 precursor cells in the early stages of the immune response and sustain Th1 responses during its later stages (after day 3). Effector-stage IL-2 also shapes the composition and function of resulting CD4+ memory T cells. Although IL-2 has been shown previously to drive Th1 differentiation by reducing the activity of the transcriptional repressor TCF-1, we found that sustained IL-2 signals were still required to drive optimal Th1 differentiation even in the absence of TCF-1. Therefore, we concluded that IL-2 plays a central role throughout the effector phase in regulating the balance between Th1 and Tfh effector and memory cells via mechanisms that are both dependent and independent of its role in modulating TCF-1 activity.
Collapse
Affiliation(s)
- Krystal R. Charley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Andrew G. Ramstead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Joseph G. Matous
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Yohichi Kumaki
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| | - Linda M. Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Matthew A. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah 84112
| |
Collapse
|
43
|
Li F, Yan J, Leng J, Yu T, Zhou H, Liu C, Huang W, Sun Q, Zhao W. Expression patterns of E2Fs identify tumor microenvironment features in human gastric cancer. PeerJ 2024; 12:e16911. [PMID: 38371373 PMCID: PMC10870925 DOI: 10.7717/peerj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Objective E2F transcription factors are associated with tumor development, but their underlying mechanisms in gastric cancer (GC) remain unclear. This study explored whether E2Fs determine the prognosis or immune and therapy responses of GC patients. Methods E2F regulation patterns from The Cancer Genome Atlas (TCGA) were systematically investigated and E2F patterns were correlated with the characteristics of cellular infiltration in the tumor microenvironment (TME). A principal component analysis was used to construct an E2F scoring model based on prognosis-related differential genes to quantify the E2F regulation of a single tumor. This scoring model was then tested in patient cohorts to predict effects of immunotherapy. Results Based on the expression profiles of E2F transcription factors in GC, two different regulatory patterns of E2F were identified. TME and survival differences emerged between the two clusters. Lower survival rates in the Cluster2 group were attributed to limited immune function due to stromal activation. The E2F scoring model was then constructed based on the E2F-related prognostic genes. Evidence supported the E2F score as an independent and effective prognostic factor and predictor of immunotherapy response. A gene-set analysis correlated E2F score with the characteristics of immune cell infiltration within the TME. The immunotherapy cohort database showed that patients with a higher E2F score demonstrated better survival and immune responses. Conclusions This study found that differences in GC prognosis might be related to the E2F patterns in the TME. The E2F scoring system developed in this study has practical value as a predictor of survival and treatment response in GC patients.
Collapse
Affiliation(s)
- Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Leng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huayou Zhou
- Department of General Surgery, Hanzhong Central Hospital, Hanzhong, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Zhao Y, Nicholson L, Wang H, Qian YW, Hawthorne WJ, Jimenez-Vera E, Gloss BS, Lai J, Thomas A, Chew YV, Burns H, Zhang GY, Wang YM, Rogers NM, Zheng G, Yi S, Alexander SI, O’Connell PJ, Hu M. Intragraft memory-like CD127hiCD4+Foxp3+ Tregs maintain transplant tolerance. JCI Insight 2024; 9:e169119. [PMID: 38516885 PMCID: PMC11063946 DOI: 10.1172/jci.insight.169119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.
Collapse
Affiliation(s)
| | | | - Hannah Wang
- Centre for Transplant and Renal Research and
| | - Yi Wen Qian
- Centre for Transplant and Renal Research and
| | | | | | - Brian S. Gloss
- Scientific Platforms, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Joey Lai
- Scientific Platforms, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | | | - Yi Vee Chew
- Centre for Transplant and Renal Research and
| | | | - Geoff Y. Zhang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research and
- Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Shounan Yi
- Centre for Transplant and Renal Research and
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | | | - Min Hu
- Centre for Transplant and Renal Research and
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
45
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Kuk SK, Kim K, Lee JI, Pang K. Prognostic DNA mutation and mRNA expression analysis of perineural invasion in oral squamous cell carcinoma. Sci Rep 2024; 14:2427. [PMID: 38287071 PMCID: PMC10825128 DOI: 10.1038/s41598-024-52745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
This study analyzed oral squamous cell carcinoma (OSCC) genomes and transcriptomes in relation to perineural invasion (PNI) and prognosis using Cancer Genome Atlas data and validated these results with GSE41613 data. Gene set enrichment analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes were conducted. We identified 22 DNA mutations associated with both overall survival (OS) and PNI. Among them, TGFBR1 and RPS6KA4 mRNAs were overexpressed, while TYRO3 and GPR137 mRNAs were underexpressed in PNI patients. Among the 141 mRNA genes associated with both OS and PNI, we found overlap with PNI-related DNA mutations, including ZNF43, TEX10, TPSD1, and PSD3. In GSE41613 data, TGFBR1, RPS6KA4, TYRO3, GPR137, TEX10 and TPSD1 mRNAs were expressed differently according to the prognosis. The 22 DNA-mutated genes clustered into nervous system development, regulation of DNA-templated transcription, and transforming growth factor beta binding. GSEA analysis of mRNAs revealed upregulation of hallmarks epithelial mesenchymal transition (EMT), TNFα signaling via NF-κB, and IL2 STAT5 signaling. EMT upregulation aligned with the TGFBR1 DNA mutation, supporting its significance in PNI. These findings suggest a potential role of PNI genes in the prognosis of OSCC, providing insights for diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Su Kyung Kuk
- Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kitae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research, Seoul National University, Seoul, Republic of Korea
| | - KangMi Pang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
47
|
Li J, Meng Z, Cao Z, Lu W, Yang Y, Li Z, Lu S. ADGRE5-centered Tsurv model in T cells recognizes responders to neoadjuvant cancer immunotherapy. Front Immunol 2024; 15:1304183. [PMID: 38343549 PMCID: PMC10853338 DOI: 10.3389/fimmu.2024.1304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neoadjuvant immunotherapy with anti-programmed death-1 (neo-antiPD1) has revolutionized perioperative methods for improvement of overall survival (OS), while approaches for major pathologic response patients' (MPR) recognition along with methods for overcoming non-MPR resistance are still in urgent need. Methods We utilized and integrated publicly-available immune checkpoint inhibitors regimens (ICIs) single-cell (sc) data as the discovery datasets, and innovatively developed a cell-communication analysis pipeline, along with a VIPER-based-SCENIC process, to thoroughly dissect MPR-responding subsets. Besides, we further employed our own non-small cell lung cancer (NSCLC) ICIs cohort's sc data for validation in-silico. Afterward, we resorted to ICIs-resistant murine models developed by us with multimodal investigation, including bulk-RNA-sequencing, Chip-sequencing and high-dimensional cytometry by time of flight (CYTOF) to consolidate our findings in-vivo. To comprehensively explore mechanisms, we adopted 3D ex-vivo hydrogel models for analysis. Furthermore, we constructed an ADGRE5-centered Tsurv model from our discovery dataset by machine learning (ML) algorithms for a wide range of tumor types (NSCLC, melanoma, urothelial cancer, etc.) and verified it in peripheral blood mononuclear cells (PBMCs) sc datasets. Results Through a meta-analysis of multimodal sequential sc sequencing data from pre-ICIs and post-ICIs, we identified an MPR-expanding T cells meta-cluster (MPR-E) in the tumor microenvironment (TME), characterized by a stem-like CD8+ T cluster (survT) with STAT5-ADGRE5 axis enhancement compared to non-MPR or pre-ICIs TME. Through multi-omics analysis of murine TME, we further confirmed the existence of survT with silenced function and immune checkpoints (ICs) in MPR-E. After verification of the STAT5-ADGRE5 axis of survT in independent ICIs cohorts, an ADGRE5-centered Tsurv model was then developed through ML for identification of MPR patients pre-ICIs and post-ICIs, both in TME and PBMCs, which was further verified in pan-cancer immunotherapy cohorts. Mechanistically, we unveiled ICIs stimulated ADGRE5 upregulation in a STAT5-IL32 dependent manner in a 3D ex-vivo system (3D-HYGTIC) developed by us previously, which marked Tsurv with better survival flexibility, enhanced stemness and potential cytotoxicity within TME. Conclusion Our research provides insights into mechanisms underlying MPR in neo-antiPD1 and a well-performed model for the identification of non-MPR.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Cho O, Lee JW, Jeong YJ, Kim LK, Jung BK, Heo TH. Celastrol, which targets IL-2/CD25 binding inhibition, induces T cell-mediated antitumor activity in melanoma. Eur J Pharmacol 2024; 962:176239. [PMID: 38043776 DOI: 10.1016/j.ejphar.2023.176239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Interleukin-2 (IL-2) induces contrasting immune responses depending on its binding receptor subunit; thus, selective receptor binding is considered a key challenge in cancer therapeutic strategies. In this study, we aimed to investigate the inhibition of IL-2 action and antitumor activity of celastrol (CEL), a compound identified in a screen for IL-2/CD25 binding inhibitors, and to elucidate the underlying role of CEL in immune cells. We found that CEL selectively impairs the binding of IL-2 and CD25 and directly binds to IL-2 but not to CD25. CEL significantly suppressed the proliferation and signaling of IL-2-dependent murine T cells and interfered with IL-2-responsive STAT5 phosphorylation in IL-2 reporter cells and human PBMCs. After confirming the impact of CEL on IL-2, we evaluated its antitumor activity in C57BL/6 mice bearing B16F10 tumors and found that CEL significantly inhibited tumor growth by increasing CD8+ T cells. We also found that CEL did not inhibit tumor growth in T cell-deficient BALB/c nude mice, suggesting that its activity was mediated by the T-cell response. Moreover, combination therapy with low-dose CEL and a TNFR2 antagonist synergistically improved the therapeutic efficacy of the individual monotherapies by increasing the ratio of intratumoral CD8/Treg cells and suppressing Foxp3 expression. These findings suggest that CEL, which inhibits CD25 binding by targeting IL-2, exerts antitumor activity by mediating the T-cell response and could be a promising candidate for combination therapy in cancer immunotherapy against melanoma.
Collapse
Affiliation(s)
- Okki Cho
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joong-Woon Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Bo-Kyung Jung
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
49
|
Qiao Z, Zhao W, Liu Y, Feng W, Ma Y, Jin H. Low-dose Interleukin-2 For Psoriasis Therapy Based on the Regulation of Th17/Treg Cell Balance in Peripheral Blood. Inflammation 2023; 46:2359-2373. [PMID: 37596509 PMCID: PMC10673739 DOI: 10.1007/s10753-023-01883-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
The imbalance between regulatory T (Treg) cells and efficient T cells plays an important role in psoriasis. Low-dose interleukin (IL)-2 can preferentially activate Treg cells and ameliorate the imbalance of Treg/efficient T cells. This study focused on the status of circulating CD4+ T subsets and the clinical efficacy of low-dose IL-2 therapies in psoriasis. This retrospective study included peripheral blood samples obtained from 45 psoriatic patients and 40 healthy controls. The 45 psoriatic patients received three cycles of subcutaneous low-dose IL-2 treatment (0.5 million IU/day for 2 weeks) combined with conventional therapies. Inflammatory indices, CD4+ T-lymphocyte subsets, and cytokines were measured in all patients before and after treatment. The percentage of Treg cells was dramatically decreased in the psoriasis group compared to the healthy group, and the percentage of Treg cells negatively correlated with the disease indices and the Psoriasis Area and Severity Index (PASI) (P < 0.001). The Th17/Treg ratio was significantly increased in the psoriasis group compared to the healthy group, and the Th17/Treg ratio positively correlated with disease indices and PASI (P < 0.001). Low-dose IL-2 treatment significantly amplified the percentage of Treg cells and restored the Th17 and Treg immune balance in psoriasis (P < 0.001). Low-dose IL-2 combination therapy effectively improved the clinical manifestations of psoriasis but decreased the inflammatory indicators of the disease activity, with no apparent side effects. Thus, low-dose IL-2 provides a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zusha Qiao
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Wenpeng Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Department of Cancer prevention and control office, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wenli Feng
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Ma
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
50
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|