1
|
Nicolescu A, Bunea CI, Mocan A. Total flavonoid content revised: An overview of past, present, and future determinations in phytochemical analysis. Anal Biochem 2025; 700:115794. [PMID: 39894144 DOI: 10.1016/j.ab.2025.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Flavonoids represent an important research topic in the analytical chemistry of secondary plant metabolites. During habitual laboratory determinations, preliminary quantitative analysis is often associated with in vitro colorimetric assessment. Total flavonoid content (TFC) is used as screening method with high relevance in the chemical analysis of plants and derived products, being typically applied before HPLC-MS phytochemical profiling. Its importance stems from affordability, simplicity, rapidity, and low cost. The AlCl3 assay, with or without NaNO2 addition, is the most used method in the present, although less frequently used methods (using 2,4-dinitrophenylhydrazine, dimethylamino-cinnamaldehyde, or diethylene glycol) show potential for complementary and specific determinations. Given the prevalence of research papers focusing on a single method for "total flavonoid" determination, we identified the need for an objective and critical comparison of existing methodologies. Moreover, a special notice is dedicated to the past and the future of in vitro TFC determinations, in the context of recent advances in flavonoid research. The focal point of this review is to serve as a basis for laboratory protocol reorganization regarding TFC determination, as a powerful tool before mass spectrometry, as well as to present a potential complementary analysis protocol applicable to biological samples. Among the methods found in the literature, SBC was the only assay providing accurate determinations of TFC.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, Cluj-Napoca, 400372, Romania
| | - Claudiu Ioan Bunea
- Department of Viticulture and Oenology, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, Cluj-Napoca, 400372, Romania; Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Chu S, Shi Z, Xiao J, Wu Y. Bioactive constituents of amphibious Rotala rotundifolia at different growth stages and response surface optimization for flavonoid extraction. Sci Rep 2024; 14:29055. [PMID: 39580527 PMCID: PMC11585568 DOI: 10.1038/s41598-024-80300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal and has been used as a traditional medicine in China for over a hundred years. In this study, the bioactive constituents from different tissues of submerged and emergent R. rotundifolia at different growth periods were investigated. The response surface method was used to optimize the flavonoids extraction condition. The amount of flavonoids and triterpenoids from different tissues of R. rotundifolia were much higher than tannins and alkaloids. The highest total flavonoids amount from the leaves of submerged R. rotundifolia was 270.92 ± 13.34 mg/g at day 30 (phyllomorphosis finished), 1.8 times that of the emergent form (150.45 ± 15.11 mg/g). The highest triterpenoids content from the submerged and emergent forms was 242.20 ± 11.51 and 163.09 ± 14.87 mg/g at days 90 and 150 (flowering stage), respectively. The optimal flavonoid extraction conditions were: extraction time 50 min, ultrasonic power 333 W, ethanol concentration 79.3%, and a solid-liquid ratio of 1:60. The LC-MS/MS analysis showed that the extracts from submerged and emergent R. rotundifolia contained 26 and 22 flavonoids, respectively. This study provides phytochemical evidence for the further utilization of R. rotundifolia.
Collapse
Affiliation(s)
- Shuyi Chu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Shi
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Jibo Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Yuxin Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
3
|
Tenório CJL, Dantas TDS, Abreu LS, Ferreira MRA, Soares LAL. Influence of Major Polyphenols on the Anti- Candida Activity of Eugenia uniflora Leaves: Isolation, LC-ESI-HRMS/MS Characterization and In Vitro Evaluation. Molecules 2024; 29:2761. [PMID: 38930827 PMCID: PMC11206001 DOI: 10.3390/molecules29122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The content of chemical constituents in Eugenia uniflora leaf extracts correlates positively with biological activities. The experimental objective was to carry out the phytochemical screening and purification of the major polyphenols from the leaves of E. uniflora. In addition, the anti-Candida activity of the hydroalcoholic extract, fraction, subfractions and polyphenols purified were evaluated. After partitioning of the extract with ethyl acetate, the fractions were chromatographed on Sephadex® LH-20 gel followed by RP-flash chromatography and monitored by TLC and RP-HPLC. The samples were characterized by mass spectrometry (LC-ESI-QTOF-MS2) and subjected to the microdilution method in 96-well plates against strains of C. albicans, C. auris, and C. glabrata. Myricitrin (93.89%; w/w; m/z 463.0876), gallic acid (99.9%; w/w; m/z 169.0142), and ellagic acid (94.2%; w/w; m/z 300.9988) were recovered. The polyphenolic fraction (62.67% (w/w) myricitrin) and the ellagic fraction (67.86% (w/w) ellagic acid) showed the best antifungal performance (MIC between 62.50 and 500 μg/mL), suggesting an association between the majority constituents and the antifungal response of E. uniflora derivatives. However, there is a clear dependence on the presence of the complex chemical mixture. In conclusion, chromatographic strategies were effectively employed to recover the major polyphenols from the leaves of the species.
Collapse
Affiliation(s)
- Camylla Janiele Lucas Tenório
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (C.J.L.T.); (T.d.S.D.); (M.R.A.F.)
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Thainá dos Santos Dantas
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (C.J.L.T.); (T.d.S.D.); (M.R.A.F.)
- Post-Graduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| | - Lucas Silva Abreu
- Chemistry Institute, Fluminense Federal University, Niterói 24020-150, RJ, Brazil;
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (C.J.L.T.); (T.d.S.D.); (M.R.A.F.)
- Pharmaceutical Abilities Laboratory, Pharmacy, School of Health and Life Sciences, Catholic University of Pernambuco, Recife 50050-900, PE, Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (C.J.L.T.); (T.d.S.D.); (M.R.A.F.)
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
- Post-Graduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
4
|
Hernández-Reyes A, Guzmán-Albores JM, De León-Rodríguez A, Ruíz-Valdiviezo VM, Rodríguez-Ortiz LR, Barba-de la Rosa AP. Toxicological and Sedative Effects of Chipilin ( Crotalaria longirostrata) Leaf Extracts Obtained by Maceration and Supercritical Fluid Extraction. ACS OMEGA 2024; 9:18862-18871. [PMID: 38708243 PMCID: PMC11064181 DOI: 10.1021/acsomega.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Chipilin (Crotalaria longirostrata) is consumed as a vegetable in the preparation of traditional dishes. As a folk medicine, Chipilin extracts are used as a hypnotic and sedative agent; however, there are few reports that support these uses. This study aimed to characterize the compounds present in Chipilin leaf extracts and to investigate their sedative effect using zebrafish as an in vivo model. Extracts were obtained by maceration with water (H2O), ethanol (EtOH), and EtOH-H2O, while oleoresin was obtained by supercritical fluid extraction (SFE). Total phenolic and flavonoid contents were quantified by colorimetric methods. Phytochemical constituents were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The chronic and acute toxicities of Chipilin extracts were tested in zebrafish embryos and larvae, respectively. Chipilin sedative effect was tested by the larvae response to dark-light-dark transitions. EtOH-H2O extracts had the highest value of total phenolics (5345 ± 5.1 μg GAE/g), followed by water and oleoresin (1815 ± 5.1 and 394 ± 5.1 μg GAE/g, respectively). In water extracts were identified the alkaloid trachelanthamidine, 1,2β-epoxy- and the alkyl ketone 7,9-di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, while oleamide, α-monostearin, and erucamide were detected in all samples except in water extracts. Oleoresin extract had the lowest embryotoxicity (LC50 = 4.99 μg/mL) and the highest sedative effects. SFE is a green alternative to obtain Chipilin extracts rich in erucamide, an endocannabinoid analogue, which plays an important role in the development of the central nervous system and in modulating neurotransmitter release.
Collapse
Affiliation(s)
- Adaía Hernández-Reyes
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| | | | - Antonio De León-Rodríguez
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| | - Víctor Manuel Ruíz-Valdiviezo
- Instituto
Tecnológico de México-Instituto Tecnológico de
Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Col. Juan Crispin, Tuxtla Gutiérrez, Chiapas 29050, México
| | - Luis Roberto Rodríguez-Ortiz
- Investigadores
por México, Departamento de Neurobiología Molecular
y Celular, Instituto de Neurobiología,
UNAM, Campus Juriquilla, Querétaro, Qro. 76230, México
| | - Ana Paulina Barba-de la Rosa
- IPICYT,
Instituto Potosino de Investigación Científica y Tecnológica
A.C., Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P. 78216, México
| |
Collapse
|
5
|
Kukhtenko H, Bevz N, Konechnyi Y, Kukhtenko O, Jasicka-Misiak I. Spectrophotometric and Chromatographic Assessment of Total Polyphenol and Flavonoid Content in Rhododendron tomentosum Extracts and Their Antioxidant and Antimicrobial Activity. Molecules 2024; 29:1095. [PMID: 38474607 DOI: 10.3390/molecules29051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In the literature, the chemical composition of Rhododendron tomentosum is mainly represented by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum shoots using ethanol of various concentrations and purified water as an extractant. Extracts from Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and temperature to maximize the extraction of biologically active substances from the raw material. Using the method of high-performance thin-layer chromatography in a system with solvents ethyl acetate/formic acid/water (15:1:1), the following substances have been separated and identified in all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride, respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic substance content. Following the DPPH assay, regression analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.
Collapse
Affiliation(s)
- Halyna Kukhtenko
- Institute of Chemistry, University of Opole, 48 Oleska Str., 45-052 Opole, Poland
- Department of Cosmetology and Aromology, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Nataliia Bevz
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, 79010 Lviv, Ukraine
| | - Oleksandr Kukhtenko
- Department of Technology of Pharmaceutical Preparations, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | | |
Collapse
|
6
|
Ferreira MRA, Lima LB, Santos ECF, Machado JCB, Silva WAV, Paiva PMG, Napoleão TH, Soares LAL. Eugenia uniflora: a promising natural alternative against multidrug-resistant bacteria. BRAZ J BIOL 2023; 83:e274084. [PMID: 37585932 DOI: 10.1590/1519-6984.274084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
This work aimed to evaluate the chemical composition, antioxidant and antimicrobial activities from crude extract and fractions from leaves of Eugenia uniflora Linn. The crude extract was obtained by turbo extraction and their fractions by partitioning. Chromatographic analysis were performed, and the antioxidant capacity was verified by two methods (DPPH• and ABTS•+). The Minimal Inhibitory/Bactericidal Concentration were conducted against twenty-two bacteria, selecting five strains susceptible to extract/fractions and resistant to the antibiotics tested. Ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with Ethyl Acetate Fraction (EAF) against multidrug-resistant strains in modulatory and checkerboard tests. The chromatographic data showed gallic acid, ellagic acid, and myricitrin in crude extract, with enrichment in the EAF. The electron transfer activity demonstrated in the antioxidant tests is related to the presence of flavonoids. The Gram-positive strains were more susceptible to EAF, and their action spectra were improved by association, comprising Gram-negative bacilli. Synergisms were observed to ciprofloxacin and gentamicin against Pseudomonas aeruginosa colistin-resistant. The results demonstrate that the extract and enriched fraction obtained from the leaves of E. uniflora act as a promising natural alternative against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- M R A Ferreira
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - L B Lima
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - E C F Santos
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - J C B Machado
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - W A V Silva
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - P M G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - T H Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - L A L Soares
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| |
Collapse
|
7
|
Phenolic Acids and Amaryllidaceae Alkaloids Profiles in Leucojum aestivum L. In Vitro Plants Grown under Different Light Conditions. Molecules 2023; 28:molecules28041525. [PMID: 36838512 PMCID: PMC9958804 DOI: 10.3390/molecules28041525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Light-emitting diodes (LEDs) have emerged as efficient light sources for promoting in vitro plant growth and primary and secondary metabolite biosynthesis. This study investigated the effects of blue, red, and white-red LED lights on plant biomass growth, photosynthetic pigments, soluble sugars, phenolic compounds, the production of Amaryllidaceae alkaloids, and the activities of antioxidant enzymes in Leucojum aestivum L. cultures. A white fluorescent light was used as a control. The plants that were grown under white-red and red light showed the highest fresh biomass increments. The blue light stimulated chlorophyll a, carotenoid, and flavonoid production. The white-red and blue lights were favourable for phenolic acid biosynthesis. Chlorogenic, p-hydroxybenzoic, caffeic, syringic, p-coumaric, ferulic, sinapic, and benzoic acids were identified in plant materials, with ferulic acid dominating. The blue light had a significant beneficial effect both on galanthamine (4.67 µg/g of dry weight (DW)) and lycorine (115 µg/g DW) biosynthesis. Red light treatment increased catalase and superoxide dismutase activities, and high catalase activity was also observed in plants treated with white-red and blue light. This is the first report to provide evidence of the effects of LED light on the biosynthesis of phenolic acid and Amaryllidaceae alkaloids in L. aestivum cultures, which is of pharmacological importance and can propose new strategies for their production.
Collapse
|
8
|
Lopes IS, Cassas F, Veiga TAM, de Oliveira Silva FR, Courrol LC. Synthesis and Characterization of Eugenia uniflora L. Silver Nanoparticles and L-Cysteine Sensor Application. Chem Biodivers 2023; 20:e202200787. [PMID: 36420909 DOI: 10.1002/cbdv.202200787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
L-Cysteine (Cys) is a non-essential sulfur-containing amino acid, crucial for protein synthesis, detoxification, and several metabolic functions. Cys is widely used in the agricultural, food, cosmetic, and pharmaceutical industries. So, a suitable sensitive and selective sensing approach is of great interest, and a low-cost sensor would be necessary. This article presents silver nanoparticles (EuAgNPs) synthesized by a green synthesis method using Eugenia uniflora L. extracts and photoreduction. The nanoparticles were characterized by UV/VIS, transmission electron microscopy, high-performance liquid chromatography (HPLC), FTIR, and Zeta potential. With the addition of Cys in the EuAgNPs solution, the terminal thiol part of L-cysteine binds on the surface of nanoparticles through Ag-S bond. The EuAgNPs and CysAgNPs coexist until flavonoids bound the amino group of Cys, enhancing the red color of solutions. The EuAgNPs provided selectivity to detect Cys among other amino acids, and its detection limit was found to be 3.8 nM. The sensor has the advantages of low-cost synthesis, fast response, high selectivity, and sensitivity.
Collapse
Affiliation(s)
- Isabela Santos Lopes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Fernando Cassas
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Thiago André Moura Veiga
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
9
|
Hornyák M, Dziurka M, Kula-Maximenko M, Pastuszak J, Szczerba A, Szklarczyk M, Płażek A. Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum esculentum Moench) in different controlled-environment production systems. Sci Rep 2022; 12:257. [PMID: 34997114 PMCID: PMC8741924 DOI: 10.1038/s41598-021-04134-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.
Collapse
Affiliation(s)
- Marta Hornyák
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland. .,W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Michał Dziurka
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Monika Kula-Maximenko
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Jakub Pastuszak
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Anna Szczerba
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Marek Szklarczyk
- Faculty of Biotechnology and Horticulture, University of Agriculture, 29 Listopada 54, 31-425, Kraków, Poland
| | - Agnieszka Płażek
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| |
Collapse
|
10
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Apola A, Ekiert H, Szopa A. Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures. Appl Microbiol Biotechnol 2022; 106:619-633. [PMID: 34985568 PMCID: PMC8763773 DOI: 10.1007/s00253-021-11743-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022]
Abstract
The study has proved the stimulating effects of different strategies of treatments with elicitors on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in watercress (Nasturtium officinale) microshoot cultures. The study also assessed antioxidant and anti-melanin activities. The following elicitors were tested: ethephon (ETH), methyl jasmonate (MeJA), sodium salicylate (NaSA), and yeast extract (YeE) and were added on day 10 of the growth period. Cultures not treated with the elicitor were used as control. The total GSL content estimations and UHPLC-DAD-MS/MS analyses showed that elicitation influenced the qualitative and quantitative profiles of GSLs. MeJA stimulated the production of gluconasturtiin (68.34 mg/100 g dried weight (DW)) and glucobrassicin (65.95 mg/100 g DW). The elicitation also increased flavonoid accumulation (max. 1131.33 mg/100 g DW, for 100 μM NaSA, collection after 24 h). The elicitors did not boost the total polyphenol content. NaSA at 100 μM increased the production of total chlorophyll a and b (5.7 times after 24 h of treatment), and 50 μM NaSA caused a 6.5 times higher production of carotenoids after 8 days of treatment. The antioxidant potential (assessed with the CUPRAC FRAP and DPPH assays) increased most after 24 h of treatment with 100 μM MeJA. The assessment of anti-melanin activities showed that the microshoot extracts were able to cause inhibition of tyrosinase (max. 27.84% for 1250 µg/mL). KEY POINTS: • Elicitation stimulated of the metabolite production in N. officinale microshoots. • High production of pro-health glucosinolates and polyphenols was obtained. • N. officinale microshoots have got tyrosinase inhibition potential. • The antioxidant potential of N. officinale microshoots was evaluated.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, Stefana Żeromskiego 5, 25-369 Kielce, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Anna Apola
- Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
11
|
Hacioglu C, Kar F, Kara Y, Yucel E, Donmez DB, Sentürk H, Kanbak G. Comparative effects of metformin and Cistus laurifolius L. extract in streptozotocin-induced diabetic rat model: oxidative, inflammatory, apoptotic, and histopathological analyzes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57888-57901. [PMID: 34097215 DOI: 10.1007/s11356-021-14780-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Interest in phytochemical therapy methods in the treatment of diabetes is increasing day by day. Although the antidiabetic and antioxidant effects of Cistus laurifolius L. (CL) have been mentioned, the systemic effects remain unknown. The present study aims at evaluating the antidiabetic effects of the CL aqueous extract via metformin on streptozotocin (STZ)-induced diabetic rats. Forty male Wistar albino rats were divided into five groups of eight animals each: control, diabetic group (55mg/kg STZ), STZ+125mg/kg CL, STZ+250mg/kg CL, and STZ+100mg/kg metformin. The effects of CL and metformin on oxidative, apoptotic, and inflammatory pathways were comparatively investigated. In addition, nuclear factor-κB (NFκB), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-1β expressions analysis were carried out. CL treatment resulted in a significant improvement in blood glucose levels, lipid profile, pancreatic markers, and liver and kidney function tests. A 250mg/kg CL treatment decreased by 67.9%, 31.6%, 66.8%, 28.3%, and 31.4% in the total oxidant capacity, NFκB, TNF-α, IL-1β, caspase3, and cytochrome c levels, respectively, compared to the diabetic group. Additionally, CL treatments showed a dose-dependent reduction in NFκB, TNF-α, and IL-1β expression levels. A 250mg/kg CL treatment exhibited a greater increase (by 9.6%) in total antioxidant capacity than metformin. CL treatment provided histologically more improvement in the brain, heart, pancreas, spleen, liver, kidney, and testicular tissues compared to the metformin group. Our results suggest that the single treatment of CL aqueous extract at the low doses may have stronger short-term anti-diabetic effects than metformin. Therefore, further studies are needed regarding the long-term hypoglycemic effect or treatment of CL aqueous extract.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Faculty of Medicine, Department of Medical Biochemistry, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Training and Research Center, Kütahya Health Sciences University, Kütahya, Turkey
| | - Yakup Kara
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Ersin Yucel
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Dilek Burukoglu Donmez
- Faculty of Medicine, Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Sentürk
- Faculty of Science and Letters, Department of Biology, Eskisehir Osmangazi University, Eskisehir, Turkey
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey
- Eskisehir Osmangazi University Medical and Surgical Experimental Animals Application and Research Center (ESOGU-MSEAARC), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Faculty of Medicin, Department of Medical Biochemistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Hydrolyzable tannins (ellagitannins), flavonoids, pentacyclic triterpenes and their glycosides in antimycobacterial extracts of the ethnopharmacologically selected Sudanese medicinal plant Combretum hartmannianum Schweinf. Biomed Pharmacother 2021; 144:112264. [PMID: 34624680 DOI: 10.1016/j.biopha.2021.112264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-β-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.
Collapse
|
13
|
de Lima LB, da Silva WAV, Dos Santos ECF, Machado JCB, Procópio TF, de Moura MC, Napoleão TH, Ferreira MRA, Soares LAL. Evaluation of Antioxidant, Antibacterial and Enhancement of Antibiotic Action by Punica granatum Leaves Crude Extract and Enriched Fraction against Multidrug-Resistant Bacteria. Chem Biodivers 2021; 18:e2100538. [PMID: 34609784 DOI: 10.1002/cbdv.202100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the phytochemical composition, antioxidant, and antimicrobial potential of crude extract and fractions of Punica granatum leaves. The extract was produced by turbo extraction, after which hexanic, ethyl acetate, and aqueous fractions were obtained by partitioning. The chemical analyses were performed by thin layer chromatography and high-performance liquid chromatography, and the antioxidant activities were assayed by DPPH. and ABTS.+ . Minimal inhibitory and bactericidal concentrations (MIC/MBC) were applied to twenty-two bacteria. Most strains susceptible to extract/fractions and resistant to antibiotics were selected, and ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with the ethyl acetate fraction (EAF) against multidrug-resistant strains in modulatory and checkboard models. The data from chromatographic analyses showed flavonoids and tannins in the extract, as well as the enrichment of EAF in phenols, mainly flavonoids. The flavonoids were connected to the electron transfer activity demonstrated in the DPPH. and ABTS.+ assays. Gram-positive strains are more susceptible to EAF. The subinhibitory concentrations of P. granatum enhanced the antimicrobial activity of the agents and reduced the EAF individual MIC, and the combination of EAF and antibiotics demonstrated a synergistic effect. These results present a promising approach for developing a therapy in which antioxidant extracts and fractions can be used in combination with antibiotics.
Collapse
Affiliation(s)
- Liliane Bezerra de Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Cidade Universitária, 50740-600, Recife-PE, Brazil
| | - Wliana Alves Viturino da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Cidade Universitária, 50740-600, Recife-PE, Brazil.,Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Ewelyn Cintya Felipe Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Cidade Universitária, 50740-600, Recife-PE, Brazil.,Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Janaína Carla Barbosa Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Cidade Universitária, 50740-600, Recife-PE, Brazil.,Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Thamara Figueiredo Procópio
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife-PE, Brazil
| | - Maiara Celine de Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife-PE, Brazil
| | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife-PE, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| | - Luiz Alberto Lira Soares
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Cidade Universitária, 50740-600, Recife-PE, Brazil.,Laboratório de Farmacognosia, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Artur de Sá, s/n, Cidade Universitária, 50740-521, Recife-PE, Brazil
| |
Collapse
|
14
|
Precursor-Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and Antimicrobial Activities of Biomass Extracts. Molecules 2021; 26:molecules26154660. [PMID: 34361814 PMCID: PMC8348939 DOI: 10.3390/molecules26154660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).
Collapse
|
15
|
Kumar S, Bouic PJ, Rosenkranz B. Investigation of CYP2B6, 3A4 and β-esterase interactions of Withania somnifera (L.) dunal in human liver microsomes and HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113766. [PMID: 33395575 DOI: 10.1016/j.jep.2020.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (Solanaceae) is a traditional herb, used in African indigenous systems of medicine for the treatment of various diseases (including HIV/AIDS and tuberculosis). The relevance of clinically significant interactions of Withania with ARVs and anti-TB drugs needs to be investigated. AIM OF THE STUDY This study evaluated the effects of its roots on cytochromes P450 (CYPs) 2B6, 3A4, and rifampicin metabolism pathway, using methanol, ethanol, aqueous, and ethyl acetate solvent extractions. MATERIALS AND METHODS The extracts were tested on human liver microsomes (HLM) for CYP inhibition, mRNA expression in HepG2 cells for CYP induction. Biochemical qualitative tests and LC-MS/MS methodology were used to determine active phytoconstituents. RESULTS The methanolic and ethyl acetate extracts inhibited CYP2B6 with IC50s 79.16 and 57.96 μg/ml respectively, while none of the extracts had any effect on rifampicin metabolism or showed time-dependant inhibition (TDI). All extracts were moderate inducers of CYP3A4; the aqueous extract exhibited 38%-fold shift induction of CYP3A4 compared to the control. The methanolic extract had the lowest CTC50 (50% of cytotoxicity inhibition) (67.13 ± 0.83 μg/ml). LC-MS/MS-PDA full scans were consistent with the presence of flavone salvigenin (m/z 327), alkaloid isopelletierine (m/z 133), steroidal lactone 2,3-dihydrowithaferin-A (m/z 472), and other withanolides including withaperuvin I (m/z 533), withaferin derivative (m/z 567), some of these compounds likely being responsible for the observed CYP2B6 inhibition and CYP3A4 induction. The putative gastrointestinal tract (GIT) concentration for the active extracts was 1800 μg/ml and the hepatic circulation concentrations were estimated at about 220 μg/ml and 13.5 μg/ml for the methanolic and ethyl acetate extracts, respectively. The extrapolated in vivo percentage of inhibition was at 85% for the methanolic extract against CYP2B6. CONCLUSIONS The findings reported in this study suggest that W. somnifera extracts have the potential of causing clinically significant herb-drug interactions (HDI) as moderate inducer of CYP3A4 and inhibitor of CYP2B6 metabolism pathway (methanol and ethyl acetate extracts).
Collapse
Affiliation(s)
- Saneesh Kumar
- Division of Clinical Pharmacology, University of Stellenbosch, Cape Town, South Africa.
| | - Patrick J Bouic
- Division of Medical Microbiology, University of Stellenbosch, Cape Town, South Africa; Synexa Life Sciences, Montague Gardens, Cape Town, South Africa.
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, University of Stellenbosch, Cape Town, South Africa.
| |
Collapse
|
16
|
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Granica S, Korona-Glowniak I, Ekiert H, Szopa A. Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA ® Temporary Immersion Systems. Molecules 2020; 25:molecules25225257. [PMID: 33187324 PMCID: PMC7696031 DOI: 10.3390/molecules25225257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.
Collapse
Affiliation(s)
- Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Azra Đulović
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (I.B.); (A.Đ.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis and Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.K.-S.); (H.E.)
- Correspondence: ; Tel.: +48-12-620-5436
| |
Collapse
|
17
|
Omotuyi IO, Nash O, Ajiboye BO, Olumekun VO, Oyinloye BE, Osuntokun OT, Olonisakin A, Ajayi AO, Olusanya O, Akomolafe FS, Adelakun N. Aframomum melegueta secondary metabolites exhibit polypharmacology against SARS-CoV-2 drug targets: in vitro validation of furin inhibition. Phytother Res 2020; 35:908-919. [PMID: 32964551 DOI: 10.1002/ptr.6843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
COVID-19 pandemic is currently decimating the world's most advanced technologies and largest economies and making its way to the continent of Africa. Weak medical infrastructure and over-reliance on medical aids may eventually predict worse outcomes in Africa. To reverse this trend, Africa must re-evaluate the only area with strategic advantage; phytotherapy. One of the many plants with previous antiviral potency is against RNA viruses is Aframomum melegueta. In this study, one hundred (100) A. melegueta secondary metabolites have been mined and computational evaluated for inhibition of host furin, and SARS-COV-2 targets including 3C-like proteinase (Mpro /3CLpro ), 2'-O-ribose methyltransferase (nsp16) and surface glycoprotein/ACE2 receptor interface. Silica-gel column partitioning of A. melegueta fruit/seed resulted in 6 fractions tested against furin activity. Diarylheptanoid (Letestuianin A), phenylpropanoid (4-Cinnamoyl-3-hydroxy-spiro[furan-5,2'-(1'H)-indene]-1',2,3'(2'H,5H)-trione), flavonoids (Quercetin, Apigenin and Tectochrysin) have been identified as high-binding compounds to SARS-COV-2 targets in a polypharmacology manner. Di-ethyl-ether (IC50 = 0.03 mg/L), acetone (IC50 = 1.564 mg/L), ethyl-acetate (IC50 = 0.382 mg/L) and methanol (IC50 = 0.438 mg/L) fractions demonstrated the best inhibition in kinetic assay while DEF, ASF and MEF completely inhibited furin-recognition sequence containing Ebola virus-pre-glycoprotein. In conclusion, A. melegueta and its secondary metabolites have potential for addressing the therapeutic needs of African population during the COVID-19 pandemic.
Collapse
Affiliation(s)
- I Olaposi Omotuyi
- Chemo-Genomics Research Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba, Nigeria.,Chemoinformatics Unit, Mols & Sims, Ado Ekiti, Nigeria
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Basiru O Ajiboye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Victor O Olumekun
- Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba, Nigeria
| | - Babatunji E Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado Ekiti, Nigeria.,Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Oludare T Osuntokun
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba, Nigeria
| | - Adebisi Olonisakin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba, Nigeria
| | - A Olajide Ajayi
- Department of Microbiology, Adekunle Ajasin University, Akungba, Nigeria
| | - Olasehinde Olusanya
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | | | - Niyi Adelakun
- Chemoinformatics Unit, Mols & Sims, Ado Ekiti, Nigeria
| |
Collapse
|
18
|
YUWA-AMORNPITAK T, BUTKHUP L, YEUNYAW PN. Amino acids and antioxidant activities of extracts from wild edible mushrooms from a community forest in the Nasrinual District, Maha Sarakham, Thailand. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.18519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kumar S, Bouic PJ, Rosenkranz B. In Vitro Assessment of the Interaction Potential of Ocimum basilicum (L.) Extracts on CYP2B6, 3A4, and Rifampicin Metabolism. Front Pharmacol 2020; 11:517. [PMID: 32425779 PMCID: PMC7204527 DOI: 10.3389/fphar.2020.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ocimum basilicum L. or basilicum is a common culinary herb, used as a traditional medicine for various medical conditions including HIV/AIDS and tuberculosis, in Africa. The objective of this study was to evaluate the effect of methanol, ethanol, aqueous and ethyl acetate extracts of the dried leaves and inflorescence of O. basilicum, on the activity of cytochrome P450 enzymes (CYPs) CYP2B6 and 3A4, as well as esterase-mediated metabolism of rifampicin to 25-O-desacetyl rifampicin (25ODESRIF). Human liver microsomes (HLM) were used to evaluate inhibition and CYP2B6/3A4 mRNA expression HepG2 assays were used to measure induction. Furthermore, the phytoconstituents likely involved in causing the observed effect were analyzed using biochemical tests and LC-MS. The aqueous and methanolic extracts showed reversible and time-dependent inhibition (TDI) of CYP2B6 with TDI-IC50s 33.35 μg/ml (IC50 shift-fold >1.5) and 4.93 μg/ml (IC50 shift-fold >7) respectively, while the methanolic and ethanolic extracts inhibited 25ODESRIF formation (IC50s 31 μg/ml, 8.94 μg/ml). In HepG2 assays, the methanolic and ethanolic extracts moderately induced CYP2B6, 3A4 mRNA with 38%-, 28%-fold shift, and 22%-, 44%-fold shift respectively. LC-MS full scans identified phenols rosmarinic acid [m/z 359 (M-H)-, approximately 2298 mg/L in aqueous extract] and caftaric acid along with flavones salvigenin [m/z 329 (M+H)+, approximately 1855 mg/L in ethanolic extract], eupatorin [m/z 345 (M+H)+, 668.772 mg/L in ethanolic extract], rutin [m/z 609 (M-H)-] and isoquercetin [m/z 463 (M-H)-] and other compounds—linalool [m/z 153 (M-H)-], hydroxyjasmonic acid [m/z 225 (M-H)-], eucommiol [m/z 187 (M-H)-] and trihydroxy octadecenoic acid [m/z 329 (M-H)-, 530 mg/L in ethanolic extract]. The putative gastrointestinal tract (GIT) concentration for all extracts was calculated as 2,400 μg/ml and hepatic circulation concentrations were estimated at 805.68 μg/ml for the aqueous extract, and 226.56 μg/ml for methanolic extract. Based on the putative GIT concentration, estimated hepatic circulation concentration [I] and inhibition constant Ki, the predicted percentile of inhibition in vivo was highest for the aqueous extract on CYP2B6 (96.7%). The observations indicated that O. basilicum extracts may have the potential to cause clinically relevant herb-drug interactions (HDI) with CYP2B6 and rifampicin metabolism in vivo, if sufficient hepatic concentrations are reached in humans.
Collapse
Affiliation(s)
- Saneesh Kumar
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Patrick J Bouic
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa.,Synexa Life Sciences, Cape Town, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, South Africa.,Fundisa African Academy of Medicines Development, Cape Town, South Africa
| |
Collapse
|
20
|
Aleksandrova A, Nesterkina M, Gvozdii S, Kravchenko I. Phytochemical analysis and anti-inflammatory activity of Cladophora aegagropila extract. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The aim of this research is centered on phytochemical analysis and anti-inflammatory activity of Cladophora aegagropila extract. Methods: Total flavonoid content in the appropriate ethanol extract of C. aegagropila was determined using the spectrometric method. Anti-inflammatory activity was evaluated by the models of carrageenan-induced and allyl isothiocyanate-induced (AITC-induced) inflammation of hind limb in rats. Experimental animals were divided into 3 groups, 5 animals each: 1st group – control; the animals without therapy of induced inflammation, 2nd group – animals were treated with application of 5% ointment containing C. aegagropila; 3rd group – animals were treated with application of 5% ibuprofen. Evaluation of anti-inflammatory activity was performed by determination of dynamic change of thickness and volume of affected animal limb for carrageenan-induced inflammation for 8 days (with daily registration of records), and for AITC induced inflammation for 24 h (with registration of records after 30 min, 1 h, 2 h, 3 h, 6 h and 24 h since phlogogen was introduced). Results: Flavonoids content in C. aegagropila extract varied depending on ethanol concentration: usage of 40% ethanol led to 18.2 mg of flavonoid recovery on 1.0 g of dry raw material; 70% ethanol – 39.5 mg and 96% ethanol – 35.5 mg. Therapy of 5% ointment based on C. aegagropila extract decreased inflammatory response caused by the subplantar introduction of the corresponding phlogogen. Conclusion: The ointment from C. aegagropila extract shows anti-inflammatory activity by inhibiting inflammation caused by AITC and carrageenan.
Collapse
Affiliation(s)
- Aleksandra Aleksandrova
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| | - Mariia Nesterkina
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| | - Svitlana Gvozdii
- Department of Human Health and Civil Safety, I.I. Mechnikov Odessa National University, Odessa, Ukraine
| | - Iryna Kravchenko
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| |
Collapse
|
21
|
Ferraz Bezerra IC, de Moraes Ramos RT, Assunção Ferreira MR, Lira Soares LA. Optimization Strategy for Extraction of Active Polyphenols from Leaves of Eugenia uniflora Linn. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01691-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Bezerra IC, Ramos RTDM, Ferreira MR, Soares LA. Chromatographic profiles of extractives from leaves of Eugenia uniflora. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Silva-Rocha WP, de Azevedo MF, Ferreira MRA, da Silva JDF, Svidzinski TIE, Milan EP, Soares LAL, Rocha KBF, Uchôa AF, Mendes-Giannini MJS, Fusco Almeida AM, Chaves GM. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans. Front Microbiol 2017; 8:1788. [PMID: 29018413 PMCID: PMC5622941 DOI: 10.3389/fmicb.2017.01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product (Eugenia uniflora) in impairing hypha formation in C. albicans. We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs). Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml) and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a future therapeutic alternative for the treatment of Candida infections.
Collapse
Affiliation(s)
- Walicyranison P Silva-Rocha
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Matheus F de Azevedo
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Magda R A Ferreira
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Terezinha I E Svidzinski
- Departamento de Análise Clínicas, Centro de Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eveline P Milan
- Departamento de Infectologia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Luiz A L Soares
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | - Keyla B F Rocha
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Adriana F Uchôa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Ana M Fusco Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, São Paulo, Brazil
| | - Guilherme M Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|