1
|
Satapathy T, Minj A, Verma M. Impact of NSAIDs corticosteroids DMARDs biologics and their comparisons with natural products in C-reactive proteins (CRP) linked cardiovascular disorders. Inflammopharmacology 2025:10.1007/s10787-025-01767-1. [PMID: 40319427 DOI: 10.1007/s10787-025-01767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025]
Abstract
An important part of the pathophysiology of atherosclerosis is the involvement of inflammatory processes, which mediate various stages of the formation of atheroma, from the first leukocyte recruitment to the final rupture of the unstable atherosclerotic plaque. Acute phase reactant C-reactive protein (CRP), which represents varying degrees of inflammation, has been identified as a separate risk factor for several cardiovascular diseases (CVD), particularly unstable coronary syndrome. We hypothesize that CRP is a direct cause of CVD in addition to being an inflammatory marker. Therefore, therapies aimed at lowering CRP should be beneficial for both primary and secondary CVD prevention. It has been demonstrated that the use of many drugs, particularly statins, alters CRP levels while also lowering cardiovascular events. The use of inflammatory biomarkers aids in the discovery of CVDs and tracks the assessment, prognosis, and administration of treatment. An acute-phase protein called C-reactive protein (CRP) is created in response to pro-inflammatory cytokines. CRP is a key modulator of atherosclerosis and a biomarker of the inflammatory response. It is also regarded as a CVD risk factor since it actively promotes the growth of atherosclerotic plaque, instability, and consequent clot. Patients with intermediate risk for cardiovascular diseases have been using the plasma concentration of hsCRP (high sensitivity CRP) as a biomarker for disease prognosis since 2010.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India
| | - Anjali Minj
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India.
| | - Mansi Verma
- Department of Pharmacology, Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur, CG, 493111, India
| |
Collapse
|
2
|
Chaudhary K, Singh L, Rai PD. Innovative nanocarriers in arthritis therapy: the role of herbal cubosomes. Inflammopharmacology 2025; 33:1833-1860. [PMID: 40122993 DOI: 10.1007/s10787-025-01714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Both osteoarthritis (OA) and rheumatoid arthritis (RA) are long-lasting inflammatory disorders that impact the joints. While conventional treatments like NSAIDs and DMARDs are effective, they often have adverse side effects. OBJECTIVE The aim of this review is to explore the possibilities of using herbal treatments in treating the symptoms of arthritis, their stability and bioavailability. Traditional therapies often lead to adverse side effects, prompting a search for safer alternatives, particularly in herbal medicines. This review explores the innovative use of herbal cubosomes as advanced nanocarriers for arthritis therapy. Cubosomes, a type of self-assembled lipid nanoparticle, exhibit unique structural characteristics that enhance the delivery and bioavailability of encapsulated herbal compounds. METHOD Access was gained to PubMed, Scopus database, Google Scholar and Web of Science for the literature search. The results were later screened according to the titles, abstracts, and availability of full texts. RESULTS The expository evaluation of the literature revealed that Key herbal components, such as Withania somnifera (Ashwagandha), Curcuma longa (Turmeric) and Boswellia serrata (Frankincense) are emphasized for their anti-inflammatory characteristics and possible advantages in managing arthritis. The herbal cubosomes enhance drug absorption, retention, and release kinetics in arthritic conditions. The difficulties in delivering and maintaining herbal substances are also discussed, with a focus on how nanotechnology can help get over these obstacles. CONCLUSION Overall, the integration of herbal cubosomes in arthritis therapy presents a promising approach that could result in safer and more efficient treatment alternatives, warranting further research and clinical exploration.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Research Scholar, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India.
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India
| | - Pallavi Dinanath Rai
- Department of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
3
|
Khan F, Rashan L. Phytochemical Analysis and Pharmaceutical Applications of Monoterpenoids Present in the Essential Oil of Boswellia sacra (Omani Luban). Adv Pharmacol Pharm Sci 2025; 2025:3536898. [PMID: 40040632 PMCID: PMC11876528 DOI: 10.1155/adpp/3536898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/28/2024] [Accepted: 01/18/2025] [Indexed: 03/06/2025] Open
Abstract
Due to its intricacy and long-term usefulness, traditional medicine continues to be practiced in several nations. Among the many medicinal plants found in the Dhofar region of Oman, the aromatic oleo-gum resin generated by Boswellia sacra, commonly referred to as frankincense, stands out for its medical and commercial significance. Resin-carrying ducts are unique to members of the Boswellia family. Boswellia sacra Flueck is one of the 29 species in the genus Boswellia (Burseraceae) and has long been cultivated for its aromatic gums and resins for use as incense. In addition to the resins (60%-80% alcohol soluble), gums (15%-20% water soluble), and essential oil (5%-7%), other components, including polysaccharides and polymeric compounds, also exist in smaller amounts. Physiochemical analyses indicate that Boswellia resin oil is made up of 42.5% diterpenes, 13.1% monoterpenes, and 1% sesquiterpenes. Traditional medicine makes extensive use of frankincense for the treatment of stomach diseases, Alzheimer's disease, and hepatic illnesses. The bioactive chemicals present in frankincense, particularly boswellic acids, are plentiful. The current review examines various compounds present in different species of Boswellia, especially Boswellia sacra, along with their structure.
Collapse
Affiliation(s)
- Foziya Khan
- Research Center, Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Luay Rashan
- Research Center, Biodiversity Unit, Dhofar University, Salalah, Oman
| |
Collapse
|
4
|
Vaidya N, Agarwal R, Dipankar DG, Patkar H, Ganu G, Nagore D, Godse C, Mehta A, Mehta D, Nair S. Efficacy and Safety of Boswellia serrata and Apium graveolens L. Extract Against Knee Osteoarthritis and Cartilage Degeneration: A Randomized, Double-blind, Multicenter, Placebo-Controlled Clinical Trial. Pharm Res 2025; 42:249-269. [PMID: 39875757 PMCID: PMC11880083 DOI: 10.1007/s11095-025-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Osteoarthritis is the prevailing form of inflammatory condition in joints of adults and the aging population, leading to long-term disability and chronic pain. Current therapeutic options have variable therapeutic efficacy and/or several side effects. METHODS A randomized, placebo-controlled, double-blind clinical trial was conducted in 62 participants using a nutraceutical [standardized Boswellia serrata Roxb. gum resin (300 mg) and Apium graveolens L. seed extract (250 mg)], to determine its safety and efficacy for supporting cartilage health and reduction in knee osteoarthritis symptoms. All participants were assessed for physical function and pain with the help of WOMAC, VAS, Physicians' Global Assessment for the six-minute walk test/pain. Knee X-ray, KOOS questionnaire score, and FACIT-F score were assessed. Additionally, inflammatory, cartilage degeneration and regeneration biomarkers in serum and urine were evaluated at baseline and after 90 days of treatment. RESULTS Oral administration of the nutraceutical resulted in prolonged symptomatic relief with reduced pain, stiffness, and swelling. Inflammatory (serum IL-7, IL-1, IL-6, hs-CRP, TNF-α, ESR) and cartilage degeneration biomarkers (serum CTX-II, COMP, MMP-3 and urinary CTX-II) were decreased in the nutraceutical group compared to baseline and placebo. Furthermore, serum N-propeptide of collagen IIA (PIIANP) and procollagen-type-C propeptide (PIICP) levels were increased in the nutraceutical group, suggesting collagen synthesis contributing to cartilage regeneration. At given doses for 90 days, there were no adverse effects based on the clinical examination, biochemical, hematological, and ECG analysis. CONCLUSIONS Taken together, the combination of Boswellia and celery could be a safe and promising herbal nutraceutical option for managing osteoarthritis and cartilage health effectively.
Collapse
Affiliation(s)
- Narendra Vaidya
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - Ramshyam Agarwal
- Lokmanya Medical Research Center and Hospital, Pune, 411033, India
| | - D G Dipankar
- Dr. D. Y. Patil College of Ayurved & Research Centre, Pimpri-Chinchwad, 411018, India
| | | | | | | | - Chhaya Godse
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Anirudh Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Dilip Mehta
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India
| | - Sujit Nair
- Phytoveda Pvt. Ltd., V.N. Purav Marg, Mumbai, 400022, India.
- Viridis Biopharma Pvt. Ltd., Mumbai, 400022, India.
| |
Collapse
|
5
|
Shtroblia V, Petakh P, Kamyshna I, Halabitska I, Kamyshnyi O. Recent advances in the management of knee osteoarthritis: a narrative review. Front Med (Lausanne) 2025; 12:1523027. [PMID: 39906596 PMCID: PMC11790583 DOI: 10.3389/fmed.2025.1523027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Knee osteoarthritis (OA) is a common condition that causes pain and reduces the quality of life for many people. It also leads to high health and financial costs. Managing knee OA pain requires using different methods together for the best results. This review overviews current therapeutic options for knee OA pain, focusing on their efficacy, safety, and potential roles in clinical practice. Topical treatments, such as NSAIDs and capsaicin, offer significant pain relief with minimal systemic side effects and are suitable for initial therapy, together with nonpharmacologic interventions like exercise and, when relevant, weight loss. Oral analgesics, including acetaminophen and opioids, have limited efficacy and serious side effects, making them appropriate only for short-term or rescue therapy. Intra-articular injections, such as corticosteroids, hyaluronic acid, and platelet rich plasma, demonstrate varying levels of efficacy and safety. Nutritional supplements, including curcumin, Boswellia serrata, and glucosaminechondroitin combinations, offer modest benefits and are best used as adjuncts to standart treatment. Nonpharmacological treatments, such as transcutaneous electrical nerve stimulation (TENS), acupuncture, and local heat therapy, provide variable pain relief and should be customized based on individual patient responses. Targeted biologic agents, such as antibodies to TNF-α, IL-1, and NGF, hold promise for more precise pain relief; however, further research is required to establish their routine use. Treating knee OA pain should be personalized, combining several methods. Research must continue to improve treatments and make them safer.
Collapse
Affiliation(s)
- Viktor Shtroblia
- Department of General Surgery, Uzhhorod National University, Uzhhorod, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
6
|
Sultana R, Mohanto S, Bhunia A, Biswas A, Akhtar MS, Mishra V, Modi D, Aljabali AA, Tambuwala M, Faiyazuddin M. Current Progress and Emerging Role of Essential Oils in Drug Delivery Therapeutics. Curr Drug Deliv 2025; 22:332-357. [PMID: 38409707 DOI: 10.2174/0115672018287719240214075810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of essential oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.
Collapse
Affiliation(s)
- Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata, 700118, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), 144411, India
| | - Dimple Modi
- Department of Pharmaceutical Sciences, Saint Josephs University, Philadelphia, Pennsylvania, 19104, United States
| | - Alaa Aa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, Lincolnshire, UK
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, 854106, Bihar, India
| |
Collapse
|
7
|
Sen S, Sharma A, Kriplani P, Malhotra H, Mittal V. Formulation and Evaluation of Microsponges-loaded Transdermal Gel for the Management of Osteoarthritis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2025; 19:79-99. [PMID: 40195704 DOI: 10.2174/0127722708297654240718053117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 04/09/2025]
Abstract
BACKGROUND Osteoarthritis (OA) stands as the most widespread form of arthritis, representing a primary source of pain and functional impairment among the elderly. It is often referred to as a degenerative joint disease. OA is more than just wear and tear; it is an aberrant remodelling of joint tissues prompted by a deluge of inflammatory mediators released within the compromised joint. This disease affects 15 million people in India annually. OBJECTIVE Aceclofenac is a COX-2 inhibitor that has anti-inflammatory activity. However, aceclofenac has a short mean plasma elimination half-life and poor water solubility. It requires frequent dosing, which has been linked to a number of negative side effects, including bleeding and gastrointestinal irritation. A potential solution to this problem is the transdermal administration of aceclofenac using microsponges. In order to have a synergistic effect along with the bioenhancer effects, piperine was incorporated into the formulation. METHODS Microsponges were created using the quasi-emulsion solvent diffusion method. After characterization, the prepared microsponges were incorporated into the Carbopol gel. The in vivo study focused on evaluating the optimized formulation, F1. RESULTS All the prepared microsponge formulations underwent assessment based on parameters including yield of production, entrapment efficiency, and in vitro drug release. The outcomes indicated that batches ranging from F1 to F9 showed positive entrapment efficiency and in vitro drug release. From 50.37% to 80.76 % and 71.18% to 91.8% and in vivo studies the results reveal that the inflammatory cells in the best formulation Ace(B) group were reduced hence the formulation's anti-inflammatory impact was achieved. CONCLUSION The findings indicate that Formulation F1 exhibits superior entrapment and enhanced drug release. The kinetics study suggests that the optimized formulation aligns well with the Higuchi model and adheres to the Fickian transport drug release mechanism. Animal study findings suggest that optimized formulation Ace(B) may possess ideal -anti-osteoarthritic activity for osteoarthritic disease. Further clinical trials on humans may be conducted in order to make the research fruitful for society.
Collapse
Affiliation(s)
- Shiwani Sen
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Hitesh Malhotra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
8
|
Jabbari P, Yazdanpanah O, Benjamin DJ, Rezazadeh Kalebasty A. The Role of Ayurveda in Prostate Cancer Management. Integr Cancer Ther 2025; 24:15347354251330906. [PMID: 40156363 PMCID: PMC11954515 DOI: 10.1177/15347354251330906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Ayurveda is commonly utilized in the treatment of medical ailments but has yet to gain traction in incorporation into allopathic medicine. Prostate cancer is the most common cancer among men and presents a significant public health burden across the globe. Despite advancements in the management of advanced prostate cancer including androgen deprivation therapy and novel hormonal therapies, men may eventually develop resistance to hormonal therapy. As such, there is an urgent need for novel therapeutic options in treating this malignancy. This review examines the pre-clinical evidence for Ayurveda medicinal plants such as Withania somnifera, Glycyrrhiza spp, Momordica spp, Boswellia, and Bacopa monnieri and their potential application in managing prostate cancer. Several in-vitro and pre-clinical studies suggest potentials for these plants or their derivatives in preventing or treating prostate cancers. Despite strong evidence of efficacy of these plants to potentially improve the outcome of prostate cancer, clinical trials are required to evaluate which plants may be most efficacious and to determine effective dosing strategies, as well as the use of ayurvedic plants as standalone therapies or in combination with conventional prostate cancer treatments.
Collapse
|
9
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Kumar B, Ghaytidak AB, Pandey AK, Somepalli RR, Sarda P, Raychaudhuri SP, Rokkam MP. A Standardized Boswellia serrata Extract Improves Knee Joint Function and Cartilage Morphology in Human Volunteers with Mild to Moderate Osteoarthritis in a Randomized Placebo-Controlled Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-12. [PMID: 39700461 DOI: 10.1080/27697061.2024.2438894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Boswellia serrata Roxb. ex Colebr. (Family: Burseraceae; Genus: Boswellia) gum resin (Salai guggul) has profound therapeutic value in Ayurvedic and Unani medicines in alleviating several chronic inflammatory illnesses, including arthritis, asthma, skin and blood diseases, fever, etc. SN13108F (Aflapin®) is a proprietary, standardized Boswellia serrata gum resin extract. This 180-day randomized, placebo-controlled clinical study aimed to evaluate cartilage morphology using magnetic resonance imaging (MRI), pain and joint function and long-term safety in the SN13108F-supplemented volunteers with knee osteoarthritis (KOA). MATERIALS AND METHODS Eighty adult male and female subjects with the Kellgren-Lawrence grade II - III KOA were supplemented with SN13108F (100 mg/day) or a matched placebo for 180 consecutive days. RESULTS SN13108F reduced (p < 0.001; vs. baseline and placebo) Western Ontario and McMaster Universities Osteoarthritis Index, Visual Analogue Scale, Lequesne's Functional Index scores, improved six-minute walk test, and stair climb test. Post-trial MRI assessments of the tibiofemoral joints revealed that the cartilage volume, thickness, and joint space width were increased (p < 0.001; vs. placebo), and levels of high-sensitivity C-reactive protein, matrix metalloproteinase-3, Fibulin-3, type II collagen degradation peptide in serum, and cross-linked C-terminal telopeptide of type II collagen in urine were significantly reduced (p < 0.001; vs. baseline and placebo) in the SN13108F-supplemented subjects. Hematology, complete serum biochemistry, urine analysis, and the participants' vital signs did not alter between the groups. CONCLUSION SN13108F supplementation is safe, and it mitigates joint pain and improves musculoskeletal function and cartilage morphology in KOA.
Collapse
Affiliation(s)
- Brijesh Kumar
- Department of Orthopedics, Lakshmi Hospital, Varanasi, India
| | | | - Abhinav Kumar Pandey
- Department of Radiology, Autonomous State Medical College Pilibhit, Bithaura Kalan, India
| | - Raghu Ram Somepalli
- Department of Orthopedics, MJ Naidu Super Speciality Hospital, Vijayawada, India
| | - Praveen Sarda
- Shreyam Specialist Orthopaedic Centre, Chaitanya Nagar, Ahmedabad, India
| | | | | |
Collapse
|
11
|
Eltahir HM, Shalkami AGS, Shehata AM, Almikhlafi M, Aldhafiri AJ, Alalawi A, Albadrani M, Mahmoud AB, Abouzied MM. Boswellia serrate Gum Resin Mitigates Renal Toxicity: Role of TNF-α, Interleukins, TGF-β, and Lipid Peroxidation. Life (Basel) 2024; 14:1669. [PMID: 39768376 PMCID: PMC11676428 DOI: 10.3390/life14121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background and aim: Being a central organ in homeostasis and maintaining the health of the biological system, kidneys are exposed to variable toxicants. Long-term exposure to nephrotoxic molecules causes chronic renal damage that causes fibrosis and loss of function. Such damage can be initiated by oxidative stress which provokes inflammation. We aim at investigating the potential therapeutic effects of Boswellia serrata (BS) gum resin extract in managing CCl4-induced renal toxicity. Methods: Male Wistar albino rats were assigned to groups: healthy control; CCl4-treated (CCl4, twice/week, for 6 weeks); CCl4 + BS-treated: CCl4 for 6 weeks followed by BS (150 mg/kg/day) for 2 weeks; and CCl4 + Silymarin-treated: CCl4 for 6 weeks followed by Silymarin (100 mg/kg/day) for 2 weeks. Blood and kidney tissue were utilized to assess oxidative stress status, inflammatory cytokines, and histopathological changes. Results: BS treatment ameliorated signs of renal damage and fibrosis as it improved renal antioxidant status and renal function markers and significantly reduced the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 along with the fibrogenic marker TGF-β. Kidney tissues showed improved histological features after BS treatment. Conclusions: BS gum resin extract has significant therapeutic potential against CCl4-induced renal damage and fibrosis. These effects could be mediated via its previously reported antioxidant, free radical scavenging, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Heba M. Eltahir
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
| | - Abdel-Gawad S. Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
- Clinical Pharmacy Program, College of Health Science and Nursing, Al-Rayan Colleges, Madinah 41411, Saudi Arabia
| | - Ahmed M. Shehata
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohannad Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ahmed J. Aldhafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Ali Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia; (M.A.); (A.J.A.); (A.A.)
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ahmad Bakur Mahmoud
- Health and Life Research Center, Taibah University, Madinah 41411, Saudi Arabia;
- College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Mekky M. Abouzied
- Department of Pharmacology and Toxicology (Biochemistry Subdivision), College of Pharmacy, Taibah University, Madinah 41411, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
12
|
Mahajan S, Sureja V, Kheni D, Dubey V, Bhupathiraju K, Alluri VK, Majumdar A. Protective effects of Boswellia and Curcuma extract on oxaliplatin-induced neuropathy via modulation of NF-κB signaling. Toxicol Rep 2024; 13:101781. [PMID: 39512239 PMCID: PMC11541817 DOI: 10.1016/j.toxrep.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Oxaliplatin is a third-generation anticancer agent with better efficacy, lower toxicity, and a broad spectrum of antineoplastic activity. Its use is frequently associated with chronic oxaliplatin-induced neuropathy (OIN), a cumulative phenomenon manifesting as loss of sensation, paresthesia, dysesthesia, and irresolvable fluctuations in proprioception that greatly affect the patients' quality of life. The inevitable nature and high incidence of OIN, along with the absence of efficacious preventive agents, necessitate the development of effective and reliable protective options for limiting OIN while maintaining anticancer activity. The pathogenesis of chronic OIN involves neuroinflammation and oxidative stress. This study aimed to explore the neuroprotective effects of Boswellia serrata and Curcuma longa via modulation of nuclear factor-kappa B (NF-κB) signaling. Behavioral tests were conducted to assess cold allodynia, heat hyperalgesia, mechanical allodynia, mechanical hyperalgesia, and slowed nerve conduction velocity associated with chronic oxaliplatin administration. The modulation of NF-κB signaling and the subsequent activation of cytokines were evaluated through quantitative analysis of inflammatory cytokines in sciatic nerve homogenates. Additional assessments included oxidative stress parameters, serum neuronal biomarkers, and examination of sciatic nerve cross-sections. The findings indicate improvements in behavioral and biochemical parameters, as well as nerve histology, with the combined extract of Boswellia serrata and Curcuma longa at doses of 50 mg/kg and 75 mg/kg. Thus, this study presents evidence for the protective potential of the combined extract of Boswellia serrata and Curcuma longa in OIN through modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Sakshi Mahajan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, Maharashtra, India
| | - Varun Sureja
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Dharmeshkumar Kheni
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Vishal Dubey
- Department of Scientific and Medical Affairs, Sundyota Numandis Probioceuticals Pvt. Ltd., Ahmedabad, Gujarat, India
| | | | | | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, Maharashtra, India
| |
Collapse
|
13
|
MENG J, ZHANG H, CAO Y, ZHANG Y, WANG X, SHENG B, AN J, CHEN Y. Zuyangping formula promotes skin wound healing in diabetic rats. J TRADIT CHIN MED 2024; 44:1194-1203. [PMID: 39617705 PMCID: PMC11589546 DOI: 10.19852/j.cnki.jtcm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/19/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To evaluate the effects of Zuyangping (, ZYP) formula on wound healing in diabetic rats, as well as the molecular mechanisms involved. METHODS The main compounds in ZYP formula were identified by the Liquid chromatography-tandem mass spectrometry. Sprague-Dawley rats, injected with streptozotocin (STZ) to establish diabetes model, then, formed a defective skin trauma in the back, and each group was treated with corresponding drugs once a day. Granulation was taken from each time node for histological analysis. The Western blotting was used to measured protein expression of advanced glycation end products receptor (RAGE) and hypoxia-inducible factor-1α (HIF-1α) axis-related proteins. The relative expression levels of inflammatory cytokines and growth factors were measured by the enzyme-linked immunosorbent assay method. RESULTS The main ingredients were identified in the ZYP formula. Histological analysis showed that the ZYP formula could inhibit the expression of inflammation, promote angiogenesis and collagen deposition. In addition, the ZYP formula could regulate the expression of RAGE and HIF1-α axis-related proteins, thus promoting the wound healing in diabetic rats. CONCLUSION The ZYP formula could accelerate wound healing in diabetic rats.
Collapse
Affiliation(s)
- Junhua MENG
- 1 Department of Pharmacy, Wuhan University Tongren Hospital (the Third Hospital of Wuhan), Wuhan 430060, China
| | - Hong ZHANG
- 2 Department of Pharmacy, the First People’s Hospital of Jiangxia District, Wuhan 430200, China
| | - Yuling CAO
- 3 Department of Pharmacy, Wuhan ASIA General Hospital, Wuhan 430065, China
| | - Yu ZHANG
- 1 Department of Pharmacy, Wuhan University Tongren Hospital (the Third Hospital of Wuhan), Wuhan 430060, China
| | - Xiong WANG
- 1 Department of Pharmacy, Wuhan University Tongren Hospital (the Third Hospital of Wuhan), Wuhan 430060, China
| | - Bi SHENG
- 1 Department of Pharmacy, Wuhan University Tongren Hospital (the Third Hospital of Wuhan), Wuhan 430060, China
| | - Jing AN
- 1 Department of Pharmacy, Wuhan University Tongren Hospital (the Third Hospital of Wuhan), Wuhan 430060, China
| | - Yonggang CHEN
- 4 Laboratory Department, Wuhan Center for Clinical Laboratory, Wuhan 430015, China
| |
Collapse
|
14
|
Vladuti A, Hatami A, Clément A, Mainzer C. A Pilot Study on the Comparative Efficacy and Tolerability of a Novel Dermo-cosmetic Cream with 15% Azelaic Acid for Mild to Moderate Acne: A New Approach to Acne Treatment. Dermatol Ther (Heidelb) 2024; 14:3149-3160. [PMID: 39487327 PMCID: PMC11557742 DOI: 10.1007/s13555-024-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Acne is a one of the most frequent skin conditions among teenagers and young adults. It is currently managed with topical retinoids and antibiotics, which can present numerous side effects, thus reducing treatment adherence and effectiveness. We evaluated the efficacy and tolerability of a novel dermo-cosmetic cream (α-AZ) in treating mild to moderate acne. METHODS Subjects were randomized into three groups: group 1 received α-AZ cream, group 2 was treated with α-AZ combined with an oral acne treatment routine, and group 3 received a topical acne treatment, for 84 days. All treated patients underwent a 28-day maintenance period with α-AZ cream. Total acne and post-inflammatory hyperpigmentation (PIH) scoring, quality of life (QoL), and skin tolerance were all evaluated during the treatment and maintenance periods. RESULTS Acne and PIH lesions significantly decreased in group 1 compared to group 3 (p < 0.001), with a reduction in acne of 66.52 ± 2.92% in group 1 versus 52.55 ± 3.90% in group 3. Patients in group 1 achieved nearly clear skin by the end of the treatment. α-AZ cream treatment was well tolerated and all participants experienced an enhanced QoL. Participants expressed high satisfaction. Additional enhancements in all groups were noted during the maintenance phase across all clinical parameters. CONCLUSION The novel dermo-cosmetic α-AZ cream could serve as a valuable new approach to current treatments for mild and moderate acne. It can be used alone, as a once-daily adjuvant to oral acne treatments, or as part of a maintenance regimen. TRIAL REGISTRATION ISRCTN registry, ISRCTN70142596, registered retrospectively on 11/12/2023.
Collapse
Affiliation(s)
- Aura Vladuti
- , Private Practice, CUI24519243, Strada Octav Cocarascu Nr. 57, Sector 1, Bucharest, Romania
| | - Afshin Hatami
- , Private Practice, CUI 2147847, Bulevardul Ferdinand I, R 12A, 021391, Bucharest, Romania
| | - Amélie Clément
- International Medical Communication, ISISPHARMA, Lyon, France
| | - Carine Mainzer
- Research and Development, ISISPHARMA, Lyon, France.
- Isispharma, Immeuble Le Dauphiné Part-Dieu, 78 Rue de La Villette, 69003, Lyon, France.
| |
Collapse
|
15
|
Stabile M, Fracassi L, Lacitignola L, Garcia-Pedraza E, Girelli CR, Calculli C, D’Uggento AM, Ribecco N, Crovace A, Fanizzi FP, Staffieri F. Effects of a feed supplement, containing undenatured type II collagen (UC II®) and Boswellia Serrata, in the management of mild/moderate mobility disorders in dogs: A randomized, double-blind, placebo controlled, cross-over study. PLoS One 2024; 19:e0305697. [PMID: 39475935 PMCID: PMC11524509 DOI: 10.1371/journal.pone.0305697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/04/2024] [Indexed: 11/02/2024] Open
Abstract
This study was designed as a randomized, placebo-controlled, double-blinded, cross-over trial performed to investigate the effects of a dietary supplement containing undenatured type II collagen (UCII®) and Boswellia Serrata on mobility, pain and joint metabolism in mild moderate osteoarthritis (OA) in dogs. A total of 60 dogs with mobility problems were evaluated and enrolled in the study. Seventeen of these dogs with mild/moderate OA were randomized to receive the product A (UCII® + Boswellia Serrata supplement-UCII®-BW) or product B (Placebo -PL), 1 chew per day for 8 weeks by oral route, and repeated in a crossover design after 4 weeks of washout period. All the subjects had veterinary evaluations during the trial and owners were requested to fill out a questionnaire on mobility impairment using the Liverpool Osteoarthritis in dogs scale (L.O.A.D.) at each time of the study. Objective tools were used to assess mobility, activity, and pain. Metabolomic analysis was performed on synovial fluid of most affected joint at the beginning and the end of the study. The results proved that UCII®+Boswellia serrata supplemented group over a period of eight weeks results in an improvement of mobility impairment, already at 4 weeks of administration, according to the owner´s evaluation. In contrast, its absence increased the risk of OA crisis and decreased the pain threshold on the most affected joint. Furthermore, the synovial fluid metabolic profile showed moderate differences between the beginning and the end of the supplementation period, with a particular influence associated to the time of UCII®-BW administration.
Collapse
Affiliation(s)
- Marzia Stabile
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Laura Fracassi
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Luca Lacitignola
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | | | - Chiara Roberta Girelli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, Lecce, Italia
| | - Crescenza Calculli
- Dipartimento di Economia e Finanza, Università degli Studi di Bari, Bari, Italia
| | | | - Nunziata Ribecco
- Dipartimento di Economia e Finanza, Università degli Studi di Bari, Bari, Italia
| | - Antonio Crovace
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, Lecce, Italia
| | - Francesco Staffieri
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| |
Collapse
|
16
|
Karimi M, Vakili K, Rashidian P, Razavi-Amoli SK, Akhbari M, Kazemi K. Effect of boswellia ( Boswellia serrata L.) supplementation on glycemic markers and lipid profile in type 2 diabetic patients: a systematic review and meta-analysis. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1466408. [PMID: 39449720 PMCID: PMC11499236 DOI: 10.3389/fcdhc.2024.1466408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a significant global health challenge whose prevalence is projected to increase alarmingly. Recently, due to better safety and fewer adverse effects, herbal medicines have been used to manage T2DM. This study aimed to evaluate the efficacy of boswellia in improving glycemic markers and lipid profiles in T2DM patients. Methods A comprehensive search was conducted on the PubMed, Web of Science, and Scopus databases for all relevant studies published up to April 30, 2024. The effects of boswellia supplementation were evaluated using glycemic markers and lipid profiles. The data were extracted and meta-analyzed using Stata software. Results This meta-analysis included five studies with a total of 287 patients with T2DM. It was found that boswellia in patients with T2DM compared to the placebo or control group significantly reduced hemoglobin A1C (HbA1C) (SMD: -1.01; 95%CI: -1.55 to -0.46; P=0.00), total cholesterol (TC) (SMD: -0.44; 95%CI: -0.68 to -0.21; P=0.00), Triglycerides (TG) (SMD: -0.42; 95%CI: -0.66 to -0.19); P=0.00) and low-density lipoprotein (LDL) (SMD: -0.43; 95%CI: -0.73 to -0.12); P=0.006) levels, while reduced fasting blood glucose (FBG) but it was not significant (SMD: -1.34, 95%CI: -2.68 to 0.00; P=0.05). Notably, it did not affect high-density lipoprotein (HDL) (SMD: 0.56, 95%CI: -0.14 to -1.26; P=0.118). Conclusion In summary, boswellia supplementation has the potential to improve glycemic markers and lipid profiles in patients with T2DM. It may help diabetic patients in addition to a controlled diet and other treatments. Systematic review registration crd.york.ac.uk/PROSPERO/display_record.php?RecordID=538347, identifier CRD42024538347.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Rashidian
- Reproductive Health Research Center, School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | - Seyedeh-Kiana Razavi-Amoli
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences (MazUMS), Sari, Iran
| | - Matin Akhbari
- Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Kimia Kazemi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
17
|
Gu X, Zhou H, Miao M, Hu D, Wang X, Zhou J, Teichmann AT, Yang Y, Wang C. Therapeutic Potential of Natural Resources Against Endometriosis: Current Advances and Future Perspectives. Drug Des Devel Ther 2024; 18:3667-3696. [PMID: 39188919 PMCID: PMC11345706 DOI: 10.2147/dddt.s464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Endometriosis (EMS) is defined as the appearance, growth, infiltration, and repeated bleeding of endometrioid tissue (glands and stroma) outside the uterus cavity, which can form nodules and masses. Endometriosis is a chronic inflammatory estrogen-dependent disease and occurs in women of reproductive age. This disorder may significantly affect the quality of life of patients. The pathogenic processes involved in the development and maintenance of endometriosis remain unclear. Current treatment options for endometriosis mainly include drug therapy and surgery. Drug therapy mainly ties to the use of non-steroidal anti-inflammatory drugs (NSAIDs) and hormonal drugs. However, these drugs may produce adverse effects when used for long-term treatment of endometriosis, such as nausea, vomiting gastrointestinal reactions, abnormal liver and kidney function, gastric ulcers, and thrombosis. Although endometriosis lesions can be surgically removed, the disease has a high recurrence rate after surgical resection, with a recurrence rate of 21.5% within 2 years and 40% to 50% within 5 years. Thus, there is an urgent need to develop alternative or additional therapies for the treatment of endometriosis. In this review, we give a systematic summary of therapeutic multiple component prescriptions (including traditional Chinese medicine and so on), bioactive crude extracts of plants/herbs and purified compounds and their newly found mechanisms reported in literature in recent years against endometriosis.
Collapse
Affiliation(s)
- Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Gynaecology and Obstetrics, Leshan People’s Hospital, Leshan, 614003, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinyue Wang
- The Basic Medical College, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, Chengdu Third People’s Hospital, Chengdu, 610014, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Chunyan Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
18
|
Suresh R, Yadalam PK, Ramadoss R, Ramalingam K, Muthukrishnan A. Interactions of Acetyl-11-Keto-Beta-Boswellic Acid on Catechol-O-Methyltransferase in the Management of Masticatory Myofascial Pain Syndrome. Cureus 2024; 16:e68300. [PMID: 39350868 PMCID: PMC11441837 DOI: 10.7759/cureus.68300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Masticatory myofascial pain syndrome (MMPS) is a soft tissue inflammatory disorder that leads to acute or chronic localized pain and stiffness in the muscles. Catechol-O-methyltransferase (COMT) plays a crucial role in mediating pain perceptions in humans by transferring methyl groups to catecholamines. This process requires adequate S-adenosyl methionine (SAMe). A reduction in SAMe leads to COMT inhibition. Boswellia serrata possesses multiple therapeutic benefits and is used for treating chronic pain. AIM The study aimed to evaluate the therapeutic potential of acetyl-11-keto-beta-boswellic acid (AKBA) by targeting COMT. Methodology: Molecular docking and dynamic simulations were conducted using Desmond software from Schrödinger LLC, USA, to evaluate the interaction between COMT protein and AKBA ligands. The COMT protein structure was sourced from the Protein Data Bank and preprocessed using optimized potentials for liquid simulations. Molecular docking identified potential binding sites between COMT and AKBA through hydrogen bonding, resulting in a docking score of -6.0 kcal/mol. RESULTS The molecular docking revealed a docking score of -6.0 kcal/mol for the interaction between COMT and AKBA. The dynamic simulation demonstrated that the COMT-AKBA complex remained stable within a 3.0 Angstrom range over 60 nanoseconds. These findings indicate stable natural small molecular interactions between COMT and AKBA. CONCLUSION AKBA exhibits potential as a therapeutic agent for MMPS, demonstrating stable interactions with COMT. These findings warrant further in vitro and in vivo analyses to confirm efficacy.
Collapse
Affiliation(s)
- Ramya Suresh
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pradeep Kumar Yadalam
- Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramya Ramadoss
- Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvind Muthukrishnan
- Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
19
|
Ibrahim BMM, Darwish AB, Taleb SA, Mourad RM, Yassen NN, Hessin AF, Gad SA, Mohammed MA. Appraisal terpenoids rich Boswellia carterri ethyl acetate extract in binary cyclodextrin oligomer nano complex for improving respiratory distress. Sci Rep 2024; 14:16779. [PMID: 39039094 PMCID: PMC11263383 DOI: 10.1038/s41598-024-66297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Boswellia carterii (BC) resins plants have a long historical background as a treatment for inflammation, as indicated by information originating from multiple countries. Twenty-seven diterpenoids have been identified in ethyl acetate and total methanol BC, comprising seventeen boscartins of the cembrane-type diterpenoids and ten boscartols of the prenylaromadendrane-type diterpenoids. Moreover, twenty-one known triterpenoids have also been found, encompassing nine tirucallane-type, six ursane-type, four oleanane-type, and two lupane-type. The cembrane-type diterpenoids hold a significant position in pharmaceutical chemistry and related industries due to their captivating biological characteristics and promising pharmacological potentials. Extraction of BC, creation and assessment of nano sponges loaded with either B. carterii plant extract or DEX, are the subjects of our current investigation. With the use of ultrasound-assisted synthesis, nano sponges were produced. The entrapment efficiency (EE%) of medications in nano sponges was examined using spectrophotometry. Nano sponges were characterized using a number of methods. Within nano sponges, the EE% of medicines varied between 98.52 ± 0.07 and 99.64 ± 1.40%. The nano sponges' particle sizes varied from 105.9 ± 15.9 to 166.8 ± 26.3 nm. Drugs released from nano sponges using the Korsmeyer-Peppas concept. In respiratory distressed rats, the effects of BC plant extract, DEX salt and their nano formulations (D1, D5, P1 and P1), were tested. Treatment significantly reduced ICAM-1, LTB4, and ILβ 4 levels and improved histopathologic profiles, when compared to the positive control group. Boswellia extract and its nano sponge formulation P1 showed promising therapeutic effects. The effect of P1 may be due to synergism between both the extract and the formulation. This effect was achieved by blocking both ICAM-1 and LTB4 pathways, therefore counteracting the effects of talc powder.
Collapse
Affiliation(s)
- Bassant M M Ibrahim
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Asmaa Badawy Darwish
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt.
| | - Sally Abou Taleb
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Reda M Mourad
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt
| | - Noha Nazeeh Yassen
- Pathology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Alyaa F Hessin
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Shaimaa A Gad
- Pharmacology Department, Medical and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mona A Mohammed
- Pharmaceutical Technology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza, 12622, Egypt.
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt.
| |
Collapse
|
20
|
Finsterer J. Boswellia serrata intoxication manifesting with syndrome of inappropriate antidiuretic hormone secretion, hyponatremia, seizure, and rhabdomyolysis. CRITICAL CARE SCIENCE 2024; 36:e20240049en. [PMID: 38922237 PMCID: PMC11152439 DOI: 10.62675/2965-2774.20240049-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
Boswellia serrata is an herbal extract from the Boswellia serrata tree that has anti-inflammatory and analgesic properties and alleviates pain caused by rheumatoid arthritis, gout, osteoarthritis, and sciatica. Syndrome of inappropriate antidiuretic hormone secretion accompanied by hyponatremia, seizures, and rhabdomyolysis as a manifestation of Boswellia serrata intoxication has not been reported previously. A 38-year-old female suffered clinically isolated syndrome and has since been regularly taking B. serrata capsules (200mg/d) to strengthen her immune system. She experienced hypersensitivity to light, ocular pain, nausea, dizziness, and lower limb weakness four days after receiving her first BNT162b2 vaccine dose, and she increased the dosage of B. serrata to five capsules (1000mg/d) one week after vaccination. After taking B. serrata at a dosage of 1000mg/d for 3 weeks, she was admitted to the intensive care unit because of a first, unprovoked generalized tonic-clonic seizure. The patient's workup revealed syndrome of inappropriate antidiuretic hormone secretion, which resolved completely upon treatment and discontinuation of B. serrata. In summary, B. serrata potentially causes syndrome of inappropriate antidiuretic hormone secretion when it is taken at high doses. Patients should not self-medicate.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology and Neurophysiology CenterViennaAustriaNeurology and Neurophysiology Center - Vienna, Austria.
| |
Collapse
|
21
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
22
|
Mumaw DA, Nassif TM, Witsil MA, Deraniyagala RL. Boswellia serrata Enhances Passive Range-of-Motion Exercises in Radiation-Induced Trismus: A Case Report. Cureus 2024; 16:e58234. [PMID: 38745799 PMCID: PMC11092424 DOI: 10.7759/cureus.58234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 05/16/2024] Open
Abstract
Trismus is a common, extremely detrimental side effect following definitive radiotherapy for head and neck malignancies. Existing therapeutic modalities (active and passive range-of-motion exercises and systemic therapies) offer only modest, slow improvements in jaw opening; thus, there is a need for additional treatment options. Boswellia serrata (BS) ("Indian frankincense") is a tree native to West Asia and North Africa that produces resin-containing "boswellic" acids. These have been shown to have in vitro and in vivo anti-inflammatory effects and have previously been found to be an effective treatment for asthma, colitis, arthritis, and post-radiation edema. Herein we report the case of a 54-year-old male with severe post-radiation trismus who experienced a dramatic resolution with BS/Therabite® combination therapy. His trismus improved from 6 mm to 45 mm over 10 weeks (0.46 mm/day), far exceeding previous rates of improvement documented in the literature. There were no ill effects. Given the dearth of effective treatments for post-radiation trismus, BS is a promising agent deserving of further study.
Collapse
Affiliation(s)
- Derek A Mumaw
- Radiation Oncology, Beaumont Hospital, Royal Oak, USA
| | | | | | | |
Collapse
|
23
|
Vang D, Moreira-Souza ACA, Zusman N, Moncada G, Matshik Dakafay H, Asadi H, Ojcius DM, Almeida-da-Silva CLC. Frankincense ( Boswellia serrata) Extract Effects on Growth and Biofilm Formation of Porphyromonas gingivalis, and Its Intracellular Infection in Human Gingival Epithelial Cells. Curr Issues Mol Biol 2024; 46:2991-3004. [PMID: 38666917 PMCID: PMC11049348 DOI: 10.3390/cimb46040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Frankincense is produced by Boswellia trees, which can be found throughout the Middle East and parts of Africa and Asia. Boswellia serrata extract has been shown to have anti-cancer, anti-inflammatory, and antimicrobial effects. Periodontitis is an oral chronic inflammatory disease that affects nearly half of the US population. We investigated the antimicrobial effects of B. serrata extract on two oral pathogens associated with periodontitis. Using the minimum inhibitory concentration and crystal violet staining methods, we demonstrated that Porphyromonas gingivalis growth and biofilm formation were impaired by treatment with B. serrata extracts. However, the effects on Fusobacterium nucleatum growth and biofilm formation were not significant. Using quantification of colony-forming units and microscopy techniques, we also showed that concentrations of B. serrata that were not toxic for host cells decreased intracellular P. gingivalis infection in human gingival epithelial cells. Our results show antimicrobial activity of a natural product extracted from Boswellia trees (B. serrata) against periodontopathogens. Thus, B. serrata has the potential for preventing and/or treating periodontal diseases. Future studies will identify the molecular components of B. serrata extracts responsible for the beneficial effects.
Collapse
Affiliation(s)
- David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Aline Cristina Abreu Moreira-Souza
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Nicholas Zusman
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - German Moncada
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Harmony Matshik Dakafay
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| | - Cassio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (D.V.); (A.C.A.M.-S.); (G.M.); (H.M.D.); (H.A.); (D.M.O.)
| |
Collapse
|
24
|
Kosolapov D, Jáč P, Riasová P, Poušková J, Polášek M, Nováková L. Advances and Challenges in the Analysis of Boswellic Acids by Separation Methods. Crit Rev Anal Chem 2024:1-27. [PMID: 38462842 DOI: 10.1080/10408347.2024.2312502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.
Collapse
Affiliation(s)
- Dmytro Kosolapov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Jáč
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Riasová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jitka Poušková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miroslav Polášek
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
26
|
Rao H, Maurya A, Kumar Raidas H, Koram B, Kumar Goswami R, Singh Rajpoot V, Khute S, Subash P, Chandra Mandal S, Saha S, Rao Kareti S. In Silico Exploration of Potential Phytoconstituents from the Bark Extract of Boswellia serrata for Hemorrhoidal Disease: Molecular Docking and Molecular Dynamics Analysis. Chem Biodivers 2024; 21:e202301416. [PMID: 38078787 DOI: 10.1002/cbdv.202301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/03/2023] [Indexed: 02/22/2024]
Abstract
Boswellia serrata Roxb. Ex Colebr is a popular medicinal plant used traditionally in herbal medicinal preparations to treat a variety of diseases. The purpose of the present investigation was to investigate the anti-hemorrhoidal property of the bark extract of B. serrata (BS). For this, the sequential Soxhlet extraction method was carried out by using different solvents such as hexane, chloroform, and methanol. After the extraction, the obtained dry extracts were tested for quantitative determinations such as total alkaloid content (TAC), total flavonoid content (TFC), total phenol content (TPC), and total tannin content (TTC) for all the extracts. Moreover, in vitro antioxidant activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and scavenging activity against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). Methanolic bark extract showed the highest TPC (67.10±1.83), TFC (372.73±4.45), TAC (9.732±1.06), and TTC (48.932±1.82), as well as the antioxidant assays DPPH (IC50=9.88 μg/ml) and ABTS (IC50=15.09 μg/ml). In this study, both LC-MS and GC-MS were performed to identify the chemical composition of all the extracts. Consequently, 19 compounds were identified by GC-MS and 27 compounds were identified by LC-MS analysis. The identified phytoconstituent(s) that could potentially interact with the target protein cyclooxygenase-2 (COX-2) (PDB: 4RRW) using molecular dynamics simulation and in silico docking were studied. Three compounds that have passed in drug-likeness and ADME-Tox properties are having more docking score than the standard. In this study, camptothecin, justicidin B, and taxiphyllin are identified as potential lead compounds with anti-hemorrhoidal properties and may be helpful in the process of drug development and discovery of novel drugs. Hence, these results demonstrate that BS is a good source of pharmacologically active components with potential applications against hemorrhoidal disease.
Collapse
Affiliation(s)
- Harshawardhan Rao
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Aryan Maurya
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Hemant Kumar Raidas
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Bholeshankar Koram
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Rohit Kumar Goswami
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Vivek Singh Rajpoot
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| | - Sulekha Khute
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, Chhattisgarh, India
| | - Paranthaman Subash
- Department of Pharmacognosy, Sri Shanmugha College of Pharmacy, 637304, Sankari, Salem District, Tamilnadu, India
| | - Subhash Chandra Mandal
- Pharmacognosy & Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, 700032, Kolkata, India
| | - Subham Saha
- Pharmacognosy & Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, 700032, Kolkata, India
| | - Srinivasa Rao Kareti
- Department of Pharmacy, Indira Gandhi National Tribal University, 484887, Amarkantak, Anuppur District, Madhya Pradesh, India
| |
Collapse
|
27
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
28
|
Nooreen Z, Wal P, Summaiyya F. A Systemic Review on Nutraceutical Supplements used in the Management of Osteoarthritis. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:33-45. [PMID: 38258782 DOI: 10.2174/012772574x270405231102054920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease. It basically impairs the structural integrity of articulate cartilage and imbalances the catabolic and anabolic signals in the joint. A degenerative disease is characterized by swelling, pain, and joint stiffness. The treatment and management of osteoarthritis are based on analgesic and anti-inflammatory agents, whereas the exact cause of OA is not known yet. The negative effects of synthetic medications have led to a daily rise in the usage of nutraceuticals and dietary supplements. Clinicians are aware of these treatments, and they also recommend nutraceuticals in addition to the currently preferred therapy. Many in-vitro and in-vivo experiments have been performed in past years to evaluate the function of these on osteoarthritis. The collection of articles was published on search engines like PubMed, Scopus, Google Scholar, ResearchGate, and ScienceDirect. The evaluation covers every potential nutraceutical utilized in osteoarthritis, together with its supporting data and mode of action. The present review discusses nutraceuticals, including devil's claw, vitamin D, boswellic acid, capsaicin, ginger, curcumin, krill oil, ginger, and avocado/soybean unsaponifiable.
Collapse
Affiliation(s)
- Zulfa Nooreen
- Department of Pharmacy, PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Pranay Wal
- Department of Pharmacy, PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Fariha Summaiyya
- Department of Biotechnology, Integral Informatic and Research Center-1 (IIRC-1) Intergral University Lucknow Uttar Pradesh-226026, India
| |
Collapse
|
29
|
Yang YH, Li W, Ren LW, Yang H, Zhang YZ, Zhang S, Hao Y, Yu DK, Tong RS, Du GH, Shi JY, Wang JH. S670, an amide derivative of 3-O-acetyl-11-keto-β-boswellic acid, induces ferroptosis in human glioblastoma cells by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome. Acta Pharmacol Sin 2024; 45:209-222. [PMID: 37749236 PMCID: PMC10770369 DOI: 10.1038/s41401-023-01157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-β-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 μM. Furthermore, we found that S670 (6 μM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.
Collapse
Affiliation(s)
- Yi-Hui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Wen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Zhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rong-Sheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jian-You Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
30
|
Apurba G. Investigation of outcome measures and anomalous lower extremity in osteoarthritis patients with Jumpstart nutrition® supplementation. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:1-27. [PMID: 38463924 PMCID: PMC10921115 DOI: 10.22088/cjim.15.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 03/12/2024]
Abstract
Background Osteoarthritis (OA) is characterized by cartilage and synovial inflammation as well as anomalous lower extremity leading to joint pain, and impairment in lifestyle and epidemic of obesity. This study aimed to use the Jumpstart Nutrition® supplement (JNS) for achieving symmetry of aberrant lower extremity and improving the outcome measures in the management of OA. Methods This week-twelve registry included 108 patients treated with JNS mainly comprised of calcium, phosphorus, magnesium, vitamin-K2, coenzyme-Q10, vitamin-C, boswellic acids, and curcumin mixed with soy and whey proteins (experimental group) and 72 were treated with symptomatic slow-acting drugs (control group) for chronic OA confirmed with radiological images. The outcome measures (Visual analogue scale, Western Ontario and McMaster Universities Osteoarthritis Index, Knee-injury Osteoarthritis Outcomes Scale, and Body mass index), and anomalous lower extremity included bilateral: knee gaps between biceps femoris-short head and surface of the bed, diameters of muscles at the calf, the thigh, 4cm above and below the patella, angles of straight leg raising, knee- flexion and-extension in supine were evaluated with appropriate protocol at week-0 and at week-12 for both the groups. Results After week-12, risk ratios of studied lower extremity, and mean ±standard deviation of all outcome measures were significantly improved (p<0.0001), and Kellgren-Lawrence scale (KLS) was upgraded to ≥2 in experimental group compared to control. Conclusions This registry study indicates that JNS can be used to achieve symmetry of studied lower extremity and to improve the outcome measures safely as an effective management of OA patients confirmed with radiological images correlated with KLS.
Collapse
Affiliation(s)
- Ganguly Apurba
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| |
Collapse
|
31
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
32
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
33
|
Pham TX, Huynh TTX, Kim B, Lim YS, Hwang SB. A natural product YSK-A blocks SARS-CoV-2 propagation by targeting multiple host genes. Sci Rep 2023; 13:21489. [PMID: 38057373 PMCID: PMC10700534 DOI: 10.1038/s41598-023-48854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Natural products and herbal medicine have been widely used in drug discovery for treating infectious diseases. Recent outbreak of COVID-19 requires various therapeutic strategies. Here, we used YSK-A, a mixture of three herbal components Boswellia serrata, Commiphora myrrha, and propolis, to evaluate potential antiviral activity against SARS-CoV-2. We showed that YSK-A inhibited SARS-CoV-2 propagation with an IC50 values of 12.5 µg/ml and 15.42 µg/ml in Vero E6 and Calu-3 cells, respectively. Using transcriptome analysis, we further demonstrated that YSK-A modulated various host gene expressions in Calu-3 cells. Among these, we selected 9 antiviral- or immune-related host genes for further study. By siRNA-mediated knockdown experiment, we verified that MUC5AC, LIF, CEACAM1, and GDF15 host genes were involved in antiviral activity of YSK-A. Therefore, silencing of these genes nullified YSK-A-mediated inhibition of SARS-CoV-2 propagation. These data indicate that YSK-A displays an anti-SARS-CoV-2 activity by targeting multiple antiviral genes. Although the exact antiviral mechanism of each constituent has not been verified yet, our data indicate that YSK-A has an immunomodulatory effect on SARS-CoV-2 and thus it may represent a novel natural product-derived therapeutic agent for treating COVID-19.
Collapse
Affiliation(s)
- Thuy X Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Trang T X Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea.
| |
Collapse
|
34
|
Singer L, Bourauel C. Herbalism and glass-based materials in dentistry: review of the current state of the art. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:60. [PMID: 37962680 PMCID: PMC10645656 DOI: 10.1007/s10856-023-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Half a million different plant species are occurring worldwide, of which only 1% has been phytochemically considered. Thus, there is great potential for discovering novel bioactive compounds. In dentistry, herbal extracts have been used as antimicrobial agents, analgesics, and intracanal medicaments. Glass-ionomer cement (GIC) and bioactive glass (BAG) are attractive materials in dentistry due to their bioactivity, adhesion, and remineralisation capabilities. Thus, this review summarizes the evidence around the use of phytotherapeutics in dental glass-based materials. This review article covers the structure, properties, and clinical uses of GIC and BAG materials within dentistry, with an emphasis on all the attempts that have been made in the last 20 years to enhance their properties naturally using the wisdom of traditional medicines. An extensive electronic search was performed across four databases to include published articles in the last 20 years and the search was concerned only with the English language publications. Publications that involved the use of plant extracts, and their active compounds for the green synthesis of nanoparticles and the modification of GIC and BAG were included up to May 2023. Plant extracts are a potential and effective candidate for modification of different properties of GIC and BAG, particularly their antimicrobial activities. Moreover, natural plant extracts have shown to be very effective in the green synthesis of metal ion nanoparticles in an ecological, and easy way with the additional advantage of a synergistic effect between metal ions and the phytotherapeutic agents. Medicinal plants are considered an abundant, cheap source of biologically active compounds and many of these phytotherapeutics have been the base for the development of new lead pharmaceuticals. Further research is required to assess the safety and the importance of regulation of phytotherapeutics to expand their use in medicine.
Collapse
Affiliation(s)
- Lamia Singer
- Oral Technology, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany.
- Department of Orthodontics, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany.
| | - Christoph Bourauel
- Oral Technology, University Hospital Bonn, 53111, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
35
|
Pei W, Huang Y, Qu Y, Cui X, Zhou L, Yang H, Zhao M, Zhang Z, He F, Zhou H. A strategy for quality evaluation of complex herbal preparations based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography characteristic fingerprint combined with chemometric method: Sanwujiao Pills as an example. Heliyon 2023; 9:e22098. [PMID: 38053910 PMCID: PMC10694152 DOI: 10.1016/j.heliyon.2023.e22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
To rapidly evaluate the quality of complex herbal preparations, a new strategy was proposed based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography (HPTLC) characteristic fingerprint combined with chemometric method. Firstly, effective components were screened through high-performance liquid chromatography with ultraviolet detection and evaporative light-scattering (HPLC-UV-ELSD), using multi-wavelength fusion combined with network pharmacology and molecular docking techniques. Subsequently, guided by the effective components, the targeted HPTLC characteristic fingerprint was established by multi-color scale scanning. Finally, combined with the chemometric method, the consistency of the preparation quality was evaluated, the marker components leading to quality differences were screened, and the quality control limit was established. Sanwujiao Pills (SWJPs) is a herbal preparation composed of six herbs for treating rheumatoid arthritis (RA). Through this strategy, four HPTLC characteristic fingerprints were established, they were derived from five herbs and guided by eight effective components in SWJPs. Through similarity, clustering heatmap, principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA), the quality distinctions among the 12 batches of SWJPs were determined. These batches were categorized into two groups based on their production time, and eight components affecting the quality of the preparation were identified. Meanwhile, the quality control threshold for SWJPs was determined based on Hotelling's T2 and DModX methods. This strategy aims to rapidly evaluate the quality of complex herbal preparations by HPTLC and extends the application of HPTLC fingerprint chromatography for identifying herbal medicine species and activity-related quality detection. The proposed strategy is also helpful for the quality control of other complex herbal preparations.
Collapse
Affiliation(s)
- Wenhan Pei
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, PR China
| | - Yufeng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuan Qu
- School of Life Sciences, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Xiuming Cui
- School of Life Sciences, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Liqin Zhou
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Hongfang Yang
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Mingshun Zhao
- Yunnan Jinwu Black Medicine Pharmaceutical Co. Ltd., Huize, Yunnan, 654200, PR China
| | - Zhifeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, PR China
| | - Fan He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
36
|
Cherepanova MO, Subotyalov MA. Component Composition and Biological Activity of Oleo-Gum Resin from Boswellia serrata (Burseraceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 512:336-342. [PMID: 38087024 DOI: 10.1134/s0012496623700643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023]
Abstract
The review summarizes the published data on identification of biologically active compounds (BACs) and the pharmacological potential of various components of oleo-gum resin from the Indian frankincense Boswellia serrata Roxb. ex Colebr. Boswellia oleo-gum resin contains a wide range of BACs from the classes of mono-, sesqui-, di-, and triterpenes. Numerous in vivo and in vitro studies demonstrated their anti-inflammatory and antiproliferative effects. Boswellic acids (BAs), which belong to the tetra- and pentacyclic triterpenoid classes, showed the highest anti-inflammatory activity. The frankincense resin is traditionally used in Ayurvedic and Unani medicine and can provide a promising source to design drugs effective in treating musculoskeletal disorders.
Collapse
Affiliation(s)
- M O Cherepanova
- Novosibirsk State Pedagogical University, Novosibirsk, Russia
| | - M A Subotyalov
- Novosibirsk State Pedagogical University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
37
|
Trivedi MK, Branton A, Trivedi D, Sharma T, Mondal S, Jana S. Simultaneous identification and quantification of pentacyclic triterpenoids and phenolic compounds from the leaves of Boswellia serrata using LC-MS/MS tandem mass spectrometry. ANAL SCI 2023; 39:1741-1756. [PMID: 37386278 DOI: 10.1007/s44211-023-00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Boswellia serrata (B. serrata) is an important medicinal plant widely used as dietary supplements to provide a support for osteoarthritic and inflammatory diseases. The occurrence of triterpenes in leaves of B. serrata is very little or none. Therefore, the qualitative and quantitative determination of phytoconstituents (triterpenes and phenolics) present in the leaves of B. serrata is very much needed. The aim of this study was to develop an easy, rapid, efficient and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method for the identification and quantification of the compounds present in the leaves extract of B. serrata. The purification of ethyl acetate extracts of B. serrata was performed by solid phase extraction method, followed by HPLC-ESI-MS/MS analysis. Chromatographic parameters of the analytical method included negative electrospray ionization (ESI-) with a flow of 0.5 mL/min in gradient mode consisting of acetonitrile (A) and water (B) containing 0.1% formic acid, at 20 °C. Total 19 compounds (13 triterpenes and 6 phenolic compounds) were separated, and simultaneously quantified using a validated LC-MS/MS method with high accuracy and sensitivity. Good linearity was obtained with r2 > 0.973 in the calibration range. The overall recoveries were in a range between 95.78 and 100.2% with relative standard deviations (RSD) below 5% for the entire procedure of matrix spiking experiments. Overall, there was no ion suppression from the matrix. The quantification data showed that the total amount of triterpenes and phenolic compounds in the leaves of B. serrata ethyl acetate extract samples ranged from 14.54 to 102.14 mg/g and 2.14 to 93.12 mg/g of dry extract, respectively. This work provides, for the first time, a chromatographic fingerprinting analysis on the leaves of B. serrata. A rapid, efficient, and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and used for the both identification and quantification of triterpenes and phenolic compounds in the leaves extracts of B. serrata. The method established in this work can be used as quality-control method for other market formulations or dietary supplements containing leaf extract of B. serrata.
Collapse
Affiliation(s)
| | | | | | | | - Sambhu Mondal
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, Maharashtra, India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, Maharashtra, India.
| |
Collapse
|
38
|
Gabriel T, Klose P. [Complementary methods in the treatment of complex regional pain syndrome]. Schmerz 2023; 37:330-335. [PMID: 37268791 DOI: 10.1007/s00482-023-00724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) affects 10-15% of patients following injuries (fractures, surgery) to the outer extremities and people after a stroke. The affected area hurts, is inflamed and lacks strength, while mobility and sensitivity are restricted. Complementary medicine as part of integrative medicine offers additional effective treatment options. RESEARCH QUESTION Complementary therapies that extend the guideline recommendations, demonstrate clinical evidence and/or are plausible are presented. RESULTS Mind-body medicine procedures (mindfulness, relaxation, yoga, Qi Gong, etc.) support the patient's self-efficacy and stimulate the vagus nerve as well as promoting the reduction of pain, depression and anxiety and improving quality of life. Phytotherapeutics such as turmeric or stinging nettle have an anti-inflammatory effect. Water treatments reduce pain, and acupuncture and neural therapy can be tried. CONCLUSIONS Integrative, complementary medical therapy options support the CRPS patient in coping with their disease and the related pain. These options can play an important role in the multimodal, interdisciplinary treatment of this disease.
Collapse
Affiliation(s)
- T Gabriel
- Klinik für Naturheilkunde & Integrative Medizin, KEM | Evang. Kliniken Essen-Mitte, Am Deimelsberg 34a, 45276, Essen, Deutschland.
| | - P Klose
- Klinik für Naturheilkunde & Integrative Medizin, KEM | Evang. Kliniken Essen-Mitte, Am Deimelsberg 34a, 45276, Essen, Deutschland
| |
Collapse
|
39
|
Kim J, Eun S, Jung H, Kim J, Kim J. Boswellia serrata Extracts Ameliorates Symptom of Irregularities in Articular Cartilage through Inhibition of Matrix Metalloproteinases Activation and Apoptosis in Monosodium-Iodoacetate-Induced Osteoarthritic Rat Models. Prev Nutr Food Sci 2023; 28:285-292. [PMID: 37842260 PMCID: PMC10567603 DOI: 10.3746/pnf.2023.28.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 10/17/2023] Open
Abstract
The research examined the effects of Boswellia serrata extracts (BSE) on a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). The severity and progression of MIA-induced osteoarthritis were assessed using microcomputed tomography imaging. Additionally, the study investigated the impact of BSE various the biomarkers associated with osteoarthritis, including anabolic and catabolic factors, pro-inflammatory factors, and apoptosis factors. The evaluation methods employed included western blot, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction analysis in osteoarthritic rats. Supplementing osteoarthritic rats with BSE reduced tissue injury, cartilage destruction, and decreased in MIA-induced roughness on the articular cartilage surface. MIA-treated rats exhibited increased expressions of phosphorylation of Smad3, MMPs, p-IκB, p-NF-κB, and pro-inflammatory factors (IL-1β, IL-6, TNF-α, and COX-2), which were mitigated by BSE supplementation. Furthermore, protein expressions related to apoptosis pathways were significantly reduced in MIA-induced rats supplemented with BSE. These findings suggested that BSE ingestion may enhance the inflammatory response, decrease JNK-dependent MMPs activation, and alleviate caspase-3-dependent apoptosis in MIA-induced osteoarthritic rat models. Consequently, BSE exhibits potential as a therapeutic agent for treating osteoarthritis.
Collapse
Affiliation(s)
- Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 08, Korea
| | - Sangwon Eun
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 08, Korea
| | | | | | - Jinkyung Kim
- Department of Food Innovation and Health, Kyung Hee University, Gyeonggi 17104, Korea
| |
Collapse
|
40
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
41
|
Kazemi S, Marefati N, Beheshti F, Salmani H, Bigham M, Hosseini M. The effect of olibanum on the rats with memory deficit induced by scopolamine. Cent Nerv Syst Agents Med Chem 2023; 23:CNSAMC-EPUB-134227. [PMID: 37680155 DOI: 10.2174/1871524923666230901142436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Oxidative stress is an important contributor to Alzheimer's disease. Olibanum has therapeutic effects on various diseases. The effect of Olibanum on memory deficit induced by scopolamine (Sco) was challenged. METHODS Four groups were considered as (1) control (2) Sco, (3-4) Sco - Olib 100 and 200 mg/kg. Treatment by Olib or vehicle was done for two weeks. The third week was accompanied by the Morris water maze (MWM) and passive avoidance (PA) with Sco injection. On the last day, the brain and hippocampus were used for evaluation of the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and a total thiol group. RESULTS Sco increased the traveled time and distance to reach the hidden platform during five days of learning (p<0.01 - p<0.001) whereas it decreased the traveled time and distance (p<0.05- p<0.01) in the target area during the probe test of MWM. Sco also decreased delay time in the PA test (P<0.05 - P<0.001). Sco also decreased CAT, SOD, and thiol, whereas it, increased MDA in both the cortex and hippocampus (p<0.01 - p<0.001). Olib attenuated the impaired performance of the rats induced by Sco in MWM and PA tests. Olib reversed the increasing effects of Sco on MDA in both cortex and hippocampus and also reversed the attenuating effects of Sco on CAT, SOD, and thiol. CONCLUSION Olib had an inhibitory effect on memory deficit induced by Sco probably through its anti-oxidant property.
Collapse
Affiliation(s)
- Sara Kazemi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Maryam Bigham
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Faizal Abdull Razis A, Modu B, Butnariu M, Sharifi-Rad J. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 2023; 14:1187181. [PMID: 37601048 PMCID: PMC10434769 DOI: 10.3389/fphar.2023.1187181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of highly effective plant-based medications with few or no side effects, the use of phytomedicines against complex diseases such as cancer is becoming more widespread. The broadly recognized pentacyclic triterpenes known as boswellic acids (BAs) are derived from the oleogum resin, or frankincense, extracted from the plant species of the genus Boswellia. The frankincense mixture contains various BA types, each having a different potential and helping treat certain cancers. This review focuses on details regarding the traits of the BAs, their roles as anti-cancer agents, the mechanism underlying their activities, and the function of their semi-synthetic derivatives in managing and treating certain cancers. The review also explores the biological sources of BAs, how they are conserved, and how biotechnology might help preserve and improve in vitro BA production. The review concludes that the BAs and their semi-synthetic derivatives are effective against a broad spectrum of cancer cell lines. The detailed information in the review can be helpful for researchers to gain more information about BAs and BA-based medications for efficient and cost-effective cancer treatments.
Collapse
Affiliation(s)
- Vijay Laxmi Trivedi
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Ruchi Soni
- Regional Centre for Organic and Natural Farming, Ghaziabad, Uttar Pradesh, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Sureda
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, Palma de Mallorca, Spain
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” From Timisoara, Timis, Romania
| | | |
Collapse
|
43
|
Yang Y, Guo Y, Luo H, Wang M, Chen F, Cui H, Chen P, Yin Z, Li L, Dai Y, Zeng J, Zhao J. Metabolomics-based discovery of XHP as a CYP3A4 inhibitor against pancreatic cancer. Front Pharmacol 2023; 14:1164827. [PMID: 37081969 PMCID: PMC10110895 DOI: 10.3389/fphar.2023.1164827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Xihuang Wan (XHW), a purgative and detoxifying agent, is commonly utilized in modern medicine as a treatment and adjuvant therapy for various malignancies, including breast cancer, liver cancer, and lung cancer. A clinical study demonstrated the potential usefulness of the combination of XHW and gemcitabine as a therapy for pancreatic cancer (PC), indicating that XHW’s broad-spectrum antitumor herbal combination could be beneficial in the treatment of PC. However, the precise therapeutic efficacy of XHW in treating pancreatic cancer remains uncertain.Aim: This study assessed the biological activity of XHW by optimizing the therapeutic concentration of XHW (Xihuang pills, XHP). We performed cell culture and developed an animal test model to determine whether XHP can inhibit pancreatic cancer (PC). We also applied the well-known widely targeted metabolomics analysis and conducted specific experiments to assess the feasibility of our method in PC therapy.Materials and Methods: We used UPLC/Q-TOF-MS to test XHP values to set up therapeutic concentrations for the in vivo test model. SW1990 pancreatic cancer cells were cultured to check the effect the anti-cancer effects of XHP by general in vitro cell analyses including CCK-8, Hoechst 33258, and flow cytometry. To develop the animal model, a solid tumor was subcutaneously formed on a mouse model of PC and assessed by immunohistochemistry and TUNEL apoptosis assay. We also applied the widely targeted metabolomics method following Western blot and RT-PCR to evaluate multiple metabolites to check the therapeutic effect of XHP in our cancer test model.Results: Quantified analysis from UPLC/Q-TOF-MS showed the presence of the following components of XHP: 11-carbonyl-β-acetyl-boswellic acid (AKBA), 11-carbonyl-β-boswellic acid (KBA), 4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo [5.2.0]nonane, and (1S-endo)-2-methyl-3-methylene-2-(4-methyl-3-3-pentenyl)-bicyclo [2.2.1heptane]. The results of the cell culture experiments demonstrated that XHP suppressed the growth of SW1990 PC cells by enhancing apoptosis. The results of the animal model tests also indicated the suppression effect of XHP on tumor growth. Furthermore, the result of the widely targeted metabolomics analysis showed that the steroid hormone biosynthesis metabolic pathway was a critical factor in the anti-PC effect of XHP in the animal model. Moreover, Western blot and RT-PCR analyses revealed XHP downregulated CYP3A4 expression as an applicable targeted therapeutic approach.Conclusion: The results of this study demonstrated the potential of XHP in therapeutic applications in PC. Moreover, the widely targeted metabolomics method revealed CYP3A4 is a potential therapeutic target of XHP in PC control. These findings provide a high level of confidence that XHP significantly acts as a CYP3A4 inhibitor in anti-cancer therapeutic applications.
Collapse
Affiliation(s)
- Yuting Yang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Huawei Cui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| | - Junning Zhao
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Jin Zeng, ; Junning Zhao,
| |
Collapse
|
44
|
Khoramjouy M, Bayanati M, Noori S, Faizi M, Zarghi A. Effects of Ziziphus Jujuba Extract Alone and Combined with Boswellia Serrata Extract on Monosodium Iodoacetate Model of Osteoarthritis in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e134338. [PMID: 36896317 PMCID: PMC9990515 DOI: 10.5812/ijpr-134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Background As a chronic joint condition, osteoarthritis (OA) is a common problem among older people. Pain, aching, stiffness, swelling, decreased flexibility, reduced function, and disability are the symptoms of arthritis. Objectives In this study, we tested the extracts of Ziziphus jujuba (ZJE) and Boswellia serrata (BSE) to reduce OA symptoms as an alternative treatment. Methods NMRI mice were administered an intra-articular injection of monosodium iodoacetate (MIA; 1 mg/10 mL) in the left knee joint cavity for the induction of OA. Hydroalcoholic extracts of ZJE (250 and 500 mg/kg), BSE (100 and 200 mg/kg), and combined ZJE and BSE were orally administered daily for 21 days. Following behavioral tests, plasma samples were collected to detect inflammatory factors. To screen for general toxicity, acute oral toxicity was evaluated. Results Oral administration of all the hydroalcoholic extracts significantly increased the locomotor activity, pixel values of the foot-print area, paw withdrawal threshold, the latency of the withdrawal response to heat stimulation, and decreased the difference between pixel values of hind limbs compared to the vehicle group. Also, the elevated levels of IL-1β, IL-6, and TNF-α were reduced. As tested in this study, ZJE and BSE were practically nontoxic and had a high degree of safety. Conclusions This study demonstrated that the oral administration of ZJE and BSE slows the progression of OA through anti-nociceptive and anti-inflammatory properties. Oral co-administration of ZJE and BSE extracts can be used as herbal medicine to inhibit OA progression.
Collapse
Affiliation(s)
- Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Karbalaiee M, Daneshpajooh A, Khanjani N, Sohbati S, Mehrabani M, Mehrbani M, Mehrabani M. Efficacy of frankincense‐based herbal product in urinary incontinence: A randomized, double‐blind, placebo‐ and active‐controlled clinical trial. Phytother Res 2022; 37:1754-1770. [PMID: 36442480 DOI: 10.1002/ptr.7691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
Abstract
Urinary incontinence is a silent epidemic that has a serious impact on a person's quality of life (QOL). This study aimed to evaluate the efficacy of frankincense-based herbal product (FHP) in urinary incontinence compared with placebo and solifenacin. In this randomized, double-blind clinical trial, 120 postmenopausal women with mixed urinary incontinence were randomized to one of the three groups of FHP, placebo, and standard treatment (solifenacin). Frequency, amount of leakage, and score of urinary incontinence as well as the QOL were measured at the end of the second and fourth weeks and 2 weeks after the interruption of the treatment. The ICIQ-UI SF and I-QOL questionnaires were used for the measurements. Mean frequency of urinary incontinence and amount of leakage significantly decreased in the FHP and solifenacin groups in the fourth week compared to the placebo group. In addition, 2 weeks after treatment completion, the effects of the FHP were significant compared to the solifenacin group. Due to the effect of FHP on improving the QOL and also the prolonged effect of this drug, the use of FHP in urinary incontinence, as a complementary treatment could be suggested.
Collapse
Affiliation(s)
- Mahbubeh Karbalaiee
- Physiology Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
- Department of Traditional Medicine, Faculty of Persian Medicine Kerman University of Medical Sciences Kerman Iran
| | - Azar Daneshpajooh
- Department of Urology, Shahid Bahonar Hospital Kerman University of Medical Sciences Kerman Iran
| | - Narges Khanjani
- Neurology Research Center Kerman University of Medical Sciences Kerman Iran
| | - Samira Sohbati
- Department of Obstetrics and Gynecology, Clinical Research Development Unit, Afzalipour Hospital Kerman University of Medical Sciences Kerman Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center Kerman University of Medical Sciences Kerman Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
46
|
Gaylis NB, Kreychman I, Sagliani J, Mograbi J, Gabet Y. The results of a unique dietary supplement (nutraceutical formulation) used to treat the symptoms of long-haul COVID. Front Nutr 2022; 9:1034169. [PMID: 36386945 PMCID: PMC9641293 DOI: 10.3389/fnut.2022.1034169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2025] Open
Abstract
Long-COVID is a syndrome characterized by debilitating symptoms that persist over 3 months after infection with the SARS-CoV-2 virus. It affects 15 to 33% of COVID-19 recovered patients and has no dedicated treatment. First, we found that β-caryophyllene and pregnenolone have a significant synergistic effect in the resolution of LPS-induced sepsis and inflammation in mice. Then we combined these two compounds with seven others and designed a unique dietary supplement formulation to alleviate long COVID inflammatory and neurological disorders. We performed a one-arm open-labeled study at a single site with 51 eligible patients from 18 states. Each participant recorded the severity level of 12 symptoms (including fatigue, weakness, cardiac and neurological symptoms, shortness of breath, gastrointestinal disorders, ageusia or anosmia, anxiety, joint pain, rash, cough, and insomnia) at baseline, 2- and 4-week time points. On average, all the symptoms were significantly milder after 2 weeks, with further improvement after 4 weeks. Importantly, each symptom was significantly attenuated in 72 to 84% of the participants. There were no significant adverse effects. Our data indicate that the use of this nutraceutical product is a safe and significantly efficient option to reduce multiple symptoms of long COVID.
Collapse
Affiliation(s)
- Norman B. Gaylis
- The COVID Long Haul Center at Arthritis & Rheumatic Disease Specialties (AARDS), Miami, FL, United States
| | - Ida Kreychman
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Joanne Sagliani
- The COVID Long Haul Center at Arthritis & Rheumatic Disease Specialties (AARDS), Miami, FL, United States
| | | | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
47
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
48
|
Shadfar S, Khanal S, Bohara G, Kim G, Sadigh-Eteghad S, Ghavami S, Choi H, Choi DY. Methanolic Extract of Boswellia serrata Gum Protects the Nigral Dopaminergic Neurons from Rotenone-Induced Neurotoxicity. Mol Neurobiol 2022; 59:5874-5890. [PMID: 35804280 PMCID: PMC9395310 DOI: 10.1007/s12035-022-02943-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
Boswellia serrata gum is a natural product that showed beneficial effects on neurodegenerative diseases in recent studies. In this study, we investigated the effects of Boswellia serrata resin on rotenone-induced dopaminergic neurotoxicity. Firstly, we attempted to see if the resin can induce AMP-activated protein kinase (AMPK) signaling pathway which has been known to have broad neuroprotective effects. Boswellia increased AMPK phosphorylation and reduced phosphorylation of mammalian target of rapamycin (p-mTOR) and α-synuclein (p-α-synuclein) in the striatum while increased the expression level of Beclin1, a marker for autophagy and brain-derived neurotrophic factor. Next, we examined the neuroprotective effects of the Boswellia extract in the rotenone-injected mice. The results showed that Boswellia evidently attenuated the loss of the nigrostriatal dopaminergic neurons and microglial activation caused by rotenone. Moreover, Boswellia ameliorated rotenone-induced decrease in the striatal dopamine and impairment in motor function. Accumulation of α-synuclein meditated by rotenone was significantly ameliorated by Boswellia. Also, we showed that β-boswellic acid, the active constituents of Boswellia serrata gum, induced AMPK phosphorylation and attenuated α-synuclein phosphorylation in SHSY5 cells. These results suggest that Boswellia protected the dopaminergic neurons from rotenone neurotoxicity via activation of the AMPK pathway which might be associated with attenuation of α-synuclein aggregation and neuroinflammation. Further investigations are warranted to identify specific molecules in Boswellia which are responsible for the neuroprotection.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2121 NSW, Australia.
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Geumjin Kim
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, 7134845794, Iran
- Faculty of Medicine, Katowice School of Technology, 40-555, Katowice, Poland
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Avenue, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
49
|
Single-Center-Single-Blinded Clinical Trial to Evaluate the Efficacy of a Nutraceutical Containing Boswellia Serrata, Bromelain, Zinc, Magnesium, Honey, Tyndallized Lactobacillus Acidophilus and Casei to Fight Upper Respiratory Tract Infection and Otitis Media. Healthcare (Basel) 2022; 10:healthcare10081526. [PMID: 36011184 PMCID: PMC9408187 DOI: 10.3390/healthcare10081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Some nutraceuticals have been studied as supportive treatment for fighting upper respiratory tract infection and middle ear disease. Our study aims at evaluating the effect of a specific oral supplementation in the treatment of pediatric otits media. The subjects were randomly assigned by the physician (single-blinded study) to one of three groups: Control Group (CG), Treatment Group 1 (TG1), or Treatment Group 2 (TG2). Both TG were treated with Flogostop Duo (for 20 days—TG1 or 30 days—TG2) in combination with the standard treatment, while CG underwent standard treatment only. The standard treatment was nasal aerosol with Fluticasone and Mucolytic, and nasal washing with hypertonic solution. All patients were analyzed by otoscopy, impedance, fibroscopy, and pure auditory test at the baseline (T0), after 20 days (T1) and 35 days (T2). 120 children were included in the study, 40 in the CG, 40 in the TG1, and 40 in the TG2. Both TG1 and TG2 presented statistically significant differences with respect to controls in otoscopy, impedance, fibroscopy, and PTA at T2. The otoscopy improved at T2 with statistically significant value only in TG2. The impedance and fibroscopy improved at T1 both in TG1 and TG2 compared to CG. A statistically significant improvement was observed in TG2 at T2 in comparison to both CG and TG1. Statistically significant differences were observed in PTA at T2 only compared with controls. This study confirmed the efficacy of nutraceutical as supporting therapy in the upper respiratory tract infection in children. In particular, the supplement containing Boswellia serrata and Bromelain, which are molecules with strong anti-inflammatory and pain-control capacities, could add the benefit without the adverse effects which are related to NSAID use.
Collapse
|
50
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|