1
|
He X, Zhang W, Liu J, Liu J, Chen Y, Luan C, Zhang J, Bao G, Lin X, Muh F, Lin T, Lu F. The global regulatory role of RsbUVW in virulence and biofilm formation in MRSA. Microb Pathog 2025; 203:107508. [PMID: 40158706 DOI: 10.1016/j.micpath.2025.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
The widespread prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has caused serious challenges to clinical treatment. This study was designed to explore effective targets for MRSA prevention and control. The key virulence regulator was screened through the correlation analysis between virulence and various regulatory factors in the main clinical epidemic MRSA. The potential key factors were inactivated to further evaluate the inhibitory effect on the virulence of MRSA standard strain S. aureus ATCC43300 and its influence on drug resistance and biofilm formation. Enterobacterial repetitive intergenic consensus-PCR was used to analyze the clinical epidemic genotypes of MRSA. The virulence of MRSA was evaluated mainly by measuring its adhesion and invasion ability to A549 cells, the lethality to Galleria mellonella larvae, and the transcription level of related genes. The biofilm formation was assessed by crystal violet staining on polystyrene microplates. The results showed that most virulence factors of clinical representative MRSA strain were significantly positively correlated with RsbUVW system. After knocking out the rsbV gene, a key component of the rsbUVW system, the virulence of S. aureus ATCC43300 was significantly reduced (P < 0.05), as indicated by a significant decrease in lethality against G. mellonella larvae and invasion against A549 cells, and a significant decrease in the expression of immune escape related virulence factors polysaccharide intercellular adhesin (PIA) and staphyloxanthin. The biomass and stability of protein-dependent biofilm by S. aureus ATCC43300 were significantly increased. This study will provide useful information for the effective prevention and control of MRSA.
Collapse
Affiliation(s)
- Xinlong He
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, China; The Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid & Cell Fate Regulation (Yangzhou University), Yangzhou, 225001, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225001, China
| | - Wenwen Zhang
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China; Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, Affiliated Hospital of East China Normal University, Shanghai, 200050, China
| | - Jie Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Jiali Liu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yinsong Chen
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, Third People's Hospital of Yangzhou, Yangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Guangyu Bao
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Xiangfang Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Fauzi Muh
- Department of Epidemiology & Tropical Diseases, Faculty of Public Health, Universitas Diponegoro, Tembalang, Semarang, 50275, Indonesia
| | - Tao Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China.
| | - Feng Lu
- Department of Pathogenic Biology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Ke S, Kil H, Roggy C, Shields T, Quinn Z, Quinn AP, Small JM, Towne FD, Brooks AE, Brooks BD. Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics (Basel) 2024; 13:1046. [PMID: 39596740 PMCID: PMC11591076 DOI: 10.3390/antibiotics13111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the significant advances in antibiotic treatments and therapeutics, Staphylococcus aureus (S. aureus) remains a formidable pathogen, primarily due to its rapid acquisition of antibiotic resistance. Known for its array of virulence factors, including surface proteins that promote adhesion to host tissues, enzymes that break down host barriers, and toxins that contribute to immune evasion and tissue destruction, S. aureus poses a serious health threat. Both the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) classify S. aureus as an ESKAPE pathogen, recognizing it as a critical threat to global health. The increasing prevalence of drug-resistant S. aureus underscores the need for new therapeutic strategies. This review discusses a promising approach that combines monoclonal antibodies targeting multiple S. aureus epitopes, offering synergistic efficacy in treating infections. Such strategies aim to reduce the capacity of the pathogen to develop resistance, presenting a potent adjunct or alternative to conventional antibiotic treatments.
Collapse
Affiliation(s)
- Sharon Ke
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Hyein Kil
- Department of Surgery, Virtua Health, Camden, NJ 08103, USA
| | - Conner Roggy
- Department of Orthopaedic Surgery, Community Memorial Healthcare, Ventura, CA 93003, USA
| | - Ty Shields
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Zachary Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Alyssa P. Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - James M. Small
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Francina D. Towne
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Amanda E. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Benjamin D. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| |
Collapse
|
4
|
Shukla SK, Rao TS, N M, Mohan TVK. Active-bromide and surfactant synergy for enhanced microfouling control. Arch Microbiol 2024; 206:430. [PMID: 39387929 DOI: 10.1007/s00203-024-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Biofilms are structured microbial communities encased in a matrix of self-produced extracellular polymeric substance (EPS) and pose significant challenges in various industrial cooling systems. A nuclear power plant uses a biocide active-bromide for control of biological growth in its condenser cooling system. This study is aimed at evaluating the anti-bacterial and anti-biofilm efficacy of active-bromide against planktonic and biofilm-forming bacteria that are commonly encountered in seawater cooling systems. The results demonstrated that active-bromide at the concentration used at the power plant (1 ppm) exhibited minimal killing activity against Pseudomonas aeruginosa planktonic cells. The bacterial cell surface hydrophobicity assay using Staphylococcus aureus and P. aeruginosa indicated that Triton-X 100 significantly decreased the hydrophobicity of planktonic cells, enhancing the susceptibility of the cells to active-bromide. Biofilm inhibition assays revealed limited efficacy of active-bromide at 1 ppm concentration, but significant inhibition at 5 ppm and 10 ppm. However, the addition of a surfactant, Triton-X 100, in combination with 1 ppm active-bromide displayed a synergistic effect, leading to significant biofilm dispersal of pre-formed P. aeruginosa biofilms. This observation was substantiated by epifluorescence microscopy using a live/dead bacterial assay that showed the combination treatment resulted in extensive cell death within the biofilm, as indicated by a marked increase in red fluorescence, compared to treatments with either agent alone. These findings suggest that active bromide alone may be insufficient for microfouling control in the seawater-based condenser cooling system of the power plant. Including a biocompatible surfactant that disrupts established biofilms (microfouling) can significantly improve the efficacy of active bromide treatment.
Collapse
Affiliation(s)
- Sudhir K Shukla
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603102, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - T Subba Rao
- School of Arts & Sciences, Sai University, OMR, Chennai, 603104, India.
| | - Malathy N
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603102, India
| | - T V Krishna Mohan
- Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603102, India
| |
Collapse
|
5
|
Karley D, Shukla SK, Rao TS. Biosynthesis of silver nanoparticle using Bacillus licheniformis culture-supernatant for combating pathogenic biofilms. Microb Pathog 2024; 194:106833. [PMID: 39096943 DOI: 10.1016/j.micpath.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bacterial biofilms pose a significant threat to healthcare due to their recalcitrance to antibiotics and disinfectants. This study explores the anti-biofilm potential of Bacillus licheniformis cell-free culture supernatant (CFS) and its derived silver nanoparticles (bSNPs) against Staphylococcus aureus and Pseudomonas aeruginosa. The CFS exhibited potent anti-biofilm activity against both bacterial species, even at low concentrations, while devoid of significant bactericidal effects, mitigating resistance risks. Characterization studies revealed the non-proteinaceous nature and thermal stability of the CFS's anti-biofilm agent, suggesting a robust and heat-resistant structure. Green synthesis of bSNPs from CFS resulted in nanoparticles with significant anti-biofilm properties, particularly against P. aeruginosa, indicating differences in susceptibility between the bacterial species. Epifluorescence microscopy confirmed bSNPs' ability to inhibit and partially disrupt biofilm formation without inducing cellular lysis. The study highlights the potential of B. licheniformis CFS and bSNPs as promising biofilm control agents, offering insights into their mechanisms of action and broad-spectrum efficacy. Further research elucidating the underlying molecular mechanisms and identifying specific bioactive compounds is warranted for the translation of these findings into clinically relevant applications for combating biofilm-associated infections.
Collapse
Affiliation(s)
- Dugeshwar Karley
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, 493225, India
| | - Sudhir K Shukla
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603102, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| | - T Subba Rao
- Biological Sciences, School of Arts & Sciences, Sai University, Chennai, 603104, India.
| |
Collapse
|
6
|
Ribeiro NS, da Rosa DF, Xavier MA, Dos Reis SV, Beys-da-Silva WO, Santi L, Bizarro CV, Dalberto PF, Basso LA, Macedo AJ. Unveiling antibiofilm potential: proteins from Priestia sp. targeting Staphylococcus aureus biofilm formation. Antonie Van Leeuwenhoek 2024; 117:78. [PMID: 38740670 DOI: 10.1007/s10482-024-01977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.
Collapse
Affiliation(s)
- Nicole Sartori Ribeiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deisiane Fernanda da Rosa
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sharon Vieira Dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Pedro Ferrari Dalberto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Alexandre José Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Huge BJ, Kerr CM, Wanigasinghe S, Champion MM, Dovichi NJ. Optimized sample buffer for dispersed, high-resolution capillary zone electrophoretic separation of Escherichia coli B. Sci Rep 2023; 13:22269. [PMID: 38097688 PMCID: PMC10721931 DOI: 10.1038/s41598-023-49669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Capillary zone electrophoresis (CZE) is a powerful tool for high resolution chemical separations. Applying CZE to microbial samples may facilitate a deeper understanding of bacterial physiology and behavior. However, the study of complex microbial samples has been limited by the uncontrolled hetero-aggregation of bacterial cells under an applied electric field. We tested a wide range of sample buffers and buffer additives for the optimization of bacterial CZE separations using a 20 mM Tris-HCl background electrolyte. By modifying the sample buffer, but not the background electrolyte, we retain constant separation conditions, which aids in the comparison of the sample buffer additives. We report optimized methods for automated CZE separation and simultaneous fractionation of Escherichia coli B, which is one of the two most widely used wild-type strains. A modified sample buffer containing neutral salts and the addition of glycerol produced a 20-fold increase in loading capacity and a reduction in peak width/broadening of 86% in comparison to previously reported work. In addition, the glycerol-modified sample buffer appears to reduce the persistent aggregation and adhesion to the capillary walls during electrophoretic separations of complex environmental microbiota.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Caitlin M Kerr
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sacheela Wanigasinghe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
8
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
9
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Antibacterial and Antibiofilm Efficacy of Repurposing Drug Hexestrol against Methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 2023; 313:151578. [PMID: 37001448 DOI: 10.1016/j.ijmm.2023.151578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
There has been an explosion in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) because of the indiscriminate use of antibiotics. In this study, we repurposed hexestrol (HXS) as an antibacterial agent to fight planktonic and biofilm-related MRSA infections. HXS is a nonsteroidal synthetic estrogen that targets estrogen receptors (ERα and ERβ) and has been used as a hormonal antineoplastic agent. In our work, the minimum inhibitory concentrations (MICs) were determined using the antimicrobial susceptibility of MSSA and MRSA strains. Anti-biofilm activity was evaluated using biofilm inhibition and eradication assays. Biofilm-related genes were analyzed with or without HXS treatment using RTqPCR analysis of S. aureus. HXS was tested using the checkerboard dilution assay to identify antibiotics that may have synergistic effects. Measurement of ATP and detection of ATPase allowed the determination of bacterial energy metabolism. As shown in the results, HXS showed effective antimicrobial activity against S. aureus, including both type strains and clinical isolations, with MICs of 16 µg/mL. Sub-HXS strongly inhibited the adhesion of S. aureus. The content of extracellular polymeric substances (EPS) and the relative transcription levels of eno, sacC, clfA, pls and fnbpB were reduced after HXS treatment. HXS showed antibacterial effects against S. aureus and synergistic activity with aminoglycosides by directly interfering with cellular energy metabolism. HXS inhibits adhesion and biofilm formation and eradicates biofilms formed by MRSA by reducing the expression of related genes. Furthermore, HXS increases the susceptibility of aminoglycosides against MRSA. In conclusion, HXS is a repurposed drug that may be a promising therapeutic option for MRSA infection.
Collapse
|
11
|
Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, González-Gómez JP, González-Torres B, Velázquez-Suárez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, Cardona-López MA, Robles-García MÁ, Gutiérrez-Lomelí M. Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol 2022; 13:1001700. [PMID: 36532477 PMCID: PMC9755592 DOI: 10.3389/fmicb.2022.1001700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Staphylococcus aureus is an important pathogen that can form biofilms on food contact surfaces (FCS) in the dairy industry, posing a serious food safety, and quality concern. Biofilm is a complex system, influenced by nutritional-related factors that regulate the synthesis of the components of the biofilm matrix. This study determines the prevalence of biofilm-associated genes and evaluates the development under different growth conditions and compositions of biofilms produced by S. aureus. METHODS Biofilms were developed in TSB, TSBG, TSBNaCl, and TSBGNaCl on stainless-steel (SS), with enumeration at 24 and 192 h visualized by epifluorescence and scanning electron microscopy (SEM). The composition of biofilms was determined using enzymatic and chemical treatments and confocal laser scanning microscopy (CLSM). RESULTS AND DISCUSSION A total of 84 S. aureus (SA1-SA84) strains were collected from 293 dairy industry FCS (FCS-stainless steel [n = 183] and FCS-polypropylene [n = 110]) for this study. The isolates harbored the genes sigB (66%), sar (53%), agrD (52%), clfB/clfA (38%), fnbA/fnbB (20%), and bap (9.5%). 99. In particular, the biofilm formed by bap-positive S. aureus onto SS showed a high cell density in all culture media at 192 h in comparison with the biofilms formed at 24 h (p < 0.05). Epifluorescence microscopy and SEM revealed the metabolically active cells and the different stages of biofilm formation. CLSM analysis detected extracellular polymeric of S. aureus biofilms on SS, such as eDNA, proteins, and polysaccharides. Finally, the level of detachment on being treated with DNase I (44.7%) and NaIO 4(42.4%) was greater in the biofilms developed in TSB compared to culture medium supplemented with NaCl at 24 h; however, there was no significant difference when the culture medium was supplemented with glucose. In addition, after treatment with proteinase K, there was a lower level of biomass detachment (17.7%) of the biofilm developed in TSBNaCl (p < 0.05 at 24 h) compared to that in TSB, TSBG, and TSBGNaCl (33.6, 36.9, and 37.8%, respectively). These results represent a deep insight into the composition of S. aureus biofilms present in the dairy industry, which promotes the development of more efficient composition-specific disinfection strategies.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Oscar Alberto Solis-Velazquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Jean-Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Noemí Yolanda Velázquez-Suárez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Liliana Martínez-Chávez
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nanci Edid Martínez-Gonzáles
- Laboratorio de Microbiología e Inocuidad de Alimentos, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Luz María Ibarra-Velázquez
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Marco Antonio Cardona-López
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Miguel Ángel Robles-García
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Jalisco, Mexico
| |
Collapse
|
12
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Ding M, Zhao W, Zhang X, Song L, Luan S. Charge-switchable MOF nanocomplex for enhanced biofilm penetration and eradication. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129594. [PMID: 35850068 DOI: 10.1016/j.jhazmat.2022.129594] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacterial biofilm is notorious for causing chronic infections, whose antibiotic treatment is bringing about severe multidrug resistance and environmental contamination. Stimuli-responsive nanocarriers have become encouraging materials to combat biofilm infections with high efficiency and low side effect. Herein, a charge-switchable and pH-responsive nanocomplex is fabricated via a facile aqueous one-pot zeolitic imidazolate framework-8 (ZIF-8) encapsulation of proteinase K (PK) and photosensitizer Rose Bengal (RB), for enzymatic and photodynamic therapies (PDT) against biofilm infections. Once encountering in acidic microenvironment, the surface charge of nanocomplex can switch self-adaptively from negative to positive, hence remarkably facilitating the biofilm penetration of nanocomplex. After acid-induced decomposition of nanocomplex, the released PK degrades biofilm matrix and loosens its structure, promoting diffusion of RB inside the biofilm. Afterwards, upon visible light illumination, the RB generates highly reactive oxygen species (ROS), which can readily and efficiently kill the remained bacteria even in the biofilm core. The charge-assisted penetration makes PK and RB fully functional, resulting in a cooperative effect concerning high biofilm eradication capacity, as testified by biofilm models both in vitro and in vivo. The green synthesis and good therapeutic performance of the nanocomplex manifests its considerable potential as a nontoxic and effective platform for biofilm treatment.
Collapse
Affiliation(s)
- Meng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Targeting hydrophobicity in biofilm-associated protein (Bap) as a novel antibiofilm strategy against Staphylococcus aureus biofilm. Biophys Chem 2022; 289:106860. [DOI: 10.1016/j.bpc.2022.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
15
|
Visperas A, Santana D, Klika AK, Higuera‐Rueda CA, Piuzzi NS. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J Orthop Res 2022; 40:1477-1491. [PMID: 35437846 PMCID: PMC9322555 DOI: 10.1002/jor.25345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) remains a devastating complication after total joint arthroplasty. Bacteria involved in these infections are notorious for adhering to foreign implanted surfaces and generating a biofilm matrix. These biofilms protect the bacteria from antibiotic treatment and the immune system making eradication difficult. Current treatment strategies including debridement, antibiotics, and implant retention, and one- and two-stage revisions still present a relatively high overall failure rate. One of the main shortcomings that has been associated with this high failure rate is the lack of a robust approach to treating bacterial biofilm. Therefore, in this review, we will highlight new strategies that have the potential to combat PJI by targeting biofilm integrity, therefore giving antibiotics and the immune system access to the internal network of the biofilm structure. This combination antibiofilm/antibiotic therapy may be a new strategy for PJI treatment while promoting implant retention.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - Daniel Santana
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Alison K. Klika
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | | | - Nicolas S. Piuzzi
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
16
|
Enhancing Biocide Efficacy: Targeting Extracellular DNA for Marine Biofilm Disruption. Microorganisms 2022; 10:microorganisms10061227. [PMID: 35744744 PMCID: PMC9228965 DOI: 10.3390/microorganisms10061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Biofilm formation is a global health, safety and economic concern. The extracellular composition of deleterious multispecies biofilms remains uncanvassed, leading to an absence of targeted biofilm mitigation strategies. Besides economic incentives, drive also exists from industry and research to develop and apply environmentally sustainable chemical treatments (biocides); especially in engineered systems associated with the marine environment. Recently, extracellular DNA (eDNA) was implicated as a critical structural polymer in marine biofilms. Additionally, an environmentally sustainable, multi-functional biocide was also introduced to manage corrosion and biofilm formation. To anticipate biofilm tolerance acquisition to chemical treatments and reduce biocide application quantities, the present research investigated eDNA as a target for biofilm dispersal and potential enhancement of biocide function. Results indicate that mature biofilm viability can be reduced by two-fold using reduced concentrations of the biocide alone (1 mM instead of the recommended 10 mM). Importantly, through the incorporation of an eDNA degradation stage, biocide function could be enhanced by a further ~90% (one further log reduction in viability). Biofilm architecture analysis post-treatment revealed that endonuclease targeting of the matrix allowed greater biocide penetration, leading to the observed viability reduction. Biofilm matrix eDNA is a promising target for biofilm dispersal and antimicrobial enhancement in clinical and engineered systems.
Collapse
|
17
|
Shukla SK, Manobala T, Rao TS. The role of S-layer Protein (SlpA) in biofilm-formation of Deinococcus radiodurans. J Appl Microbiol 2022; 133:796-807. [PMID: 35507240 DOI: 10.1111/jam.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the molecular basis of biofilm formation in a recombinant lab strain of Deinococcus radiodurans with a plasmid harbouring gfp and kanR that acquired the biofilm-forming ability. METHODS AND RESULTS D. radiodurans R1 is known as a non-biofilm former bacterium and so far there are no reports on its biofilm-producing capabilities. In this study, we investigated the molecular basis of biofilm formation in a recombinant strain of D. radiodurans using classical biofilm assays, confocal laser scanning microscopy, and real-time PCR. Biochemical analysis of D. radiodurans biofilm matrix revealed that it consisted predominantly of protein and carbohydrate complexes with a little amount of extracellular DNA (eDNA). Further, studies showed that D. radiodurans biofilm formation was enhanced in the presence of 25 mM Ca2+ , which enhanced the exopolysaccharide and protein content in the biofilm matrix. Enzymatic treatments with proteinase K, alginate lyase, and DNase I indicated the involvement of some proteinaceous components to be critical in the biofilm formation. RT-PCR studies showed that enhanced expression of a surface layer protein SlpA conferred the biofilm ability to D. radiodurans. CONCLUSION Overexpression of SlpA in D. radiodurans conferred the biofilm formation ability to the bacterium, in which a partial role was also played by the recombinant plasmid pKG. It was also shown that the presence of Ca2+ in the growth medium enhanced SlpA production, thus improving biofilm stability and biofilm maturation of D. radiodurans. SIGNIFICANCE AND IMPACT This study shows how biofilm formation can be augmented in D. radiodurans. The finding has implications for the development of D. radiodurans biofilm-based biotechnological applications.
Collapse
Affiliation(s)
- Sudhir K Shukla
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, India.,Homi Bhabha National Institute, Mumbai 400094, India
| | - T Manobala
- Department of Applied Science and Technology, Anna University, Chennai, Tamil Nadu 600 025, India
| | - T Subba Rao
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, India.,Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
18
|
Brilhante RSN, Lopes RGP, de Aguiar L, de Oliveira JS, Araújo GDS, Paixão GC, Pereira-Neto WDA, Freire RS, Nunes JVS, de Lima RP, Santos FA, Sidrim JJC, Rocha MFG. Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing the antifungal effects of terbinafine and griseofulvin. BIOFOULING 2022; 38:286-297. [PMID: 35450473 DOI: 10.1080/08927014.2022.2063720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raissa Geovanna Pereira Lopes
- Postgraduate Program in Medical Sciences, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lara de Aguiar
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Germana Costa Paixão
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosemayre Souza Freire
- Analytical Centre, Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Victor Serra Nunes
- Analytical Centre, Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renan Pereira de Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Flávia Almeida Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Nazari M, Bickel S, Benard P, Mason-Jones K, Carminati A, Dippold MA. Biogels in Soils: Plant Mucilage as a Biofilm Matrix That Shapes the Rhizosphere Microbial Habitat. FRONTIERS IN PLANT SCIENCE 2022; 12:798992. [PMID: 35095970 PMCID: PMC8792611 DOI: 10.3389/fpls.2021.798992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mucilage is a gelatinous high-molecular-weight substance produced by almost all plants, serving numerous functions for plant and soil. To date, research has mainly focused on hydraulic and physical functions of mucilage in the rhizosphere. Studies on the relevance of mucilage as a microbial habitat are scarce. Extracellular polymeric substances (EPS) are similarly gelatinous high-molecular-weight substances produced by microorganisms. EPS support the establishment of microbial assemblages in soils, mainly through providing a moist environment, a protective barrier, and serving as carbon and nutrient sources. We propose that mucilage shares physical and chemical properties with EPS, functioning similarly as a biofilm matrix covering a large extent of the rhizosphere. Our analyses found no evidence of consistent differences in viscosity and surface tension between EPS and mucilage, these being important physical properties. With regard to chemical composition, polysaccharide, protein, neutral monosaccharide, and uronic acid composition also showed no consistent differences between these biogels. Our analyses and literature review suggest that all major functions known for EPS and required for biofilm formation are also provided by mucilage, offering a protected habitat optimized for nutrient mobilization. Mucilage enables high rhizo-microbial abundance and activity by functioning as carbon and nutrient source. We suggest that the role of mucilage as a biofilm matrix has been underestimated, and should be considered in conceptual models of the rhizosphere.
Collapse
Affiliation(s)
- Meisam Nazari
- Division of Biogeochemistry of Agroecosystems, Georg-August University of Göttingen, Göttingen, Germany
| | - Samuel Bickel
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Pascal Benard
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | |
Collapse
|
20
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
21
|
Gränicher KA, Karygianni L, Attin T, Thurnheer T. Low Concentrations of Chlorhexidine Inhibit the Formation and Structural Integrity of Enzyme-Treated Multispecies Oral Biofilms. Front Microbiol 2021; 12:741863. [PMID: 34650542 PMCID: PMC8506149 DOI: 10.3389/fmicb.2021.741863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The self-produced matrix of biofilms, consisting of extracellular polymeric substances, plays an important role in biofilm adhesion to surfaces and the structural integrity of biofilms. In dentistry, biofilms cause multiple diseases such as caries, periodontitis, and pulpitis. Disruption of these biofilms adhering to dental hard tissues may pose a major challenge since biofilms show higher tolerance to antimicrobials and antibiotics than planktonic cells. In this study, the effect of low concentrations of chlorhexidine (CHX) on enzyme-treated multispecies oral biofilm was investigated in an in vitro model. Six-species biofilms were enzymatically treated by anaerobic growth in a medium containing DNase I and proteinase K. Biofilms were exposed to a low concentration of CHX at defined time points. After 64h, biofilms were either harvested and quantified by cultural analyses or stained for confocal laser scanning microscopy (CLSM) analyses using either Live/Dead kit or different fluorescent dyes. A mixture of YoPro1 and SYTOX™ Green, Fluorescent Brightener 28 (Calcofluor), and SYPRO™ Ruby Protein Gel Stain was used to stain total DNA, exopolysaccharides, and extracellular proteins, respectively. Extracellular DNA (eDNA) was visualized via an indirect immunofluorescence assay (Mouse anti-DNA IgG, Goat anti-Mouse IgG, Streptavidin-Cy3). Overall, the total colony-forming units significantly decreased after combined treatment with a low concentration of CHX and enzymes compared to the group treated with CHX alone (p<0.001). These findings also apply to five species individually (Streptococcus mutans, Streptococcus oralis, Actinomyces oris, Veillonella dispar, and Candida albicans) occurring in the biofilms, with Fusobacterium nucleatum being the only exception. Furthermore, CLSM images showed less dense biofilms and a reduction in cell numbers after combined treatment compared to the group without enzymes. The combination of enzymes capable of disturbing the matrix integrity with antimicrobial agents thus appears to be a promising approach for biofilm disruption and killing.
Collapse
Affiliation(s)
- Kay Andrin Gränicher
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
23
|
Bai X, Nakatsu CH, Bhunia AK. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods 2021; 10:2117. [PMID: 34574227 PMCID: PMC8472614 DOI: 10.3390/foods10092117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Synthetic Antimicrobial Peptide Polybia MP-1 (Mastoparan) Inhibits Growth of Antibiotic Resistant Pseudomonas aeruginosa Isolates From Mastitic Cow Milk. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10266-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Effect of Polyhexamethylene Biguanide in Combination with Undecylenamidopropyl Betaine or PslG on Biofilm Clearance. Int J Mol Sci 2021; 22:ijms22020768. [PMID: 33466613 PMCID: PMC7828725 DOI: 10.3390/ijms22020768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Hospital-acquired infection is a great challenge for clinical treatment due to pathogens’ biofilm formation and their antibiotic resistance. Here, we investigate the effect of antiseptic agent polyhexamethylene biguanide (PHMB) and undecylenamidopropyl betaine (UB) against biofilms of four pathogens that are often found in hospitals, including Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and pathogenic fungus, Candida albicans. We show that 0.02% PHMB, which is 10-fold lower than the concentration of commercial products, has a strong inhibitory effect on the growth, initial attachment, and biofilm formation of all tested pathogens. PHMB can also disrupt the preformed biofilms of these pathogens. In contrast, 0.1% UB exhibits a mild inhibitory effect on biofilm formation of the four pathogens. This concentration inhibits the growth of S. aureus and C. albicans yet has no growth effect on P. aeruginosa or E. coli. UB only slightly enhances the anti-biofilm efficacy of PHMB on P. aeruginosa biofilms. However, pretreatment with PslG, a glycosyl hydrolase that can efficiently inhibit and disrupt P. aeruginosa biofilm, highly enhances the clearance effect of PHMB on P. aeruginosa biofilms. Meanwhile, PslG can also disassemble the preformed biofilms of the other three pathogens within 30 min to a similar extent as UB treatment for 24 h.
Collapse
|
28
|
Gangwar B, Kumar S, Darokar MP. Glabridin Averts Biofilms Formation in Methicillin-Resistant Staphylococcus aureus by Modulation of the Surfaceome. Front Microbiol 2020; 11:1779. [PMID: 33071991 PMCID: PMC7534511 DOI: 10.3389/fmicb.2020.01779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium of the human body and a leading cause of nosocomial infections. Methicillin resistant S. aureus (MRSA) infections involving biofilm lead to higher mortality and morbidity in patients. Biofilm causes serious clinical issues, as it mitigates entry of antimicrobials to reach the etiological agents. It plays an important role in resilient chronic infections which place an unnecessary burden on antibiotics and the associated costs. To combat drug-resistant infection involving biofilm, there is a need to discover potential anti-biofilm agents. In this study, activity of polyphenolic flavonoid glabridin against biofilm formation of methicillin resistant clinical isolates of S. aureus is being reported for the first time. Crystal violet assay and scanning electron microscopy evidences shows that glabridin prevents formation of cells clusters and attachment of methicillin resistant clinical isolate (MRSA 4423) of S. aureus to the surface in a dose dependent manner. Gel free proteomic analysis of biofilm matrix by LC-ESI-QTOF confirmed the existence of several proteins known to be involved in cells adhesion. Furthermore, expression analysis of cell surface proteins revealed that glabridin significantly down regulates an abundance of several surface-associated adhesins including fibronectin binding proteins (FnbA, FnbB), serine-aspartate repeat-containing protein D (SdrD), immunoglobulin-binding protein G (Sbi), and other virulence factors which were induced by extracellular glucose in MRSA 4423. In addition, several moonlighting proteins (proteins with multiple functions) such as translation elongation factors (EF-Tu, EF-G), chaperone protein (DnaK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) were detected on the cell surface wherein their abundance was inversely proportional to surface-associated adhesins. This study clearly suggests that glabridin prevents biofilm formation in S. aureus through modulation of the cell surface proteins.
Collapse
Affiliation(s)
- Bhavana Gangwar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Santosh Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
29
|
Abd El-Hamid MI, Y. El-Naenaeey ES, M kandeel T, Hegazy WAH, Mosbah RA, Nassar MS, Bakhrebah MA, Abdulaal WH, Alhakamy NA, Bendary MM. Promising Antibiofilm Agents: Recent Breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2020; 9:E667. [PMID: 33022915 PMCID: PMC7600973 DOI: 10.3390/antibiotics9100667] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, which results in an increasingly serious situation worldwide. Consequently, the development of innovative biofilm inhibitors is urgently needed to control the biofilm formation by this pathogen. In this work, we thus sought to evaluate the biofilm inhibiting ability of some promising antibiofilm agents such as zinc oxide nanoparticles (Zno NPs), proteinase K, and hamamelitannin (HAM) in managing the MRSA biofilms. Different phenotypic and genotypic methods were used to identify the biofilm producing MDR MRSA isolates and the antibiofilm/antimicrobial activities of the used promising agents. Our study demonstrated strong antibiofilm activities of ZnO NPs, proteinase K, and HAM against MRSA biofilms along with their transcriptional modulation of biofilm (intercellular adhesion A, icaA) and quorum sensing (QS) (agr) genes. Interestingly, only ZnO NPs showed a powerful antimicrobial activity against this pathogen. Collectively, we observed overall positive correlations between the biofilm production and the antimicrobial resistance/agr genotypes II and IV. Meanwhile, there was no significant correlation between the toxin genes and the biofilm production. The ZnO NPs were recommended to be used alone as potent antimicrobial and antibiofilm agents against MDR MRSA and their biofilm-associated diseases. On the other hand, proteinase-K and HAM can be co-administrated with other antimicrobial agents to manage such types of infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (M.I.A.E.-H.); (E.-s.Y.E.-N.)
| | - El-sayed Y. El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; (M.I.A.E.-H.); (E.-s.Y.E.-N.)
| | - Toka M kandeel
- Specialist of Laboratory Medical Analysis, Almokhtabar Private Laboratories, Zagazig 44511, Egypt;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt;
| | - Rasha A. Mosbah
- Fellow Pharmacist, Infection Control Unit, Zagazig University Hospital, Zagazig 44511, Egypt;
| | - Majed S. Nassar
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (M.S.N.); (M.A.B.)
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (M.S.N.); (M.A.B.)
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
30
|
Heras C, Jiménez-Holguín J, Doadrio AL, Vallet-Regí M, Sánchez-Salcedo S, Salinas AJ. Multifunctional antibiotic- and zinc-containing mesoporous bioactive glass scaffolds to fight bone infection. Acta Biomater 2020; 114:395-406. [PMID: 32717329 DOI: 10.1016/j.actbio.2020.07.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022]
Abstract
Bone regeneration is a clinical challenge which requires multiple approaches. Sometimes, it also includes the development of osteogenic and antibacterial biomaterials to treat the emergence of possible infection processes arising from surgery. This study evaluates the antibacterial properties of gelatin-coated meso-macroporous scaffolds based on the bioactive glass 80%SiO2-15%CaO-5%P2O5 (mol-%) before (BL-GE) and after being doped with 4% of ZnO (4ZN-GE) and loaded with both saturated and the minimal inhibitory concentrations of one of the antibiotics: levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After physical-chemical characterization of materials, release studies of inorganic ions and antibiotics from the scaffolds were carried out. Moreover, molecular modelling allowed determining the electrostatic potential density maps and the hydrogen bonds of antibiotics and the glass matrix. Antibacterial in vitro studies (in planktonic, inhibition halos and biofilm destruction) with S. aureus and E. coli as bacteria models showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in E. coli cultures with LEVO or GENTA. Moreover, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and the E. coli biofilm total destruction was accomplished with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide needed options for bone infection treatment. STATEMENT OF SIGNIFICANCE: Antibacterial capabilities of scaffolds based on mesoporous bioactive glasses before and after adding a 4% ZnO and loading with saturated and minimal inhibitory concentrations of levofloxacin, vancomycin, gentamicin or rifampicin were evaluated. Staphylococcus aureus and Escherichia coli were the infection model strains for the performed assays of inhibition zone, planktonic growth and biofilm. Good inhibition results and a synergistic effect of zinc ions released from scaffolds and antibiotics were observed. Thus, the amount of antibiotic required to inhibit the bacterial planktonic growth was substantially reduced with the ZnO inclusion in the scaffold. This study shows that the ZnO-MBG osteogenic scaffolds are multifunctional tools in bone tissue engineering because they are able to fight bacterial infections with lower antibiotic dosage.
Collapse
Affiliation(s)
- C Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - J Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain
| | - A L Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - S Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - A J Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
31
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
32
|
Pandit A, Adholeya A, Cahill D, Brau L, Kochar M. Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol 2020; 129:199-211. [PMID: 32034822 DOI: 10.1111/jam.14609] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Soil environments are dynamic and the plant rhizosphere harbours a phenomenal diversity of micro-organisms which exchange signals and beneficial nutrients. Bipartite beneficial or symbiotic interactions with host roots, such as mycorrhizae and various bacteria, are relatively well characterized. In addition, a tripartite interaction also exists between plant roots, arbuscular mycorrhizal fungi (AMF) and associated bacteria. Bacterial biofilms exist as a sheet of bacterial cells in association with AMF structures, embedded within a self-produced exopolysaccharide matrix. Such biofilms may play important functional roles within these tripartite interactions. However, the details about such interactions in the rhizosphere and their relevant functional relationships have not been elucidated. This review explores the current understanding of naturally occurring microbial biofilms, and their interaction with biotic surfaces, especially AMF. The possible roles played by bacterial biofilms and the potential for their application for a more productive and sustainable agriculture is discussed in this review.
Collapse
Affiliation(s)
- A Pandit
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia
| | - A Adholeya
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - D Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia
| | - L Brau
- School of Life and Environmental Sciences, Deakin University, Geelong, Vic, Australia
| | - M Kochar
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| |
Collapse
|
33
|
Hathroubi S, Zerebinski J, Clarke A, Ottemann KM. Helicobacter pylori Biofilm Confers Antibiotic Tolerance in Part via A Protein-Dependent Mechanism. Antibiotics (Basel) 2020; 9:E355. [PMID: 32599828 PMCID: PMC7345196 DOI: 10.3390/antibiotics9060355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori, a WHO class I carcinogen, is one of the most successful human pathogens colonizing the stomach of over 4.4 billion of the world's population. Antibiotic therapy represents the best solution but poor response rates have hampered the elimination of H. pylori. A growing body of evidence suggests that H. pylori forms biofilms, but the role of this growth mode in infection remains elusive. Here, we demonstrate that H. pylori cells within a biofilm are tolerant to multiple antibiotics in a manner that depends partially on extracellular proteins. Biofilm-forming cells were tolerant to multiple antibiotics that target distinct pathways, including amoxicillin, clarithromycin, and tetracycline. Furthermore, this tolerance was significantly dampened following proteinase K treatment. These data suggest that H. pylori adapts its phenotype during biofilm growth resulting in decreased antibiotic susceptibility but this tolerance can be partially ameliorated by extracellular protease treatment.
Collapse
Affiliation(s)
- Skander Hathroubi
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Julia Zerebinski
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Aaron Clarke
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| | - Karen M. Ottemann
- Institüt für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (J.Z.); (A.C.)
| |
Collapse
|
34
|
Carothers KE, Liang Z, Mayfield J, Donahue DL, Lee M, Boggess B, Ploplis VA, Castellino FJ, Lee SW. The Streptococcal Protease SpeB Antagonizes the Biofilms of the Human Pathogen Staphylococcus aureus USA300 through Cleavage of the Staphylococcal SdrC Protein. J Bacteriol 2020; 202:e00008-20. [PMID: 32205460 PMCID: PMC7221255 DOI: 10.1128/jb.00008-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche.IMPORTANCEStreptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.
Collapse
Affiliation(s)
- Katelyn E Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jeffrey Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
35
|
Karygianni L, Attin T, Thurnheer T. Combined DNase and Proteinase Treatment Interferes with Composition and Structural Integrity of Multispecies Oral Biofilms. J Clin Med 2020; 9:jcm9040983. [PMID: 32244784 PMCID: PMC7231231 DOI: 10.3390/jcm9040983] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Modification of oral biofilms adhering to dental hard tissues could lead to new treatment approaches in cariology and periodontology. In this study the impact of DNase I and/or proteinase K on the formation of a simulated supragingival biofilm was investigated in vitro. Six-species biofilms were grown anaerobically in the presence of DNase I and proteinase K. After 64 h biofilms were either harvested and quantified by culture analysis or proceeded to staining followed by confocal laser scanning microscopy. Microbial cells were stained using DNA-dyes or fluorescent in situ hybridization. Exopolysaccharides, eDNA and exoproteins were stained with Calcofluor, anti-DNA-antibody, and SyproTM Ruby, respectively. Overall, results showed that neither DNase I nor proteinase K had an impact on total colony-forming units (CFUs) compared to the control without enzymes. However, DNase I significantly suppressed the growth of Actinomyces oris, Fusobacterium nucleatum, Streptococcus mutans, Streptococcus oralis and Candida albicans. Proteinase K treatment induced significant increase in S. mutans and S. oralis CFUs (p < 0.001), whereas C. albicans and V. dispar showed lower CFUs compared to the control. Interestingly, confocal images visualized the biofilm degradation caused by DNase I and proteinase K. Thus, enzymatic treatment should be combined with conventional antimicrobial agents aiming at both bactericidal effectiveness and biofilm dispersal.
Collapse
|
36
|
Banerjee S, Vishakha K, Das S, Dutta M, Mukherjee D, Mondal J, Mondal S, Ganguli A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf B Biointerfaces 2020; 190:110921. [PMID: 32172163 DOI: 10.1016/j.colsurfb.2020.110921] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus are known to cause diseases from normal skin wound to life intimidating infections. Among the drug resistant strain, management of methicillin resistant Staphylococcus aureus (MRSA) is very difficult by using conventional antibiotic treatment. Both Zinc oxide nanoparticles (ZnONPs) and pancreatin (PK) are known to have antibacterial activity. Our main objective is to dope PK on ZnONPs to reduced zinc-oxide toxicity but increased anti-bacterial and anti-biofilms activity. In present study, we showed that, functions of zinc oxide nanoparticles with pancreatin enzyme (ZnONPs-PK) have anti-bacterial, anti-biofilms, anti-motility and anti-virulence properties against MRSA. Moreover, ZnONPs-PK were more potent to eradicate MRSA than only ZnONPs and PK. Application of the produced nano-composites as treatment on infected swine dermis predominantly reflects the potential treatment property of it. The vancomycin sensitivity of MRSA was significantly increased on application with ZnONPs-PK. Further study revealed cell membrane was the target of the ZnONPs-PK and that leads to oxidative damage of the cells. The produced nanoparticles were found completely non-toxic to human's keratinocytes and lung epithelial cell lines at its bactericidal concentration. Overall, this study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnONPs-PK against MRSA. This novel nanoparticle strategy may provide the ideal solution for comprehensive management of MRSA and its associated diseases with minimising the use of antibiotics.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P- C.I.T. Scheme XM, Beleghata, 33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata, West Bengal, 700010, India
| | - Debolina Mukherjee
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Jyotsna Mondal
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sandhimita Mondal
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, EM - 4 Sector -V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
37
|
Shukla SK, Hariharan S, Rao TS. Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: Can a foe turn a friend? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121316. [PMID: 31607578 DOI: 10.1016/j.jhazmat.2019.121316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, Staphylococcus aureus biofilms, which are considered a foe for being pathogenic, were tested for their uranium bioremediation capacity to find out if they can turn out to be a friend. Acid phosphatase activity, which is speculated to aid in bio-precipitation of U(VI) from uranyl nitrate solution, was assayed in biofilms of seven different S. aureus strains. The presence of acid phosphatase enzyme was detected in the biofilms of all S. aureus strains (in the range of 3.1 ± 0.21 to 26.90 ± 2.32 μi.u./g), and found to be higher when compared to that of their planktonic phenotypes. Among all, S. aureus V329 biofilm showed highest biofilm formation ability along with maximum phosphatase activity (26.9 ± 2.32 μi.u./g of biomass). Addition of phosphate enhanced the U(VI) remediation when treated with uranyl nitrate solution. S. aureus V329 biofilm showed significant U tolerance with only a 3-log reduction when exposed to 10 ppm U(VI) for 1 h. When treated in batch mode, V329 biofilm successfully remediated up to 47% of the 10 ppm U(VI). This new approach using the acid phosphatase from the S. aureus V329 biofilm presents an alternative method for the remediation of uranium contamination.
Collapse
Affiliation(s)
- Sudhir K Shukla
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India
| | - S Hariharan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, 602117, India
| | - T Subba Rao
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
38
|
Effects of Lysozyme, Proteinase K, and Cephalosporins on Biofilm Formation by Clinical Isolates of Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2020; 2020:6156720. [PMID: 32089678 PMCID: PMC7031717 DOI: 10.1155/2020/6156720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can form biofilms, which confer resistance to immune clearance and antibacterial treatment. Therefore, effective strategies to prevent biofilm formation are warranted. Here, 103 P. aeruginosa clinical isolates were quantitatively screened for biofilm formation ability via the tissue culture plate method. The effects of lysozyme (hydrolytic enzyme) and proteinase K (protease) on biofilm formation were evaluated at different concentrations. Lysozyme (30 μg/mL), but not proteinase K, significantly inhibited biofilm formation (19% inhibition). Treatment of 24-hour-old biofilms of P. aeruginosa isolates with 50 times the minimum inhibitory concentrations (MICs) of ceftazidime and cefepime significantly decreased the biofilm mass by 32.8% and 44%, respectively. Moreover, the exposure of 24-hour-old biofilms of P. aeruginosa isolates to lysozyme (30 μg/mL) and 50 times MICs of ceftazidime or cefepime resulted in a significant reduction in biofilm mass as compared with the exposure to lysozyme or either antibacterial agent alone. The best antibiofilm effect (49.3%) was observed with the combination of lysozyme (30 μg/mL) and 50 times MIC of cefepime. The promising antibiofilm activity observed after treatment with 50 times MIC of ceftazidime or cefepime alone or in combination with lysozyme (30 μg/mL) is indicative of a novel strategy to eradicate pseudomonal biofilms in intravascular devices and contact lenses.
Collapse
|
39
|
Valliammai A, Sethupathy S, Priya A, Selvaraj A, Bhaskar JP, Krishnan V, Pandian SK. 5-Dodecanolide interferes with biofilm formation and reduces the virulence of Methicillin-resistant Staphylococcus aureus (MRSA) through up regulation of agr system. Sci Rep 2019; 9:13744. [PMID: 31551455 PMCID: PMC6760239 DOI: 10.1038/s41598-019-50207-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is a predominant human pathogen with high morbidity that is listed in the WHO high priority pathogen list. Being a primary cause of persistent human infections, biofilm forming ability of S. aureus plays a pivotal role in the development of antibiotic resistance. Hence, targeting biofilm is an alternative strategy to fight bacterial infections. The present study for the first time demonstrates the non-antibacterial biofilm inhibitory efficacy of 5-Dodecanolide (DD) against ATCC strain and clinical isolates of S. aureus. In addition, DD is able to inhibit adherence of MRSA on human plasma coated Titanium surface. Further, treatment with DD significantly reduced the eDNA synthesis, autoaggregation, staphyloxanthin biosynthesis and ring biofilm formation. Reduction in staphyloxanthin in turn increased the susceptibility of MRSA to healthy human blood and H2O2 exposure. Quantitative PCR analysis revealed the induced expression of agrA and agrC upon DD treatment. This resulted down regulation of genes involved in biofilm formation such as fnbA and fnbB and up regulation of RNAIII, hld, psmα and genes involved in biofilm matrix degradation such as aur and nuc. Inefficacy of DD on the biofilm formation of agr mutant further validated the agr mediated antibiofilm potential of DD. Notably, DD was efficient in reducing the in vivo colonization of MRSA in Caenorhabditis elegans. Results of gene expression studies and physiological assays unveiled the agr mediated antibiofilm efficacy of DD.
Collapse
Affiliation(s)
- Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630003, Tamil Nadu, India
| | - Sivasamy Sethupathy
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630003, Tamil Nadu, India
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630003, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630003, Tamil Nadu, India
| | | | | | | |
Collapse
|
40
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
41
|
Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite. Sci Rep 2019; 9:9920. [PMID: 31289312 PMCID: PMC6616338 DOI: 10.1038/s41598-019-46363-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli O157:H7 is one of the most important pathogens worldwide. In this study, three different kinds of enzymes, DNase I, proteinase K and cellulase were evaluated for inhibitory or degrading activity against E. coli O157:H7 biofilm by targeting extracellular DNA, proteins, and cellulose, respectively. The cell number of biofilms formed under proteinase K resulted in a 2.43 log CFU/cm2 reduction with an additional synergistic 3.72 log CFU/cm2 reduction after NaClO post-treatment, while no significant reduction occurred with NaClO treatment alone. It suggests that protein degradation could be a good way to control the biofilm effectively. In preformed biofilms, all enzymes showed a significant reduction of 16.4–36.7% in biofilm matrix in 10-fold diluted media (p < 0.05). The sequential treatment with proteinase K, cellulase, and NaClO showed a significantly higher synergistic inactivation of 2.83 log CFU/cm2 compared to 1.58 log CFU/cm2 in the sequence of cellulase, proteinase K, and NaClO (p < 0.05). It suggests that the sequence of multiple enzymes can make a significant difference in the susceptibility of biofilms to NaClO. This study indicates that the combination of extracellular polymeric substance-degrading enzymes with NaClO could be useful for the efficient control of E. coli O157:H7 biofilms.
Collapse
|
42
|
Cattò C, Secundo F, James G, Villa F, Cappitelli F. α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens Escherichia coli Biofilm Formation. Int J Mol Sci 2018; 19:E4003. [PMID: 30545074 PMCID: PMC6321288 DOI: 10.3390/ijms19124003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
The protease α-chymotrypsin (α-CT) was covalently immobilized on a low-density polyethylene (LDPE) surface, providing a new non-leaching material (LDPE-α-CT) able to preserve surfaces from biofilm growth over a long working timescale. The immobilized enzyme showed a transesterification activity of 1.24 nmol/h, confirming that the immobilization protocol did not negatively affect α-CT activity. Plate count viability assays, as well as confocal laser scanner microscopy (CLSM) analysis, showed that LDPE-α-CT significantly impacts Escherichia coli biofilm formation by (i) reducing the number of adhered cells (-70.7 ± 5.0%); (ii) significantly affecting biofilm thickness (-81.8 ± 16.7%), roughness (-13.8 ± 2.8%), substratum coverage (-63.1 ± 1.8%), and surface to bio-volume ratio (+7.1 ± 0.2-fold); and (iii) decreasing the matrix polysaccharide bio-volume (80.2 ± 23.2%). Additionally, CLSM images showed a destabilized biofilm with many cells dispersing from it. Notably, biofilm stained for live and dead cells confirmed that the reduction in the biomass was achieved by a mechanism that did not affect bacterial viability, reducing the chances for the evolution of resistant strains.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano 20133, Italy.
| | - Francesco Secundo
- Institute of Chemistry of Molecular Recognition, National Research Council, Milano 20131, Italy.
| | - Garth James
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano 20133, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano 20133, Italy.
| |
Collapse
|
43
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|