1
|
Karimzadeh K, Unniappan S, Zahmatkesh A. Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway. Appl Biochem Biotechnol 2025; 197:1696-1725. [PMID: 39601973 DOI: 10.1007/s12010-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Spirulina platensis low-molecular-weight peptides (SP) have been reported to exhibit antioxidant and hepatoprotective properties. However, the limited bioavailability and solubility of SPs limit their potential applications. In this study, to examine the potential anti-obesity effects and underlying mechanisms of SPs, high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats were treated with SPs and SP-loaded nanoliposomes. Furthermore, hepatic biochemical parameters, inflammatory markers, histopathological changes, and genes involved in AMPK signaling were analyzed. SP-loaded nanoliposomes demonstrated a spherical shape with slower and sustained SP release. SP and SP-loaded nanoliposomes mitigated hepatic damage by lowering serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increasing hepatic antioxidant enzymes, which are manifested in improving histopathological findings. In addition, notably, SP-loaded nanoliposomes downregulated lipogenic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) in the liver. Meanwhile, an upregulation of phosphorylated AMP-activated protein kinase (P-AMPK), lipid acid oxidation-related genes carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPAR-α) was found in the rat liver. This data implies that SP and SP-loaded nanoliposomes exhibit protective potential in rats against the HFD-induced NAFLD, which is mediated through the activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Katayoon Karimzadeh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Asgar Zahmatkesh
- Aquaculture Department, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
| |
Collapse
|
2
|
Hu J, Li Q, Jiang S, Deng Y, Yang L, Du M, He S, Xu F, Yan C, Gao W, Li Y, Zhu Y. Peripheral mitochondrial transplantation alleviates diabetes-associated cognitive dysfunction by suppressing cuproptosis. Brain Res Bull 2025; 222:111245. [PMID: 39924054 DOI: 10.1016/j.brainresbull.2025.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Mitochondrial dysfunction and neuronal impairment are hallmark features of Diabetes-Associated Cognitive Dysfunction (DACD), mitochondrial transplantation is also a therapeutic intervention for DACD. However, the precise mechanism underlying its therapeutic effects are not fully elucidated. Given that imbalances in copper homeostasis and cuproptosis are associated with various neurodegenerative disorders and diabetic myocardial damage, we hypothesize a role for cuproptosis in the pathogenesis of DACD. We further propose that therapeutic peripheral mitochondrial transplantation may ameliorate DACD by reducing processes of cuproptosis. In this research, the study delved into the expression levels of cuproptosis-associated proteins FDX1, LIAS, and DLAT, as well as the copper content in both type 2 diabetes mellitus (T2DM) mice and primary neuronal cells exposed to high glucose and palmitic acid (HG/Pal). Furthermore, the cognitive capabilities of the mice were evaluated using a series of behavioral tests. The findings revealed that in primary neurons exposed to HG/Pal, the expression of copper levels was elevated, and the levels of FDX1, LIAS, and DLAT were reduced. Post-transplantation of platelet-derived mitochondria (Mito-Plt), a significant reversal of these biomarkers was noted, coincident with an improvement in cognitive deficits in T2DM mice. Significantly, the cuproptosis agonist elesclomol (ES) aggravated these alterations. In summary, the findings collectively suggest a causal connection between DACD and the development of cuproptosis in neurons. The use of exogenous Mito-Plt presents a promising therapeutic approach, capable of rescuing neurons from cuproptosis and thereby potentially alleviating DACD.
Collapse
Affiliation(s)
- Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yingying Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei 430071, China.
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, China.
| | - Fuxing Xu
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yaomin Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Öner S, Kadı A, Tekman E, Kararenk AC, Özer EB, Ergin KN, Yuca H, Arslan ME, Duman R, Şahin AA, Pinar NM, Atila A, Bona GE, Karakaya S. Morphological, anatomical, and bioactive properties of Hypericum scabrum L.: effects on diabetes mellitus, Alzheimer's disease, and HDFa fibroblasts and U87-MG cancer cells. PROTOPLASMA 2025:10.1007/s00709-025-02037-1. [PMID: 39885008 DOI: 10.1007/s00709-025-02037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase. Additionally, the impact of these extracts on human fibroblast (HDFa) and glioblastoma (U87MG) cancer cells was evaluated. The methanol extract was analyzed for elemental composition using ICP-MS, secondary metabolites, and amino acids via LC-MS/MS and underwent morphological and anatomical characterization. The methanol extract demonstrated notable inhibitory activity, with an IC50 value of < 1 µg/mL against α-glucosidase, surpassing acarbose in efficacy. The flower essential oil exhibited the highest inhibition (79.95%) of butyrylcholinesterase and the strongest acetylcholinesterase inhibition (21.62%). Elemental analysis revealed high concentrations of Na and K, while quinic acid and proline were identified as major metabolites, with proline concentrations reaching 494.0482 nmol/mL in the aerial part extract. The anticancer assays revealed higher cytotoxicity in U87MG glioblastoma cells compared to HDFa fibroblasts, suggesting potential applications for cancer therapy. The plant grows 20-50 cm tall, with yellow flowers and ovoid-ribbed capsules containing brown, reniform seeds. Its leaves are amphistomatic and ornamented, while stems feature striate cuticles and paracytic stomata. The pollen grains are microreticulate with syncolporate apertures. These results underscore the promising therapeutic potential of H. scabrum in managing DM, cancer, and neurodegenerative diseases, with its ability to inhibit key enzymes and show selective cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Abdulrahim Kadı
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Enes Tekman
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
- Ankara University Graduate School of Health Sciences, Ankara, Türkiye
| | - Ayşe Cemre Kararenk
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Elif Beyza Özer
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Kübra Nalkıran Ergin
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Hafize Yuca
- Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Resul Duman
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Aydan Acar Şahin
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nur Münevver Pinar
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Alptuğ Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye
| | - Gülnur Ekşi Bona
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İstanbul-Cerrahpaşa University, İstanbul, Türkiye
| | - Songül Karakaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
4
|
Adha SA, Afifah NN, Latarissa IR, Iftinan GN, Kusuma ASW, Febriyanti RM, Barliana MI, Lestari K. Herbal Medicines as Complementary Therapy for Managing Complications in COVID-19 Patients with Diabetes Mellitus. Diabetes Metab Syndr Obes 2025; 18:135-146. [PMID: 39840393 PMCID: PMC11746946 DOI: 10.2147/dmso.s498774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus (DM) is recognized and classified as a group of conditions marked by persistent high blood glucose levels. It is also an inflammatory condition that may influence concurrent disease states, including Coronavirus Disease 2019 (COVID-19). Currently, no effective drug has been found to treat COVID-19, especially in DM patients. Many herbal medicines, such as the well-known Andrographis paniculata, have been explored as drugs and complementary therapies due to their antidiabetic, antibacterial, antiviral, anti-inflammatory, and immunomodulatory effects. This study aimed to examine the potential of herbal medicines as complementary therapy in DM patients with COVID-19 complications, drawing from in-vitro and in-vivo investigations. This study analyzed articles published within the last 15 years using keywords including "herbal medicines", "COVID-19", "Diabetes Mellitus", "antidiabetics", "antiviral", and "anti-inflammatory". The results showed that several herbal medicines could serve as complementary therapy for DM patients with COVID-19 complications. These include Andrographis paniculata, Ageratum conyzoides, Artocarpus altilis, Centella asiatica, Momordica charantia, Persea gratissima, Phyllanthus urinaria, Physalis angulata, Tinospora cordifolia, and Zingiber zerumbet. Herbal medicines may serve as a complementary therapy for DM patients with COVID-19, but these claims need experimental validation in infection models and among affected patients.
Collapse
Affiliation(s)
- Syah Akbarul Adha
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nadiya Nurul Afifah
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Ghina Nadhifah Iftinan
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Arif Satria Wira Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Raden Maya Febriyanti
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Keri Lestari
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
5
|
Yang Y, Wu Z, An Z, Li S. Association between oxidative balance score and serum uric acid and hyperuricemia: a population-based study from the NHANES (2011-2018). Front Endocrinol (Lausanne) 2024; 15:1414075. [PMID: 38966221 PMCID: PMC11222604 DOI: 10.3389/fendo.2024.1414075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Background Oxidative Balance Score (OBS) is a novel indicator of the overall antioxidant/oxidant balance, providing a comprehensive reflection of the body's overall oxidative stress status, with higher OBS suggesting more substantial antioxidant exposures. We aimed to investigate the possible relationship between OBS with serum uric acid (SUA) and hyperuricemia. Methods Data utilized in this study were sourced from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Participants under 18 years old, those with ≤16 complete data out of 20 OBS components, incomplete serum uric acid data, and missing covariates were excluded from the analysis. OBS was computed by evaluating 16 nutrients and 4 lifestyle factors, encompassing 5 pro-oxidants and 15 antioxidants, guided by a priori knowledge of their relationship with oxidative stress. Results A total of 1,5096 individuals were included in our analysis with 49.7% being male, and an average age of 49.05 ± 17.56 years. The mean OBS was 19.76 ± 7.17. Hyperuricemia was present in 19.28% of participants. Due to the right-skewed distribution of the OBS, a natural log transformation was applied to address this issue, and Quartiles of lnOBS 1, 2, 3, and 4 were 1.10-2.56 (N=3526), 2.64-2.94 (N=3748), 3.00-3.22 (N=4026), and 3.26-3.61 (N=3796), respectively. Multivariable logistic regression showed that higher lnOBS quantiles were correlated with lower serum uric acid levels. Compared with the lowest lnOBS quantile, participants in the highest lnOBS quantile had a significant serum uric acid decrease of 16.94 μmol/L for each unit increase in lnOBS (β=-16.94, 95% CI: -20.44, -13.45). Similar negative associations were observed in the second-highest (β=-8.07, 95% CI: -11.45, -4.69) and third-highest (β=-11.69, 95% CI: -15.05, -8.34) lnOBS quantiles. The adjusted odds ratios (ORs) for hyperuricemia in Quartiles 1, 2, 3, and 4 were 1.00, 0.84 (95% CI: 0.75, 0.95), 0.78 (95% CI: 0.69, 0.88), and 0.62 (95% CI: 0.55, 0.71), respectively. Compared to Quartile 1, participants in Quartile 4 had a 38% lower prevalence of hyperuricemia. Subgroup analysis and interaction test showed that there was a significant dependence of sex between OBS and serum uric acid (p for interaction <0.05), but not hyperuricemia (p for interaction >0.05). Subgroup analysis stratified by age, BMI, hypertension, diabetes, and hyperlipidemia showed there is no significant dependence on these negative correlations (all p for interaction >0.05). Conclusions The serum uric acid levels and prevalence of hyperuricemia in US adults exhibited a negative association with OBS. By exploring this connection, our research aims to gain a better understanding of how oxidative balance affects the prevalence of hyperuricemia. This could provide valuable insights for developing preventive strategies and interventions for hyperuricemia. Additional large-scale prospective studies are required to explore the role of OBS in hyperuricemia further.
Collapse
Affiliation(s)
- Yuhao Yang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zengxiang Wu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Peng L, Li L, Liu J, Li Y. New insights into metabolic dysfunction-associated steatotic liver disease and oxidative balance score. Front Nutr 2024; 10:1320238. [PMID: 38249604 PMCID: PMC10796785 DOI: 10.3389/fnut.2023.1320238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Background The relationship between oxidative stress and metabolic dysfunction-associated steatotic liver disease (MASLD) has not been studied, which remains inadequately recognized. This is a cross-sectional study in a US adult population to explore the relationship between MASLD and oxidative balance scores (OBS), which containing integrating dietary nutrition and lifestyle factors. Methods We analyzed data from National Health and Nutrition Examination Survey during 2017-2018. Multivariate logistic regression, restricted cubic spline curve (RCS) and subgroup analysis were used to investigate the association between OBS and MASLD. Cox regression analysis was utilized to assess the association between OBS and all-cause mortality among individuals. Results The multivariable-adjusted odds ratio (OR) and 95% confidence interval (CI) for the highest quartile of OBS (Q4) was 0.30 (0.12, 0.77) (p = 0.012) compared to the lowest quartile of OBS (Q1). The RCS regression and subgroup analysis indicated an inverted relationship between OBS and the development of MASLD. The OBS Q4 group (HR: 0.15, 95% CI: 0.03-0.87; p = 0.035) exhibited a lower risk of all-cause death than the Q1 group. Conclusion OBS is statistically significantly and negatively correlated with the risk of MASLD and all-cause mortality in US adults. More prospective investigations are required to substantiate our findings.
Collapse
Affiliation(s)
- Lei Peng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lurong Li
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahao Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Wal P. Phytochemicals and their Potential Mechanisms against Insulin Resistance. Curr Diabetes Rev 2024; 20:e081123223322. [PMID: 37946350 DOI: 10.2174/0115733998262924231020083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (PHARMACY), NH19 Kanpur, Agra Highway, Bhauti Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
8
|
Ndile MM, Makori WA, Kibiti CM, Ngugi MP. In Vitro Hypoglycemic and Antioxidant Activities of Dichloromethane Extract of Xerophyta spekei. SCIENTIFICA 2023; 2023:6652112. [PMID: 38188987 PMCID: PMC10769734 DOI: 10.1155/2023/6652112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder which has greatly led to an increase in morbidity and mortality globally. Although Xerophyta spekei is widely used for the management of diabetes among the Embu and Mbeere communities in Kenya, it has never been empirically evaluated for its hypoglycemic activity. This study was carried out to verify the hypoglycemic activity of dichloromethane (DCM) extract of Xerophyta spekei as well as its antioxidant activity using various in vitro techniques. Phytochemicals associated with its antioxidant activity were identified through GC-MS. Data were subjected to descriptive statistics and expressed as mean ± standard error of the mean (X̄ ± SEM). Comparison between various variables was performed by using unpaired Student's t-test and one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test. The confidence interval was set at 95%. The obtained results were presented in tables and graphs. Results showed that there was no difference in α-amylase inhibition activity between the plant extract and the standard (IC50 525.9 ± 12.34 and 475.1 ± 9.115, respectively; p > 0.05). Besides, the glucose adsorption activity of the extract increased with an increase in glucose concentration (from 5.89 to 32.64 mg/dl at 5 mmol and 30 mmol of glucose, respectively; p < 0.05). The extract also limited the diffusion of glucose more than the negative control (7.49 and 17.63 mg/dl, respectively; p < 0.05). It also enhanced glucose uptake by yeast cells. In addition, the studied plant extract showed notable antioxidant activities. The therapeutic effects exhibited by this plant in managing diabetes mellitus and other ailments could be due to its antioxidant as well as its hypoglycemic activity. The study recommends the evaluation of X. spekei for in vivo hypoglycemic and antioxidant activities. Besides, the isolation of bioactive phytochemicals from the plant may lead to the development of new hypoglycaemic agents.
Collapse
Affiliation(s)
- Michael Musila Ndile
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Wycliffe Arika Makori
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H, Kusuma WA. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:8544-8560. [PMID: 36300505 DOI: 10.1080/07391102.2022.2135597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Curculigo spp. is a herb that is commonly used in Indonesia to treat diabetes mellitus (DM) . The main active components of Curculigo spp. were identified through our previous metabolomic study and online database platform. However, the biological mechanisms underlying Curculigo spp. activity in treating DM remain unclear. Therefore, in this study, a network pharmacology was used to explore the active compounds of Curculigo spp. and their potential molecular mechanisms for treating DM. Oral bioavailability and drug-likeness from the compounds of Curculigo spp. were screened using Lipinski's rule of five, BBB, HIA + and Caco-2 permeability criteria. A network of compound-target-disease-pathway was then constructed using Cytoscape. The highest degree compounds and targets were then confirmed by molecular docking and molecular dynamics (MD) simulations. The human body can absorb 33 compounds derived from Curculigo spp. In addition, 58 nodes and 62 edges generated a network analysis with the DM target. The highest degree of the compound-target-disease pathway was for orcinol glucoside, AKR1B1, autoimmune diabetes, bile acid and bile salt metabolism. Furthermore, the computational docking method on Curculigo spp. compounds with the highest degree revealed that orcinol glucoside interacted with PTPN1 through a hydrogen bond and resulted in a binding energy of -7.2 kcal mol-1. Through hydrogen bonds, orcinol glucoside in PTPN1 regulates multiple signaling pathways via the adherens junction pathway, which may play a therapeutic role in DM (type 2 diabetes: obesity). In addition, MD simulation confirmed that orcinol glucoside, is suitable for DM treatment by interacting with PTPN1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, Indonesia
| | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | | | - Hamim Hamim
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| |
Collapse
|
10
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
11
|
Iftikhar A, Nausheen R, Khurshid M, Iqbal RK, Muzaffar H, Malik A, Ali Khan A, Batool F, Akhtar S, Yasin A, Anwar H. Pancreatic regenerative potential of manuka honey evidenced through pancreatic histology and levels of transcription factors in diabetic rat model. Heliyon 2023; 9:e20017. [PMID: 37809953 PMCID: PMC10559747 DOI: 10.1016/j.heliyon.2023.e20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Diabetes mellitus is a commonly occurring metabolic disorder accompanied by high morbidity and alarming mortality. Besides various available therapies, induction of pancreatic regeneration has emerged as a promising strategy for alleviating the damaging effect of diabetes. Honey, a potent antioxidative and anti-inflammatory agent, has been reported in the literature archive to exhibit favourable results in the regeneration process of several organ systems. Design The current research work was intended to explore the potential role of manuka honey in pancreatic regeneration in alloxan-induced diabetic rats by accessing the pancreatic histology and levels of relevant transcription factors, including MAFA, PDX-1, INS-1, INS-2, NEUROG3, NKX6-1, and NEUROD. An equal number of rats were allocated to all four experimental groups: normal, negative control, positive control, and treatment group. Diabetes was induced in all groups except normal through a single intraperitoneal dose of alloxan monohydrate. No subsequent treatment was given to the negative control group, while the positive control and treatment groups were supplemented with metformin (150 mg/kg/day) and manuka honey (3 g/kg/day), respectively. Results Statistical comparison of glucose and insulin levels, oxidative stress indicators, changes in the architecture of pancreatic islets, and expression levels of regeneration-associated transcription factors advocated the potential role of manuka honey in ameliorating the alloxan-induced hyperglycaemia, hyperinsulinemia, oxidative stress, and necrotic changes in islets along with significant upregulation of relevant transcription factors. Conclusion This suggests to us the auspicious role of antioxidants in honey in pancreatic regeneration and advocates the favourable role of manuka honey in combating diabetes mellitus.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Nausheen
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rana Khalid Iqbal
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farwah Batool
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Ayesha Yasin
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Hdud Ismail IM, Eskandrani AA, Shamlan G, Alansari WS, AL-Farga A, Alghazeer R. Evaluation of Antidiabetic Effect of Combined Leaf and Seed Extracts of Moringa oleifera ( Moringaceae) on Alloxan-Induced Diabetes in Mice: A Biochemical and Histological Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9136217. [PMID: 37215365 PMCID: PMC10198764 DOI: 10.1155/2023/9136217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.
Collapse
Affiliation(s)
- Badriyah Aljazzaf
- Department of Food Sciences and Nutrition, College of Health Sciences, The Public Authority for Applied Education and Training, Kuwait
| | - Sassia Regeai
- Department of Life Sciences, School of Basic Science, Libyan Academy of Postgraduate Studies, Janzour, Libya
- Histology and Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Sana Elghmasi
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Nadia Alghazir
- Department of Pediatrics, Tripoli University Hospital, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Amal Balgasim
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud Ismail
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Rabia Alghazeer
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
13
|
Wu C, Ren C, Song Y, Gao H, Pang X, Zhang L. Gender-specific effects of oxidative balance score on the prevalence of diabetes in the US population from NHANES. Front Endocrinol (Lausanne) 2023; 14:1148417. [PMID: 37214249 PMCID: PMC10194026 DOI: 10.3389/fendo.2023.1148417] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Background The relationship between oxidative balance score (OBS) and diabetes remains poorly understood and may be gender-specific. We conducted a cross-sectional study to investigate the complex association between OBS and diabetes among US adults. Methods Overall, 5,233 participants were included in this cross-sectional study. The exposure variable was OBS, composed of scores for 20 dietary and lifestyle factors. Multivariable logistic regression, subgroup analysis, and restricted cubic spline (RCS) regression were applied to examine the relationship between OBS and diabetes. Results Compared to the lowest OBS quartile group (Q1), the multivariable-adjusted odds ratio (OR) (95% confidence interval (CI) for the highest OBS quartile group (Q4) was 0.602 (0.372-0.974) (p for trend = 0.007), and for the highest lifestyle, the OBS quartile group was 0.386 (0.223-0.667) (p for trend < 0.001). Moreover, gender effects were found between OBS and diabetes (p for interaction = 0.044). RCS showed an inverted-U relationship between OBS and diabetes in women (p for non-linear = 6e-04) and a linear relationship between OBS and diabetes in men. Conclusions In summary, high OBS was negatively associated with diabetes risk in a gender-dependent manner.
Collapse
Affiliation(s)
- Cuiling Wu
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| | - Chenxia Ren
- Central Laboratory, Changzhi Medical College, Changzhi, China
| | - Yingda Song
- Department of Thoracic Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huifang Gao
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| | - Xin Pang
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| | - Lianyun Zhang
- Department of Biochemistry, Changzhi Medical College, Changzhi, China
| |
Collapse
|
14
|
Mokgalaboni K, Lebelo SL, Modjadji P, Ghaffary S. Okra ameliorates hyperglycaemia in pre-diabetic and type 2 diabetic patients: A systematic review and meta-analysis of the clinical evidence. Front Pharmacol 2023; 14:1132650. [PMID: 37077817 PMCID: PMC10107009 DOI: 10.3389/fphar.2023.1132650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Despite the use of available pharmaceutical drugs, high rates of metabolic diseases and cardiovascular disorders are alarming. This calls for alternative therapies that can attenuate these complications. Therefore, we investigated the beneficial effects of okra on glycaemic control in pre-diabetes and type 2 diabetes mellitus (T2D).Methods: MEDLINE and Scopus were searched for relevant studies. Collected data were analysed using RevMan and reported as mean difference and 95% confidence intervals (CI). Eight studies, including 331 patients with pre-diabetes or T2D, were eligible.Results: Our findings showed that okra treatment reduced the levels of fasting blood glucose: mean difference (MD) = −14.63 mg/dL; 95% CI (-25.25, −4.00, p = 0.007); I2 = 33%, p = 0.17 compared to placebo. Glycated haemoglobin, however, did not differ significantly between the groups: MD = 0.01%; 95%CI (-0.51, 0.54, p = 0.96); I2 = 23%, p = 0.28.Conclusion: this systematic review and meta-analysis found that okra treatment improves glycaemic control in patients with pre-diabetes or T2D. The findings suggest that okra may be used as a supplemental dietary nutrient, especially in pre-diabetic and T2D patients due to its potential to regulate hyperglycaemia.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Florida Campus, University of South Africa, Roodepoort, South Africa
- *Correspondence: Kabelo Mokgalaboni, ; Saba Ghaffary,
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Perpetua Modjadji
- Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Public Health, School of Healthcare Sciences, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Kabelo Mokgalaboni, ; Saba Ghaffary,
| |
Collapse
|
15
|
Marak CC, Marak BN, Singh VP, Gurusubramanian G, Roy VK. Phytochemical analysis, in silico study and toxicity profile of Cycas pectinata Buch.-Ham seed in mice. Drug Chem Toxicol 2023; 46:330-342. [PMID: 35114863 DOI: 10.1080/01480545.2022.2033258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fruit of Cycas pectinata Buch.-Ham has been used as medicine by the local community in some parts of the north eastern state of India. Despite its uses for different purposes, the safety assessment study has not been conducted. Therefore, we have evaluated the acute and the sub-acute toxicity of methanolic extract of C. pectinata fruit (CPFE) in a mice model via oral route of administration. Phytochemicals analysis was carried out by liquid chromatography-mass spectroscopy (LC-MS), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The acute toxicity study was performed at a single dose of 1000, 3000 and 5000 mg/kg and the sub-acute toxicity study at a dose of 100, 300 and 500 mg/kg was administered daily for 28 days. The calculated Lethal dose 50 (LD50) of CPFE was found to be 4000 mg/kg. Both acute and sub-acute studies showed that 5000 mg/kg and 500 mg/kg dose was toxic to the mice. The results of acute toxicity showed CPFE could have a mild toxic effect on the kidney at a dose of 3000 and 5000 mg/kg, as some deteriorated changes in the kidney along with increase creatinine levels were observed. Acute toxicity also showed an increase in white blood cells (WBC) at a dose of 3000 mg/kg.However, sub-acute toxicity studies do not show any detrimental effects on liver, kidney and hematological parameters. Thus, it can be suggested that CPFE at a dose of 100 and 300 mg/kg would be safe for consumption. The phytochemicals analysis by LC-MS, NMR and FTIR showed the presence of 32 major chemical compounds with certain biological activity like anti-neoplastic, antioxidant, and possible modulator of steroid metabolism (cholesterol antagonist and agonist of testosterone 17β-dehydrogenase) as predicted by PASS analysis.
Collapse
Affiliation(s)
| | - Brilliant N Marak
- Department of Industrial Chemistry, Mizoram University, Aizawl, India
| | - Ved Prakash Singh
- Department of Industrial Chemistry, Mizoram University, Aizawl, India
| | | | | |
Collapse
|
16
|
The effects of oral magnesium supplementation on glycaemic control in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of controlled clinical trials. Br J Nutr 2022; 128:2363-2372. [PMID: 35045911 DOI: 10.1017/s0007114521005201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The current systematic review and meta-analysis were conducted to evaluate the effects of oral Mg supplementation on glycaemic control in type 2 diabetes mellitus (T2DM) patients. Related articles were found by searching the PubMed, SCOPUS, Embase and Web of Science databases (from inception to 30 February 2020). A one-stage robust error meta-regression model based on inverse variance weighted least squares regression and cluster robust error variances was used for the dose-response analysis between Mg supplementation and duration of intervention and glycaemic control factors. Eighteen eligible randomised clinical trials were included in our final analysis. The dose-response testing indicated that the estimated mean difference in HbA1c at 500 mg/d was -0·73 % (95 % CI: -1·25, -0·22) suggesting modest improvement in HbA1c with strong evidence (P value: 0·004). And in fasting blood sugar (FBS) at 360 mg/d was -7·11 mg/dl (95 % CI: -14·03, -0·19) suggesting minimal amelioration in FBS with weak evidence (P value: 0·092) against the model hypothesis at this sample size. The estimated mean difference in FBS and HbA1c at 24 weeks was -15·58 mg/dl (95 % CI: -24·67, -6·49) and -0·48 (95 % CI: -0·77, -0·19), respectively, suggesting modest improvement in FBS (P value: 0·034) and HbA1c (P value: 0·001) with strong evidence against the model hypothesis at this sample size. Oral Mg supplementation could have an effect on glycaemic control in T2DM patients. However, the clinical trials so far are not sufficient to make guidelines for clinical practice.
Collapse
|
17
|
Tang W, Li Y, He S, Jiang T, Wang N, Du M, Cheng B, Gao W, Li Y, Wang Q. Caveolin-1 Alleviates Diabetes-Associated Cognitive Dysfunction Through Modulating Neuronal Ferroptosis-Mediated Mitochondrial Homeostasis. Antioxid Redox Signal 2022; 37:867-886. [PMID: 35350885 DOI: 10.1089/ars.2021.0233] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims: Iron metabolism is involved in many biological processes in the brain. Alterations in iron homeostasis have been associated with several neurodegenerative disorders. Instead of stroke and ischemic heart disease, dementia has become the second leading cause of mortality among the type 2 diabetes mellitus (T2DM) population. Therefore, we attempted to investigate the role of ferroptosis in diabetes-associated cognitive dysfunction (DACD). Results: We evaluated ferroptosis hallmarks in the hippocampus of T2DM (high-fat diet/streptozotocin, HFD/STZ) mice, primary hippocampal neurons, as well as in the blood of patients. The results of Gene Set Enrichment Analysis showed significantly differentially expressed genes related to ferroptosis-related pathways between normal control (db/m) and leptin receptor-deficient (db/db) mice. Here, ferroptosis, mitochondrial dysfunction and cognitive impairment were revealed, and caveolin-1 (cav-1) was significantly downregulated in the hippocampus of T2DM (HFD/STZ) mice. In addition, ferrostatin-1 and cav-1 restoration neutralized ferroptosis-related symbolic changes, mitochondrial dysfunction, and improved cognitive dysfunction. Notably, the plasma levels of Fe2+ and 4-hydroxynonenal (4-HNE) in T2DM patients showed a tendency to increase compared with those in nondiabetic subjects, and the Fe2+ level was negatively correlated with the cognitive ability in T2DM subjects. Innovation: For the first time, this study suggested that ferroptosis promoted the progression of DACD induced by T2DM both in vivo and in vitro, and supported the clinical evidence for the correlation between ferroptosis and T2DM-related DACD, which provided new insights into the potential antioxidant effects of ferroptosis inhibitors and cav-1 on DACD. Conclusions: The overexpression of cav-1 may attenuate DACD by modulating neuronal ferroptosis-mediated mitochondrial homeostasis. We put cav-1 on the spotlight as a promising candidate to prevent DACD. Antioxid. Redox Signal. 37, 867-886.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuxuan He
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyu Du
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Cheng
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Gao
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Muddassir M, Batool A, Alam M, Abbas Miana G, Altaf R, Alghamdi S, Almehmadi M, Abdulaziz O, Amer Alsaiari A, Umar Khayam Sahibzada M, Khusro A, Tariq Khan M. Evaluation of in vitro, in silico antidiabetic and antioxidant potential of bioactivity based isolated “Pakistanine” from Berberis baluchistanica. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Savych A, Marchyshyn S, Polonets O, Mala O, Shcherba I, Morozova L. HPLC-DAD assay of flavonoids and evaluation of antioxidant activity of some herbal mixtures. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Medicinal plants and their combinations can influence various links of the pathogenetic mechanism of diabetes mellitus type 2 and its complications, due to the wide range of biologically active substance that they accumulate. Flavonoids deserve particular attention through their antioxidant properties. Three samples of herbal mixtures (sample 1 – Inula helenium rhizome with roots, Helichrysum arenarium flowers, Zea mays columns with stigmas, Origanum vulgare herb, Rosa majalis fruits, Taraxacum officinale roots; sample 2 – Cichorium intybus roots, Elymus repens rhizome, Helichrysum arenarium flowers, Rosa smajalis fruits, Zea mays columns with stigmas; sample 3 – Urtica dioica leaf, Taraxacum officinale roots, Vaccinium myrtillus leaf, Rosa majalis fruits, Mentha x Menthapiperita herb) were tested for flavonoid content and antioxidant properties.
Using HPLC-DAD analysis the content of flavonoids was evaluated and an antioxidant activity by DPPH-radicals scavenging, ferrous ion chelating capacity and ferric reducing power were established for the herbal mixtures. Rutin prevails in sample 3, its content was 2745.66±0.21 μg/g; luteolin – in samples 1 and 2, its content was 371.31±0.07 μg/g and 313.48±0.13 μg/g, respectively.
Flavonoids attribute to the antioxidant activity of the herbal mixtures, which was confirmed by DPPH radical scavenging assay, ferric reducing power assay and ferrous ion chelating assay. The highest antioxidant capacity was found for sample 3 – IC50 of inhibition of DPPH radicals was 301.65±2.67 µg/mL compared to control – ascorbic acid (119.24±2.35 µg/mL), the ferric reducing power was 0.382 at 100 µg/mL compared to ascorbic acid (0.412 at 100 µg/mL) and IC50 of chelating capacity was 206.59±2.48 µg/mL compared to EDTA-Na2 (110.55±1.93 µg/mL).
Collapse
|
20
|
Dai J, Hu Y, Si Q, Gu Y, Xiao Z, Ge Q, Sha R. Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186077. [PMID: 36144810 PMCID: PMC9505173 DOI: 10.3390/molecules27186077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Pear fruits have been reported to contain abundant bioactive compounds and exhibit antidiabetic activity. In this study, Pingguoli pear (Pyrus pyrifolia cv.‘Pingguoli’) fermentation broth was sequentially extracted by five solvents with increasing polarity (petroleum ether, chloroform, ethyl acetate, n-butanol, and water) to evaluate its antioxidant and hypothermic activities, and then the main compounds of the fraction with the highest activity were assessed, which might be responsible for such activities. The results showed that the ethyl acetate fraction (EAF) exhibited the highest antioxidant activity according to DPPH (IC50 = 0.238 mg/mL), ABTS (IC50 = 0.293 mg/mL), and FRAP (IC50 = 0.193 mg/mL) assays. The in vitro hypoglycemic activity assay showed that EAF exhibited the strongest inhibitory effect, with IC50 values of 0.34 and 0.95 mg/mL for α-amylase and α-glucosidase, respectively. The glucose consumption in HepG2 cells treated with EAF was significantly increased to 252%, compare with control group. Liquid chromatography–mass spectrometry analysis implied that the main compounds, 3′-C-glucosylisoliquiritigenin, robustside D, caffeic acid, and chlorogenic acid may be potential candidates for the antioxidant and hypoglycemic activities of the EAF. This study suggested that EAF of Pingguoli pear fermentation broth could be utilized for development of potential functional food and antidiabetic agents.
Collapse
Affiliation(s)
- Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Yu Hu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Qi Si
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yifei Gu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhuqian Xiao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Qin Ge
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
- Correspondence: ; Tel.: +86-571-85070390
| |
Collapse
|
21
|
Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152:113217. [PMID: 35679719 DOI: 10.1016/j.biopha.2022.113217] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome. Diabetes has become more common in recent years. Chemically generated drugs are used to lessen the effects of DM and its following repercussions due to unpleasant side effects such as weight gain, gastrointestinal issues, and heart failure. On the other hand, medicinal plants could be a good source of anti-diabetic medications. This article aims to determine any plant matrix's positive potential. Food restriction, physical activity, and the use of antidiabetic plant-derived chemicals are all being promoted as effective ways to manage diabetes because they are less expensive and have fewer or no side effects. This review focuses on antidiabetic plants, along with their bioactive constituent, chemically characterization, and plant-based diets for diabetes management. There is minimal scientific data about the mechanism of action of the plant-based product has been found. The purpose of this article is to highlight anti-diabetic plants and plant-derived bioactive compounds that have anti-diabetic properties. It also provides researchers with data that may be used to build future strategies, such as identifying promising bioactive molecules to make diabetes management easier.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sumaia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fazilatunnesa Anika
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nazneen Ahmeda Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Ovidiu Pop
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, KPK, Pakistan.
| |
Collapse
|
22
|
Alkhateeb HH, al-duais M. Evaluation of antidiabetic, antioxidant and antilipidemic potential of natural dietary product prepared from Cyphostemma digitatum in rats’ model of diabetes. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Cyphostemma digitatum has a high content of antioxidant constituents and has been employed by the traditional healers and local people of Yemen for diabetes treatment. However, scientific evidence regarding its antidiabetic efficacy is largely unknown. Accordingly, the present study aimed to confirm the treatment effects of a dietary natural product prepared from Cyphostemma digitatum (PCD) in diabetic rats.Methods: Diabetes was induced by a high-fat diet and streptozotocin (HF-STZ). PCD (1 g/kg) was given by gavage administration once a day continuously for 30 days. At the end of treatment, blood and skeletal muscle samples were collected for further analysis.Results: The antidiabetic effects of PCD were demonstrated by significant reduction (P ≤ 0.05) in the levels of serum glucose (40%), triglyceride (32%), cholesterol (53%), low-density lipoprotein (LDL) (44%), malondialdehyde (MDA) (61%) in PCD treated groups compared to the diabetic control group. Additionally, PCD treatment significantly (P ≤ 0.05) restored the decreased levels of insulin (70%) and the activities of superoxide dismutase (SOD) (57%) and reduced glutathione (GSH) (544%) when compared to that of diabetic control rats. We found that treatment with PCD for 30 days fully restored the plasmalemmal glucose transporter type 4 (GLUT4) contents, as well as the phosphorylation of phosphatidylinositol 3-kinase (PI3K) (P ≤ 0.05).Conclusion: Thus, PCD treatment can be considered a potential drug candidate for diabetes.
Collapse
Affiliation(s)
- Hakam Hasan Alkhateeb
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammed al-duais
- Margaret A. Gilliam Institute for Global Food Security, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Karamzad N, Faraji E, Adeli S, Sullman MJM, Pourghassem Gargari B. The effect of menaquinone-7 supplementation on dp-ucMGP, PIVKAII, inflammatory markers, and body composition in type 2 diabetes patients: a randomized clinical trial. Nutr Diabetes 2022; 12:15. [PMID: 35365594 PMCID: PMC8976086 DOI: 10.1038/s41387-022-00192-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a common disorder that is characterized by chronic hyperglycemia and chronic inflammation, which also have a reinforcing effect on each other. The present research studied the effects of menaquinone (MK-7) supplementation on serum dp-ucMGP (dephospho uncarboxylated Matrix Gla Protein), PIVKAII (Prothrombin Induced by Vitamin K Absence), inflammatory markers and body composition indices in type 2 diabetes mellitus (T2DM) patients. METHODS This 12-week double-blind placebo-controlled randomized clinical trial allocated 60 T2DM patients equally into a MK-7 (200 mcg/day) group or a placebo group. All patients also received dietary advice at the beginning of study and their dietary intakes were checked using a 3-day food record. The body composition of each patient was also measured and their vitamin K status was assessed using the ELISA method to measure serum dp-ucMGP and PIVKAII. In addition, inflammatory status indices were also measured, including hsCRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6) and TNF-α (tumor necrosis factor alpha). All measurements were made both before and after the intervention period. RESULTS In total 45 patients completed the trial (MK-7 group = 23 and placebo group = 22). The calorie and macronutrient intake of the two groups were similar pre and post intervention. There were statistically significant increases in dietary vitamin K intake for both groups over the course of the study (p < 0.05), but the intergroup differences were not significant. The body composition indices (i.e., body fat percentage, fat mass, fat free mass, muscle mass, bone mass and total body water) were not significantly different between groups or across the trial. The serum levels of the vitamin K markers, PIVKAII and dp-ucMGP, decreased significantly in the MK-7 group over the course of the study (p < 0.05), but there was no decrease in the placebo group. However, after adjusting for the baseline levels and changes in vitamin K intake, the between group differences were only significant for PIVKAII (p < 0.05). Following the intervention, the serum levels of the inflammatory markers (hsCRP, IL-6, and TNF-α) were significantly lower in the MK-7 group (p < 0.05), but not in the placebo group. However, the between group differences in the inflammatory markers were not statistically significant. CONCLUSIONS Although further studies are needed, it appears that MK-7 supplementation can be effective in improving PIVKAII levels, but not for improving dp-ucMGP, inflammatory status or the body composition indices of T2DM patients. TRIAL REGISTRATION NUMBER This study was prospectively registered at the Iranian Registry of Clinical Trials on the 20th of May 2019 (ID: IRCT20100123003140N22).
Collapse
Affiliation(s)
- Nahid Karamzad
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Faraji
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Kashyap B, Barge SR, Bharadwaj S, Deka B, Rahman S, Ghosh A, Manna P, Dutta PP, Sheikh Y, Kandimalla R, Samanta SK, Boruwa J, Saikia S, Swargiary D, Kamboj P, Tuli D, Pal U, Borah JC, Banerjee SK, Talukdar NC. Evaluation of therapeutic effect of Premna herbacea in diabetic rat and isoverbascoside against insulin resistance in L6 muscle cells through bioenergetics and stimulation of JNK and AKT/mTOR signaling cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153761. [PMID: 34715512 DOI: 10.1016/j.phymed.2021.153761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Premna herbacea Roxb., a perennial herb is well documented for its therapeutic uses among the traditional health care-givers of Assam, India. Scientific validation on the traditional use of the medicinal plant using modern technology may promote further research in health care. PURPOSE This study evaluates the therapeutic potential of methanolic extract of P. herbacea (MEPH) against type 2 diabetes mellitus (T2DM) and its phytochemical(s) in ameliorating insulin resistance (IR), thereby endorsing the plant bioactives as effective anti-hyperglycemic agents. METHODS The anti-diabetic potential of the plant extract was explored both in L6 muscle cells and high fructose high fat diet (HF-HFD) fed male Sprague Dawley (SD) rats. Bioactivity guided fractionation and isolation procedure yielded Verbascoside and Isoverbascoside (ISOVER) as bioactive and major phytochemicals in P. herbacea. The bioenergetics profile of bioactive ISOVER and its anti-hyperglycemic potential was validated in vitro by XFe24 analyzer, glucose uptake assay and intracellular ROS generation by flourometer, FACS and confocal microscopy. The potential of ISOVER was also checked by screening various protein markers via immunoblotting. RESULTS MEPH enhanced glucose uptake in FFA-induced insulin resistant (IR) L6 muscle cells and decreased elevated blood glucose levels in HF-HFD fed rats. Isoverbascoside (ISOVER) was identified as most bioactive phytochemical for the first time from the plant in the Premna genus. ISOVER activated the protein kinase B/AMP-activated protein kinase signaling cascades and enhanced glucose uptake in IR-L6 muscle cells. ISOVER decreased the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) and increased that of mammalian target of rapamycin (mTOR), thereby attenuating IR. However, molecular docking revealed that ISOVER increases insulin sensitivity by targeting the JNK1 kinase as a competitive inhibitor rather than mTOR. These findings were further supported by the bioenergetics profile of ISOVER. CONCLUSION This study for the first time depicts the functional properties of ISOVER, derived from Premna herbacea, in ameliorating IR. The phytochemical significantly altered IR with enhanced glucose uptake and inhibition of ROS through JNK-AKT/mTOR signaling which may pave the way for further research in T2DM therapeutics.
Collapse
Affiliation(s)
- Bhaswati Kashyap
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati-781001, Assam, India
| | - Sagar Ramrao Barge
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati-781001, Assam, India
| | - Simanta Bharadwaj
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati-781001, Assam, India
| | - Barsha Deka
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati-781001, Assam, India
| | - Seydur Rahman
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Aparajita Ghosh
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Prasenjit Manna
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; CSIR-North East Institute of Science and Technology, Biological Science and Technology Division, Jorhat, Assam, 785006, India
| | - Partha Pratim Dutta
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Yunus Sheikh
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Raghuram Kandimalla
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Suman Kumar Samanta
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Joshodeep Boruwa
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Shilpi Saikia
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Deepsikha Swargiary
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India
| | - Parul Kamboj
- Drug Discovery Research Centre, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India
| | - Deepika Tuli
- Drug Discovery Research Centre, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India
| | - Uttam Pal
- S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Jagat C Borah
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India.
| | - Sanjay Kumar Banerjee
- Drug Discovery Research Centre, Translational Health Science and Technology Institute (THSTI), Faridabad - 121001, Haryana, India.
| | - Narayan Chandra Talukdar
- Biochemistry and Drug Discovery Lab - I, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk- 781035, Guwahati, Assam, India; Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India..
| |
Collapse
|
25
|
Duong TH, Nguyen HT, Nguyen CH, Tran NMA, Danova A, Tran TMD, Vu-Huynh KL, Musa V, Jutakanoke R, Nguyen NH, Sichaem J. Identification of Highly Potent α-Glucosidase Inhibitors from Artocarpus integer and Molecular Docking Studies. Chem Biodivers 2021; 18:e2100499. [PMID: 34761862 DOI: 10.1002/cbdv.202100499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
A new natural Diels-Alder adduct (3) was isolated from the leaves and stem bark of Artocarpus integer, along with seventeen known compounds (1, 2, and 4-18). Structural elucidation was conducted using NMR and HR-ESI-MS data, and comparisons were made with previous studies. Deoxyartonin I (3) exhibited the most potent α-glucosidase inhibition (IC50 7.80±0.1 μM), outperforming the acarbose positive control. This was mixed-mode inhibition, as indicated by the intersect in the second quadrant of each respective plot. An in silico molecular docking model and the pharmacokinetic features of 3 suggest that it is a potential inhibitor of enzyme α-glucosidase, and is therefore a lead candidate as a drug against diabetes mellitus.
Collapse
Affiliation(s)
- Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, 748342, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Chuong Hoang Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Ade Danova
- Center of Execellent in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thi-Minh-Dinh Tran
- Department of Biology, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, 748342, Vietnam
| | - Kim Long Vu-Huynh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Vassana Musa
- Microbial Biotechnology and Utilization of Natural Products Research Unit (MBUNPRU), Songkhla Rajabhat University, Songkhla, 90000, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Mueang, Phitsanulok, 65000, Thailand
| | - Ngoc-Hong Nguyen
- CirTech Institute, Ho Chi Minh City University of Technology (HUTECH), 475 A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang, 52190, Thailand
| |
Collapse
|
26
|
Niazmand S, Mirzaei M, Hosseinian S, Khazdair MR, Gowhari Shabgah A, Baghcheghi Y, Hedayati-Moghadam M. The effect of Cinnamomum cassia extract on oxidative stress in the liver and kidney of STZ-induced diabetic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:311-321. [PMID: 34506695 DOI: 10.1515/jcim-2021-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Many diabetes-related complications are caused by oxidative stress. In the current study, the protective effect of Cinnamomum cassia against diabetes-induced liver and kidney oxidative stress was evaluated. METHODS The male Wistar rats (n=48) were randomly divided into six groups including; control group received 500 µL normal saline orally for 42 days. Diabetes groups received intraperitoneally (i.p.) streptozotocin (STZ) as single-dose (60 mg/kg, i.p.). Cinnamon extract (100, 200, 400 mg/kg) and metformin (300 mg/kg) were orally administered to diabetic rats for 42 days. After the experiment period, the animals were anesthetized and the liver and kidney tissues were quickly removed and restored for oxidative stress evaluation. The levels of malondialdehyde (MDA), total thiol content, glutathione (GSH), nitric oxide (NO) metabolites, as well as, superoxide dismutase (SOD) and catalase (CAT) activities were measured in kidney and liver tissue. RESULTS The level of MDA, SOD, and CAT activities increased significantly, while the total thiol content, and NO production were significantly reduced in diabetic animals compared to the control group (from p<0.05 to p<0.001). Treatment with cinnamon extract significantly decreased the MDA level, as well as, SOD and CAT activities in the liver and kidney of diabetic rats (from p<0.05 to p<0.001). In the liver and kidney of cinnamon treated groups, GSH and total thiol contents and NO production were significantly higher than diabetic group (from p<0.05 to p<0.001). CONCLUSIONS Cinnamon extract due to its potent antioxidant property could be effective in decrease of diabetes-induced oxidative stress that plays a major role in renal and hepatic complications.
Collapse
Affiliation(s)
- Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masomeh Mirzaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | | | - Yousef Baghcheghi
- Student Research Committee Jiroft, Jiroft University of Medical Sciences, Jiroft, Iran
| | | |
Collapse
|
27
|
Caveolin-1, a novel player in cognitive decline. Neurosci Biobehav Rev 2021; 129:95-106. [PMID: 34237390 DOI: 10.1016/j.neubiorev.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Cognitive decline (CD), which related to vascular dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and diabetes mellitus, is a growing health concern that has a great impact on the patients' quality of life. Although extensive efforts, the mechanisms of CD are still far from being clarified, not to mention the effective treatment and prevention strategies. Caveolin-1 (Cav-1), a trans-membrane protein, is a major component of the caveolae structure and scaffolding proteins. Recently, ample evidence depicts a strong correlation between Cav-1 and CD, however, the specific role of Cav-1 in CD has not been clearly examined and how they might be connected have yet to be identified. This review seeks to provide a comprehensive overview about how Cav-1 modulates pathogeneses of CD-associated diseases. In summary, Cav-1 can promote structural and functional plasticity of neurons, improve neurogenesis, relieve mitochondrial dysfunction, inhibit inflammation and suppress oxidative stress, which have shed light on the idea that Cav-1 may be an efficacious therapeutic target to treat CD.
Collapse
|
28
|
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med 2021; 171:179-189. [PMID: 34173093 PMCID: PMC8233182 DOI: 10.1007/s10517-021-05191-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 01/02/2023]
Abstract
The review presents modern views about the role of oxidative stress reactions in the pathogenesis of types 1 and 2 diabetes mellitus and their complications based on the analysis of experimental and clinical studies. The sources of increased ROS generation in diabetes are specified, including the main pathways of altered glucose metabolism, oxidative damage to pancreatic β-cells, and endothelial dysfunction. The relationship between oxidative stress, carbonyl stress, and inflammation is described. The significance of oxidative stress reactions associated with hyperglycemia is considered in the context of the “metabolic memory” phenomenon. The results of our studies demonstrated significant ethnic and age-related variability of the LPO—antioxidant defense system parameters in patients with diabetes mellitus, which should be considered during complex therapy of the disease. Numerous studies of the effectiveness of antioxidants in diabetes mellitus of both types convincingly proved that antioxidants should be a part of the therapeutic process. Modern therapeutic strategies in the treatment of diabetes mellitus are aimed at developing new methods of personalized antioxidant therapy, including ROS sources targeting combined with new ways of antioxidant delivery.
Collapse
Affiliation(s)
- M A Darenskaya
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
29
|
Ajiboye BO, Oyinloye BE, Awurum JC, Onikanni SA, Adefolalu A, Oluba OM. Protective role of Sterculia tragacantha aqueous extract on pancreatic gene expression and oxidative stress parameters in streptozotocin-induced diabetic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:323-333. [PMID: 33984878 DOI: 10.1515/jcim-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. METHODS Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. RESULTS The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). CONCLUSIONS It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.,Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.,Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Kwadlangezwa, South Africa
| | - Jennifer Chidera Awurum
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratory, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedotun Adefolalu
- Department of Biochemistry, Federal University Lafia, Lafia, Nasarawa State, Nigeria
| | | |
Collapse
|
30
|
Asbaghi O, Moradi S, Nezamoleslami S, Moosavian SP, Hojjati Kermani MA, Lazaridi AV, Miraghajani M. The Effects of Magnesium Supplementation on Lipid Profile Among Type 2 Diabetes Patients: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Biol Trace Elem Res 2021; 199:861-873. [PMID: 32468224 DOI: 10.1007/s12011-020-02209-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effects of magnesium (Mg) supplementation on the lipid profile in type 2 diabetes (T2DM) patients. Web of Science, Scopus, PubMed, and Embase databases were searched to infinity until 30 January 2020. Weighted mean differences (WMD) were pooled using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were reported using standard methods. The pooled analysis of 12 randomized controlled trial s indicated that Mg administration led to significant reduction of serum low-density lipoprotein (LDL) levels (p = 0.006). However, our results revealed that Mg supplementation did not have any effect on triglycerides (TG), total cholesterol (TC), and high-density lipoprotein (HDL) serum concentrations among T2DM patients in comparison with the control group. Subgroup analysis based on duration of study suggested that more than 12 weeks of Mg supplementation significantly decreased the serum TC levels (p = 0.002). Subgroup analysis comparing the dose of intervention indicated that Mg supplementation less than 300 mg significantly decreased the serum LDL concentrations (p < 0.001), while more than 300 mg of Mg supplementation significantly increased the serum HDL levels (p = 0.026). In a subgroup analysis comparing the type of intervention, it displayed that inorganic Mg supplementation decreased the LDL (p < 0.001) and TC (p = 0.003) levels, while organic Mg supplementation showed no difference. Mg supplementation has a beneficial effect on lowering LDL level in T2DM patients. However, we have to note that any research performed so far is not sufficient for making robust guidelines to use Mg supplementation in clinical practice.
Collapse
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sajjad Moradi
- Halal Research Centre of IRI, FDA, Tehran, Iran.
- Department of clinical nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shokufeh Nezamoleslami
- Department of community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Parisa Moosavian
- Department of clinical nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Viktoria Lazaridi
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, The School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Srinuanchai W, Nooin R, Pitchakarn P, Karinchai J, Suttisansanee U, Chansriniyom C, Jarussophon S, Temviriyanukul P, Nuchuchua O. Inhibitory effects of Gymnema inodorum (Lour.) Decne leaf extracts and its triterpene saponin on carbohydrate digestion and intestinal glucose absorption. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113398. [PMID: 32971162 DOI: 10.1016/j.jep.2020.113398] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chiang-Da, Gymnema inodorum (Lour.) Decne. (GI), is an ethnomedicinal plant that has been used for diabetic treatment since ancient times. One of the anti-diabetic mechanisms is possibly related to the actions of triterpene glycoside, (3β, 16β)-16,28-dihydroxyolean-12-en-3-yl-O-β-D-glucopyranosyl-β-D-glucopyranosiduronic acid (GIA1) in decreasing carbohydrate digestive enzymes and intestinal glucose absorption in the gut system. AIMS OF THE STUDY To observe the amount of GIA1 in GI leaf extracts obtained from different ethanol concentrations and to investigate the anti-hyperglycemic mechanisms of the extracts and GIA1. MATERIALS AND METHODS The crude extracts were prepared using 50%v/v to 95%v/v ethanol solutions and used for GIA1 isolation. The anti-hyperglycemic models included in our study examined the inhibitory activities of α-amylase/α-glucosidase and intestinal glucose absorption related to sodium glucose cotransporter type 1 (SGLT1) using Caco-2 cells. RESULTS GIA1 was found about 8%w/w to 18%w/w in the GI extract depending on ethanol concentrations. The GI extracts and GIA1 showed less inhibitory activities on α-amylase. The extracts from 75%v/v and 95%v/v ethanol and GIA1 significantly delayed the glycemic absorption by lowering α-glucosidase activity and glucose transportation of SGLT1. However, the 50%v/v ethanolic extract markedly decreased the α-glucosidase activity than the SGLT1 function. CONCLUSION Differences in the GIA1 contents and anti-glycemic properties of the GI leaf extract was dependent on ethanol concentrations. Furthermore, the inhibitory effects of the 75%v/v and 95%v/v ethanolic extracts on α-glucosidase and SGLT1 were relevant to GIA1 content.
Collapse
Affiliation(s)
- Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Rawiwan Nooin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Suwatchai Jarussophon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| |
Collapse
|
32
|
Karigidi KO, Akintimehin ES, Omoboyowa DA, Adetuyi FO, Olaiya CO. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2020; 19:1173-1184. [PMID: 33520833 PMCID: PMC7843773 DOI: 10.1007/s40200-020-00618-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) has continued to raise concern globally and Curculigo pilosa (CP) is used for its treatment and management in folkloric medicine. In this study, the in vitro antioxidant abilities of CP and the effects of CP-supplemented diets on blood sugar, lipid metabolism, oxidative stress and key carbohydrate metabolizing enzymes in streptozotocin (STZ)-induced diabetic rats were investigated. METHODS Polyphenol contents (total phenolic and total flavonoid) and antioxidant ability of different extracts of CP were determined in vitro. Diabetes mellitus were stimulated in healthy rats by single intraperitoneal administration of 50 mg/kg streptozotocin and it was confirmed by elevated blood glucose level after 3 days. Thirty six rats were distributed into six groups of six rats each and diabetic rats were fed with 5 and 10% CP-supplemented diet for 21 days. Thereafter, the effects of the dietary regimen were evaluated on blood glucose, body weight, hepatic carbohydrate metabolizing enzymes, lipid profile, oxidative stress markers, serum markers of hepatic and renal damages and histopathology studies. RESULTS Different extracts of CP contained polyphenol contents and exhibited antioxidant properties in different models used. Diabetic rats showed elevated level of blood glucose and body weight loss. Treatment of diabetic rats with CP-supplemented diet significantly (p < 0.05) lowered the blood glucose and improved body weight loss. Also, the treatment with the CP-supplemented diet significantly (p < 0.05) enhanced the activities of hepatic glycolytic (hexokinase and glucose-6-dehydrogenase) and lowered the gluconeogenic (fructose 1, 6 biphosphatase and glucose-6-phosphatase) enzymes in diabetic rats. The lipid profile, oxidative stress markers and serum markers of hepatic and renal damages were significantly (p < 0.05) restored to near normalcy in the diabetic rats. Histopathological slides also showed improvements in pancreas and hepatic tissues of diabetic rats treated with CP-supplemented diet. CONCLUSION Data obtained in this study suggested that CP-supplemented diet could be used as dietary regimen in the management of DM.
Collapse
Affiliation(s)
- Kayode Olayele Karigidi
- Department of Chemical Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo state Nigeria
- Nutritional and Industrial Biochemistry Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Emmanuel Sina Akintimehin
- Department of Chemical Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo state Nigeria
| | | | - Foluso Olutope Adetuyi
- Department of Chemical Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo state Nigeria
| | - Charles Ojo Olaiya
- Nutritional and Industrial Biochemistry Research Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
33
|
Bayala B, Zouré AA, Zohoncon TM, Tinguerie BL, Baron S, Bakri Y, Simpore J, Lobaccaro JMA. Effects of extracts and molecules derived from medicinal plants of West Africa in the prevention and treatment of gynecological cancers. A Review. Am J Cancer Res 2020; 10:2730-2741. [PMID: 33042613 PMCID: PMC7539771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 06/11/2023] Open
Abstract
Medicinal plants are a potential source of drug discovery and development of new pharmacological compounds for cancer chemoprevention. More than 80% of the West African population uses medicinal plants. It is estimated that over 60% of approved anti-cancer agents are derived from plants. The plant raw material used in African traditional medicine and particularly in West Africa can be an important source for the research of anti-tumor drugs against gynecological cancers. These tumors have a negative impact on women's general health status and causes enormous health costs as they affect all age groups. Gynecological cancers remain thus a major concern worldwide, especially in West Africa where these cancers are the leading cause of cancer deaths in women. This review reports on the contribution of West African flora to the discovery of potential antiproliferative and/or cytotoxic phytochemical compounds against gynecological cancer cells. Scientific databases such as PubMed, ScienceDirect, Scopus and GoogleScholar were used to extract publications reporting West African plants and/or isolated compounds used in cell models of gynecological cancers. Thresholds of cytotoxicity and modes of action of these phytochemicals have been summarized. This research can serve as a basis for taking medicinal plants into account in the management of these gynecological cancers in resource-limited countries such as those in West Africa.
Collapse
Affiliation(s)
- Bagora Bayala
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA)01 BP 216 Ouagadougou 01, Burkina Faso
- Laboratoire Génétique, Reproduction &Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, and Centre de Recherche en Nutrition Humaine d’AuvergneF63001, Clermont-Ferrand, France
- Université Norbert ZONGOBP 376 Koudougou, Burkina Faso
| | - Abdou Azaque Zouré
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA)01 BP 216 Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie des Pathologies Humaines-BioPatH. Faculté des Sciences, Université Mohammed VRabat, Maroc
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Département Biomédical et Santé Publique 03 BP 7192 Ouagadougou 03Burkina Faso
| | - Théodora M Zohoncon
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA)01 BP 216 Ouagadougou 01, Burkina Faso
- Université Saint Thomas d’Aquin (USTA)06 BP: 10212 Ouagadougou 06, Burkina Faso
- Hôpital Saint Camille de Ouagadougou (HOSCO)09 BP 444 Ouagadougou 09, Burkina Faso
| | - Bienvenu L Tinguerie
- Hôpital Saint Camille de Ouagadougou (HOSCO)09 BP 444 Ouagadougou 09, Burkina Faso
| | - Silvère Baron
- Laboratoire Génétique, Reproduction &Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, and Centre de Recherche en Nutrition Humaine d’AuvergneF63001, Clermont-Ferrand, France
| | - Youssef Bakri
- Université Norbert ZONGOBP 376 Koudougou, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA)01 BP 216 Ouagadougou 01, Burkina Faso
- Université Saint Thomas d’Aquin (USTA)06 BP: 10212 Ouagadougou 06, Burkina Faso
- Hôpital Saint Camille de Ouagadougou (HOSCO)09 BP 444 Ouagadougou 09, Burkina Faso
| | - Jean-Marc A Lobaccaro
- Laboratoire Génétique, Reproduction &Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP38, and Centre de Recherche en Nutrition Humaine d’AuvergneF63001, Clermont-Ferrand, France
| |
Collapse
|
34
|
Balkrishna A, Thakur P, Varshney A. Phytochemical Profile, Pharmacological Attributes and Medicinal Properties of Convolvulus prostratus - A Cognitive Enhancer Herb for the Management of Neurodegenerative Etiologies. Front Pharmacol 2020; 11:171. [PMID: 32194410 PMCID: PMC7063970 DOI: 10.3389/fphar.2020.00171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Convolvulus prostratus Forssk., a nootropic herb used in traditional medicinal systems, is also frequently known by its taxonomic synonym Convolvulus pluricaulis. In Indian medicinal system - Ayurveda - it is named as Shankhpushpi. According to the ancient literature, this herb has been attributed with several therapeutic properties, such as anxiolytic, neuroprotective, antioxidant, analgesic, immunomodulatory, antimicrobial, antidiabetic and cardioprotective activities. This medicinal herb has been reported to contain many bioactive phytoconstituents, such as, alkaloid (convolamine), flavonoid (kaempferol) and phenolics (scopoletin, β-sitosterol and ceryl alcohol), that have been ascribed to the observed medicinal properties. Several research teams across the globe have highlighted the neuro-pharmacological profile of C. prostratus, wherein, the neuroprotective, nootropic and neuro-modulatory roles have been described. Besides, role of C. prostratus extracts in neurodegeneration has been well demonstrated. Despite of such elaborative preclinical pharmacological profile, detailed clinical investigations and mechanistic mode-of-action studies of this important herb are yet to be executed. The present review is attempted to showcase the phytochemical profile, pharmacological attributes and medicinal information of C. prostratus; with comprehensive research gap analysis. It is hoped that the scientific update on the ethnomedicinal aspects of this herb would thrive research propagation and development of the CNS phytopharmaceuticals, originated from C. prostratus.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| | - Pallavi Thakur
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
| |
Collapse
|
35
|
Al-Awaida WJ, Sharab AS, Al-Ameer HJ, Ayoub NY. Effect of simulated microgravity on the antidiabetic properties of wheatgrass ( Triticum aestivum) in streptozotocin-induced diabetic rats. NPJ Microgravity 2020; 6:6. [PMID: 32133389 PMCID: PMC7039905 DOI: 10.1038/s41526-020-0096-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Microgravity affects plant growth and content. A three-dimensional clinostat was used at 4 rotations/min to rotate the seeds of Triticum aestivum cultivar (Ammon) in three dimensions for 7 days, following which the antioxidant activities of ethanolic extracts were evaluated using both nitric oxide- and hydrogen peroxide-scavenging activities. The antidiabetic activities of ethanolic extracts were evaluated by measuring the concentration of plasma glucose, insulin, C peptide, and glycated hemoglobin (HbA1c); determining the number of β cells in the pancreatic islets; and performing the glucose tolerance test. Furthermore, the effects of the ethanolic extracts on the lipid profile and liver function were estimated. After rats were sacrificed, their pancreases were isolated and used for histopathological processing. The results indicated that the antioxidant potential and antioxidant metabolite content were significantly increased under microgravity conditions in comparison to those under normal gravity conditions. Rats treated with an extract of wheatgrass (T. aestivum) germinated over a period of 6-10 days under microgravity (WGM) showed a significant reduction in the levels of serum glucose, HbA1C, urea, creatinine, aspartate aminotransferase and alanine aminotransferase, and insulin resistance compared to rats treated with an extract of wheatgrass germinated under gravity. Additionally, the total cholesterol and low-density lipoprotein cholesterol levels were significantly decreased. In contrast, high-density lipoprotein cholesterol, C-peptide, and insulin levels rose significantly after treatment with T. aestivum germinated under microgravity. WGM is a promising potential diabetic treatment without side effects with a low manufacturing cost.
Collapse
Affiliation(s)
- Wajdy J. Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Ahmad S. Sharab
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Nabil Y. Ayoub
- Department of Basic Sciences and Humanities, Faculty of Science, American University of Madaba (AUM), Amman, 11821 Jordan
| |
Collapse
|
36
|
Karamzad N, Maleki V, Carson-Chahhoud K, Azizi S, Sahebkar A, Gargari BP. A systematic review on the mechanisms of vitamin K effects on the complications of diabetes and pre-diabetes. Biofactors 2020; 46:21-37. [PMID: 31573736 DOI: 10.1002/biof.1569] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus and pre-diabetes are prevalent endocrine disorders associated with substantial morbidity and premature mortality. Vitamin K is known to have several beneficial effects on complications of diabetes and pre-diabetes. However, systematic consolidation of evidence is required to quantify these effects in order to inform clinical practice and research. A systematic search in PubMed, Scopus, Embase, ProQuest, and Google Scholar databases was undertaken from database inception up to October 2018 to evaluate functional roles of different forms of vitamin K on diabetes and pre-diabetes. From 3,734 identified records, nine articles met the inclusion criteria and were evaluated. Vitamin K supplementation was found to be associated with significant reductions in blood glucose (six studies), increased fasting serum insulin (four studies), reduced hemoglobin A1c (three studies), reduced homeostatic model assessment-insulin resistance index (HOMA-IR) (two studies), and increased ß-cell function (two studies) in diabetic animal studies. Following 2-hour oral glucose tolerance test, vitamin K supplementation was observed to be effective in reducing blood glucose and insulin levels in the pre-diabetic population. However, no evidence of effect was observed for fasting blood sugar, insulin, HOMA-IR, and homeostatic model assessment-β-cell function index (two studies). A statistically significant effect was also noted with vitamin K in improving dyslipidemia (three studies) as well as oxidative stress and inflammatory markers (five studies) in diabetic animals. In conclusion, clinical trials and animal studies confirm that vitamin K supplementation may improve both clinical features and complications of diabetes and pre-diabetes. However, quantification of clinical efficacy in the pre-diabetic population and among individuals with comorbidities requires further investigation.
Collapse
Affiliation(s)
- Nahid Karamzad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Australia
- School of Medicine, The University of Adelaide, South Australia, Australia
| | - Samaneh Azizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Yakubu OF, Adebayo AH, Iweala EEJ, Adelani IB, Ishola TA, Zhang YJ. Anti-inflammatory and antioxidant activities of fractions and compound from Ricinodendron heudelotii (Baill.). Heliyon 2019; 5:e02779. [PMID: 31844713 PMCID: PMC6895737 DOI: 10.1016/j.heliyon.2019.e02779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants have been documented over the years to play vital role in promoting human health. The study evaluated the anti-inflammatory and anti-oxidant activities of different fractions and isolated compound from Ricinodendron heudelotii leaves. The leaves of Ricinodendron heudelotii were extracted with ethanol and further partitioned sequentially using petroleum ether, ethylacetate and butanol. Bioassay–guided fractionation of the ethylacetate fraction was done using repeated column chromatographic technique while the structural elucidation of pure compound was carried out using mass spectra, 13C and 1H NMR analyses. Antioxidant potential of the fractions and isolated compound were evaluated with 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays and anti-inflammatory effect of fractions was measured by their inhibitory potency on nitric oxide (NO). Corilagin, an amorphous tannin was isolated and structurally elucidated. Corilagin showed scavenging effect against ABTS and DPPH radicals which vary in a dose dependent manner. It also showed an antioxidant potential with IC50 value of 0.003 mg/mL comparable to vitamin C 0.001 mg/mL) used as standard. The butanol and ethylacetate fractions exhibited significant (p < 0.05) NO inhibition of 60 and 69% respectively after treatment of RAW 264.7 macrophages with lipopolysaccharide. These results demonstrated the role of isolated corilagin as a promising potent antioxidant while the ethylacetate and butanol fractions suppressed the expression of an inflammation mediator by inhibiting nitric oxide.
Collapse
Affiliation(s)
- Omolara F Yakubu
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Canaan Land, Ota, Ogun State, Nigeria.,State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132, Lanhei Road, Heilongtan, Kunming, China
| | - Abiodun H Adebayo
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Canaan Land, Ota, Ogun State, Nigeria
| | - Emeka E J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Canaan Land, Ota, Ogun State, Nigeria
| | - Isaacson B Adelani
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Canaan Land, Ota, Ogun State, Nigeria
| | - Temitope A Ishola
- Department of Biochemistry, College of Science and Technology, Covenant University, PMB 1023, Canaan Land, Ota, Ogun State, Nigeria
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132, Lanhei Road, Heilongtan, Kunming, China
| |
Collapse
|
38
|
Anchi P, Khurana A, Swain D, Samanthula G, Godugu C. Dramatic improvement in pharmacokinetic and pharmacodynamic effects of sustain release curcumin microparticles demonstrated in experimental type 1 diabetes model. Eur J Pharm Sci 2019; 130:200-214. [DOI: 10.1016/j.ejps.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
39
|
Widjajakusuma EC, Jonosewojo A, Hendriati L, Wijaya S, Surjadhana A, Sastrowardoyo W, Monita N, Muna NM, Fajarwati RP, Ervina M, Esar SY, Soegianto L, Lang T, Heriyanti C. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:137-147. [PMID: 30668423 DOI: 10.1016/j.phymed.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 05/28/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Our previous preclinical study showed that the extract mixture (EM) of Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) and Syzygium polyanthum (Wight.) Walp (SP) leaves had antidiabetic effects and were beneficial on alloxan-induced diabetic rats. PURPOSE The objectives of this study were to: 1) identify the phytochemical compounds present in aqueous extract of AP and SP and 2) examine the benefits of the EM of AP and SP leaves in lowering blood glucose in the presence of standard antidiabetic treatment using metformin in type 2 diabetic patients in Indonesian Traditional Medicine Polyclinic of Dr. Soetomo General Hospital in Surabaya. METHODS Phytochemical analysis of aqueous leaf extract of AP and SP was performed using standard chemical tests, TLC, and GC-MS. Furthermore, a total of 54 subjects with T2DM participated in this study and were randomly assigned to either the intervention group supplemented with the extract mixture of AP and SP at a dose 900 mg/day for 8 weeks, or the control group which received placebo tablets in a randomized placebo-controlled double-blinded parallel clinical trial. Both groups received metformin at dose 1000 mg/day. Body weight, blood pressure, fasting blood glucose, postprandial glucose, haemoglobin A1c, triglycerides, total cholesterol, low density lipoprotein, high density lipoprotein, and markers of liver and kidney damage were measured. RESULTS The results of phytochemical analysis showed that the glycosides, terpenoids, alkaloids, flavonoids, saponins, and tannins were found to be present in the extract mixture. GC-MS analyses of AP and SP showed the presence of 19 and 12 peaks, respectively. Methyl ester of 9-octadecenoic and eicosanoic acid were determined as the main constituents of both species. Moreover, the results of clinical study suggested that the extract mixture improved the decrease of fasting blood glucose and postprandial glucose, significantly lowered body mass index compared with the control group. The EM appeared beneficial for SGPT values and uric acid levels. CONCLUSION Overall, the results of this study suggested the potential beneficial effects of the extract mixture for use as complementary medicine alongside conventional treatment of metformin. The extract mixture contained many highly potent compounds for treating T2DM and preventing short- and long-term risk complications of diabetes.
Collapse
Affiliation(s)
- Elisabeth Catherina Widjajakusuma
- Research Center for Traditional Medicine, Widya Mandala Catholic University Surabaya, Jl. Dinoyo 42-44, Surabaya 60265, Indonesia; Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia.
| | - Arijanto Jonosewojo
- Faculty of Medicine, Airlangga University, Jl. Mayjen Prof. Dr. Moestopo No. 47, Surabaya 60286, Indonesia; Indonesian Traditional Medicine Polyclinic, Dr. Soetomo General Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Lucia Hendriati
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Sumi Wijaya
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Adrianta Surjadhana
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Widayat Sastrowardoyo
- Faculty of Medicine, Airlangga University, Jl. Mayjen Prof. Dr. Moestopo No. 47, Surabaya 60286, Indonesia; Indonesian Traditional Medicine Polyclinic, Dr. Soetomo General Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Nadia Monita
- Indonesian Traditional Medicine Polyclinic, Dr. Soetomo General Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Nafdsu Makhmudatul Muna
- Indonesian Traditional Medicine Polyclinic, Dr. Soetomo General Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Rachma Pantja Fajarwati
- Indonesian Traditional Medicine Polyclinic, Dr. Soetomo General Hospital, Jl. Mayjen Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Martha Ervina
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Lisa Soegianto
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Tirza Lang
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| | - Cindy Heriyanti
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jl. Raya Kalisari Selatan No.1, Surabaya 60112, Indonesia
| |
Collapse
|
40
|
Cam ME, Hazar-Yavuz AN, Yildiz S, Ertas B, Ayaz Adakul B, Taskin T, Alan S, Kabasakal L. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:29-38. [PMID: 30399410 DOI: 10.1016/j.jep.2018.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus praecox subsp. skorpilii var. skorpilii (syn. Thymus praecox subsp. jankae (Celak.) Jalas) is consumed as a Turkish folk medicine for the treatment of spasm, sore throat and shortness of breath, also having strong antioxidant activity and the leaves of the plant have been utilized for the treatment of diabetes as the decoction in Turkey. AIM OF THE STUDY In the present study, we aimed to investigate the potential mechanism of antidiabetic action of Thymus praecox subsp. skorpilii var. skorpilii methanolic extract (TPSE) on streptozotocin (STZ)/nicotinamide (NA)-induced type 2 diabetic rats. MATERIALS AND METHODS Sprague Dawley rats were randomly divided into four groups; control, diabetes, TPSE (100 mg/kg b.w, p.o.) and metformin group (400 mg/kg b.w, p.o.). Diabetes was established in all groups except control group by 55 mg/kg STZ (i.p.) for once 15 min after 100 mg/kg NA injection. 3 days after STZ/NA injection, treatments were administered for three weeks and then rats were decapitated; tissue and blood samples were obtained for measuring the level of glucose transporters (both GLUTs and sodium glucose co-transporters (SGLTs)), enzymes related to glucose (Hexokinase (HK), phosphoenolpyruvate carboxykinase (PEPCK), α-glucosidase) and lipid metabolism (Acetyl-coenzyme carboxylase (ACC)), AST, ALT, creatinine, insulin, anti-inflammatory (IL-10) and inflammatory (TNF-α, IL-1β, IL-6) cytokines, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucagon like peptide-1 (GLP-1). Histopathological alterations of the pancreas were examined. RESULTS After three weeks of treatment, TPSE has exhibited a significant reduction of plasma levels of the proinflammatory cytokines. Besides, TPSE treatment elevated plasma insulin levels and normalized blood glucose levels. Moreover, it improved the values of AMPK in liver and GLP-1 in pancreas. Increased α-glucosidase, PEPCK, GLUT-2 and SGLTs levels with the induction of diabetes considerably lowered with TPSE treatment. Especially on SGLT-2, TPSE achieved a more prominent decrease. After the atrophy in Langerhans islets due to diabetes induction, treatment was found to prevent the damage of islets. CONCLUSIONS Based on the findings presented here, it has been concluded that TPSE has marked antidiabetic effects through various pathways on STZ/NA-induced diabetic rats and it may potentially be used as an effective treatment for type 2 diabetes mellitus (T2DM). Further research on isolation of the bioactive components is underway.
Collapse
Affiliation(s)
- Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey; Department of Mechanical Engineering, University College London, Torrington Place, WC1E 7JE London, UK; Advanced Nanomaterials Research Laboratory, Faculty of Technology, Marmara University, Goztepe, 34722 Istanbul, Turkey.
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| | - Sila Yildiz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| | - Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| | - Betul Ayaz Adakul
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| | - Saadet Alan
- Department of Pathology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| | - Levent Kabasakal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Haydarpasa, 34668 Istanbul, Turkey.
| |
Collapse
|
41
|
|
42
|
Maleki V, Jafari-Vayghan H, Saleh-Ghadimi S, Adibian M, Kheirouri S, Alizadeh M. Effects of Royal jelly on metabolic variables in diabetes mellitus: A systematic review. Complement Ther Med 2019; 43:20-27. [PMID: 30935531 DOI: 10.1016/j.ctim.2018.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most common endocrine disorders in the world. This systematic review was conducted with focus on the current knowledge on the effect of royal jelly on metabolic variables in diabetes mellitus. PubMed, Scopus, Embase, ProQuest and Google Scholar databases were searched from inception until June 2018. All clinical trials and animal studies that evaluated the effects of royal jelly on diabetes mellitus, and were published in English-language journals were eligible. Studies that provided insufficient outcomes were excluded. Out of 522 articles found in the search, only twelve articles were eligible for analysis. Seven studies showed a significant reduction in FBS, and one reported HbA1c decrease following royal jelly supplementation. Although royal jelly supplementation resulted in significant reductions in HOM A-I R in three studies, the findings on insulin levels were controversial. In addition, royal jelly substantially improved serum levels of triglycerides, cholesterol, HDL, LDL, VLDL and Apo-A1 in diabetes mellitus. In addition, royal jelly resulted in a decrease oxidative stress indicators and increase antioxidant enzymes levels. In conclusion, royal jelly could improve glycemic status, lipid profiles and oxidative stress in diabetes mellitus. However, exploring the underlying mechanisms warrants further studies.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Adibian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Salgueiro AC, Folmer V, Bassante FE, Cardoso MH, da Rosa HS, Puntel GO. Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complement Ther Med 2018; 41:1-9. [DOI: 10.1016/j.ctim.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
|
44
|
Taha H, Arya A, Khan AK, Shahid N, Bin Noordin MI, Mohan S. Effect of Pseuduvaria macrophylla in attenuating hyperglycemia mediated oxidative stress and inflammatory response in STZ-nicotinamide induced diabetic rats by upregulating insulin secretion and glucose transporter-1, 2 and 4 proteins expression. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
45
|
Safari MR, Azizi O, Heidary SS, Kheiripour N, Ravan AP. Antiglycation and antioxidant activity of four Iranian medical plant extracts. J Pharmacopuncture 2018; 21:82-89. [PMID: 30151308 PMCID: PMC6054087 DOI: 10.3831/kpi.2018.21.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
Objective Diabetes mellitus (DM) is the most common metabolic disorder that defined by chronic hyperglycemia for the deficiency in insulin secretion or resistance. Hyperglycemia could induce non-enzymatic glycation of proteins. It has been suggested that some traditional plants can improve blood glucose and inhibit glycation process. This work evaluates and compares the anti-glycation activities of four Iranian plant extracts in vitro. Methods The methanolic extract of “Fumaria officinalis, Stachys lavandulifolia, Salvia hydrangea and Rosa Damascene” was prepared in three different concentrations. Phenolic, flavonoids content and antioxidant activity were evaluated. The multistage glycation markers-fructosamines (early stage), protein carbonyls (intermediate stage) and β aggregation of albumin were investigated in the bovine serum albumin (BSA)/ glucose systemt. Results All plants showed the high potency of scavenging free radicals and glycation inhibition in the following order: Fumaria officinalis> Rosa Damascene> Stachys lavandulifolia > Salvia hydrangea. There was a significant correlation between antioxidant and anti-glycation activity. Also, the antioxidant and anti-glycation capacity of extracts correlated with total phenolic and flavonoids content. Conclusion Our findings demonstrated that the studied plants are good sources of anti-glycation and antioxidant compounds and, these properties can primarily attributable to phenolics, particularly flavonoids.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. ,
| | - Omid Azizi
- Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Somayeh Sadat Heidary
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. ,
| | - Nejat Kheiripour
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. ,
| | - Alireza Pouyandeh Ravan
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. ,
| |
Collapse
|
46
|
Qasem MA, Noordin MI, Arya A, Alsalahi A, Jayash SN. Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. PeerJ 2018; 6:e4788. [PMID: 29844959 PMCID: PMC5970558 DOI: 10.7717/peerj.4788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ceratonia siliqua pods (carob) have been nominated to control the high blood glucose of diabetics. In Yemen, however, its antihyperglycemic activity has not been yet assessed. Thus, this study evaluated the in vitro inhibitory effect of the methanolic extract of carob pods against α-amylase and α-glucosidase and the in vivo glycemic effect of such extract in streptozotocin-nicotinamide induced diabetic rats. METHODS 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power assay (FRAP) were applied to evaluate the antioxidant activity of carob. In vitro cytotoxicity of carob was conducted on human hepatocytes (WRL68) and rat pancreatic β-cells (RIN-5F). Acute oral toxicity of carob was conducted on a total of 18 male and 18 female Sprague-Dawley (SD) rats, which were subdivided into three groups (n = 6), namely: high and low dose carob-treated (CS5000 and CS2000, respectively) as well as the normal control (NC) receiving a single oral dose of 5,000 mg kg-1 carob, 2,000 mg kg-1 carob and 5 mL kg-1 distilled water for 14 days, respectively. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total bilirubin, creatinine and urea were assessed. Livers and kidneys were harvested for histopathology. In vitro inhibitory effect against α-amylase and α-glucosidase was evaluated. In vivo glycemic activity was conducted on 24 male SD rats which were previously intraperitoneally injected with 55 mg kg-1 streptozotocin (STZ) followed by 210 mg kg-1nicotinamide to induce type 2 diabetes mellitus. An extra non-injected group (n = 6) was added as a normal control (NC). The injected-rats were divided into four groups (n = 6), namely: diabetic control (D0), 5 mg kg-1glibenclamide-treated diabetic (GD), 500 mg kg-1 carob-treated diabetic (CS500) and 1,000 mg kg-1 carob-treated diabetic (CS1000). All groups received a single oral daily dose of their treatment for 4 weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance test, biochemistry, insulin and hemostatic model assessment were assessed. Pancreases was harvested for histopathology. RESULTS Carob demonstrated a FRAP value of 3191.67 ± 54.34 µmoL Fe++ and IC50 of DPPH of 11.23 ± 0.47 µg mL-1. In vitro, carob was non-toxic on hepatocytes and pancreatic β-cells. In acute oral toxicity, liver and kidney functions and their histological sections showed no abnormalities. Carob exerted an in vitro inhibitory effect against α-amylase and α-glucosidase with IC50 of 92.99 ± 0.22 and 97.13 ± 4.11 µg mL-1, respectively. In diabetic induced rats, FBG of CS1000 was significantly less than diabetic control. Histological pancreatic sections of CS1000 showed less destruction of β-cells than CS500 and diabetic control. CONCLUSION Carob pod did not cause acute systemic toxicity and showed in vitro antioxidant effects. On the other hand, inhibiting α-amylase and α-glucosidase was evident. Interestingly, a high dose of carob exhibits an in vivo antihyperglycemic activity and warrants further in-depth study to identify the potential carob extract composition.
Collapse
Affiliation(s)
- Mousa A. Qasem
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Abdulsamad Alsalahi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soher Nagi Jayash
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Ibb University, Ibb, Yemen
| |
Collapse
|
47
|
Black Seed Thymoquinone Improved Insulin Secretion, Hepatic Glycogen Storage, and Oxidative Stress in Streptozotocin-Induced Diabetic Male Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8104165. [PMID: 29686746 PMCID: PMC5857299 DOI: 10.1155/2018/8104165] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023]
Abstract
Diabetes mellitus is one of the metabolic diseases having several complications. Nigella sativa oil (NSO) might have beneficial effects in the treatment of diabetic complications. Thirty-two mature male Wistar rats were equally divided into four experimental groups: control, control NSO 2 mL/kg, streptozotocin- (STZ-) induced diabetic, and diabetic (STZ-induced) treated with oral NSO 2 mg/kg for 30 days. Fasting blood glucose (FBG), insulin, and lipid profile levels were determined. Pancreatic and hepatic tissues were used for catalase and GSH. Histopathology, hepatic glycogen contents, insulin immunohistochemistry, and pancreatic islet morphometry were performed. NSO 2 mL/kg was noticed to decrease (P < 0.05) FBG and increase (P < 0.05) insulin levels in diabetic rats than in diabetic nontreated animals. Lipid profile showed significant (P < 0.5) improvement in diabetic rats that received NSO 2 mL/kg than in the diabetic group. Both pancreatic and hepatic catalase and GSH activities revealed a significant (P < 0.05) increment in the diabetic group treated with NSO than in the diabetic animals. NSO improved the histopathological picture and hepatic glycogen contents of the diabetic group as well as increased (P < 0.05) insulin immunoreactive parts % and mean pancreatic islet diameter. NSO exerts ameliorative and therapeutic effects on the STZ-induced diabetic male Wistar rats.
Collapse
|
48
|
Xu Z, Sun T, Li W, Sun X. Inhibiting effects of dietary polyphenols on chronic eye diseases. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Oxidative Stress in Pancreatic Beta Cell Regeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1930261. [PMID: 28845211 PMCID: PMC5560096 DOI: 10.1155/2017/1930261] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic β cell neogenesis and proliferation during the neonatal period are critical for the generation of sufficient pancreatic β cell mass/reserve and have a profound impact on long-term protection against type 2 diabetes (T2D). Oxidative stress plays an important role in β cell neogenesis, proliferation, and survival under both physiological and pathophysiological conditions. Pancreatic β cells are extremely susceptible to oxidative stress due to a high endogenous production of reactive oxygen species (ROS) and a low expression of antioxidative enzymes. In this review, we summarize studies describing the critical roles and the mechanisms of how oxidative stress impacts β cell neogenesis and proliferation. In addition, the effects of antioxidant supplements on reduction of oxidative stress and increase of β cell proliferation are discussed. Exploring the roles and the potential therapeutic effects of antioxidants in the process of β cell regeneration would provide novel perspectives to preserve and/or expand pancreatic β cell mass for the treatment of T2D.
Collapse
|
50
|
Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 2017; 9:59. [PMID: 28770011 PMCID: PMC5527439 DOI: 10.1186/s13098-017-0254-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/12/2017] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a complex condition with a variety of causes and pathophysiologies. The current single target approach has not provided ideal clinical outcomes for the treatment of the disease and its complications. Herbal medicine has been used for the management of various diseases such as diabetes over centuries. Many diabetic patients are known to use herbal medicines with antidiabetic properties in addition to their mainstream treatments, which may present both a benefit as well as potential risk to effective management of their disease. In this review we evaluate the clinical and experimental literature on herb-drug interactions in the treatment of diabetes. Pharmacokinetic and pharmacodynamic interactions between drugs and herbs are discussed, and some commonly used herbs which can interact with antidiabetic drugs summarised. Herb-drug interactions can be a double-edged sword presenting both risks (adverse drug events) and benefits (through enhancement). There is a general lack of data on herb-drug interactions. As such, more rigorous scientific research is urgently needed to guide clinical practice as well as to safeguard the wellbeing of diabetes patients.
Collapse
Affiliation(s)
- Ramesh C. Gupta
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
- Department of Agricultural Chemistry and Soil Science, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema, 797 106 India
| | - Dennis Chang
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
| | - Srinivas Nammi
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
| | - Alan Bensoussan
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
| | - Kellie Bilinski
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
| | - Basil D. Roufogalis
- NICM, Western Sydney University, Locked Bag 1797, Penrith, NSW 1797 Australia
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|