1
|
Lin D, Yang H, Liang X, Yang M, Zhao Y. The involvement of mitochondria in erythrocyte pathology and diseases: from mechanisms to therapeutic strategies. Clin Exp Med 2025; 25:144. [PMID: 40343592 PMCID: PMC12064630 DOI: 10.1007/s10238-024-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/31/2024] [Indexed: 05/11/2025]
Abstract
Erythrocytes, as the predominant cellular components within the bloodstream, are crucial for the maintenance of physiological health. Mitochondria, known as cellular powerhouses and metabolic regulators, play a critical role in the maturation of the erythroid lineage. The absence of mitochondria in red blood cells upon completing their maturation process is a defining characteristic of their development. Dysregulation of mitochondrial metabolism has been associated with the onset and progression of various diseases. Mitochondrial metabolic disorders, along with the involvement of mitochondria in the induction of oxidative stress and the activation of immune responses, significantly contribute to the pathogenesis of diverse hematologic disorders, particularly in sickle cell disease. This review offers a comprehensive overview of the role of mitochondria in disorders related to abnormal erythropoiesis, immune responses, and hemolysis, as well as evaluating potential therapeutic strategies that target mitochondria. Ultimately, we emphasize the necessity for future research to elucidate the involvement of mitochondria in red blood cell disorders, which may inform the development of novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Dier Lin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Hongjun Yang
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xiaoxue Liang
- Department of Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Mengjiao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Yangyang Zhao
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Zhao H, Lv J, Chen B, He F, Wang Q, Xie D, Koyama H, Zhang C, Cheng J. RAGE deficiency obstructs high uric acid-induced oxidative stress and inflammatory response. Int Immunopharmacol 2025; 151:114316. [PMID: 39987631 DOI: 10.1016/j.intimp.2025.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Hyperuricemia is a metabolic disorder primarily associated with gout and implicated in various metabolic inflammatory diseases. While the role of monosodium urate crystals triggering inflammation has been well-documented, recent findings suggest that soluble high uric acid (HUA) also induces pro-inflammatory cytokine production in human monocytes. However, the comprehensive effects of HUA levels on macrophage dysfunction and the underlying mechanisms remain underexplored. This study employs urate oxidase knockout (UOX-KO) and receptor for advanced glycation end products deficiency (RAGE-/-) mouse models to elucidate macrophage function and its mechanistic pathways. Our results demonstrate that HUA promotes M1 polarization and migration of macrophages while impairing their phagocytic ability. This process is mediated through the high mobility group box 1 (HMGB1)-RAGE- ROS axis. Notably, RAGE deficiency in bone marrow-derived cells partially mediates these effects. Pathologically, elevated HMGB1 and monocyte chemoattractant protein 1 levels in pancreatic islets increases macrophage infiltration in UOX-KO mice. Treatment with the FPS-ZM1, as a pharmacological RAGE inhibitor, effectively decreases serum UA levels, ameliorates islet inflammation and insulin resistance. These findings suggest that soluble HUA serves as a pro-inflammatory trigger through the HMGB1-RAGE-ROS axis, and that RAGE inhibition may mitigate these effects by decreasing inflammatory macrophage infiltration in the islets. Additionally, the influence of UA on macrophages extends beyond gout, potentially contributing to the pathogenesis of other metabolic inflammatory conditions, such as atherosclerosis, non-alcoholic steatohepatitis, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
3
|
Zhou P, Zhang Q, Yang Y, Chen D, Jongkaewwattana A, Jin H, Zhou H, Luo R. Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. Autophagy 2025; 21:754-770. [PMID: 39508267 DOI: 10.1080/15548627.2024.2426114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck Anas platyrhynchos domesticus TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; co-IP: co-immunoprecipitation; DEFs: duck embryonic fibroblasts; DTMUV: duck Tembusu virus; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; IP: immunoprecipitation; IRF7: interferon regulatory factor 7; ISRE: interferon-stimulated response element; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB: nuclear factor kappa B; pAb: polyclonal antibody; poly(I:C): Polyriboinosinic polyribocytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like-receptor; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious dose; TM: tansmembrane; TOLLIP: toll interacting protein; TRIM: tripartite motif containing; UBA: ubiquitin-associated domain; Ub: ubiquitin; VSV: vesicular stomatitis virus; WT: wild type.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| |
Collapse
|
4
|
Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med 2024; 22:1057. [PMID: 39587666 PMCID: PMC11587765 DOI: 10.1186/s12967-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024] Open
Abstract
Iron overload is a pathological condition characterized by the abnormal accumulation of iron within the body, which may result from excessive iron intake, disorders of iron metabolism, or specific disease states. This condition can lead to significant health complications and may pose life-threatening risks. The excessive accumulation of iron can induce cellular stress, adversely affecting the structure and function of mitochondria, thereby compromising overall organ function. Given the critical role of mitochondria in cellular metabolism and homeostasis, it is imperative to investigate how mitochondrial dysfunction induced by iron overload contributes to disease progression, as well as to explore mitochondrial-related pathways as potential therapeutic targets for various iron overload disorders. This review examines the mechanisms by which mitochondria are implicated in iron overload-induced damage, including increased oxidative stress, mitochondrial DNA damage, and disruptions in energy metabolism. Additionally, it addresses the relationship between these processes and various forms of programmed cell death, as well as alterations in mitochondrial dynamics. Furthermore, the review discusses strategies aimed at alleviating and mitigating the complications associated with iron overload in patients by targeting mitochondrial pathways.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
| | - Mengjiao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxue Liang
- Chengdu Qingbaijiang District People's Hospital, Chengdu, 610300, Sichuan, P.R. China.
| |
Collapse
|
5
|
Vickers RR, Wyatt GL, Sanchez L, VanPortfliet JJ, West AP, Porter WW. Loss of STING impairs lactogenic differentiation. Development 2024; 151:dev202998. [PMID: 39399905 PMCID: PMC11528151 DOI: 10.1242/dev.202998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Heightened energetic and nutrient demand during lactogenic differentiation of the mammary gland elicits upregulation of various stress responses to support cellular homeostasis. Here, we identify the stimulator of interferon genes (STING) as an immune supporter of the functional development of mouse mammary epithelial cells (MECs). An in vitro model of MEC differentiation revealed that STING is activated in a cGAS-independent manner to produce both type I interferons and proinflammatory cytokines in response to the accumulation of mitochondrial reactive oxygen species. Induction of STING activity was found to be dependent on the breast tumor suppressor gene single-minded 2 (SIM2). Using mouse models of lactation, we discovered that loss of STING activity results in early involution of #3 mammary glands, severely impairing lactational performance. Our data suggest that STING is required for successful functional differentiation of the mammary gland and bestows a differential lactogenic phenotype between #3 mammary glands and the traditionally explored inguinal 4|9 pair. These findings affirm unique development of mammary gland pairs that is essential to consider in future investigations into normal development and breast cancer initiation.
Collapse
Affiliation(s)
- Ramiah R. Vickers
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Garhett L. Wyatt
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | - Weston W. Porter
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Lin L, Liao ZH, Li CQ. Insight into the role of mitochondrion-related gene anchor signature in mitochondrial dysfunction of neutrophilic asthma. J Asthma 2024; 61:912-929. [PMID: 38294718 DOI: 10.1080/02770903.2024.2311241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE At present, targeting molecular-pharmacological therapy is still difficult in neutrophilic asthma. The investigation aims to identify and validate mitochondrion-related gene signatures for diagnosis and specific targeting therapeutics in neutrophilic asthma. METHODS Bronchial biopsy samples of neutrophilic asthma and healthy people were identified from the GSE143303 dataset and then matched with human mitochondrial gene data to obtain mitochondria-related differential genes (MitoDEGs). Signature mitochondria-related diagnostic markers were jointly screened by support vector machine (SVM) analysis, least absolute shrinkage, and selection operator (LASSO) regression. The expression of marker MitoDEGs was evaluated by validation datasets GSE147878 and GSE43696. The diagnostic value was evaluated by receiver operating characteristic (ROC) curve analysis. Meanwhile, the infiltrating immune cells were analyzed by the CIBERSORT. Finally, oxidative stress level and mitochondrial functional morphology for asthmatic mice and BEAS-2B cells were evaluated. The expression of signature MitoDEGs was verified by qPCR. RESULTS 67 MitoDEGs were identified. Five signature MitoDEGs (SOD2, MTHFD2, PPTC7, NME6, and SLC25A18) were further screened out. The area under the curve (AUC) of signature MitoDEGs presented a good diagnostic performance (more than 0.9). There were significant differences in the expression of signature MitoDEGs between neutrophilic asthma and non-neutrophilic asthma. In addition, the basic features of mitochondrial dysfunction were demonstrated by in vitro and in vivo experiments. The expression of signature MitoDEGs in the neutrophilic asthma mice presented a significant difference from the control group. CONCLUSIONS These MitoDEGs signatures in neutrophilic asthma may hold potential as anchor diagnostic and therapeutic targets in neutrophilic asthma.
Collapse
Affiliation(s)
- Lu Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Zeng-Hua Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Chao-Qian Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| |
Collapse
|
7
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Wu D, Zhang H, Li F, Liu S, Wang Y, Zhang Z, Wang J, Wu Q. Resveratrol alleviates acute lung injury in mice by promoting Pink1/Parkin-related mitophagy and inhibiting NLRP3 inflammasome activation. Biochim Biophys Acta Gen Subj 2024; 1868:130612. [PMID: 38626830 DOI: 10.1016/j.bbagen.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by rapid onset and widespread inflammation in the lungs, often leading to respiratory failure. These conditions can be triggered by various factors, resulting in a severe inflammatory response within the lungs. Resveratrol, a polyphenolic compound found in grapes and peanuts, is renowned for its potent antioxidative and anti-inflammatory properties. In this study, we investigated how resveratrol protects against lipopolysaccharide (LPS)-induced ALI in mice. We established mouse models of LPS-induced ALI and inflammation in bronchoalveolar lavage fluid (BALF) macrophages. Through histopathological examination, immunofluorescence, western blot, enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM), we assessed the impact of resveratrol on the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes and the process of mitophagy. Our findings indicate that resveratrol significantly mitigated the lung injury and inflammation caused by LPS. This was achieved by inhibiting the oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the activation of NLRP3 inflammasomes. Resveratrol also reduced the levels of IL-1β and IL-18 in serum and BALF, decreased caspase-1 expression, and diminished macrophage pyroptosis. Furthermore, it upregulated Pink1, Parkin, Beclin-1, Autophagy-Related 5 (Atg5), and Microtubule-Associated Proteins 1 A/1B Light Chain 3B (LC3B-II), thereby enhancing mitophagy. Conversely, mitophagy was inhibited by Pink1 siRNA. In conclusion, resveratrol ameliorated ALI in mice, potentially by inhibiting the activation of NLRP3 inflammasomes, activating the Pink1/Parkin pathway, and promoting mitophagy.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiannan Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuge Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Xing Z, Jiang H, Liu X, Chai Q, Xin Z, Zhu C, Bao Y, Chen H, Gao H, Ma D. Integrating DNA/RNA microbe detection and host response for accurate diagnosis, treatment and prognosis of childhood infectious meningitis and encephalitis. J Transl Med 2024; 22:583. [PMID: 38902725 PMCID: PMC11191231 DOI: 10.1186/s12967-024-05370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/02/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Infectious meningitis/encephalitis (IM) is a severe neurological disease that can be caused by bacterial, viral, and fungal pathogens. IM suffers high morbidity, mortality, and sequelae in childhood. Metagenomic next-generation sequencing (mNGS) can potentially improve IM outcomes by sequencing both pathogen and host responses and increasing the diagnosis accuracy. METHODS Here we developed an optimized mNGS pipeline named comprehensive mNGS (c-mNGS) to monitor DNA/RNA pathogens and host responses simultaneously and applied it to 142 cerebrospinal fluid samples. According to retrospective diagnosis, these samples were classified into three categories: confirmed infectious meningitis/encephalitis (CIM), suspected infectious meningitis/encephalitis (SIM), and noninfectious controls (CTRL). RESULTS Our pipeline outperformed conventional methods and identified RNA viruses such as Echovirus E30 and etiologic pathogens such as HHV-7, which would not be clinically identified via conventional methods. Based on the results of the c-mNGS pipeline, we successfully detected antibiotic resistance genes related to common antibiotics for treating Escherichia coli, Acinetobacter baumannii, and Group B Streptococcus. Further, we identified differentially expressed genes in hosts of bacterial meningitis (BM) and viral meningitis/encephalitis (VM). We used these genes to build a machine-learning model to pinpoint sample contaminations. Similarly, we also built a model to predict poor prognosis in BM. CONCLUSIONS This study developed an mNGS-based pipeline for IM which measures both DNA/RNA pathogens and host gene expression in a single assay. The pipeline allows detecting more viruses, predicting antibiotic resistance, pinpointing contaminations, and evaluating prognosis. Given the comparable cost to conventional mNGS, our pipeline can become a routine test for IM.
Collapse
Affiliation(s)
- Zhihao Xing
- Biobank & Clinical laboratory & Department of Respiratory Medicine, Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen, Guangdong, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Hanfang Jiang
- Clinical laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xiaorong Liu
- Biobank & Clinical laboratory & Department of Respiratory Medicine, Shenzhen Children's Hospital of Shantou University Medical College, Shenzhen, Guangdong, China
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiang Chai
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Zefeng Xin
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Chunqing Zhu
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Clinical laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yanmin Bao
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Hongyu Chen
- Clinical laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Hongdan Gao
- Medical Testing, Bengbu Medical College, Bengbu, Anhui, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
11
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
12
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
14
|
Lee J, Kim H, Kang YW, Kim Y, Park MY, Song JH, Jo Y, Dao T, Ryu D, Lee J, Oh CM, Park S. LY6D is crucial for lipid accumulation and inflammation in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1479-1491. [PMID: 37394588 PMCID: PMC10394021 DOI: 10.1038/s12276-023-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious metabolic disorder characterized by excess fat accumulation in the liver. Over the past decade, NAFLD prevalence and incidence have risen globally. There are currently no effective licensed drugs for its treatment. Thus, further study is required to identify new targets for NAFLD prevention and treatment. In this study, we fed C57BL6/J mice one of three diets, a standard chow diet, high-sucrose diet, or high-fat diet, and then characterized them. The mice fed a high-sucrose diet had more severely compacted macrovesicular and microvesicular lipid droplets than those in the other groups. Mouse liver transcriptome analysis identified lymphocyte antigen 6 family member D (Ly6d) as a key regulator of hepatic steatosis and the inflammatory response. Data from the Genotype-Tissue Expression project database showed that individuals with high liver Ly6d expression had more severe NAFLD histology than those with low liver Ly6d expression. In AML12 mouse hepatocytes, Ly6d overexpression increased lipid accumulation, while Ly6d knockdown decreased lipid accumulation. Inhibition of Ly6d ameliorated hepatic steatosis in a diet-induced NAFLD mouse model. Western blot analysis showed that Ly6d phosphorylated and activated ATP citrate lyase, which is a key enzyme in de novo lipogenesis. In addition, RNA- and ATAC-sequencing analyses revealed that Ly6d drives NAFLD progression by causing genetic and epigenetic changes. In conclusion, Ly6d is responsible for the regulation of lipid metabolism, and inhibiting Ly6d can prevent diet-induced steatosis in the liver. These findings highlight Ly6d as a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yun-Won Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Moon-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji-Hong Song
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Junguee Lee
- Department of Pathology, St Mary's Hospital, the Catholic University of Korea, Daejeon, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | - Sangkyu Park
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, Korea.
| |
Collapse
|
15
|
Hu Y, Cao K, Wang F, Wu W, Mai W, Qiu L, Luo Y, Ge WP, Sun B, Shi L, Zhu J, Zhang J, Wu Z, Xie Y, Duan S, Gao Z. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat Metab 2022; 4:1756-1774. [PMID: 36536134 DOI: 10.1038/s42255-022-00707-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Microglia continuously survey the brain parenchyma and actively shift status following stimulation. These processes demand a unique bioenergetic programme; however, little is known about the metabolic determinants in microglia. By mining large datasets and generating transgenic tools, here we show that hexokinase 2 (HK2), the most active isozyme associated with mitochondrial membrane, is selectively expressed in microglia in the brain. Genetic ablation of HK2 reduced microglial glycolytic flux and energy production, suppressed microglial repopulation, and attenuated microglial surveillance and damage-triggered migration in male mice. HK2 elevation is prominent in immune-challenged or disease-associated microglia. In ischaemic stroke models, however, HK2 deletion promoted neuroinflammation and potentiated cerebral damages. The enhanced inflammatory responses after HK2 ablation in microglia are associated with aberrant mitochondrial function and reactive oxygen species accumulation. Our study demonstrates that HK2 gates both glycolytic flux and mitochondrial activity to shape microglial functions, changes of which contribute to metabolic abnormalities and maladaptive inflammation in brain diseases.
Collapse
Affiliation(s)
- Yaling Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Weiying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Weihao Mai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Liyao Qiu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yuxiang Luo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Binggui Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Neurobiology and Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ligen Shi
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junming Zhu
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Wu
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- The Children's Hospital, Zhejiang, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Tang L, Song Y, Xu J, Chu Y. The role of selective autophagy in pathogen infection. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Jian Z, Ma R, Zhu L, Deng H, Li F, Zhao J, Deng L, Lai S, Sun X, Tang H, Xu Z. Evasion of interferon-mediated immune response by arteriviruses. Front Immunol 2022; 13:963923. [PMID: 36091073 PMCID: PMC9454096 DOI: 10.3389/fimmu.2022.963923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell’s innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
- *Correspondence: Zhiwen Xu,
| |
Collapse
|
18
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
19
|
Zhang X, Ivantsova E, Perez-Rodriguez V, Cao F, Souders CL, Martyniuk CJ. Investigating mitochondria-immune responses in zebrafish, Danio rerio (Hamilton, 1822): A case study with the herbicide dinoseb. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109357. [PMID: 35500749 DOI: 10.1016/j.cbpc.2022.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022]
Abstract
The dinitrophenol herbicide dinoseb is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Studies in fish demonstrate impaired OXPHOS is associated with altered immune system responses and locomotor activity in fish. The objective of this study was to determine the effect of dinoseb on zebrafish (Danio rerio) during early stages of development. We measured oxygen consumption rates of embryos, transcripts related to OXPHOS, growth, and the immune system (cytokines and immune-signaling transcripts), and locomotor activity. We hypothesized that OXPHOS of fish would be impaired in vivo, leading to altered basal immune system expression and locomotor activity. Oxidative respiration assessments in embryos revealed that dinoseb decreased both mean basal respiration and oligomycin-induced ATP-linked respiration. Expression levels of cytochrome c oxidase complex IV, 3-hydroxyacyl-COA dehydrogenase and superoxide dismutase 1 were decreased in larvae following exposure to dinoseb while succinate dehydrogenase complex flavoprotein subunit A, insulin growth factor 1 (igf1) and igf2a mRNA were increased in abundance. Immune-related transcripts chemokine (C-X-C motif) ligand 1 and matrix metallopeptidase 9 (MMP-9) were decreased in expression levels while toll-like receptor 5a and 5b were increased in expression. In addition, a visual motor response test was conducted on both 6 and 7 dpf larvae to determine if dinoseb impaired locomotor activity. Dinoseb decreased locomotor activity in 7 dpf larvae but not 6 dpf. This study improves knowledge of toxicity mechanisms for dinoseb in early stages of fish development and demonstrates that mitochondrial toxicants may disrupt immune signaling in zebrafish.
Collapse
Affiliation(s)
- Xujia Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Fangjie Cao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA; Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Daood U, Ilyas MS, Ashraf M, Akbar M, Bapat RA, Khan AS, Pichika MR, Parolia A, Seow LL, Khoo SP, Yiu C. Biochemical changes and macrophage polarization of a silane-based endodontic irrigant in an animal model. Sci Rep 2022; 12:6354. [PMID: 35428859 PMCID: PMC9012771 DOI: 10.1038/s41598-022-10290-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Silane-based/fully hydrolyzed, endodontic irrigant exhibiting antimicrobial properties, is prepared, and is hypothesized to control macrophage polarization for tissue repair. Albino wistar rats were injected with 0.1 ml root canal irrigant, and bone marrow cells procured. Cellular mitochondria were stained with MitoTracker green along with Transmission Electron Microscopy (TEM) performed for macrophage extracellular vesicle. Bone marrow stromal cells (BMSCs) were induced for M1 and M2 polarization and Raman spectroscopy with scratch assay performed. Cell counting was used to measure cytotoxicity, and fluorescence microscopy performed for CD163. Scanning Electron Microscopy (SEM) was used to investigate interaction of irrigants with Enterococcus faecalis. K21 specimens exhibited reduction in epithelium thickness and more mitochondrial mass. EVs showed differences between all groups with decrease and increase in IL-6 and IL-10 respectively. 0.5%k21 enhanced wound healing with more fibroblastic growth inside scratch analysis along with increased inflammation-related genes (ICAM-1, CXCL10, CXCL11, VCAM-1, CCL2, and CXCL8; tissue remodelling-related genes, collagen 1, EGFR and TIMP-2 in q-PCR analysis. Sharp bands at 1643 cm-1 existed in all with variable intensities. 0.5%k21 had a survival rate of BMSCs comparable to control group. Bacteria treated with 0.5%k21/1%k21, displayed damage. Antimicrobial and reparative efficacy of k21 disinfectant is a proof of concept for enhanced killing of bacteria across root dentin acquiring functional type M2 polarization for ethnopharmacological effects.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Muhammad Sharjeel Ilyas
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Mariam Ashraf
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Munazza Akbar
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Ranjeet Ajit Bapat
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Cynthia Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
21
|
Ma X, Hao J, Wu J, Li Y, Cai X, Zheng Y. Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106723. [PMID: 35143076 DOI: 10.1002/adma.202106723] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Current pharmacological interventions for Parkinson's disease (PD) remain unsatisfactory in clinical settings. Inflammasome-mediated pyroptosis represents a potential therapeutic target for the alleviation of neurodegenerative diseases. The development of inflammasome-mediated pyroptosis agonists or antagonists may transform the treatment of neurodegenerative diseases. However, the identification of specific compounds that inhibit pyroptosis remains challenging. Herein, Prussian blue nanozyme (PBzyme) is revealed as a pyroptosis inhibitor to alleviate the neurodegeneration in mouse and cell models of PD. PBzyme protects the microglia and neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PBzyme alleviates motor deficits, attenuates the damage of mitochondrial membrane potential, and rescues dopaminergic neurons. Furthermore, intra-cerebroventricular injection of PBzyme reduces dopaminergic degeneration and inhibits neuroinflammation in an MPTP-induced PD mouse model. Both in vitro and in vivo results demonstrate that PBzyme reduces the activation of microglial nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3 (NLRP3) inflammasomes and caspase-1 by scavenging reactive oxygen species, thereby downregulating gasdermin D (GSDMD) cleavage as well as inflammatory factor production, and eventually leading to the inhibition of microglia pyroptosis. Overall, this work highlights the neuroprotective effects of PBzyme as a pyroptosis inhibitor and provides valuable mechanistic insights and a potential therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Xinxin Ma
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Radiology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| |
Collapse
|
22
|
Lee AR, Woo JS, Lee SY, Na HS, Cho KH, Lee YS, Lee JS, Kim SA, Park SH, Kim SJ, Cho ML. Mitochondrial Transplantation Ameliorates the Development and Progression of Osteoarthritis. Immune Netw 2022; 22:e14. [PMID: 35573148 PMCID: PMC9066007 DOI: 10.4110/in.2022.22.e14] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeon Su Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong Su Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung-Hwan Park
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
23
|
Haese NN, Smith H, Onwuzu K, Kreklywich CN, Smith JL, Denton M, Kreklywich N, Streblow AD, Frias AE, Morgan TK, Hirsch AJ, Bimber BN, Roberts VH, Streblow DN. Differential Type 1 IFN Gene Expression in CD14+ Placenta Cells Elicited by Zika Virus Infection During Pregnancy. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:783407. [PMID: 40012721 PMCID: PMC11864791 DOI: 10.3389/fviro.2021.783407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Zika virus (ZIKV) is an arthropod-borne Flavivirus that can also be transmitted vertically from infected mother to fetus. Infection of the fetus during pregnancy can lead to congenital malformations and severely impact fetal brain development causing a myriad of diseases now labeled Congenital Zika Syndrome (CZS). The mechanisms by which ZIKV crosses the placenta into the fetal circulation and the extent of ZIKV-induced changes remain unclear. We have previously shown that ZIKV infection of pregnant rhesus macaques results in abnormal oxygen transport across the placenta which may promote uterine vasculitis and placental villous damage. Changes in immune cell frequencies and activation status were also detected, as were distinct changes in the proportions of CD14+ cell subsets with an altered ratio of classical to non-classical CD14+ monocyte cells in both the maternal decidua and placental villous from ZIKV-infected animals compare to uninfected controls. In the current study, we performed single cell RNA sequencing on CD14+ cells isolated from the decidua of animals that were ZIKV infected at 31, 51, or 115 days of gestation (where term is ~168 days) compared to pregnant, time-matched uninfected controls. Bioinformatic analysis identified unique transcriptional phenotypes between CD14+ cells of infected and uninfected animals suggesting a distinct and sustained difference in transcriptomes between infected and uninfected CD14+ cells derived from the decidua. The timing of ZIKV infection had no effect on the CD14+ cell transcriptional profiles. Interestingly, ZIKV infection caused changes in expression of genes in pathways related to cellular stress and metabolism as well as immune response activation. Type 1 interferon response genes (ISGs) were among those that were differentially expressed following infection and these included members of the ISG12 family, IFI27 and IFI6. These ISGs have been recently described as effectors of the IFN response to flaviviruses. Supplementing our animal findings, in CD14+ cells isolated from human placenta, ZIKV infection similarly induced the expression of IFI27 and IFI6. Overall, our results showed that ZIKV infection during pregnancy induces the stable expression of antiviral genes within CD14+ cells of the placenta, which may provide an immune shield to protect the placenta from further infection and damage.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Hannah Smith
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Kosiso Onwuzu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Craig N. Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Jessica L. Smith
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Michael Denton
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Nicholas Kreklywich
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Aaron D. Streblow
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Antonio E. Frias
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Terry K. Morgan
- Department of Obstetrics & Gynecology, OHSU, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Benjamin N. Bimber
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| | - Victoria H.J. Roberts
- Division of Reproductive & Developmental Sciences, ONPRC, 505 NW 185th Ave, Beaverton, 97006, USA
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University (OHSU), 505 NW 185th Ave, Beaverton, 97006, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center (ONPRC), 505 NW 185th Ave, Beaverton, 97006, USA
| |
Collapse
|
24
|
Nicotinamide Riboside Alleviates Cardiac Dysfunction and Remodeling in Pressure Overload Cardiac Hypertrophy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546867. [PMID: 34567409 PMCID: PMC8463245 DOI: 10.1155/2021/5546867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Background Cardiac hypertrophy is a compensatory response to pressure overload, which eventually leads to heart failure. The current study explored the protective effect of nicotinamide riboside (NR), a NAD+ booster that may be administered through the diet, on the occurrence of myocardial hypertrophy and revealed details of its underlying mechanism. Methods Transverse aortic constriction (TAC) surgery was performed to establish a murine model of myocardial hypertrophy. Mice were randomly divided into four groups: sham, TAC, sham+NR, and TAC+NR. NR treatment was given daily by oral gavage. Cardiac structure and function were assessed using small animal echocardiography. Mitochondrial oxidative stress was evaluated by dihydroethidium (DHE) staining, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity. Levels of expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), IL-1β, TNF-α, and Sirtuin3 were measured by real-time PCR and ELISA. Expression levels of Caspase-1, Caspase-1 pro, cleaved Gasdermin D (GSDMD), NLRP3, ASC, Sirtuin3, ac-MnSOD, and total MnSOD were measured by Western blot. Results Reductions in the heart/body mass ratio (HW/BW) and lung/body mass ratio (LW/BW) and in ANP, BNP, and LDH levels were observed in the TAC group on the administration of NR (P < 0.05). Moreover, echocardiography data showed that cardiac dysfunction and structural changes caused by TAC were improved by NR treatment (P < 0.05). NR treatment also reduced levels of the inflammatory cytokines, IL-1β and TNF-α, and attenuated activation of NLRP3 inflammasomes induced by TAC. Furthermore, changes in DHE staining, MDA content, and SOD activity indicated that NR treatment alleviated the oxidative stress caused by TAC. Data from ELISA and Western blots revealed elevated myocardial NAD+ content and Sirtuin3 activity and decreased acetylation of MnSOD after NR treatment, exposing aspects of the underlying signaling pathway. Conclusion NR treatment alleviated TAC-induced pathological cardiac hypertrophy and dysfunction. Mechanically, these beneficial effects were attributed to the inhibition of NLRP3 inflammasome activation and myocardial inflammatory response by regulating the NAD+-Sirtuin3-MnSOD signaling pathway.
Collapse
|
25
|
Su Z, Guo Y, Huang X, Feng B, Tang L, Zheng G, Zhu Y. Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Front Cell Dev Biol 2021; 9:686820. [PMID: 34414181 PMCID: PMC8369426 DOI: 10.3389/fcell.2021.686820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid β-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.
Collapse
Affiliation(s)
- Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanru Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiufang Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 2021; 22:840. [PMID: 34149886 PMCID: PMC8210315 DOI: 10.3892/etm.2021.10272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ginseng, a perennial plant belonging to genus Panax, has been widely used in traditional herbal medicine in East Asia and North America. Ginsenosides are the most important pharmacological component of ginseng. Variabilities in attached positions, inner and outer residues and types of sugar moieties may be associated with the specific pharmacological activities of each ginsenoside. Ginsenoside Rg5 (Rg5) is a minor ginsenoside synthesized during ginseng steaming treatment that exhibits superior pharmaceutical activity compared with major ginsenosides. With high safety and various biological functions, Rg5 may act as a potential therapeutic candidate for diverse diseases. To date, there have been no systematic studies on the activity of Rg5. Therefore, in this review, all available literature was reviewed and discussed to facilitate further research on Rg5.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Li Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Ning Yin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei-Qun Yan
- Department of Tissue Engineering, School of Pharmaceutical Sciences in Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Guo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Rodríguez-Tomàs E, Iftimie S, Castañé H, Baiges-Gaya G, Hernández-Aguilera A, González-Viñas M, Castro A, Camps J, Joven J. Clinical Performance of Paraoxonase-1-Related Variables and Novel Markers of Inflammation in Coronavirus Disease-19. A Machine Learning Approach. Antioxidants (Basel) 2021; 10:antiox10060991. [PMID: 34205807 PMCID: PMC8234277 DOI: 10.3390/antiox10060991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection produces a response of the innate immune system causing oxidative stress and a strong inflammatory reaction termed ‘cytokine storm’ that is one of the leading causes of death. Paraoxonase-1 (PON1) protects against oxidative stress by hydrolyzing lipoperoxides. Alterations in PON1 activity have been associated with pro-inflammatory mediators such as the chemokine (C-C motif) ligand 2 (CCL2), and the glycoprotein galectin-3. We aimed to investigate the alterations in the circulating levels of PON1, CCL2, and galectin-3 in 126 patients with COVID-19 and their interactions with clinical variables and analytical parameters. A machine learning approach was used to identify predictive markers of the disease. For comparisons, we recruited 45 COVID-19 negative patients and 50 healthy individuals. Our approach identified a synergy between oxidative stress, inflammation, and fibrogenesis in positive patients that is not observed in negative patients. PON1 activity was the parameter with the greatest power to discriminate between patients who were either positive or negative for COVID-19, while their levels of CCL2 and galectin-3 were similar. We suggest that the measurement of serum PON1 activity may be a useful marker for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| | - María González-Viñas
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.I.); (M.G.-V.); (A.C.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
- Correspondence: ; Tel.: +34-977-310-300
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; (E.R.-T.); (H.C.); (G.B.-G.); (A.H.-A.); (J.J.)
| |
Collapse
|
28
|
Chitneedi PK, Weikard R, Arranz JJ, Martínez-Valladares M, Kuehn C, Gutiérrez-Gil B. Identification of Regulatory Functions of LncRNAs Associated With T. circumcincta Infection in Adult Sheep. Front Genet 2021; 12:685341. [PMID: 34194481 PMCID: PMC8236958 DOI: 10.3389/fgene.2021.685341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Several recent studies have demonstrated the role of long non-coding RNAs (lncRNAs) in regulating the defense mechanism against parasite infections, but no studies are available that investigated their relevance for immune response to nematode infection in sheep. Thus, the aim of the current study was to (i) detect putative lncRNAs that are expressed in the abomasal lymph node of adult sheep after an experimental infection with the gastrointestinal nematode (GIN) Teladorsagia circumcincta and (ii) to elucidate their potential functional role associated with the differential host immune response. We hypothesized that putative lncRNAs differentially expressed (DE) between samples from animals that differ in resistance to infection may play a significant regulatory role in response to nematode infection in adult sheep. To obtain further support for our hypothesis, we performed co-expression and functional gene enrichment analyses with the differentially expressed lncRNAs (DE lncRNAs). In a conservative approach, we included for this predictive analysis only those lncRNAs that are confirmed and supported by documentation of expression in gastrointestinal tissues in the current sheep gene atlas. We identified 9,105 putative lncRNA transcripts corresponding to 7,124 gene loci. Of these, 457 were differentially expressed lncRNA loci (DELs) with 683 lncRNA transcripts. Based on a gene co-expression analysis via weighted gene co-expression network analysis, 12 gene network modules (GNMs) were found significantly correlated with at least one of 10 selected target DE lncRNAs. Based on the principle of “guilt-by-association,” the DE genes from each of the three most significantly correlated GNMs were subjected to a gene enrichment analysis. The significant pathways associated with DE lncRNAs included ERK5 Signaling, SAPK/JNK Signaling, RhoGDI Signaling, EIF2 Signaling, Regulation of eIF4 and p70S6K Signaling and Oxidative Phosphorylation pathways. They belong to signaling pathway categories like Cellular Growth, Proliferation and Development, Cellular Stress and Injury, Intracellular and Second Messenger Signaling and Apoptosis. Overall, this lncRNA study conducted in adult sheep after GIN infection provided first insights into the potential functional role of lncRNAs in the differential host response to nematode infection.
Collapse
Affiliation(s)
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain.,Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Christa Kuehn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
29
|
Jiang H, Guo Y, Wei C, Hu P, Shi J. Nanocatalytic Innate Immunity Activation by Mitochondrial DNA Oxidative Damage for Tumor-Specific Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008065. [PMID: 33797131 DOI: 10.1002/adma.202008065] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The innate immune system plays a key role in protecting the human body from tumors, which, unfortunately, is largely counteracted by their immune-suppression function. Such an immune suppression has been reported to be induced by the immunosuppressive microenvironment, including the exhausted cytotoxic T lymphocytes (CTLs) and tumor-promoting M2-polarized macrophages. Here, a novel tumor-immunotherapeutic modality based on the nanocatalytic innate immunity activation by tumor-specific mitochondrial DNA (mtDNA) oxidative damage is proposed. In detail, a nanocatalytic medicine, Fe2+ -Ru2+ -loaded mesoporous silica nanoparticle named as MSN-Ru2+ /Fe2+ (MRF), is constructed to induce oxidative damage in the mtDNA of tumor cells. Such an oxidative mtDNA is able to escape from the tumor cells and acts as an immunogenic damage-associated molecular pattern to M1-polarize tumor-associated macrophages (TAMs), resulting in the reactivated immunoresponse of macrophages against cancer cells, and the subsequent inflammatory response of innate immunity. Most importantly, the treatment strategy based on regulating the innate immune response of TAMs not only stops the primary tumor progression, but also almost completely inhibits the growth of distant tumors in the periods of treatments.
Collapse
Affiliation(s)
- Han Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenyang Wei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Platform of Nanomedicine Translation, Shanghai Tenth People's Hospital, Medical School of Tongji University, 38 Yun-xin Road, Shanghai, 200435, P. R. China
| |
Collapse
|
30
|
Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst 2021; 112:1259-1266. [PMID: 32096864 DOI: 10.1093/jnci/djaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. METHODS A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia. The mtDNA haplogroups were identified from SNP array data of two independent cohorts. We conducted a case-control study to explore potential associations of mtDNA haplogroups with the susceptibility of neuroblastoma. The genetic effect of neuroblastoma was measured by odds ratios (ORs) of mitochondrial haplogroups. All tests were two-sided. RESULTS Haplogroup K was statistically significantly associated with reduced risk of neuroblastoma in the discovery cohort consisting of 1474 cases and 5699 controls (OR = 0.72, 95% confidence interval [CI] = 0.57 to 0.90; P = 4.8 × 10-3). The association was replicated in an independent cohort (OR = 0.69, 95% CI = 0.53 to 0.92; P = .01) of 930 cases and 3611 controls. Pooled analysis was performed by combining the two data sets. The association remained highly statistically significant after correction for multiple testing (OR = 0.71, 95% CI = 0.59 to 0.84, P = 1.96 × 10-4, Pcorrected = .002). Further analysis focusing on neuroblastoma subtypes indicated haplogroup K was more associated with high-risk neuroblastoma (OR = 0.57, 95% CI = 0.43 to 0.76; P = 1.46 × 10-4) than low-risk and intermediate-risk neuroblastoma. CONCLUSIONS Haplogroup K is an independent genetic factor associated with reduced risk of developing neuroblastoma in European descents. These findings provide new insights into the genetic basis of neuroblastoma, implicating mitochondrial DNA encoded proteins in the etiology of neuroblastoma.
Collapse
Affiliation(s)
- Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
31
|
Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, Courtet P. The Anti-inflammatory Effect of the Tricyclic Antidepressant Clomipramine and Its High Penetration in the Brain Might Be Useful to Prevent the Psychiatric Consequences of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:615695. [PMID: 33767623 PMCID: PMC7985338 DOI: 10.3389/fphar.2021.615695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
At the time of writing (December 2020), coronavirus disease 2019 (COVID-19) has already caused more than one million deaths worldwide, and therefore, it is imperative to find effective treatments. The “cytokine storm” induced by Severe Acute Respiratory Syndrome-Coronavirus type 2 (SARS-CoV-2) is a good target to prevent disease worsening, as indicated by the results obtained with tocilizumab and dexamethasone. SARS-CoV-2 can also invade the brain and cause neuro-inflammation with dramatic neurological manifestations, such as viral encephalitis. This could lead to potentially incapacitating long-term consequences, such as the development of psychiatric disorders, as previously observed with SARS-CoV. Several pathways/mechanisms could explain the link between viral infection and development of psychiatric diseases, especially neuro-inflammation induced by SARS-CoV-2. Therefore, it is important to find molecules with anti-inflammatory properties that penetrate easily into the brain. For instance, some antidepressants have anti-inflammatory action and pass easily through the blood brain barrier. Among them, clomipramine has shown very strong anti-inflammatory properties in vitro, in vivo (animal models) and human studies, especially in the brain. The aim of this review is to discuss the potential application of clomipramine to prevent post-infectious mental complications. Repositioning and testing antidepressants for COVID-19 management could help to reduce peripheral and especially central inflammation and to prevent the acute and particularly the long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- B Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - M Durand
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Olié
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - S Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| | - J P Molès
- Pathogenesis and Control of Chronic Infection, University of Montpellier, INSERM, EFS; CHU Montpellier, Montpellier, France
| | - E Haffen
- FondaMental Foundation, Créteil, France.,Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, Université de Franche-Comté, Besancon, France
| | - P Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.,FondaMental Foundation, Créteil, France
| |
Collapse
|
32
|
Jardim FR, Almeida FJSD, Luckachaki MD, Oliveira MRD. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2021; 21:263-279. [PMID: 32253837 DOI: 10.1631/jzus.b1900614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
Collapse
Affiliation(s)
- Fernanda Rafaela Jardim
- Forensic Institute, Forensic Toxicology Division, Postmortem Toxicology Sector, CEP 90160-093, Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil
| | | | - Marcos Roberto de Oliveira
- Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), CEP 78060-900, Cuiaba, MT, Brazil.,Department of Biochemistry Prof. "Tuiskon Dick", Federal University of Rio Grande do Sul (UFRGS), CEP 90035-000, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Wu D, Zhang H, Wu Q, Li F, Wang Y, Liu S, Wang J. Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sci 2020; 267:118941. [PMID: 33359748 DOI: 10.1016/j.lfs.2020.118941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
AIMS Acute lung injury (ALI) / acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with complex pathology and pathogenesis. Since there is no specific treatment for ALI, it is important to study the mechanism of how ALI develop. Sestrin2 (Sesn2) plays a critical role in the regulation of cellular stress response and oxidant defense. However, the potential function of Sesn2 in ALI/ARDS and the associated mechanism remains unclear. MAIN METHODS Lipopolysaccharide (LPS) induced ALI model was performed in the wild-type and Sesn2 knockout (Sesn2-/-) mice. The nod-like receptor protein 3 (NLRP3) inflammasome, cell pyroptosis and mitophagy were detected by western blots, immunofluorescent staining, flow cytometry. Lung injury were measured by histopathology and electron microscopy. KEY FINDINGS Knockout of Sesn2 enhanced LPS-induced ALI. As detailed in Sesn2-/- mice, NLRP3 inflammasome and cell pyroptosis were increased in lungs; IL-1β and IL-18 in serum and bronchoalveolar lavage fluid (BALF) were further promoted; In the isolated alveolar macrophages from Sesn2-/- mice, mitophagy induced by LPS was markedly inhibited, while reactive oxygen species (ROS), mitochondrial damage and cell pyroptosis were enhanced. Knocking down or overexpressing Sensn2 in J774.A1 cells demonstrated Sesn2 promoted Sequestosome1 (SQSTM1) expression and mitophagy by PTEN-induced putative kinase 1 (Pink1)/Parkin pathway. SIGNIFICANCE Sesn2 protected ALI by promoting mitophagy that exerts protection of AMs pyroptosis and negative regulation of NLRP3 inflammasomes. These data indicated Sesn2 might be a potential target for ALI treatment.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuge Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
34
|
Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 2020; 109:222-240. [PMID: 33271068 DOI: 10.1016/j.neuron.2020.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The functional contribution of microglia to normal brain development, healthy brain function, and neurological disorders is increasingly recognized. However, until recently, the nature of intercellular interactions mediating these effects remained largely unclear. Recent findings show microglia establishing direct contact with different compartments of neurons. Although communication between microglia and neurons involves intermediate cells and soluble factors, direct membrane contacts enable a more precisely regulated, dynamic, and highly effective form of interaction for fine-tuning neuronal responses and fate. Here, we summarize the known ultrastructural, molecular, and functional features of direct microglia-neuron interactions and their roles in brain disease.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| |
Collapse
|
35
|
Kim G, Omeka WKM, Liyanage DS, Lee J. Molecular characterization, redox regulation, and immune responses of monothiol and dithiol glutaredoxins from disk abalone (Haliotis discus discus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:385-394. [PMID: 33141077 DOI: 10.1016/j.fsi.2020.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Glutaredoxins (Grxs) are well-known oxidoreductases involved in a wide range of redox activities in organisms. In this study, two invertebrate Grxs (AbGrx1-like and AbGrx2) from disk abalone were identified and characterized in an effort to gain a deeper understanding into their immune and redox regulatory roles. Both AbGrxs share typical thioredoxin/Grx structures. AbGrx1-like and AbGrx2 were identified as monothiol and diothiol Grxs, respectively. AbGrxs were significantly expressed at the egg and 16-cell stage of early abalone development. Although the expression of both AbGrxs demonstrated similar patterns, the expression of AbGrx1-like was higher than AbGrx2 during development stages. In contrast, AbGrx2 expression was significantly higher than that of AbGrx1-like in adult tissues. Highest AbGrx1-like expression was observed in the hepatopancreas and digestive tract, while highest AbGrx2 expression was found in the gills, followed by the mantle, in healthy adult abalone tissues. The highest expression of AbGrx1-like was observed in the gills at 12 h and 6 h post injection (p.i) of Vibrio parahemolyticus and other stimulants, respectively. The highest expression of AbGrx2 in the gills were observed at 120 h, 6 h, 24 h, and 12 h post injection of V. parahaemolyticus, Listeria monocytogenes, Viral hemorrhagic septicemia virus, and Polyinosinic:polycytidylic acid, respectively. AbGrxs possessed significant 2-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) reduction activity, but AbGrx2 exhibited higher redox activity than AbGrx1-like. Altogether, our results suggest an important role of AbGrx1-like and AbGrx2 in redox homeostasis, as well as in the invertebrate immune defense system. Our findings will aid the development of new disease management strategies for this economically valuable species.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
36
|
Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239036. [PMID: 33261147 PMCID: PMC7731137 DOI: 10.3390/ijms21239036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrillar aggregates and soluble oligomers of both Amyloid-β peptides (Aβs) and hyperphosphorylated Tau proteins (p-Tau-es), as well as a chronic neuroinflammation are the main drivers causing progressive neuronal losses and dementia in Alzheimer’s disease (AD). However, the underlying pathogenetic mechanisms are still much disputed. Several endogenous neurotoxic ligands, including Aβs, and/or p-Tau-es activate innate immunity-related danger-sensing/pattern recognition receptors (PPRs) thereby advancing AD’s neuroinflammation and progression. The major PRR families involved include scavenger, Toll-like, NOD-like, AIM2-like, RIG-like, and CLEC-2 receptors, plus the calcium-sensing receptor (CaSR). This quite intricate picture stresses the need to identify the pathogenetically topmost Aβ-activated PRR, whose signaling would trigger AD’s three main drivers and their intra-brain spread. In theory, the candidate might belong to any PRR family. However, results of preclinical studies using in vitro nontumorigenic human cortical neurons and astrocytes and in vivo AD-model animals have started converging on the CaSR as the pathogenetically upmost PRR candidate. In fact, the CaSR binds both Ca2+ and Aβs and promotes the spread of both Ca2+ dyshomeostasis and AD’s three main drivers, causing a progressive neurons’ death. Since CaSR’s negative allosteric modulators block all these effects, CaSR’s candidacy for topmost pathogenetic PRR has assumed a growing therapeutic potential worth clinical testing.
Collapse
|
37
|
Yu W, Wang X, Zhao J, Liu R, Liu J, Wang Z, Peng J, Wu H, Zhang X, Long Z, Kong D, Li W, Hai C. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox Biol 2020; 37:101761. [PMID: 33080440 PMCID: PMC7575803 DOI: 10.1016/j.redox.2020.101761] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophage recruitment and pro-inflammatory differentiation are hallmarks of various diseases, including infection and sepsis. Although studies suggest that mitochondria may regulate macrophage immune responses, it remains unclear whether mitochondrial mass affects macrophage pro-inflammatory differentiation. Here, we found that lipopolysaccharide (LPS)-activated macrophages possess higher mitochondrial mass than resting cells. Therefore, this study aimed to explore the functional role and molecular mechanisms of increased mitochondrial mass in pro-inflammatory differentiated macrophages. Results show that an increase in the mitochondrial mass of macrophages positively correlates with inflammatory cytokine generation in response to LPS. RNA-seq analysis revealed that LPS promotes signal transducers and activators of transcription 2 (Stat2) and dynamin-related protein 1 (Drp1) expression, which are enriched in positive mitochondrial fission regulation. Meanwhile, knockdown or pharmacological inhibition of Drp1 blunts LPS-induced mitochondrial mass increase and pro-inflammatory differentiation. Moreover, Stat2 boosts Drp1 phosphorylation at serine 616, required for Drp1-mediated mitochondrial fission. LPS also causes Stat2-and Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. However, these mitochondria are profoundly remodeled, displaying fragmented morphology, loose cristae, reduced Δψm, and metabolic programming. Furthermore, these remodeled mitochondria shift their function from ATP synthesis to reactive oxygen species (ROS) production, which drives NFκB-dependent inflammatory cytokine transcription. Interestingly, an increase in mitochondrial mass with constitutively active phosphomimetic mutant of Drp1 (Drp1S616E) boosted pro-inflammatory response in macrophages without LPS stimulation. In vivo, we also demonstrated that Mdivi-1 administration inhibits LPS-induced macrophage pro-inflammatory differentiation. Importantly, we observed Stat2 phosphorylation and Drp1-dependent mitochondrial mass increase in macrophages isolated from LPS-challenged mice. In conclusion, we comprehensively demonstrate that a Stat2-Drp1 dependent mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Therefore, targeting the Stat2-Drp1 axis may provide novel therapeutic approaches for treating infection and inflammatory diseases.
Collapse
Affiliation(s)
- Weihua Yu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Wang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiuzhou Zhao
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Rui Liu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiangzheng Liu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zhao Wang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jie Peng
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Hao Wu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Zhang
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Zi Long
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Deqin Kong
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Wenli Li
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Chunxu Hai
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
38
|
Luo Z, Liu LF, Jiang YN, Tang LP, Li W, Ouyang SH, Tu LF, Wu YP, Gong HB, Yan CY, Jiang S, Lu YH, Liu T, Jiang Z, Kurihara H, Yu Y, Yao XS, Li YF, He RR. Novel insights into stress-induced susceptibility to influenza: corticosterone impacts interferon-β responses by Mfn2-mediated ubiquitin degradation of MAVS. Signal Transduct Target Ther 2020; 5:202. [PMID: 32943610 PMCID: PMC7499204 DOI: 10.1038/s41392-020-00238-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/09/2022] Open
Abstract
Although stress has been known to increase the susceptibility of pathogen infection, the underlying mechanism remains elusive. In this study, we reported that restraint stress dramatically enhanced the morbidity and mortality of mice infected with the influenza virus (H1N1) and obviously aggravated lung inflammation. Corticosterone (CORT), a main type of glucocorticoids in rodents, was secreted in the plasma of stressed mice. We further found that this stress hormone significantly boosted virus replication by restricting mitochondrial antiviral signaling (MAVS) protein-transduced IFN-β production without affecting its mRNA level, while the deficiency of MAVS abrogated stress/CORT-induced viral susceptibility in mice. Mechanistically, the effect of CORT was mediated by proteasome-dependent degradation of MAVS, thereby resulting in the impediment of MAVS-transduced IFN-β generation in vivo and in vitro. Furthermore, RNA-seq assay results indicated the involvement of Mitofusin 2 (Mfn2) in this process. Gain- and loss-of-function experiments indicated that Mfn2 interacted with MAVS and recruited E3 ligase SYVN1 to promote the polyubiquitination of MAVS. Co-immunoprecipitation experiments clarified an interaction between any two regions of Mfn2 (HR1), MAVS (C-terminal/TM) and SYVN1 (TM). Collectively, our findings define the Mfn2-SYVN1 axis as a new signaling cascade for proteasome-dependent degradation of MAVS and a 'fine tuning' of antiviral innate immunity in response to influenza infection under stress.
Collapse
Affiliation(s)
- Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Fang Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ying-Nan Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lu-Ping Tang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Long-Fang Tu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yu-Hui Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Tongzheng Liu
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, GuangZhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China. .,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China. .,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
39
|
Liu JY, Zhang MY, Qu YQ. The Underlying Role of Mitophagy in Different Regulatory Mechanisms of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2167-2177. [PMID: 32982209 PMCID: PMC7501977 DOI: 10.2147/copd.s265728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
COPD is a common disease of the respiratory system. Inflammation, cellular senescence and necroptosis are all pathological alterations of this disease, which may lead to emphysema and infection that aggravate disease progression. Mitochondria acting as respiration-related organelles is usually observed with abnormal changes in morphology and function in CS-stimulated models and COPD patients. Damaged mitochondria can activate mitophagy, a vital mechanism for mitochondrial quality control, whereas under the persistent stimulus of CS or other forms of oxidative stress, mitophagy is impaired, resulting in insufficient clearance of damaged mitochondria. However, the excessive activation of mitophagy also seems to disturb the pathology of COPD. In this review, we demonstrate the variations in mitochondria and mitophagy in CS-induced models and COPD patients and discuss the underlying regulatory mechanism of mitophagy and COPD, including the roles of inflammation, senescence, emphysema and infection.
Collapse
Affiliation(s)
- Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
40
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
41
|
Jung J, Park DC, Kim YI, Lee EH, Park MJ, Kim SH, Yeo SG. Decreased expression of autophagy markers in culture-positive patients with chronic otitis media. J Int Med Res 2020; 48:300060520936174. [PMID: 32589484 PMCID: PMC7323285 DOI: 10.1177/0300060520936174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Abnormal autophagy plays a role in the pathogenesis of various diseases. This study aimed to evaluate associations between the clinical manifestations of chronic otitis media (COM) and expression of autophagy markers. Methods Associations between presence of bacteria, otorrhea, and conductive and sensorineural hearing loss and levels of autophagy-related mRNAs were investigated in 47 patients with COM. Results Autophagy-related mRNAs were detected in all inflammatory tissues of COM patients. LC3-II showed the highest level of expression, followed by Beclin-1, P13KC3, Rubicon, and mTOR. Beclin-1 mRNA levels were significantly lower in culture-positive than in culture-negative patients. Conclusion Autophagy is involved in the pathogenesis of COM. The finding that expression of autophagy markers, especially Beclin-1, was lower in culture-positive than in culture-negative patients suggested that these markers are closely associated with the clinical features of COM.
Collapse
Affiliation(s)
- Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Dong Choon Park
- St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Pediatrics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Myung Jin Park
- Department of Otorhinolaryngology and Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology and Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung Geun Yeo
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea.,Department of Otorhinolaryngology and Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
42
|
Crespo I, Fernández-Palanca P, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates mitophagy, innate immunity and circadian clocks in a model of viral-induced fulminant hepatic failure. J Cell Mol Med 2020; 24:7625-7636. [PMID: 32468679 PMCID: PMC7339179 DOI: 10.1111/jcmm.15398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The haemorrhagic disease virus (RHDV) is a non‐cultivable virus that promotes in rabbits an acute disease which accomplishes many characteristics of an animal model of fulminant hepatic failure (FHF). Beneficial effects of melatonin have been reported in RHDV‐infected rabbits. This study investigated whether protection against viral‐derived liver injury by melatonin is associated with modulation of mitophagy, innate immunity and clock signalling. Rabbits were experimentally infected with 2 × 104 haemagglutination units of a RHDV isolate and killed at 18, 24 and 30 hours after infection (hpi). Melatonin (20 mg/kg body weight ip) was administered at 0, 12 and 24 hpi. RHDV infection induced mitophagy, with the presence of a high number of mitophagosomes in hepatocytes and increased expression of mitophagy genes. Greater expression of main innate immune intermediaries and inflammasome components was also found in livers with RHDV‐induced FHF. Both mitophagy and innate immunity activation was significantly hindered by melatonin. FHF induction also elicited an early dysregulation in clock signalling, and melatonin was able to prevent such circadian disruption. Our study discloses novel molecular routes contributing to RHDV‐induced damage progression and supports the potential of melatonin as a promising therapeutic option in human FHF.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
43
|
Thornhill EM, Verhoeven D. Respiratory Syncytial Virus's Non-structural Proteins: Masters of Interference. Front Cell Infect Microbiol 2020; 10:225. [PMID: 32509597 PMCID: PMC7248305 DOI: 10.3389/fcimb.2020.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a highly prevalent virus that affects the majority of the population. The virus can cause severe disease in vulnerable populations leading to high hospitalization rates from bronchiolitis or secondary bacterial infections leading to pneumonia. Two early and non-structural proteins (Ns1 and Ns2), strongly over-ride the antiviral innate system but also diminish the adaptive response as well. This review will cover interactions of Ns1 and Ns2 with the host antiviral response with a focus on alterations to signaling pathways, cytokine gene expression, and effects of the Ns proteins on mitochondria.
Collapse
Affiliation(s)
| | - David Verhoeven
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
44
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
45
|
De Dios R, Nguyen L, Ghosh S, McKenna S, Wright CJ. CpG-ODN-mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFκB inhibitory protein IκBβ to drive IL1α and IL1β expression. Immunology 2020; 160:64-77. [PMID: 32064589 DOI: 10.1111/imm.13182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Sterile inflammation contributes to many pathological states associated with mitochondrial injury. Mitochondrial injury disrupts calcium homeostasis and results in the release of CpG-rich mitochondrial DNA. The role of CpG-stimulated TLR9 innate immune signalling and sterile inflammation is well studied; however, how calcium dyshomeostasis affects this signalling is unknown. Therefore, we interrogated the relationship beτween intracellular calcium and CpG-induced TLR9 signalling in murine macrophages. We found that CpG-ODN-induced NFκB-dependent IL1α and IL1β expression was significantly attenuated by both calcium chelation and calcineurin inhibition, a finding mediated by inhibition of degradation of the NFκB inhibitory protein IκBβ. In contrast, calcium ionophore exposure increased CpG-induced IκBβ degradation and IL1α and IL1β expression. These results demonstrate that through its effect on IκBβ degradation, increased intracellular Ca2+ drives a pro-inflammatory TLR9-mediated innate immune response. These results have implications for the study of innate immune signalling downstream of mitochondrial stress and injury.
Collapse
Affiliation(s)
- Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
46
|
Cho DH, Kim JK, Jo EK. Mitophagy and Innate Immunity in Infection. Mol Cells 2020; 43:10-22. [PMID: 31999918 PMCID: PMC6999710 DOI: 10.14348/molcells.2020.2329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria have several quality control mechanisms by which they maintain cellular homeostasis and ensure that the molecular machinery is protected from stress. Mitophagy, selective autophagy of mitochondria, promotes mitochondrial quality control by inducing clearance of damaged mitochondria via the autophagic machinery. Accumulating evidence suggests that mitophagy is modulated by various microbial components in an attempt to affect the innate immune response to infection. In addition, mitophagy plays a key role in the regulation of inflammatory signaling, and mitochondrial danger signals such as mitochondrial DNA translocated into the cytosol can lead to exaggerated inflammatory responses. In this review, we present current knowledge on the functional aspects of mitophagy and its crosstalk with innate immune signaling during infection. A deeper understanding of the role of mitophagy could facilitate the development of more effective therapeutic strategies against various infections.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu 41566,
Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| |
Collapse
|
47
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
48
|
Yang Y, Shao R, Tang L, Li L, Zhu M, Huang J, Shen Y, Zhang L. Succinate dehydrogenase inhibitor dimethyl malonate alleviates LPS/d-galactosamine-induced acute hepatic damage in mice. Innate Immun 2019; 25:522-529. [PMID: 31474165 PMCID: PMC6900668 DOI: 10.1177/1753425919873042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In addition to its energy-supplying function, increasing evidence suggests that
mitochondria also play crucial roles in the regulation of inflammation.
Succinate dehydrogenase is also known as mitochondrial complex II, and
inhibition of succinate dehydrogenase by dimethyl malonate has been reported to
suppress the production of pro-inflammatory cytokines. In the present study, the
potential anti-inflammatory benefits of dimethyl malonate were investigated in a
mouse model with LPS/d-galactosamine-induced acute hepatic damage. Male
BALB/c mice were injected i.p. with LPS and d-galactosamine to cause
liver injury. The degree of liver injury, inflammatory response and oxidative
stress and the survival of the experimental animals were determined. The results
indicated dimethyl malonate decreased the level of aminotransferases in plasma,
alleviated histological abnormalities in liver, inhibited the induction of TNF-α
and IL-6 in plasma, suppressed hepatocyte apoptosis and improved the survival of
LPS/d-galactosamine-exposed mice. Therefore, inhibition of
succinate dehydrogenase by dimethyl malonate significantly alleviated
LPS/d-galactosamine-induced hepatic damage, which suggests that
succinate dehydrogenase might become a novel target for the intervention of
inflammation-based hepatic disorders.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, PR China.,Chongqing Engineering Research Center of Pharmaceutical Sciences, PR China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Min Zhu
- Department of Pathology, Karamay Central Hospital, PR China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, PR China
| |
Collapse
|
49
|
Myhrstad MCW, de Mello VD, Dahlman I, Kolehmainen M, Paananen J, Rundblad A, Carlberg C, Olstad OK, Pihlajamäki J, Holven KB, Hermansen K, Dragsted LO, Gunnarsdottir I, Cloetens L, Storm MU, Åkesson B, Rosqvist F, Hukkanen J, Herzig KH, Risérus U, Thorsdottir I, Poutanen KS, Savolainen MJ, Schwab U, Arner P, Uusitupa M, Ulven SM. Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome-A SYSDIET Sub-Study. Mol Nutr Food Res 2019; 63:e1801405. [PMID: 30964598 DOI: 10.1002/mnfr.201801405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 01/24/2023]
Abstract
SCOPE To explore the effect of a healthy Nordic diet on the global transcriptome profile in peripheral blood mononuclear cells (PBMCs) of subjects with metabolic syndrome. METHODS AND RESULTS Subjects with metabolic syndrome undergo a 18/24 week randomized intervention study comparing an isocaloric healthy Nordic diet with an average habitual Nordic diet served as control (SYSDIET study). Altogether, 68 participants are included. PBMCs are obtained before and after intervention and total RNA is subjected to global transcriptome analysis. 1302 probe sets are differentially expressed between the diet groups (p-value < 0.05). Twenty-five of these are significantly regulated (FDR q-value < 0.25) and are mainly involved in mitochondrial function, cell growth, and cell adhesion. The list of 1302 regulated probe sets is subjected to functional analyses. Pathways and processes involved in the mitochondrial electron transport chain, immune response, and cell cycle are downregulated in the healthy Nordic diet group. In addition, gene transcripts with common motifs for 42 transcription factors, including NFR1, NFR2, and NF-κB, are downregulated in the healthy Nordic diet group. CONCLUSION These results suggest that benefits of a healthy diet may be mediated by improved mitochondrial function and reduced inflammation.
Collapse
Affiliation(s)
- Mari C W Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130, Oslo, Norway
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institute, 141 86, Stockholm, Sweden
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Jussi Paananen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Amanda Rundblad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway
| | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ingibjörg Gunnarsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, 101, Reykjavík, Iceland
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden
| | - Matilda Ulmius Storm
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden.,Department of Clinical Nutrition, Skåne University Hospital, 221 00, Lund, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22, Uppsala, Sweden
| | - Janne Hukkanen
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, and Medical Research Center, Oulu University Hospital, 90014, Oulu, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, University of Oulu, Medical Research Center (MRC) and University Hospital, 90014, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznań University of Medical Sciences, 10 61-701, Poznań, Poland
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22, Uppsala, Sweden
| | - Inga Thorsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, 101, Reykjavík, Iceland
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,VTT Technical Research Centre of Finland, 02044 VTT, Espoo, Finland
| | - Markku J Savolainen
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, and Medical Research Center, Oulu University Hospital, 90014, Oulu, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institute, 141 86, Stockholm, Sweden
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
50
|
Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 2019; 98:139-153. [PMID: 31154010 DOI: 10.1016/j.semcdb.2019.05.022] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are the key energy-producing organelles and cellular source of reactive species. They are responsible for managing cell life and death by a balanced homeostasis passing through a network of structures, regulated principally via fission and fusion. Herein we discuss about the most advanced findings considering mitochondria as dynamic biophysical systems playing compelling roles in the regulation of energy metabolism in both physiologic and pathologic processes controlling cell death and survival. Precisely, we focus on the mitochondrial commitment to the onset, maintenance and counteraction of apoptosis, autophagy and senescence in the bioenergetic reprogramming of cancer cells. In this context, looking for a pharmacological manipulation of cell death processes as a successful route for future targeted therapies, there is major biotechnological challenge in underlining the location, function and molecular mechanism of mitochondrial proteins. Based on the critical role of mitochondrial functions for cellular health, a better knowledge of the main molecular players in mitochondria disfunction could be decisive for the therapeutical control of degenerative diseases, including cancer.
Collapse
|