1
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Glabinski A. Interaction Between Neutrophils and Elements of the Blood-Brain Barrier in the Context of Multiple Sclerosis and Ischemic Stroke. Int J Mol Sci 2025; 26:4437. [PMID: 40362673 PMCID: PMC12072651 DOI: 10.3390/ijms26094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The blood-brain barrier (BBB) is a semi-permeable membrane in physiological conditions, but in pathologies like multiple sclerosis (MS) and ischemic stroke (IS), its permeability increases. In this review, we focus on neutrophils and their interaction with cellular components of the BBB: endothelial cells (EC), pericytes (PC), and astrocytes (AC). Nowadays, neutrophils receive more attention, mostly due to advanced research techniques that show the complexity of their population. Additionally, neutrophils have the ability to secrete extracellular vesicles (EVs), reactive oxygen species (ROS) and cytokines, which both destroy and restore the BBB. Astrocytes, PCs, and ECs also have dual roles in the pathogenesis of MS and IS. The interaction between neutrophils and cellular components of the BBB provides us with a wider insight into the pathogenesis of common diseases in the central nervous system. Further, we comprehensively review knowledge about the influence of neutrophils on the BBB in the context of MS and IS. Moreover, we describe new therapeutic strategies for patients with MS and IS like cell-based therapies and therapies that use the neutrophil function.
Collapse
Affiliation(s)
| | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.)
| |
Collapse
|
2
|
Izhar M, Lesniak MS. Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70051. [PMID: 40330713 PMCID: PMC12053894 DOI: 10.1002/jex2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Extracellular vesicles (EVs) are small particles released by various cells, including cancer cells. They play a significant role in the development of different cancers, including brain metastasis. These EVs transport biomolecular materials such as RNA, DNA, and proteins from tumour cells to other cells, facilitating the spread of primary tumours to the brain tissue. EVs interact with the endothelial cells of the blood-brain barrier (BBB), compromising its integrity and allowing metastatic cells to pass through easily. Additionally, EVs interact with various cells in the brain's microenvironment, creating a conducive environment for incoming metastatic cells. They also influence the immune system within this premetastatic environment, promoting the growth of metastatic cells. This review paper focuses on the research regarding the role of EVs in the development of brain metastasis, including their impact on disrupting the BBB, preparing the premetastatic environment, and modulating the immune system. Furthermore, the paper discusses the potential of EVs as diagnostic and prognostic biomarkers for brain metastasis.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Maciej S. Lesniak
- Department of Neurological SurgeryLou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Inozemtsev VA, Dokukin ME, Sgibnev YM, Sherstyukova EA, Kandrashina SS, Shvedov MA, Shelaev AV, Nikonorov NV, Sergunova VA, Baryshev AV. Na-Ag Ion-Exchanged Glass Substrates for Plasmon-Enhanced Fluorescence Imaging of Neutrophils. SENSORS (BASEL, SWITZERLAND) 2025; 25:2278. [PMID: 40218788 PMCID: PMC11991197 DOI: 10.3390/s25072278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Here, we study the fluorescence response of neutrophils stained with the wheat germ agglutinin Alexa Fluor 594 dye when the cells are placed on plasmonic nanoparticle substrates. Specifically, we focused on gold and silver nanoparticles with particle sizes ranging from 12 to 250 nm. It was demonstrated that the intensity of fluorescence can be increased by more than 10 times when using substrates with silver nanoparticles formed by Na+-Ag+ ion exchange in glass. The fluorescence enhancement depends significantly on both the size and surface density of the silver nanoparticles and the membrane staining procedure.
Collapse
Affiliation(s)
- Vladimir A. Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 25 Petrovka St. Bldg. 2, 107031 Moscow, Russia; (V.A.I.); (E.A.S.); (S.S.K.); (M.A.S.)
| | - Maxim E. Dokukin
- Dukhov Automatics Research Institute (VNIIA), 22 Sushchevskaya St., 127055 Moscow, Russia; (Y.M.S.); (A.V.S.); (A.V.B.)
| | - Yevgeniy M. Sgibnev
- Dukhov Automatics Research Institute (VNIIA), 22 Sushchevskaya St., 127055 Moscow, Russia; (Y.M.S.); (A.V.S.); (A.V.B.)
| | - Ekaterina A. Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 25 Petrovka St. Bldg. 2, 107031 Moscow, Russia; (V.A.I.); (E.A.S.); (S.S.K.); (M.A.S.)
| | - Snezhanna S. Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 25 Petrovka St. Bldg. 2, 107031 Moscow, Russia; (V.A.I.); (E.A.S.); (S.S.K.); (M.A.S.)
| | - Mikhail A. Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 25 Petrovka St. Bldg. 2, 107031 Moscow, Russia; (V.A.I.); (E.A.S.); (S.S.K.); (M.A.S.)
| | - Artem V. Shelaev
- Dukhov Automatics Research Institute (VNIIA), 22 Sushchevskaya St., 127055 Moscow, Russia; (Y.M.S.); (A.V.S.); (A.V.B.)
| | - Nikolay V. Nikonorov
- Research Center for Optical Materials, ITMO University, 49 Kronverksky Avenue, 197101 Saint-Petersburg, Russia;
| | - Viktoria A. Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 25 Petrovka St. Bldg. 2, 107031 Moscow, Russia; (V.A.I.); (E.A.S.); (S.S.K.); (M.A.S.)
| | - Alexander V. Baryshev
- Dukhov Automatics Research Institute (VNIIA), 22 Sushchevskaya St., 127055 Moscow, Russia; (Y.M.S.); (A.V.S.); (A.V.B.)
| |
Collapse
|
4
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Moreira TB, Silvestrini MMA, Gomes ALDFM, Rangel KK, Costa ÁP, Gomes MS, do Amaral LR, Martins-Filho OA, Salles PGDO, Braga LC, Teixeira-Carvalho A. Neutrophil- and Endothelial Cell-Derived Extracellular Microvesicles Are Promising Putative Biomarkers for Breast Cancer Diagnosis. Biomedicines 2025; 13:587. [PMID: 40149564 PMCID: PMC11940338 DOI: 10.3390/biomedicines13030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/27/2024] [Accepted: 11/27/2024] [Indexed: 03/29/2025] Open
Abstract
Introduction: Breast cancer (BC) is a disease that affects about 2.2 million people worldwide. The prognosis and treatment of these patients depend on clinical and histopathologic staging, in which more aggressive cancers need a less conservative therapeutic approach. Previous studies showed that patients with BC have an increased frequency of systemic microvesicles (MVs) that are associated with invasion, progression, and metastasis, which can be used in liquid biopsy to predict the therapeutic response in individualized treatment. Objective: This study proposes the development of a minimally invasive BC diagnostic panel and follow-up biomarkers as a complementary method to screen patients. Methods: The quantification of circulating MVs in 48 healthy women and 100 BC patients who attended the Mário Penna Institute between 2019 and 2022 was performed by flow cytometry. In addition, the MVs of BC patients were analyzed before treatment and 6, 12, and 24 months post-treatment. Machine learning approaches were employed to determine the performance of MVs to identify BC and to propose BC classifier algorithms. Results: Patients with BC had more neutrophil- and endothelial cell-derived MVs than controls before treatment. After treatment, all MV populations were decreased compared to pre-treatment, but leukocyte- and erythrocyte-derived MVs were increased at 12 months after treatment, before decreasing again at 24 months. Conclusions: Performance analyses and machine learning approaches pointed out that MVs from neutrophils and endothelial cells are the best candidates for BC diagnostic biomarkers. Neutrophil- and endothelial cell-derived MVs are putative candidates for BC biomarkers to be employed as screening tests for BC diagnosis.
Collapse
Affiliation(s)
- Thayse Batista Moreira
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
| | - Marina Malheiros Araújo Silvestrini
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| | | | - Kerstin Kapp Rangel
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (A.L.d.F.M.G.); (K.K.R.); (Á.P.C.)
| | - Álvaro Percínio Costa
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (A.L.d.F.M.G.); (K.K.R.); (Á.P.C.)
| | - Matheus Souza Gomes
- Laboratório de Bioinformática e Análise Molecular, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Patos de Minas 38701-002, Brazil; (M.S.G.); (L.R.d.A.)
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análise Molecular, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Patos de Minas 38701-002, Brazil; (M.S.G.); (L.R.d.A.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| | - Paulo Guilherme de Oliveira Salles
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
- Laboratório de Anatomia Patológica, Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil
| | - Letícia Conceição Braga
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| |
Collapse
|
6
|
Espinosa G, Salinas-Varas C, Rojas-Barón L, Preußer C, Pogge von Strandmann E, Gärtner U, Conejeros I, Hermosilla C, Taubert A. Bovine PMN responses to extracellular vesicles released by Besnoitia besnoiti tachyzoites and B. besnoiti-infected host cells. Front Immunol 2024; 15:1509355. [PMID: 39749330 PMCID: PMC11693690 DOI: 10.3389/fimmu.2024.1509355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite Besnoitia besnoiti, which severely affects individual animal welfare and profitability in cattle industry. We recently showed that B. besnoiti tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear. Emerging evidence indicates that extracellular vesicles (EVs) modulate PMN effector functions, such as ROS production or NET formation. Therefore, we tested whether exposure of bovine PMN to EVs from different cellular sources affects classical PMN effector functions and cytokine/chemokine secretion. EVs were isolated from B. besnoiti-infected and non-infected host cells (bovine umbilical vein endothelial cells, BUVEC), from tachyzoite-exposed bovine PMN and from B. besnoiti tachyzoites. EV concentration and size was determined by Nano-Flow cytometry and EV nature was confirmed by both classical EV markers (CD9 and CD81) and transmission electron microscopy (TEM). Overall, PMN stimulation with both BUVEC- and tachyzoite-derived EVs significantly induced extracellular DNA release while EVs from PMN failed to affect NET formation. BUVEC and tachyzoite EV-driven NET formation was confirmed microscopically by the presence of DNA decorated with neutrophil elastase (NE) and histones in typical NET structures. Moreover, confocal microscopy revealed EVs to be internalized by bovine PMN. Referring to PMN activation, EVs from the different cellular sources all failed to affect glycolytic or oxidative responses of bovine PMN as detected by Seahorse®-based analytics and luminol-based chemoluminescence, thereby denying any role of NADPH oxidase (NOX) activity in EV-driven NET formation. Finally, exposure to B. besnoiti-infected BUVEC-derived EVs induced IL-1β and IL-6 release, but failed to drive CXCL8 release of bovine PMN. Hence, we overall demonstrated that EVs of selected cellular origin owned the capacity to trigger NOX-independent NET formation, were incorporated by PMN and selectively fostered IL-1β and IL-6 release.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Lisbeth Rojas-Barón
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
8
|
Ma W, Wu D, Long C, Liu J, Xu L, Zhou L, Dou Q, Ge Y, Zhou C, Jia R. Neutrophil-derived nanovesicles deliver IL-37 to mitigate renal ischemia-reperfusion injury via endothelial cell targeting. J Control Release 2024; 370:66-81. [PMID: 38631490 DOI: 10.1016/j.jconrel.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most important causes of acute kidney injury (AKI). Interleukin (IL)-37 has been suggested as a novel anti-inflammatory factor for the treatment of IRI, but its application is still limited by its low stability and delivery efficiency. In this study, we reported a novel engineered method to efficiently and easily prepare neutrophil membrane-derived vesicles (N-MVs), which could be utilized as a promising vehicle to deliver IL-37 and avoid the potential side effects of neutrophil-derived natural extracellular vesicles. N-MVs could enhance the stability of IL-37 and targetedly deliver IL-37 to damaged endothelial cells of IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). In vitro and in vivo evidence revealed that N-MVs encapsulated with IL-37 (N-MV@IL-37) could inhibit endothelial cell apoptosis, promote endothelial cell proliferation and angiogenesis, and decrease inflammatory factor production and leukocyte infiltration, thereby ameliorating renal IRI. Our study establishes a promising delivery vehicle for the treatment of renal IRI and other endothelial damage-related diseases.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Chengcheng Long
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
9
|
Jung I, Shin S, Baek MC, Yea K. Modification of immune cell-derived exosomes for enhanced cancer immunotherapy: current advances and therapeutic applications. Exp Mol Med 2024; 56:19-31. [PMID: 38172594 PMCID: PMC10834411 DOI: 10.1038/s12276-023-01132-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer immunotherapy has revolutionized the approach to cancer treatment of malignant tumors by harnessing the body's immune system to selectively target cancer cells. Despite remarkable advances, there are still challenges in achieving successful clinical responses. Recent evidence suggests that immune cell-derived exosomes modulate the immune system to generate effective antitumor immune responses, making them a cutting-edge therapeutic strategy. However, natural exosomes are limited in clinical application due to their low drug delivery efficiency and insufficient antitumor capacity. Technological advancements have allowed exosome modifications to magnify their intrinsic functions, load different therapeutic cargoes, and preferentially target tumor sites. These engineered exosomes exert potent antitumor effects and have great potential for cancer immunotherapy. In this review, we describe ingenious modification strategies to attain the desired performance. Moreover, we systematically summarize the tumor-controlling properties of engineered immune cell-derived exosomes in innate and adaptive immunity. Collectively, this review provides a comprehensive and intuitive guide for harnessing the potential of modified immune cell-derived exosome-based approaches, offering valuable strategies to enhance and optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Inseong Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Sanghee Shin
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 43024, Republic of Korea.
| |
Collapse
|
10
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
11
|
Shrestha S, Hong CW. Extracellular Mechanisms of Neutrophils in Immune Cell Crosstalk. Immune Netw 2023; 23:e38. [PMID: 37970234 PMCID: PMC10643328 DOI: 10.4110/in.2023.23.e38] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023] Open
Abstract
Neutrophils are professional phagocytes that provide defense against invading pathogens through phagocytosis, degranulation, generation of ROS, and the formation of neutrophil extracellular traps (NETs). Although long been considered as short-lived effector cells with limited biosynthetic activity, recent studies have revealed that neutrophils actively communicate with other immune cells. Neutrophils employ various types of soluble mediators, including granules, cytokines, and chemokines, for crosstalk with immune cells. Additionally, ROS and NETs, major arsenals of neutrophils, are utilized for intercellular communication. Furthermore, extracellular vesicles play a crucial role as mediators of neutrophil crosstalk. In this review, we highlight the extracellular mechanisms of neutrophils and their roles in crosstalk with other cells.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chang-Won Hong
- Department of Physiology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
12
|
Nielsen MH, Bæk R, Jorgensen MM, Mellergaard M, Handberg A. Increased extracellular vesicles (EVs) related to T cell-mediated inflammation and vascular function in familial hypercholesterolemia. ATHEROSCLEROSIS PLUS 2023; 53:16-25. [PMID: 37637934 PMCID: PMC10457578 DOI: 10.1016/j.athplu.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023]
Abstract
Background and aims OxLDL modulates innate and adaptive immunity, and extracellular vesicles (EVs) released from both non-immune and immune cells are proposed key players in atherosclerosis development. In the present study, we aimed to investigate EVs expressing markers related to adaptive immunity-driven inflammation and endothelial activation/dysfunction in hypercholesterolemic patients. Methods EVs were phenotyped in thirty patients with familial hypercholesterolemia (FH) and twenty-three healthy controls using the Extracellular Vesicle (EV) Array with antibodies targeting proteins expressed on B and T cells, and endothelial cells. Results FH patients had a higher atherosclerotic burden, as determined by the mean carotid intima-media thickness (IMT) (0.64 ± 0.12 mm vs. 0.58 ± 0.07 mm; p = 0.033), higher oxLDL levels (p < 0.0001), and showed increased levels of EV-specific markers: CD9 (p = 0.017), CD63 (p = 0.045), CD81 (p = 0.003), Annexin V (p = 0.018), and EV markers related to adaptive/lymphocyte immunity: CD28 (p = 0.034), CD4 (p = 0.049), CD152 (p = 0.029), LFA-1 (p = 0.024), and endothelial function: CD62E (p = 0.032), CD144 (p = 0.018), tPA (p = 0.017), CD31 (p = 0.024). Linear regression revealed a positive relationship between carotid IMT and several of the increased markers observed within the FH group, including CD9 (β = 0.33; p = 0.022), CD63 (β = 0.35; p 225 = 0.026), CD28 (β = 0.37; p = 0.026), CD4 (β = 0.40; p = 0.025), CD152 (β = 0.41; p = 0.017), LFA-1 (β = 0.42; p = 0.014) and CD62E (β = 0.38; p = 0.024). Conclusion EVs associated with adaptive immunity and endothelial dysfunction are elevated in FH patients, and several markers related to a higher atherosclerotic burden.
Collapse
Affiliation(s)
| | - Rikke Bæk
- Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Moller Jorgensen
- Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Conley HE, Sheats MK. Targeting Neutrophil β 2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023; 13:892. [PMID: 37371473 DOI: 10.3390/biom13060892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are important innate immune cells that respond during inflammation and infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vasculature into inflamed tissues and to perform various anti-inflammatory responses. Although critical for fighting off infection, neutrophil responses can also become dysregulated and contribute to disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical trials. As the field continues to move forward, a better understanding of β2-integrin function and signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources, tools, experimental methods, and in vivo models that have been and will continue to be utilized to investigate the vitally important cell surface receptors, neutrophil β2-integrins.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
15
|
Yang L, Hao Y, Boeckmans J, Rodrigues RM, He Y. Immune cells and their derived microRNA-enriched extracellular vesicles in nonalcoholic fatty liver diseases: Novel therapeutic targets. Pharmacol Ther 2023; 243:108353. [PMID: 36738973 DOI: 10.1016/j.pharmthera.2023.108353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Hao
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Liu X, Zhang L, Cao Y, Jia H, Li X, Li F, Zhang S, Zhang J. Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Front Immunol 2023; 13:1088827. [PMID: 36741357 PMCID: PMC9889855 DOI: 10.3389/fimmu.2022.1088827] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder or death, with a heavy burden on individuals and families. While sustained primary insult leads to damage, subsequent secondary events are considered key pathophysiological characteristics post-TBI, and the inflammatory response is a prominent contributor to the secondary cascade. Neuroinflammation is a multifaceted physiological response and exerts both positive and negative effects on TBI. Extracellular vesicles (EVs), as messengers for intercellular communication, are involved in biological and pathological processes in central nervous system (CNS) diseases and injuries. The number and characteristics of EVs and their cargo in the CNS and peripheral circulation undergo tremendous changes in response to TBI, and these EVs regulate neuroinflammatory reactions by activating prominent receptors on receptor cells or delivering pro- or anti-inflammatory cargo to receptor cells. The purpose of this review is to discuss the possible neuroinflammatory mechanisms of EVs and loading in the context of TBI. Furthermore, we summarize the potential role of diverse types of cell-derived EVs in inflammation following TBI.
Collapse
Affiliation(s)
- Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiyao Cao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Haoran Jia
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Xiaotian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Fanjian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| |
Collapse
|
17
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
19
|
Marki A, Ley K. The expanding family of neutrophil-derived extracellular vesicles. Immunol Rev 2022; 312:52-60. [PMID: 35665941 PMCID: PMC10111154 DOI: 10.1111/imr.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.
Collapse
Affiliation(s)
- Alex Marki
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Klaus Ley
- La Jolla Institute for Immunology and Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
21
|
Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol 2022; 12:975981. [PMID: 36091114 PMCID: PMC9453237 DOI: 10.3389/fonc.2022.975981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression. Here, we first described the molecular pathways through which neutrophils aid in cancer progression and orchestrate immune suppression/evasion. Later, we summarized the underlying molecular mechanisms of neutrophil-mediated therapy resistance and highlighted various approaches through which neutrophil antagonism may heighten the efficacy of the immune checkpoint blockade therapy. Finally, we have highlighted several unsolved questions and hope that answering these questions will provide a new avenue toward immunotherapy revolution.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjuan Xu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
22
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
23
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
24
|
Bonifay A, Robert S, Champagne B, Petit P, Eugène A, Chareyre C, Duchez A, Vélier M, Fritz S, Vallier L, Lacroix R, Dignat‐George F. A new strategy to count and sort neutrophil-derived extracellular vesicles: Validation in infectious disorders. J Extracell Vesicles 2022; 11:e12204. [PMID: 35362257 PMCID: PMC8971553 DOI: 10.1002/jev2.12204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Newly recognized polymorphonuclear neutrophil (PMNs) functions include the ability to release subcellular mediators such as neutrophil-derived extracellular vesicles (NDEVs) involved in immune and thrombo-inflammatory responses. Elevation of their plasmatic level has been reported in a variety of infectious and cardiovascular disorders, but the clinical use of this potential biomarker is hampered by methodological issues. Although flow cytometry (FCM) is currently used to detect NDEVs in the plasma of patients, an extensive characterization of NDEVs has never been done. Moreover, their detection remains challenging because of their small size and low antigen density. Therefore, the objective of the present study was first to establish a surface antigenic signature of NDEVs detectable by FCM and therefore to improve their detection in biological fluids by developing a strategy allowing to overcome their low fluorescent signal and reduce the background noise. By testing a large panel of 54 antibody specificities already reported to be positive on PMNs, we identified a profile of 15 membrane protein markers, including 4 (CD157, CD24, CD65 and CD66c) never described on NDEVs. Among them, CD15, CD66b and CD66c were identified as the most sensitive and specific markers to detect NDEVs by FCM. Using this antigenic signature, we developed a new strategy combining the three best antibodies in a cocktail and reducing the background noise by size exclusion chromatography (SEC). This strategy allowed a significant improvement in NDEVs enumeration in plasma from sepsis patients and made it feasible to efficiently sort NDEVs from COVID-19 patients. Altogether, this work opens the door to a more valuable measurement of NDEVs as a potential biomarker in clinical practice. A similar strategy could also be applied to improve detection by FCM of other rare subpopulations of EVs generated by tissues with limited access, such as vascular endothelium, cancer cells or placenta.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Stéphane Robert
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Belinda Champagne
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Paul‐Rémi Petit
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Aude Eugène
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Corinne Chareyre
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | | | - Mélanie Vélier
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Shirley Fritz
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Loris Vallier
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
| | - Romaric Lacroix
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| | - Françoise Dignat‐George
- Aix‐Marseille University, C2VN, INSERM 1263, INRA 1260MarseilleFrance
- Department of Hematology and Vascular BiologyCHU La Conception, APHMMarseilleFrance
| |
Collapse
|
25
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
26
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
27
|
Yang P, Peng Y, Feng Y, Xu Z, Feng P, Cao J, Chen Y, Chen X, Cao X, Yang Y, Jie J. Immune Cell-Derived Extracellular Vesicles - New Strategies in Cancer Immunotherapy. Front Immunol 2021; 12:771551. [PMID: 34956197 PMCID: PMC8694098 DOI: 10.3389/fimmu.2021.771551] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Immune cell-derived extracellular vesicles (EVs) have increasingly become the focus of research due to their unique characteristics and bioinspired applications. They are lipid bilayer membrane nanosized vesicles harboring a range of immune cell-derived surface receptors and effector molecules from parental cells. Immune cell-derived EVs are important mediators of intercellular communication that regulate specific mechanisms of adaptive and innate immune responses. However, the mechanisms underlying the antitumor effects of EVs are still being explored. Importantly, immune cell-derived EVs have some unique features, including accessibility, storage, ability to pass through blood-brain and blood-tumor barriers, and loading of various effector molecules. Immune cell-derived EVs have been directly applied or engineered as potent antitumor vaccines or for the diagnosis of clinical diseases. More research applications involving genetic engineering, membrane engineering, and cargo delivery strategies have improved the treatment efficacy of EVs. Immune cell-derived EV-based therapies are expected to become a separate technique or to complement immunotherapy, radiotherapy, chemotherapy and other therapeutic modalities. This review aims to provide a comprehensive overview of the characteristics and functions of immune cell-derived EVs derived from adaptive (CD4+ T, CD8+ T and B cells) and innate immune cells (macrophages, NK cells, DCs, and neutrophils) and discuss emerging therapeutic opportunities and prospects in cancer treatment.
Collapse
Affiliation(s)
- Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuoying Xu
- Department of Pathology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, China
| | - Panfeng Feng
- Department of Pharmacy, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jie Cao
- Department of Pathology, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Ying Chen
- Department of Oncology, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xiang Chen
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xingjian Cao
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
28
|
Amjadi MF, Avner BS, Greenlee-Wacker MC, Horswill AR, Nauseef WM. Neutrophil-derived extracellular vesicles modulate the phenotype of naïve human neutrophils. J Leukoc Biol 2021; 110:917-925. [PMID: 33682200 PMCID: PMC8423865 DOI: 10.1002/jlb.3ab0520-339rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Neutrophils (PMN) regulate inflammation in many ways, including communication with other immune cells via extracellular vesicles (EVs). EVs released by human neutrophils activated with N-formylmethionyl-leucyl-phenylalanine (fMLF) (PMN-fMLF EVs) had an outside-out orientation and contained functionally important neutrophil plasma membrane proteins, including flavocytochrome b558, and enzymatically active granule proteins, elastase, and myeloperoxidase. Treatment of naïve PMN with PMN-fMLF EVs primed fMLF-stimulated NADPH oxidase activity, increased surface expression of the complement receptors CD11b/CD18 and CD35, the specific granule membrane protein CD66, and flavocytochrome b558 , and promoted phagocytosis of serum-opsonized Staphylococcus aureus. The primed oxidase activity reflected increased surface expression of flavocytochrome b558 and phosphorylation of SER345 in p47phox , two recognized mechanisms for oxidase priming. Taken together, these data demonstrate that stimulated PMN released EVs that altered the phenotype of naïve phagocytes by priming of the NADPH oxidase activity and augmenting phagocytosis, two responses that are integral to optimal PMN host defense.
Collapse
Affiliation(s)
- Maya F. Amjadi
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
| | - Benjamin S. Avner
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
- Department of Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007
| | | | - Alexander R. Horswill
- Department of Immunology and Microbiology at University of Colorado-Denver School of Medicine, Denver, Colorado 80204
| | - William M. Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, 52240
| |
Collapse
|
29
|
Liu Q, Li S, Dupuy A, le Mai H, Sailliet N, Logé C, Robert JMH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci 2021; 22:ijms22157763. [PMID: 34360530 PMCID: PMC8346134 DOI: 10.3390/ijms22157763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nano-sized vesicles secreted by most cells that contain a variety of biological molecules, such as lipids, proteins and nucleic acids. They have been recognized as important mediators for long-distance cell-to-cell communication and are involved in a variety of biological processes. Exosomes have unique advantages, positioning them as highly effective drug delivery tools and providing a distinct means of delivering various therapeutic agents to target cells. In addition, as a new clinical diagnostic biomarker, exosomes play an important role in many aspects of human health and disease, including endocrinology, inflammation, cancer, and cardiovascular disease. In this review, we summarize the development of exosome-based drug delivery tools and the validation of novel biomarkers, and illustrate the role of exosomes as therapeutic targets in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Shiying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Amandine Dupuy
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Hoa le Mai
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Nicolas Sailliet
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - Cédric Logé
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - J.-Michel H. Robert
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
- Correspondence: (J.-M.H.R.); (S.B.)
| | - Sophie Brouard
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Correspondence: (J.-M.H.R.); (S.B.)
| |
Collapse
|
30
|
Akbar N, Paget D, Choudhury RP. Extracellular Vesicles in Innate Immune Cell Programming. Biomedicines 2021; 9:biomedicines9070713. [PMID: 34201592 PMCID: PMC8301301 DOI: 10.3390/biomedicines9070713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EV) are a heterogeneous group of bilipid-enclosed envelopes that carry proteins, metabolites, RNA, DNA and lipids from their parent cell of origin. They mediate cellular communication to other cells in local tissue microenvironments and across organ systems. EV size, number and their biologically active cargo are often altered in response to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, which also have a strong inflammatory component. Here, we discuss the broad repertoire of EV produced by neutrophils, monocytes, macrophages, their precursor hematopoietic stem cells and discuss their effects on the innate immune system. We seek to understand the immunomodulatory properties of EV in cellular programming, which impacts innate immune cell differentiation and function. We further explore the possibilities of using EV as immune targeting vectors, for the modulation of the innate immune response, e.g., for tissue preservation during sterile injury such as myocardial infarction or to promote tissue resolution of inflammation and potentially tissue regeneration and repair.
Collapse
Affiliation(s)
- Naveed Akbar
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
- Correspondence:
| | - Daan Paget
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Robin P. Choudhury
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.P.); (R.P.C.)
| |
Collapse
|
31
|
Vishnevskiy DA, Garanina AS, Chernysheva AA, Chekhonin VP, Naumenko VA. Neutrophil and Nanoparticles Delivery to Tumor: Is It Going to Carry That Weight? Adv Healthc Mater 2021; 10:e2002071. [PMID: 33734620 DOI: 10.1002/adhm.202002071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The application of cell carriers for transporting nanodrugs to the tumor draws much attention as the alternative to the passive drug delivery. In this concept, the neutrophil (NΦ) is of special interest as this cell is able to uptake nanoparticles (NPs) and cross the vascular barrier in response to tumor signaling. There is a growing body of literature describing NP-NΦ interactions in vitro and in vivo that demonstrates the opportunity of using these cells to improve the efficacy of cancer therapy. However, a number of conceptual and technical issues need to be resolved for translating the technology into clinics. The current review summarizes the recent advances and challenges associated with NP-NΦ interactions, with the special focus on the complex interplay between the NP internalization pathways and the modulation of NΦ activity, and its potential consequences for nanodrug delivery.
Collapse
Affiliation(s)
- Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Anastasiia S. Garanina
- National University of Science and Technology (MISIS) Leninskiy Prospekt, 4 Moscow 119049 Russia
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
- N. I Pirogov Russian National Research Medical University Ulitsa Ostrovityanova, 1 Moscow 117997 Russia
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology Kropotkinskiy Pereulok, 23 Moscow 119034 Russia
| |
Collapse
|
32
|
Blanch-Ruiz MA, Ortega-Luna R, Martínez-Cuesta MÁ, Álvarez Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int J Mol Sci 2021; 22:4170. [PMID: 33920656 PMCID: PMC8073391 DOI: 10.3390/ijms22084170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death. Blood-cell interactions and endothelial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are secretory cells that release well-known soluble inflammatory signaling mediators and other complex cellular structures whose role is not fully understood. Studies have reported that neutrophil extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective of this review is to study the role of EVs and NETs as key factors in the transition from inflammation to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that induce platelet activation or aggregation. On the other hand, one of the main pathways by which NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells adhere. In this context, platelet activation has been associated with the induction of NETs release. Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify their role in thrombosis.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
33
|
Kim JK, Youn YJ, Lee YB, Kim SH, Song DK, Shin M, Jin HK, Bae JS, Shrestha S, Hong CW. Extracellular vesicles from dHL-60 cells as delivery vehicles for diverse therapeutics. Sci Rep 2021; 11:8289. [PMID: 33859336 PMCID: PMC8050327 DOI: 10.1038/s41598-021-87891-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived heterogeneous vesicles that mediate intercellular communications. They have recently been considered as ideal vehicles for drug-delivery systems, and immune cells are suggested as a potential source for drug-loaded EVs. In this study, we investigated the possibility of neutrophils as a source for drug-loaded EVs. Neutrophil-like differentiated human promyelocytic leukemia cells (dHL-60) produced massive amounts of EVs within 1 h. The dHL-60 cells are also easily loaded with various cargoes such as antibiotics (penicillin), anticancer drug (paclitaxel), chemoattractant (MCP-1), miRNA, and Cas9. The EVs derived from the dHL-60 cells showed efficient incorporation of these cargoes and significant effector functions, such as bactericidal activity, monocyte chemotaxis, and macrophage polarization. Our results suggest that neutrophils or neutrophil-like promyelocytic cells could be an attractive source for drug-delivery EVs.
Collapse
Affiliation(s)
- Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| |
Collapse
|
34
|
Valter M, Verstockt S, Finalet Ferreiro JA, Cleynen I. Extracellular Vesicles in Inflammatory Bowel Disease: Small Particles, Big Players. J Crohns Colitis 2021; 15:499-510. [PMID: 32905585 DOI: 10.1093/ecco-jcc/jjaa179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles are nanovesicles released by many cell types into the extracellular space. They are important mediators of intercellular communication, enabling the functional transfer of molecules from one cell to another. Moreover, their molecular composition reflects the physiological status of the producing cell and tissue. Consequently, these vesicles have been involved in many [patho]physiological processes such as immunomodulation and intestinal epithelial repair, both key processes involved in inflammatory bowel disease. Given that these vesicles are present in many body fluids, they also provide opportunities for diagnostic, prognostic, and therapeutic applications. In this review, we summarise functional roles of extracellular vesicles in health and disease, with a focus on immune regulation and intestinal barrier integrity, and review recent studies on extracellular vesicles and inflammatory bowel disease. We also elaborate on their clinical potential in inflammatory bowel disease.
Collapse
Affiliation(s)
- M Valter
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Translational Research center for Gastrointestinal Disorders [TARGID], Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], KU Leuven, Leuven, Belgium
| | - J A Finalet Ferreiro
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - I Cleynen
- Laboratory for Complex Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Marki A, Buscher K, Lorenzini C, Meyer M, Saigusa R, Fan Z, Yeh YT, Hartmann N, Dan JM, Kiosses WB, Golden GJ, Ganesan R, Winkels H, Orecchioni M, McArdle S, Mikulski Z, Altman Y, Bui J, Kronenberg M, Chien S, Esko JD, Nizet V, Smalley D, Roth J, Ley K. Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. J Exp Med 2021; 218:e20200551. [PMID: 33275138 PMCID: PMC7721910 DOI: 10.1084/jem.20200551] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/28/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
Rolling neutrophils form tethers with submicron diameters. Here, we report that these tethers detach, forming elongated neutrophil-derived structures (ENDS) in the vessel lumen. We studied ENDS formation in mice and humans in vitro and in vivo. ENDS do not contain mitochondria, endoplasmic reticulum, or DNA, but are enriched for S100A8, S100A9, and 57 other proteins. Within hours of formation, ENDS round up, and some of them begin to present phosphatidylserine on their surface (detected by annexin-5 binding) and release S100A8-S100A9 complex, a damage-associated molecular pattern protein that is a known biomarker of neutrophilic inflammation. ENDS appear in blood plasma of mice upon induction of septic shock. Compared with healthy donors, ENDS are 10-100-fold elevated in blood plasma of septic patients. Unlike neutrophil-derived extracellular vesicles, most ENDS are negative for the tetraspanins CD9, CD63, and CD81. We conclude that ENDS are a new class of bloodborne submicron particles with a formation mechanism linked to neutrophil rolling on the vessel wall.
Collapse
Affiliation(s)
- Alex Marki
- La Jolla Institute for Immunology, La Jolla, CA
| | - Konrad Buscher
- La Jolla Institute for Immunology, La Jolla, CA
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Cristina Lorenzini
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory of Immunobiology, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | | | - Zhichao Fan
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | - Yi-Ting Yeh
- Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA
| | | | - Jennifer M. Dan
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| | | | - Gregory J. Golden
- Department of Cellular and Molecular Medicine and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Rajee Ganesan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | | - Yoav Altman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jack Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | | | - Shu Chien
- Institute for Immunology, University of Muenster, Muenster, Germany
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - David Smalley
- Systems Mass Spectrometry Core, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Johannes Roth
- Institute for Immunology, University of Muenster, Muenster, Germany
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
36
|
Diaz-Garrido N, Cordero C, Olivo-Martinez Y, Badia J, Baldomà L. Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. Int J Mol Sci 2021; 22:ijms22042213. [PMID: 33672304 PMCID: PMC7927122 DOI: 10.3390/ijms22042213] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.
Collapse
Affiliation(s)
- Natalia Diaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martinez
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-44-96
| |
Collapse
|
37
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
38
|
Yaker L, Kamel S, Ausseil J, Boullier A. Effects of Chronic Kidney Disease and Uremic Toxins on Extracellular Vesicle Biology. Toxins (Basel) 2020; 12:toxins12120811. [PMID: 33371311 PMCID: PMC7767379 DOI: 10.3390/toxins12120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022] Open
Abstract
Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate, especially in patients with diabetes, atherosclerosis or chronic kidney disease (CKD). In CKD patients, VC is associated with the accumulation of uremic toxins, such as indoxyl sulphate or inorganic phosphate, which can have a major impact in vascular remodeling. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete extracellular vesicles (EVs) that are heterogeneous in terms of their origin and composition. Under physiological conditions, EVs are involved in cell-cell communication and the maintenance of cellular homeostasis. They contain high levels of calcification inhibitors, such as fetuin-A and matrix Gla protein. Under pathological conditions (and particularly in the presence of uremic toxins), the secreted EVs acquire a pro-calcifying profile and thereby act as nucleating foci for the crystallization of hydroxyapatite and the propagation of calcification. Here, we review the most recent findings on the EVs’ pathophysiological role in VC, the impact of uremic toxins on EV biogenesis and functions, the use of EVs as diagnostic biomarkers and the EVs’ therapeutic potential in CKD.
Collapse
Affiliation(s)
- Linda Yaker
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
| | - Saïd Kamel
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
| | - Jérôme Ausseil
- INSERM UMR1043, CNRS UMR5282, University of Toulouse III, F-31024 Toulouse, France;
- CHU PURPAN—Institut Fédératif de Biologie, Laboratoire de Biochimie, Avenue de Grande Bretagne, F-31059 Toulouse, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
- Correspondence: ; Tel.: +33-322087019
| |
Collapse
|
39
|
Karasu E, Demmelmaier J, Kellermann S, Holzmann K, Köhl J, Schmidt CQ, Kalbitz M, Gebhard F, Huber-Lang MS, Halbgebauer R. Complement C5a Induces Pro-inflammatory Microvesicle Shedding in Severely Injured Patients. Front Immunol 2020; 11:1789. [PMID: 32983087 PMCID: PMC7492592 DOI: 10.3389/fimmu.2020.01789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Initially underestimated as platelet dust, extracellular vesicles are continuously gaining interest in the field of inflammation. Various studies addressing inflammatory diseases have shown that microvesicles (MVs) originating from different cell types are systemic transport vehicles carrying distinct cargoes to modulate immune responses. In this study, we focused on the clinical setting of multiple trauma, which is characterized by activation and dysfunction of both, the fluid-phase and the cellular component of innate immunity. Given the sensitivity of neutrophils for the complement anaphylatoxin C5a, we hypothesized that increased C5a production induces alterations in MV shedding of neutrophils resulting in neutrophil dysfunction that fuels posttraumatic inflammation. In a mono-centered prospective clinical study with polytraumatized patients, we found significantly increased granulocyte-derived MVs containing the C5a receptor (C5aR1, CD88) on their surface. This finding was accompanied by a concomitant loss of C5aR1 on granulocytes indicative of an impaired cellular chemotactic and pro-inflammatory neutrophil functions. Furthermore, in vitro exposure of human neutrophils (from healthy volunteers) to C5a significantly increased MV shedding and C5aR1 loss on neutrophils, which could be blocked using the C5aR1 antagonist PMX53. Mechanistic analyses revealed that the interaction between C5aR1 signaling and the small GTPase Arf6 acts as a molecular switch for MV shedding. When neutrophil derived, C5a-induced MV were exposed to a complex ex vivo whole blood model significant pro-inflammatory properties (NADPH activity, ROS and MPO generation) of the MVs became evident. C5a-induced MVs activated resting neutrophils and significantly induced IL-6 secretion. These data suggest a novel role of the C5a-C5aR1 axis: C5a-induced MV shedding from neutrophils results in decreased C5aR1 surface expression on the one hand, on the other hand it leads to profound inflammatory signals which likely are both key drivers of the neutrophil dysfunction which is regularly observed in patients suffering from multiple traumatic injuries.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Julia Demmelmaier
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Stephanie Kellermann
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Karlheinz Holzmann
- Center for Biomedical Research, Genomics-Core Facility, Ulm University, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Ulm, Germany
| | - Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
40
|
El Habhab A, Altamimy R, Abbas M, Kassem M, Amoura L, Qureshi AW, El Itawi H, Kreutter G, Khemais‐Benkhiat S, Zobairi F, Schini‐Kerth VB, Kessler L, Toti F. Significance of neutrophil microparticles in ischaemia-reperfusion: Pro-inflammatory effectors of endothelial senescence and vascular dysfunction. J Cell Mol Med 2020; 24:7266-7281. [PMID: 32520423 PMCID: PMC7339165 DOI: 10.1111/jcmm.15289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/14/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial senescence is an emerging cause of vascular dysfunction. Because microparticles are effectors of endothelial inflammation and vascular injury after ischaemia-reperfusion, we examined leucocyte-derived microparticles of spleen origin as possible contributors. Microparticles were generated from primary rat splenocytes by either lipopolysaccharide or phorbol-myristate-acetate/calcium ionophore, under conditions mimicking innate and adaptive immune responses. Incubation of primary porcine coronary endothelial cells with either type of microparticles, but not with those from unstimulated splenocytes, leads to a similar threefold raise in senescence-associated β-galactosidase activity within 48 hours, indicating accelerated senescence, to endothelial oxidative stress, and a fivefold and threefold increase in p21 and p16 senescence markers after 24 hours. After 12-hour incubation, the endothelial-dependent relaxation of coronary artery rings was reduced by 50%, at distinct optimal microparticle concentration. In vitro, microparticles were pro-thrombotic by up-regulating the local angiotensin system, by prompting tissue factor activity and a secondary generation of pro-coagulant endothelial microparticles. They initiated an early pro-inflammatory response by inducing phosphorylation of NF-κB, MAP kinases and Akt after 1 hour, and up-regulated VCAM-1 and ICAM-1 at 24 hours. Accordingly, VCAM-1 and COX-2 were also up-regulated in the coronary artery endothelium and eNOS down-regulated. Lipopolysaccharide specifically favoured the shedding of neutrophil- and monocyte-derived microparticles. A 80% immuno-depletion of neutrophil microparticles reduced endothelial senescence by 55%, indicating a key role. Altogether, data suggest that microparticles from activated splenocytes prompt early pro-inflammatory, pro-coagulant and pro-senescent responses in endothelial cells through redox-sensitive pathways. The control of neutrophil shedding could preserve the endothelium at site of ischaemia-reperfusion-driven inflammation and delay its dysfunction.
Collapse
Affiliation(s)
- Ali El Habhab
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Raed Altamimy
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Malak Abbas
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Abdul Wahid Qureshi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Hanine El Itawi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
| | - Sonia Khemais‐Benkhiat
- UMR CNRS 7213Laboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Valérie B. Schini‐Kerth
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Department of Diabetes and Nutrition EndocrinologyUniversity Hospital of StrasbourgStrasbourgFrance
- Faculty of MedicineFederation of Translational Medicine (FMTS)StrasbourgFrance
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research)UMR 1260Regenerative Nanomedicine (RNM)University of StrasbourgIllkirch-GraffenstadenFrance
- Faculty of PharmacyUniversity of StrasbourgIllkirch-GraffenstadenFrance
| |
Collapse
|
41
|
Alkoussa S, Hulo S, Courcot D, Billet S, Martin PJ. Extracellular vesicles as actors in the air pollution related cardiopulmonary diseases. Crit Rev Toxicol 2020; 50:402-423. [DOI: 10.1080/10408444.2020.1763252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphanie Alkoussa
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sébastien Hulo
- IMPact of Environmental ChemicalS on Human Health, ULR 4483 - IMPECS, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Department of Occupational Health, Lille University Hospital, Lille, France
| | - Dominique Courcot
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sylvain Billet
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Perrine J. Martin
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| |
Collapse
|
42
|
Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 2020; 177:114-125. [PMID: 31790730 PMCID: PMC7198327 DOI: 10.1016/j.ymeth.2019.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), derived from cell membranes, demonstrate the potential to be excellent therapeutics and drug carriers. Although EVs are promising, the process to develop high-quality and scalable EVs for their translation is demanding. Within this research, we analyzed the production of EVs, their purification and their post-bioengineering, and we also discussed the biomedical applications of EVs. We focus on the developments of methods in producing EVs including biological, physical, and chemical approaches. Furthermore, we discuss the challenges and the opportunities that arose when we translated EVs in clinic. With the advancements in nanotechnology and immunology, genetically engineering EVs is a new frontier in developing new therapeutics in order to tailor to individuals and different disease stages in treatments of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
43
|
Wang H, Pan L, Liu Z. Neutrophils as a Protagonist and Target in Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2019; 12:337-347. [PMID: 31394895 PMCID: PMC6787473 DOI: 10.21053/ceo.2019.00654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have traditionally been acknowledged as the first immune cells that are recruited to inflamed tissues during acute inflammation. By contrast, their importance in the context of chronic inflammation has been studied in less depth. Neutrophils can be recruited and are largely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS) both in Asians and in Caucasians. Increased infiltration of neutrophils in patients with CRS has been linked to poor corticosteroid response and disease prognosis. Meanwhile, tissue neutrophils may possess specific phenotypic features distinguishing them from resting blood counterparts and are endowed with particular functions, such as cytokines and chemokines production, thus may contribute to the pathogenesis of CRS. This review aims to summarize our current understanding of the pathophysiologic mechanisms of CRS, with a focus on the roles of neutrophils. We discuss recruitment, function, and regulation of neutrophils in CRS and outline the potential therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|