1
|
Hollinger MK, Grayson EM, Ferreira CM, Sperling AI. Harnessing the Farm Effect: Microbial Products for the Treatment and Prevention of Asthma Throughout Life. Immunol Rev 2025; 330:e70012. [PMID: 40035333 PMCID: PMC11877632 DOI: 10.1111/imr.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
It has long been appreciated that farm exposure early in life protects individuals from allergic asthma. Understanding what component(s) of this exposure is responsible for this protection is crucial to understanding allergic asthma pathogenesis and developing strategies to prevent or treat allergic asthma. In this review, we introduce the concept of Farm-Friends, or specific microbes associated with both a farm environment and protection from allergic asthma. We review the mechanism(s) by which these Farm-Friends suppress allergic inflammation, with a focus on the molecule(s) produced by these Farm-Friends. Finally, we discuss the relevance of Farm-Friend administration (oral vs. inhaled) for preventing the development and severity of allergic asthma throughout childhood and adulthood. By developing a fuller understanding of which Farm-Friends modulate host immunity, a greater wealth of prophylactic and therapeutic options becomes available to counter the current allergy epidemic.
Collapse
Affiliation(s)
- Maile K. Hollinger
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily M. Grayson
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Caroline M. Ferreira
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Institute of Environmental, Chemistry and Pharmaceutics Sciences, Department of Pharmaceutics SciencesFederal University of São PauloSão PauloBrazil
| | - Anne I. Sperling
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Liu Y, Yan D, Chen R, Zhang Y, Wang C, Qian G. Recent insights and advances in gut microbiota's influence on host antiviral immunity. Front Microbiol 2025; 16:1536778. [PMID: 40083779 PMCID: PMC11903723 DOI: 10.3389/fmicb.2025.1536778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
A diverse array of microbial organisms colonizes the human body, collectively known as symbiotic microbial communities. Among the various pathogen infections that hosts encounter, viral infections represent one of the most significant public health challenges worldwide. The gut microbiota is considered an important biological barrier against viral infections and may serve as a promising target for adjuvant antiviral therapy. However, the potential impact of symbiotic microbiota on viral infection remains relatively understudied. In this review, we discuss the specific regulatory mechanisms of gut microbiota in antiviral immunity, highlighting recent advances in how gut microbiota regulate the host immune response, produce immune-related molecules, and enhance the host's defense against viruses. Finally, we also discuss the antiviral potential of oral probiotics.
Collapse
Affiliation(s)
- Ying Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Danying Yan
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ran Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuwen Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqing Qian
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Infectious Diseases, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025; 638:1076-1084. [PMID: 39814891 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
5
|
Zhao M, Zhou L, Wang S. Immune crosstalk between respiratory and intestinal mucosal tissues in respiratory infections. Mucosal Immunol 2025:S1933-0219(24)00136-3. [PMID: 39755173 DOI: 10.1016/j.mucimm.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in the mouse models and human samples indicates that the immune crosstalk between the lung and gut critically impacts and determines the course of respiratory disease. Here we summarize the current knowledge of the immune crosstalk between the respiratory and gastrointestinal tracts, and discuss how immune cells are recruited and migrate between these tissues during respiratory infections. We also discuss how commensal bacteria contribute to these processes.
Collapse
Affiliation(s)
- Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhou
- Shanghai Immune Therapy Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
6
|
Xie D, Ma Y, Gao C, Pan S. Piezo1 activation on microglial cells exacerbates demyelination in sepsis by influencing the CCL25/GRP78 pathway. Int Immunopharmacol 2024; 142:113045. [PMID: 39236454 DOI: 10.1016/j.intimp.2024.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND In sepsis-associated encephalopathy (SAE), the activation of microglial cells and ensuing neuroinflammation are important in the underlying pathological mechanisms. Increasing evidence suggests that the protein Piezo1 functions as a significant regulator of neuroinflammation. However, the influence of Piezo1 on microglial cells in the context of SAE has not yet been determined. This study aims to investigate the role of Piezo1 in microglial cells in the context of SAE. METHODS By inducing cecal ligation and puncture (CLP), a mouse model of SAE was established, while the control group underwent a sham surgery in which the cecum was exposed without ligation and puncture. Piezo1 knockout mice were employed in this study. Morris water maze tests were conducted between Days 14 and 18 postop to assess both the motor activity and cognitive function. A proteomic analysis was conducted to assess the SAE-related pathways, whereas a Mendelian randomization analysis was conducted to identify the pathways associated with cognitive impairment. Dual-label immunofluorescence and flow cytometry were used to assess the secretion of inflammatory factors, microglial status, and oligodendrocyte development. Electron microscopy was used to evaluate axonal myelination. A western blot analysis was conducted to evaluate the influence of Piezo1 on oligodendrocyte ferroptosis. RESULTS The results of the bioinformatics analysis have revealed the significant involvement of CCL25 in the onset and progression of SAE-induced cognitive impairment. SAE leads to cognitive dysfunction by activating the microglial cells. The release of CCL25 by the activated microglia initiates the demyelination of oligodendrocytes in the hippocampus, resulting in ferroptosis and the disruption of hippocampal functional connectivity. Of note, the genetic knockout of the Piezo1 gene mitigates these changes. The treatment with siRNA targeting Piezo1 effectively reduces the secretion of inflammatory mediators CCL25 and IL-18 by inhibiting the p38 pathway, thus preventing the ferroptosis of oligodendrocytes through the modulation of the CCL25/GPR78 axis. CONCLUSION Piezo1 is involved in the activation of microglia and demyelinating oligodendrocytes in the animal models of SAE, resulting in cognitive impairment. Consequently, targeting Piezo1 suppression can be a promising approach for therapeutic interventions aimed at addressing cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China
| | - Yanli Ma
- Department of Pediatrics, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, 200434 Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China; Department of Emergency, Putuo District Central Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Putuo District, 200062 Shanghai, China.
| |
Collapse
|
7
|
Yang J, Wang J, Shang P, Liu Z, Zhang B, Yang D, Zhang H. Translocation of probiotics via gut-lung axis enhanced pulmonary immunity of weaned piglets exposed to low concentrations of ammonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116821. [PMID: 39163664 DOI: 10.1016/j.ecoenv.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE Lactobacillus salivarius is a probiotic bacteria strain in human and animal diets. The administration of probiotics to weaned piglets may improve their growth by optimizing the gastrointestinal bacterial composition. To further investigate the effect of bacterial communication between the gastrointestinal tract and lungs on bodily immunity, we reared weaned piglets in a low-ammonia gas environment. L. salivarius was supplemented to explore its effects on pulmonary immunity and its potential for bacterial translocation. RESULTS One hundred sixty weaned piglets were allocated to four groups: L. salivarius-supplemented, L. reuteri-supplemented, control, and antibiotic drug (aureomycin)-supplemented. The feeding duration was 28 d. The body weights of piglets administered a strain of Lactobacillus were better than those of the control (P < 0.01). The transcription level of immune factors interleukin 2 (IL-2), IL-4, interferon α (IFN-α), and tumor necrosis factor α (TNF-α) in cells of the ileum and lung was significantly higher (P < 0.01). Lung and ileal mucus tissues were isolated to sequence the bacterial composition, which suggested a higher richness in the lungs at the phylum level, which was not significant in the ileum. Functional bacteria were more abundant in the ileum and lungs. The proportion of the genera of Lactobacillus, Prevotella, Actinobacillus, and Prevotellaceae_ NK3B31_group increased in two tissues, and a lower ratio of Streptococcus, Escherichia-Shigella, and mycoplasma was detected. The correlation between the microbial genus composition and the levels of immune factors suggests that the abundance of Lactobacillus plays the same positive role in the lungs and ileum. Mycoplasmas play a negative role in ileal and pulmonary immunity. More Lactobacillus reuteri and anaerobic probiotic bacteria were detected in the lungs. CONCLUSION The colonization of Lactobacillus salivarius and Lactobacillus reuteri in the membrane of the ileum optimized the ileal microbial composition, enrolled other probiotic bacteria translating to the lung, improved the abundance of pulmonary microbiota, and enhanced immunity after exposure to low concentrations of ammonia.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China; Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Zongliang Liu
- Hefei Zhien Biotechnology Company Limited, National University Science Park, No.602 of Huangshan Road, Hefei, Anhui Province 230001, China
| | - Bo Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongsheng Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Hao Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
9
|
Ma M, Tan H, Yan H, Zheng K. The impact of family cancer history on tumor metabolism and prognosis in patients with non-small cell lung cancer. Sci Rep 2024; 14:22632. [PMID: 39349532 PMCID: PMC11442437 DOI: 10.1038/s41598-024-73080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality, and the role of family cancer history in disease progression and treatment response remains underexplored. This study aims to investigate the influence of family tumor history on disease-free survival, tumor metabolism, and treatment response in NSCLC patients. A retrospective, single-center study of 414 NSCLC patients was conducted, with 101 patients having a family history of cancer (FHC). Disease-free survival (DFS), tumor glucose metabolism assessed by 18F-FDG PET/CT, and treatment response to chemoradiotherapy, targeted therapy, and immunotherapy were analyzed. Multivariate modeling was performed to improve prognostic prediction. Patients with FHC exhibited higher TNM staging, increased susceptibility to lymph node invasion, and elevated tumor glucose metabolism levels. Family history of cancer, particularly colorectal and lung cancer, was a significant risk factor for disease-free survival. Targeted therapy and immunotherapy significantly improved patient prognosis, while family history of cancer affected the efficacy of chemoradiotherapy but not targeted therapy or immunotherapy. Multivariate modeling combining FHC, treatment, and tumor metabolism levels yielded improved predictive performance. Our study highlights the importance of considering a patient's family history when assessing risk profiles and formulating treatment decisions for NSCLC patients. Further research is needed to understand the molecular mechanisms underlying these observed associations and to develop more effective treatment strategies for NSCLC patients with a cancer family history.
Collapse
Affiliation(s)
- Mengtian Ma
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haixiong Yan
- Department of Interventional, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kai Zheng
- PET/CT Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
10
|
Zitvogel L, Fidelle M, Kroemer G. Long-distance microbial mechanisms impacting cancer immunosurveillance. Immunity 2024; 57:2013-2029. [PMID: 39151425 DOI: 10.1016/j.immuni.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Équipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Université Paris-Saclay, Ile-de-France, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
11
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Bum Lee J, Huang Y, Oya Y, Nutzinger J, LE Ang Y, Sooi K, Chul Cho B, Soo RA. Modulating the gut microbiome in non-small cell lung cancer: Challenges and opportunities. Lung Cancer 2024; 194:107862. [PMID: 38959670 DOI: 10.1016/j.lungcan.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Despite the efficacy of immunotherapy in non-small cell lung cancer (NSCLC), the majority of the patients experience relapse with limited subsequent treatment options. Preclinical studies of various epithelial tumors, such as melanoma and NSCLC, have shown that harnessing the gut microbiome resulted in improvement of therapeutic responses to immunotherapy. Is this review, we summarize the role of microbiome, including lung and gut microbiome in the context of NSCLC, provide overview of the mechanisms of microbiome in efficacy and toxicity of chemotherapies and immunotherapies, and address current ongoing clinical trials for NSCLC including fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yiqing Huang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Yvonne LE Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Kenneth Sooi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.
| |
Collapse
|
13
|
Sey EA, Warris A. The gut-lung axis: the impact of the gut mycobiome on pulmonary diseases and infections. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae008. [PMID: 39193472 PMCID: PMC11316619 DOI: 10.1093/oxfimm/iqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/29/2024] Open
Abstract
The gastrointestinal tract contains a diverse microbiome consisting of bacteria, fungi, viruses and archaea. Although these microbes usually reside as commensal organisms, it is now well established that higher abundance of specific bacterial or fungal species, or loss of diversity in the microbiome can significantly affect development, progression and outcomes in disease. Studies have mainly focused on the effects of bacteria, however, the impact of other microbes, such as fungi, has received increased attention in the last few years. Fungi only represent around 0.1% of the total gut microbial population. However, key fungal taxa such as Candida, Aspergillus and Wallemia have been shown to significantly impact health and disease. The composition of the gut mycobiome has been shown to affect immunity at distal sites, such as the heart, lung, brain, pancreas, and liver. In the case of the lung this phenomenon is referred to as the 'gut-lung axis'. Recent studies have begun to explore and unveil the relationship between gut fungi and lung immunity in diseases such as asthma and lung cancer, and lung infections caused by viruses, bacteria and fungi. In this review we will summarize the current, rapidly growing, literature describing the impact of the gut mycobiome on respiratory disease and infection.
Collapse
Affiliation(s)
- Emily A Sey
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
14
|
Leichtle A, Lupatsii M, Graspeuntner S, Jeschke S, Penxová Z, Kurabi A, Ryan AF, Rupp J, Pries R, Bruchhage KL. Anti-inflammatory response to 1,8-Cineol and associated microbial communities in Otitis media patients. Sci Rep 2024; 14:16362. [PMID: 39014066 PMCID: PMC11252366 DOI: 10.1038/s41598-024-67498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic Otitis Media (COM) is defined as long term inflammation and colonization with pathogenic bacteria due to a defect or retraction of the tympanic membrane. Surgical interventions are often augmented by antibiotic resistance development and therefore, off-label treatment using the natural drug 1,8-Cineol was carried out. All COM patients underwent antibiotic therapy and middle ear surgery and developed antibiotic resistances. Microbiological investigations from the auditory canal and stool samples were performed in correlation with the clinical course. Therapy of COM patients with 1,8-Cineol revealed a clear reduction of inflammatory microbes P. aeruginosa and Proteus mirabilis in ear samples as well as intestinal Prevotella copri, which was associated with an improved clinical outcome in certain individuals. The present off-label study revealed manifold anti-inflammatory effects of the natural monoterpene 1,8-Cineol in Otitis media patients. A better understanding of the underlying mechanisms will improve the current treatment options and possible forms of application of this natural drug.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Zuzana Penxová
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Allen Frederic Ryan
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | | |
Collapse
|
15
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Tian S, Liao X, Chen S, Wu Y, Chen M. Genetic association of the gut microbiota with epigenetic clocks mediated by inflammatory cytokines: a Mendelian randomization analysis. Front Immunol 2024; 15:1339722. [PMID: 38903525 PMCID: PMC11186987 DOI: 10.3389/fimmu.2024.1339722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND A new aging biomarker epigenetic clock has been developed. There exists a close link between aging and gut microbiota, which may be mediated by inflammatory cytokines. However, the relationship between the epigenetic clock, gut microbiota, and the mediating substances is unclear. METHODS Two large genome-wide association meta-analyses were analyzed by two-sample Mendelian randomization. The results between gut microbiota and epigenetic clock were investigated using the four methods (Inverse variance weighted, MR-Egger, weighted median, MR-PRESSO). Genetic correlation was measured by Linked disequilibrium score regression (LDSC). The correctness of the study direction was checked by the Steiger test. Cochran's Q statistic and MR-Egger intercept were used as sensitivity analyses of the study. The two-step method was used to examine the mediating role of inflammatory cytokines. We use the Benjamini-Hochberg correction method to correct the P value. RESULTS After FDR correction, multiple bacterial genera were significantly or suggestively associated with four epigenetic clocks (GrimAge, HannumAge, IEAA, PhenoAge). And we detected several inflammatory factors acting as mediators of gut microbiota and epigenetic clocks. CONCLUSION This study provides genetic evidence for a positive and negative link between gut microbiota and aging risk. We hope that by elucidating the genetic relationship and potential mechanisms between aging and gut microbiota, we will provide new avenues for continuing aging-related research and treatment.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Xingyu Liao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Siqi Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yu Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Min Chen
- Department of Colorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Abstract
Increasing research has been conducted on the role of probiotics in disease treatment. Kefir, a safe, low-cost probiotic fermented milk drink, has been investigated in many in vitro and animal studies, although parameters for human therapeutic dose or treatment time have not yet been determined. Here we perform a scoping review of clinical studies that have used kefir as a therapeutic agent, compiling the results for perspectives to support and direct further research. This review was based on Joanna Briggs Institute guidelines, including studies on the effects of kefir-fermented milk in humans. Using the term KEFIR, the main international databases were searched for studies published in English, Spanish or Portuguese until 9 March 2022. A total of 5835 articles were identified in the four databases, with forty-four eligible for analysis. The research areas were classified as metabolic syndrome and type 2 diabetes, gastrointestinal health/disorders, maternal/child health and paediatrics, dentistry, oncology, women's and geriatric health, and dermatology. The many study limitations hampered generalisation of the results. The small sample sizes, methodological variation and differences in kefir types, dosage and treatment duration prevented clear conclusions about its benefits for specific diseases. We suggest using a standard therapeutic dose of traditionally prepared kefir in millilitres according to body weight, making routine consumption more feasible. The studies showed that kefir is safe for people without serious illnesses.
Collapse
Affiliation(s)
- Milena Klippel Bessa
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| | | | - Renan Rangel Bonamigo
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Song Z, Meng Y, Fricker M, Li X, Tian H, Tan Y, Qin L. The role of gut-lung axis in COPD: Pathogenesis, immune response, and prospective treatment. Heliyon 2024; 10:e30612. [PMID: 38742057 PMCID: PMC11089359 DOI: 10.1016/j.heliyon.2024.e30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and healthcare burden worldwide. The progression of COPD is a combination of genetic predisposition and environmental factors, primarily cigarette smoking, and the underlying mechanisms are still unknown. Intestinal microecology impacts host immunity, metabolism, and resistance to pathogenic infections, which may be involved in pulmonary disease. Moreover, substantial interaction occurs between the intestinal and respiratory immune niches. After reviewing nearly 500 articles, we found the gut-lung axis plays an important role in the development of COPD. COPD patients often have dysbiosis of the intestinal microenvironment, which can affect host immunity through a series of mechanisms, exacerbating or protecting against COPD progression. This paper summarizes how the gut-lung axis influences COPD, including the alterations of intestinal microecology, the pathological mechanisms, and the involved immune responses. Finally, we summarize the latest research advances in COPD treatment from the perspective of regulating the gut-lung axis and intestinal immunity and evaluate the potential value of the gut-lung axis in improving COPD prognosis.
Collapse
Affiliation(s)
- Zhi Song
- The Second Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Xin'ao Li
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haochen Tian
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Díez-Sánchez A, Lindholm HT, Vornewald PM, Ostrop J, Yao R, Single AB, Marstad A, Parmar N, Shaw TN, Martín-Alonso M, Oudhoff MJ. LSD1 drives intestinal epithelial maturation and controls small intestinal immune cell composition independent of microbiota in a murine model. Nat Commun 2024; 15:3412. [PMID: 38649356 PMCID: PMC11035651 DOI: 10.1038/s41467-024-47815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.
Collapse
Affiliation(s)
- Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rouan Yao
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew B Single
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marstad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Health Sciences, Carleton University, Ottawa, Ontario, ON, Canada.
| |
Collapse
|
21
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
22
|
Wang Y, Qu Z, Chu J, Han S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis 2024; 16:980-1002. [PMID: 38607737 PMCID: PMC11964416 DOI: 10.14336/ad.2024.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The characteristics of human aging manifest in tissue and organ function decline, heightening susceptibility to age-related ailments, thereby presenting novel challenges to fostering and sustaining healthy longevity. In recent years, an abundance of research on human aging has surfaced. Intriguingly, evidence suggests a pervasive correlation among gut microbiota, bodily functions, and chronic diseases. From infancy to later stages of adulthood, healthy individuals witness dynamic shifts in gut microbiota composition. This microbial community is associated with tissue and organ function deterioration (e.g., brain, bones, muscles, immune system, vascular system) and heightened risk of age-related diseases. Thus, we present a narrative review of the aging gut microbiome in both healthy and unhealthy aging contexts. Additionally, we explore the potential for adjustments to physical health based on gut microbiome analysis and how targeting the gut microbiome can potentially slow down the aging process.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Zhejiang University, Huzhou, Zhejiang, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, Huzhou, Zhejiang, China.
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang, China.
| |
Collapse
|
23
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
24
|
Guo J, Yang L. Regulation effect of the intestinal flora and intervention strategies targeting the intestinal flora in alleviation of pulmonary fibrosis development. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:293-299. [PMID: 39364128 PMCID: PMC11444866 DOI: 10.12938/bmfh.2023-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/25/2024] [Indexed: 10/05/2024]
Abstract
Pulmonary fibrosis is an end-stage respiratory disease characterized by fibroblast proliferation and accumulation of extracellular matrix and collagen, which is accompanied by inflammatory damage. The disease is mainly based on pulmonary dysfunction and respiratory failure, the incidence of it is increasing year by year, and the current treatment methods for it are limited. In recent years, it has been found that gut microbes play a crucial role in the pathogenesis and development of pulmonary fibrosis. The microecological disturbance caused by changes in the composition of the intestinal flora can affect the course of pulmonary fibrosis. The regulatory network or information exchange system for gut-lung crosstalk is called the "gut-lung axis". This review focuses on the frontier research on entero-pulmonary regulation in pulmonary fibrosis and on intervention strategies for changing the gut microbiota to improve pulmonary fibrosis, including fecal microbiota transplantation, traditional Chinese medicine interventions, and supplementation with probiotics. In addition, the present problems in this field are also raised in order to provide strong theoretical and strategic support for the future exploration of regulatory mechanisms and therapeutic drug development. This paper reviews the interaction of the intestinal flora with pulmonary fibrosis, introduces the research progress for improving pulmonary fibrosis through interventions targeted at the intestinal flora, and provides new ideas for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jianquan Guo
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi 030001, PR China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, PR China
| |
Collapse
|
25
|
Qiu X, Teng J, Wang N, Cao L, Cheng C, Su C, Dong Y, Wang F, Chen W. Transcriptomic analysis reveals the potential crosstalk genes and immune relationship between Crohn's disease and atrial fibrillation. J Thorac Dis 2024; 16:1247-1261. [PMID: 38505024 PMCID: PMC10944785 DOI: 10.21037/jtd-23-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024]
Abstract
Background At present, there is a paucity of research on the link between Crohn's disease (CD) and atrial fibrillation (AF). Nevertheless, both ailments are thought to entail inflammatory and autoimmune processes, and emerging evidence indicates that individuals with CD may face an elevated risk of AF. To shed light on this issue, our study seeks to explore the possibility of shared genes, pathways, and immune cells between these two conditions. Methods We retrieved the gene expression profiles of both CD and AF from the Gene Expression Omnibus (GEO) database and subjected them to analysis. Afterward, we utilized the weighted gene co-expression network analysis (WGCNA) to identify shared genes, which were then subjected to further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Furthermore, we employed a rigorous analytical approach by screening hub genes through both least absolute shrinkage and selection operator (LASSO) regression and support vector machine (SVM), and subsequently constructing a receiver operating characteristic (ROC) curve based on the screening outcomes. Finally, we utilized single-sample gene set enrichment analysis (ssGSEA) to comprehensively evaluate the levels of infiltration of 28 immune cells within the expression profile and their potential association with the shared hub genes. Results Using the WGCNA method, we identified 30 genes that appear to be involved in the pathological progression of both AF and CD. Through GO enrichment analysis on the key gene modules derived from WGCNA, we observed a significant enrichment of pathways related to major histocompatibility complex (MHC) and antigen processing. By leveraging the intersection of LASSO and SVM algorithms, we were able to pinpoint two overlapping genes, namely CXCL16 and HLA-DPB1. Additionally, we evaluated the infiltration of immune cells and observed the upregulation of CD4+ and CD8+ T cells, as well as dendritic cells in patients with AF and CD. Conclusions By employing bioinformatics tools, we conducted an investigation with the objective of elucidating the genetic foundations that connect AF and CD. This study culminated in the identification of CXCL16 and HLA-DPB1 as the most substantial genes implicated in the development of both disorders. Our findings suggest that the immune responses mediated by CD4+ and CD8+ T cells, along with dendritic cells, may hold a crucial role in the intricate interplay between AF and CD.
Collapse
Affiliation(s)
- Xiaohan Qiu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Junlin Teng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Luying Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Congyi Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cong Su
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Youran Dong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fen Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqiang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Yamamoto M, Aochi S, Uehara M. Analysis of the saliva microbiome in patients with immunoglobulin G4-related disease. Mod Rheumatol 2024; 34:399-404. [PMID: 37043362 DOI: 10.1093/mr/road037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVES This article aims to investigate the saliva microbiome in patients with immunoglobulin G4-related disease (IgG4RD) compared with primary Sjögren's syndrome (SS). METHODS Saliva samples were collected from 11 IgG4RD and 11 SS patients who visited IMSUT Hospital, The Institute of Medical Science, The University of Tokyo. Deoxyribonucleic acid (DNA) was extracted from the samples, and primers were used to amplify the V3-V4 regions of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, which was then analysed by paired-end sequencing. Amplicon reads were processed using QIIME2 to generate representative sequences. The Greengenes database was used to identify the bacterial flora in each sample and compare them between groups. RESULTS The IgG4RD and SS groups exhibited differences in bacterial diversity. Cluster analyses of attributed classification groups by species and disease showed that IgG4RD and SS cases formed individual clusters. Significant differences in relative abundance between IgG4RD and SS were observed for the following organisms: Mogibacterium (P = .0051), Solobacterium moorei (P = .0195), Slackia (P = .0356), and Moryella (P = .0455). CONCLUSIONS Salivary microbiome analysis of IgG4RD and SS patients revealed significantly higher relative proportions of Mogibacterium, S. moorei, Slackia, and Moryella bacteria in IgG4RD compared with SS.
Collapse
Affiliation(s)
- Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satsuki Aochi
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Uehara
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
28
|
Eladham MW, Selvakumar B, Saheb Sharif-Askari N, Saheb Sharif-Askari F, Ibrahim SM, Halwani R. Unraveling the gut-Lung axis: Exploring complex mechanisms in disease interplay. Heliyon 2024; 10:e24032. [PMID: 38268584 PMCID: PMC10806295 DOI: 10.1016/j.heliyon.2024.e24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The link between gut and lung starts as early as during organogenesis. Even though they are anatomically distinct, essential bidirectional crosstalk via complex mechanisms supports GLA. Emerging studies have demonstrated the association of gut and lung diseases via multifaceted mechanisms. Advancements in omics and metagenomics technologies revealed a potential link between gut and lung microbiota, adding further complexity to GLA. Despite substantial studies on GLA in various disease models, mechanisms beyond microbial dysbiosis regulating the interplay between gut and lung tissues during disease conditions are not thoroughly reviewed. This review outlines disease specific GLA mechanisms, emphasizing research gaps with a focus on gut-to-lung direction based on current GLA literature. Moreover, the review discusses potential gut microbiota and their products like metabolites, immune modulators, and non-bacterial contributions as a basis for developing treatment strategies for lung diseases. Advanced experimental methods, modern diagnostic tools, and technological advancements are also highlighted as crucial areas for improvement in developing novel therapeutic approaches for GLA-related diseases. In conclusion, this review underscores the importance of exploring additional mechanisms within the GLA to gain a deeper understanding that could aid in preventing and treating a wide spectrum of lung diseases.
Collapse
Affiliation(s)
- Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
29
|
Leduc L, Costa M, Leclère M. The Microbiota and Equine Asthma: An Integrative View of the Gut-Lung Axis. Animals (Basel) 2024; 14:253. [PMID: 38254421 PMCID: PMC10812655 DOI: 10.3390/ani14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Both microbe-microbe and host-microbe interactions can have effects beyond the local environment and influence immunological responses in remote organs such as the lungs. The crosstalk between the gut and the lungs, which is supported by complex connections and intricate pathways, is defined as the gut-lung axis. This review aimed to report on the potential role of the gut-lung gut-lung axis in the development and persistence of equine asthma. We summarized significant determinants in the development of asthma in horses and humans. The article discusses the gut-lung axis and proposes an integrative view of the relationship between gut microbiota and asthma. It also explores therapies for modulating the gut microbiota in horses with asthma. Improving our understanding of the horse gut-lung axis could lead to the development of techniques such as fecal microbiota transplants, probiotics, or prebiotics to manipulate the gut microbiota specifically for improving the management of asthma in horses.
Collapse
Affiliation(s)
- Laurence Leduc
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marcio Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mathilde Leclère
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
30
|
Liu Y, Li L, Feng J, Wan B, Tu Q, Cai W, Jin F, Tang G, Rodrigues LR, Zhang X, Yin J, Zhang Y. Modulation of chronic obstructive pulmonary disease progression by antioxidant metabolites from Pediococcus pentosaceus: enhancing gut probiotics abundance and the tryptophan-melatonin pathway. Gut Microbes 2024; 16:2320283. [PMID: 38444395 PMCID: PMC10936690 DOI: 10.1080/19490976.2024.2320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a condition primarily linked to oxidative stress, poses significant health burdens worldwide. Recent evidence has shed light on the association between the dysbiosis of gut microbiota and COPD, and their metabolites have emerged as potential modulators of disease progression through the intricate gut-lung axis. Here, we demonstrate the efficacy of oral administration of the probiotic Pediococcus pentosaceus SMM914 (SMM914) in delaying the progression of COPD by attenuating pulmonary oxidative stress. Specially, SMM914 induces a notable shift in the gut microbiota toward a community structure characterized by an augmented abundance of probiotics producing short-chain fatty acids and antioxidant metabolisms. Concurrently, SMM914 synthesizes L-tryptophanamide, 5-hydroxy-L-tryptophan, and 3-sulfino-L-alanine, thereby enhancing the tryptophan-melatonin pathway and elevating 6-hydroxymelatonin and hypotaurine in the lung environment. This modulation amplifies the secretion of endogenous anti-inflammatory factors, diminishes macrophage polarization toward the M1 phenotype, and ultimately mitigates the oxidative stress in mice with COPD. The demonstrated efficacy of the probiotic intervention, specifically with SMM914, not only highlights the modulation of intestine microbiota but also emphasizes the consequential impact on the intricate interplay between the gastrointestinal system and respiratory health.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Longjie Li
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Guiying Tang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Lígia R. Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
31
|
Hu M, Zhao X, Liu Y, Zhou H, You Y, Xue Z. Complex interplay of gut microbiota between obesity and asthma in children. Front Microbiol 2023; 14:1264356. [PMID: 38029078 PMCID: PMC10655108 DOI: 10.3389/fmicb.2023.1264356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is an important risk factor and common comorbidity of childhood asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype, has attracted significant attention owing to its association with more severe clinical manifestations, poorer disease control, and reduced quality of life. The establishment of the gut microbiota during early life is essential for maintaining metabolic balance and fostering the development of the immune system in children. Microbial dysbiosis influences host lipid metabolism, triggers chronic low-grade inflammation, and affects immune responses. It is intimately linked to the susceptibility to childhood obesity and asthma and plays a potentially crucial transitional role in the progression of obesity-related asthma. This review article summarizes the latest research on the interplay between asthma and obesity, with a particular focus on the mediating role of gut microbiota in the pathogenesis of obesity-related asthma. This study aims to provide valuable insight to enhance our understanding of this condition and offer preliminary evidence to support the development of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
White Z, Cabrera I, Kapustka I, Sano T. Microbiota as key factors in inflammatory bowel disease. Front Microbiol 2023; 14:1155388. [PMID: 37901813 PMCID: PMC10611514 DOI: 10.3389/fmicb.2023.1155388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by prolonged inflammation of the gastrointestinal tract, which is thought to occur due to dysregulation of the immune system allowing the host's cells to attack the GI tract and cause chronic inflammation. IBD can be caused by numerous factors such as genetics, gut microbiota, and environmental influences. In recent years, emphasis on commensal bacteria as a critical player in IBD has been at the forefront of new research. Each individual harbors a unique bacterial community that is influenced by diet, environment, and sanitary conditions. Importantly, it has been shown that there is a complex relationship among the microbiome, activation of the immune system, and autoimmune disorders. Studies have shown that not only does the microbiome possess pathogenic roles in the progression of IBD, but it can also play a protective role in mediating tissue damage. Therefore, to improve current IBD treatments, understanding not only the role of harmful bacteria but also the beneficial bacteria could lead to attractive new drug targets. Due to the considerable diversity of the microbiome, it has been challenging to characterize how particular microorganisms interact with the host and other microbiota. Fortunately, with the emergence of next-generation sequencing and the increased prevalence of germ-free animal models there has been significant advancement in microbiome studies. By utilizing human IBD studies and IBD mouse models focused on intraepithelial lymphocytes and innate lymphoid cells, this review will explore the multifaceted roles the microbiota plays in influencing the immune system in IBD.
Collapse
Affiliation(s)
| | | | | | - Teruyuki Sano
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Ni S, Yuan X, Cao Q, Chen Y, Peng X, Lin J, Li Y, Ma W, Gao S, Chen D. Gut microbiota regulate migration of lymphocytes from gut to lung. Microb Pathog 2023; 183:106311. [PMID: 37625662 DOI: 10.1016/j.micpath.2023.106311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The community of microorganisms known as gut microbiota that lives in the intestine confers significant health benefits on its host, primarily in the form of immunological homeostasis regulation. Gut microbiota not only can shape immune responses in the gut but also in other organs. This review focus on the gut-lung axis. Aberrant gut microbiota development is associated with greater lung disease susceptibility and respiratory disease induced by a variety of pathogenic bacteria. They are known to cause changes in gut microbiota. Recent research has found that immune cells in the intestine migrate to distant lung to exert anti-infective effects. Moreover, evidence indicates that the gut microbiota and their metabolites influence intestinal immune cells. Therefore, we suspect that intestine-derived immune cells may play a significant role against pulmonary pathogenic infections by receiving instructions from gut microbiota.
Collapse
Affiliation(s)
- Silu Ni
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiulei Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Qihang Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yiming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xingyu Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jingyi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yanyan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, 719399, Shaanxi, China.
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Alhasan MM, Hölsken O, Duerr C, Helfrich S, Branzk N, Philipp A, Leitz D, Duerr J, Almousa Y, Barrientos G, Mohn WW, Gamradt S, Conrad ML. Antibiotic use during pregnancy is linked to offspring gut microbial dysbiosis, barrier disruption, and altered immunity along the gut-lung axis. Eur J Immunol 2023; 53:e2350394. [PMID: 37431194 DOI: 10.1002/eji.202350394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.
Collapse
Affiliation(s)
- Moumen M Alhasan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Oliver Hölsken
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
- German Rheuma Research Center Berlin (DRFZ), Mucosal and Developmental Immunology, Berlin, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Claudia Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora Branzk
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alina Philipp
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dominik Leitz
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yahia Almousa
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
36
|
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation. Clin Exp Immunol 2023; 213:23-39. [PMID: 37119279 PMCID: PMC10324558 DOI: 10.1093/cei/uxad050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Collapse
Affiliation(s)
- Martin L Mak
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
37
|
Kanj AN, Kottom TJ, Schaefbauer KJ, Choudhury M, Limper AH, Skalski JH. Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans. Respir Res 2023; 24:144. [PMID: 37259076 PMCID: PMC10230676 DOI: 10.1186/s12931-023-02422-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. METHODS Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. RESULTS Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. CONCLUSIONS Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Amjad N Kanj
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Theodore J Kottom
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kyle J Schaefbauer
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Joseph H Skalski
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
- Thoracic Disease Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
39
|
Cao Z, Liu R, Wang C, Lin S, Wang L, Pang Y. Fluorescence-Activating and Absorption-Shifting Nanoprobes for Anaerobic Tracking of Gut Microbiota Derived Vesicles. ACS NANO 2023; 17:2279-2293. [PMID: 36735721 DOI: 10.1021/acsnano.2c08780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Outer membrane vesicles (OMVs) are crucial for bacterial intercellular communication and the crosstalk between the gut microbiota and its host. Methods capable of visualizing gut microbiota derived OMVs would be of great significance but have been rarely reported. Here, nanoprobes carrying a fluorescence-activating and absorption-shifting tag are prepared by combining genetic engineering and antibiotic-boosted vesicle formation and release. Benefiting from their natural structure and molecular oxygen-independent emission, the resulting nanovesicles can be applied as endogenous fluorescence probes to anaerobically track gut microbiota associated OMVs. These nanoprobes show flexibility in on-demand fluorescence turn-on/off and reversibly switchable emission bands for intelligent and dual-color imaging. With these special characteristics, the behaviors of microbiota OMVs to not only inhibit specific pathogenic strains through membrane fusion but also repair the intestinal barrier via entering intestinal epithelia and promoting the expressions of tight junctions are tracked and identified in the gut. Based on these discoveries, OMVs are disclosed to be able to remit inflammation in a murine model of colitis following transplantation to the intestine by oral delivery. This work provides an approach to visualize the dynamics of the gut microbiota and disclose potential targets for disease intervention.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
40
|
Liu Z, Li Y, Li N, Wang Y, Li Q, Ge D, Peng G, Zhou M. Dachengqi Decoction alleviates intestinal inflammation in ovalbumin-induced asthma by reducing group 2 innate lymphoid cells in a microbiota-dependent manner. J Tradit Complement Med 2023; 13:183-192. [PMID: 36970460 PMCID: PMC10037070 DOI: 10.1016/j.jtcme.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023] Open
Abstract
Background and aim Dachengqi Decoction (DCQD) as a classic traditional Chinese medicine has been reported to be effective in treating asthma, but its mechanism remains unknown. This study aimed to reveal the mechanisms of DCQD on the intestinal complications of asthma mediated by group 2 innate lymphoid cells (ILC2) and intestinal microbiota. Experimental procedure Ovalbumin (OVA) was used to construct asthmatic murine models. IgE, cytokines (e.g., IL-4, IL-5), fecal water content, colonic length, histopathologic appearance, and gut microbiota were evaluated in asthmatic mice treated with DCQD. Finally, we administered DCQD to antibiotic-treated asthmatic mice to measure the ILC2 in the small intestine and colon. Results and conclusion DCQD decreased pulmonary IgE, IL-4, and IL-5 levels in asthmatic mice. The fecal water content, the colonic length weight loss, and the epithelial damage of jejunum, ileum, and colon of asthmatic mice were ameliorated by DCQD. Meanwhile, DCQD greatly improved intestinal dysbiosis by enriching Allobaculum, Romboutsia and Turicibacter in the whole intestine, and Lactobacillus gasseri only in the colon. However, DCQD caused less abundant Faecalibaculum and Lactobacillus vaginalis in the small intestine of asthmatic mice. A higher ILC2 proportion in different gut segments of asthmatic mice was reversed by DCQD. Finally, significant correlations appeared between DCQD-mediated specific bacteria and cytokines (e.g., IL-4, IL-5) or ILC2. These findings indicate that DCQD alleviated the concurrent intestinal inflammation in OVA-induced asthma by decreasing the excessive accumulation of intestinal ILC2 in a microbiota-dependent manner across different gut locations.
Collapse
|
41
|
Xiong J, Zhao Y, Lin Y, Chen L, Weng Q, Shi C, Liu X, Geng Y, Liu L, Wang J, Zhang M. Identification and characterization of innate lymphoid cells generated from pluripotent stem cells. Cell Rep 2022; 41:111569. [DOI: 10.1016/j.celrep.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
|
42
|
The Crosstalk between the Gut Microbiota Composition and the Clinical Course of Allergic Rhinitis: The Use of Probiotics, Prebiotics and Bacterial Lysates in the Treatment of Allergic Rhinitis. Nutrients 2022; 14:nu14204328. [PMID: 36297012 PMCID: PMC9607052 DOI: 10.3390/nu14204328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Although massive progress in discovering allergic rhinitis (AR) aetiology has been made in recent years, its prevalence is still rising and it significantly impacts patients' lives. That is why further and non-conventional research elucidating the role of new factors in AR pathogenesis is needed, facilitating discoveries of new treatment approaches. One of these factors is the gut microbiota, with its specific roles in health and disease. This review presents the process of gut microbiota development, especially in early life, focusing on its impact on the immune system. It emphasizes the link between the gut microbiota composition and immune changes involved in AR development. Specifically, it elucidates the significant link between bacteria colonizing the gut and the Th1/Th2 imbalance. Probiotics, prebiotics and bacterial lysates, which are medications that restore the composition of intestinal bacteria and indirectly affect the clinical course of AR, are also discussed.
Collapse
|
43
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
44
|
Hong Y, Chu Z, Kong J, Li Q, Li N, Liu L, Wu T, Liu J, Ge D, Li J, Peng G. IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking. J Leukoc Biol 2022; 112:425-435. [PMID: 35815539 DOI: 10.1002/jlb.3ma0622-426rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/10/2022] [Indexed: 11/06/2022] Open
Abstract
With the concept of the gut-lung axis reinforced in recent years, emerging evidence has shown that intestinal homeostasis is vital for lung health. Nevertheless, the impacts of lung homeostasis on intestinal tracts and their mechanism are rarely studied. Our results showed that papain-induced asthmatic mice exhibited apparent colonic injuries compared with controls, including increased intestinal permeability, neutrophil and Th17 infiltration in the colonic lamina propria. Moreover, the intranasal administration of papain aggravated such colonic injuries in mice with dextran sulfate sodium-induced colitis, as evidenced by increased occult blood scores, shortened colon length, and accumulated neutrophils. The level of IL-17A was also higher in the serum of asthmatic mice than wild-type mice. Interestingly, the pathologic scores, the proportion of Th17 cells, and neutrophil infiltration in the colon were markedly reduced after IL-17A blocking. Similarly, longer length, lower pathologic scores, and fewer neutrophils were also observed in the colon of IL-17-deficient asthmatic mice. More importantly, we demonstrated that severe gastrointestinal symptoms could accompany clinical asthmatics. The frequencies of Th17 cells and the mRNA expression of IL-17A in the peripheral blood of these patients were significantly enhanced. Besides, the gastrointestinal symptom rating scale scores positively correlated with the frequencies of Th17 in asthmatics. These findings enlighten that IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking, which facilitates the exploration of new potential biomarkers to treat asthma.
Collapse
Affiliation(s)
- Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhulang Chu
- Experimental Teaching Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Liting Liu
- Zengcheng Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Tong Wu
- Department of Respiratory Medicine, Dong Zhi Men Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu Ge
- Scientific Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Li
- Department of Respiratory Medicine, Dong Zhi Men Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Jia Y, He T, Wu D, Tong J, Zhu J, Li Z, Dong J. The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota. Lab Invest 2022; 20:281. [PMID: 35729584 PMCID: PMC9210581 DOI: 10.1186/s12967-022-03481-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a prevalent, progressive respiratory disease, has become the third leading cause of death globally. Increasing evidence suggests that intestinal and pulmonary microbiota dysbiosis is associated with COPD. Researchers have shown that T helper (Th) 17/regulatory T (Treg) imbalance is involved in COPD. Qibai Pingfei Capsule (QBPF) is a traditional Chinese medicine used to treat COPD clinically in China. However, the effects of QBPF intervention on the Th17/Treg balance and microbiota in the gut and lung are still poorly understood. METHODS This study divided the rats into three groups (n = 8): control, model, and QBPF group. After establishing the model of COPD for four weeks and administering of QBPF for two weeks, Th17 cells, Treg cells, their associated cytokines, transcription factors, and intestinal and pulmonary microbiota of rats were analyzed. Furthermore, the correlations between intestinal and pulmonary microbiota and between bacterial genera and pulmonary function and immune function were measured. RESULTS The results revealed that QBPF could improve pulmonary function and contribute to the new balance of Th17/Treg in COPD rats. Meanwhile, QBPF treatment could regulate the composition of intestinal and pulmonary microbiota and improve community structure in COPD rats, suppressing the relative abundance of Coprococcus_2, Prevotella_9, and Blautia in the gut and Mycoplasma in the lung, but accumulating the relative abundance of Prevotellaceae_UCG_003 in the gut and Rikenellaceae_RC9_gut_group in the lung. Additionally, gut-lung axis was confirmed by the significant correlations between the intestinal and pulmonary microbiota. Functional analysis of microbiota showed amino acid metabolism was altered in COPD rats in the gut and lung. Spearman correlation analysis further enriched the relationship between the microbiota in the gut and lung and pulmonary function and immune function in COPD model rats. CONCLUSIONS Our study indicated that the therapeutic effects of QBPF may be achieved by maintaining the immune cell balance and regulating the gut-lung axis microbiota, providing references to explore the potential biomarkers of COPD and the possible mechanism of QBPF to treat COPD.
Collapse
Affiliation(s)
- Yu Jia
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China
| | - Tiantian He
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China
| | - Di Wu
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China
| | - Jiabing Tong
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China.,Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No.1, Qianjiang Road, Hefei, Anhui, China. .,Institutes of Integrative Medicine, Fudan University, Shanghai, China. .,Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China.
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei, Anhui, China. .,Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei, Anhui, China.
| | - Jingcheng Dong
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Melo-González F, Sepúlveda-Alfaro J, Schultz BM, Suazo ID, Boone DL, Kalergis AM, Bueno SM. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Front Immunol 2022; 13:877533. [PMID: 35572549 PMCID: PMC9095905 DOI: 10.3389/fimmu.2022.877533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious diseases are one of the leading causes of morbidity and mortality worldwide, affecting high-risk populations such as children and the elderly. Pathogens usually activate local immune responses at the site of infection, resulting in both protective and inflammatory responses, which may lead to local changes in the microbiota, metabolites, and the cytokine environment. Although some pathogens can disseminate and cause systemic disease, increasing evidence suggests that local infections can affect tissues not directly invaded. In particular, diseases occurring at distal mucosal barriers such as the lung and the intestine seem to be linked, as shown by epidemiological studies in humans. These mucosal barriers have bidirectional interactions based mainly on multiple signals derived from the microbiota, which has been termed as the gut-lung axis. However, the effects observed in such distal places are still incompletely understood. Most of the current research focuses on the systemic impact of changes in microbiota and bacterial metabolites during infection, which could further modulate immune responses at distal tissue sites. Here, we describe how the gut microbiota and associated metabolites play key roles in maintaining local homeostasis and preventing enteric infection by direct and indirect mechanisms. Subsequently, we discuss recent murine and human studies linking infectious diseases with changes occurring at distal mucosal barriers, with particular emphasis on bacterial and viral infections affecting the lung and the gastrointestinal tract. Further, we discuss the potential mechanisms by which pathogens may cause such effects, promoting either protection or susceptibility to secondary infection.
Collapse
Affiliation(s)
- Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
47
|
Abstract
More than a decade ago, type 2 innate lymphoid cells (ILC2s) were discovered to be members of a family of innate immune cells consisting of five subsets that form a first line of defence against infections before the recruitment of adaptive immune cells. Initially, ILC2s were implicated in the early immune response to parasitic infections, but it is now clear that ILC2s are highly diverse and have crucial roles in the regulation of tissue homeostasis and repair. ILC2s can also regulate the functions of other type 2 immune cells, including T helper 2 cells, type 2 macrophages and eosinophils. Dysregulation of ILC2s contributes to type 2-mediated pathology in a wide variety of diseases, potentially making ILC2s attractive targets for therapeutic interventions. In this Review, we focus on the spectrum of ILC2 phenotypes that have been described across different tissues and disease states with an emphasis on human ILC2s. We discuss recent insights in ILC2 biology and suggest how this knowledge might be used for novel disease treatments and improved human health. Type 2 innate lymphoid cells (ILC2s) have diverse phenotypes across different tissues and disease states. Recent insights into ILC2 biology raise new possibilities for the improved treatment of cancer and of metabolic, infectious and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
48
|
Marchalot A, Mjösberg J. Innate lymphoid cells in colorectal cancer. Scand J Immunol 2022; 95:e13156. [PMID: 35274359 PMCID: PMC9286852 DOI: 10.1111/sji.13156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Innate lymphoid cells (ILC) can be viewed as the innate counterparts of T cells. In contrast to T cells, ILCs exert their functions in antigen‐independent manners, relying on tissue‐derived signals from other immune cells, stroma and neurons. Natural killer (NK) cells have been known for their antitumour effects for decades. However, the roles of other ILC subtypes in cancer immunity are just now starting to be unravelled. ILCs contribute to both homeostasis and inflammation in the intestinal mucosa. Intestinal inflammation predisposes the intestine for the development of colonic dysplasia and colorectal cancer (CRC). Recent data from mouse models and human studies indicate that ILCs play a role in CRC, exerting both protumoural and antitumoural functions. Studies also suggest that intratumoural ILC frequencies and expression of ILC signature genes can predict disease progression and response to PD‐1 checkpoint therapy in CRC. In this mini‐review, we focus on such recent insights and their implications for understanding the immunobiology of CRC. We also identify knowledge gaps and research areas that require further work.
Collapse
Affiliation(s)
- Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
49
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cells in Response to Intracellular Pathogens: Protection Versus Immunopathology. Front Cell Infect Microbiol 2021; 11:775554. [PMID: 34938670 PMCID: PMC8685334 DOI: 10.3389/fcimb.2021.775554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous group of cytokine-producing lymphocytes which are predominantly located at mucosal barrier surfaces, such as skin, lungs, and gastrointestinal tract. ILCs contribute to tissue homeostasis, regulate microbiota-derived signals, and protect against mucosal pathogens. ILCs are classified into five major groups by their developmental origin and distinct cytokine production. A recently emerged intriguing feature of ILCs is their ability to alter their phenotype and function in response to changing local environmental cues such as pathogen invasion. Once the pathogen crosses host barriers, ILCs quickly activate cytokine production to limit the spread of the pathogen. However, the dysregulated ILC responses can lead to tissue inflammation and damage. Furthermore, the interplay between ILCs and other immune cell types shapes the outcome of the immune response. Recent studies highlighted the important role of ILCs for host defense against intracellular pathogens. Here, we review recent advances in understanding the mechanisms controlling protective and pathogenic ILC responses to intracellular pathogens. This knowledge can help develop new ILC-targeted strategies to control infectious diseases and immunopathology.
Collapse
Affiliation(s)
- Anna A Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|