1
|
Kehl A, Klein R, Steiger K, Aupperle-Lellbach H. Stability of microRNAs in Canine Serum-A Prerequisite for Use as Biomarkers in Tumour Diagnostics. Vet Sci 2025; 12:390. [PMID: 40284892 PMCID: PMC12031383 DOI: 10.3390/vetsci12040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Since microRNAs are released into the bloodstream and miRNA profiles are supposed to differ between healthy and tumour patients, miRNAs seem to have potential as biomarkers. An essential prerequisite for biomarkers in a routine diagnostic setup is their stability in serum over time. In this study, serum samples from 10 healthy dogs were analysed at different time points and under various temperature conditions (after 24 and 48 h, at 4° or 20 °C) for the copy number of eight miRNAs (miR-20b, 21, 122, 126, 192, 214, 222, 494) using ddPCR. The miR-21 had the highest copy number, whereas miR-494 had the lowest copy number in canine blood samples. The values of each miRNA varied individually between the dogs, showing a 5 to 10-fold range. Stability differed between the miRNAs, with miR-192 having the best stability. The copy number of miR-20b, miR-126 and miR-214 decreased not significantly during 48 h storage time. In contrast, miR-21, miR-122 and miR-222 were stable for 24 h only but decreased significantly after 48 h. The (in)stability of individual canine miRNAs must be considered when transferring study results into veterinary routine diagnostics, as the transport and storage conditions are variable. As far as possible, standardisation of sampling, storage and quantification of miRNAs is needed.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Ruth Klein
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Heike Aupperle-Lellbach
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| |
Collapse
|
2
|
Yuan M, Liu A, Xu B, Sales K, Karnik S, Voelker T, Salha D, Zimmer J, O’Dell M, Gorityala S, Hays A, Lester T, Reynolds G, Tary-Lehmann M, Yu M, Roberge M, Malone K, Patel V, Love I, Lin J, Diaz M, Xu T, Garofolo W, McGregor J, Leskovar A, Kernstock R, Pellerin M, Brown M, Spytko A, Lowes S, Ambrose D, Dufield D, Kane C, Veeramachaneni R, Luna M, Warrino D, Dwivedi V, Xu A, Hyer E, Iles T, Majumdar R, Sikkema D, Thomas E, Carlsson A, Dakappagari N, Riccitelli N, Marco CD, Bouhajib M, Iordachescu A, Sanghvi M, Barton H, Lavelle A, Dompkowski E, Rundlett S, Matys K, Sangster T, Turksma A, Gu W, Liu J, Hoffpauir B, Rocha A, Pirro J, Bergeron J, O’Brien K, Fang X, Dong K, Yamashita J. Recommendations on biomarker assay validation (BAV) in tissues by GCC. Bioanalysis 2025; 17:429-438. [PMID: 40248960 PMCID: PMC12026151 DOI: 10.1080/17576180.2025.2471243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 04/19/2025] Open
Abstract
Biomarker analysis enables a deep understanding of physiological and biological processes and offers insights into pathological disease states and conditions. When measured in tissues, the spatial distribution of biomarkers may be evaluated. To meet regulatory and sponsor requirements, guidance on the approach to validation and the parameters to be evaluated is essential. The main goals of this GCC white paper are to disseminate the survey results discussed during the 16th& 17thGCC Closed Forums (2023 & 2024) and to provide recommendations from the GCC members on technical and regulatory considerations for the bioanalysis of biomarkers in tissues.
Collapse
Affiliation(s)
- Moucun Yuan
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | | | - Bin Xu
- Accurant Biotech, Cranbury, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Mathilde Yu
- Cerba Research Canada Formally CIRION BioPharma Research Inc, a Cerba Research Company, Laval, QC, Canada
| | - Martin Roberge
- Cerba Research Canada Formally CIRION BioPharma Research Inc, a Cerba Research Company, Laval, QC, Canada
| | | | | | - Iain Love
- Charles River Laboratories, EdinburgTranent, UK
| | | | - Manisha Diaz
- Eurofins Viracor BioPharma Services, Lenexa, KS, USA
| | - Tao Xu
- Frontage Laboratories, Exton, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Allan Xu
- Keystone Bioanalytical, North Wales, PA, USA
| | | | | | | | | | | | | | - Naveen Dakappagari
- Navigate BioPharma Services, Inc. (A Novartis Subsidiary), Carlsbad, CA, USA
| | - Nathan Riccitelli
- Navigate BioPharma Services, Inc. (A Novartis Subsidiary), Carlsbad, CA, USA
| | | | | | | | | | - Hollie Barton
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | - Amy Lavelle
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | | | | | | | | | | | - Weihua Gu
- Shanghai Xihua Scientific Co, Shanghai, China
| | - Jia Liu
- Shanghai Xihua Scientific Co, Shanghai, China
| | | | | | | | | | | | | | - Kelly Dong
- United-Power Pharma Tech Co, Beijing, China
| | | |
Collapse
|
3
|
Hutcheson J, Conway D, Kumar S, Wiseman C, Chakraborty S, Skrypkin E, Horan M, Gunning A, Williams CK, Kuperwasser C, Naber SP, Gupta PB. Analytical Validation of NavDx+Gyn, a cfDNA-Based Fragmentomic Profiling Assay for HPV-Driven Gynecologic Cancers. Diagnostics (Basel) 2025; 15:825. [PMID: 40218175 PMCID: PMC11988370 DOI: 10.3390/diagnostics15070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: The NavDx+Gyn blood test detects and quantifies fourteen HPV types in various sample types to provide a reliable means of detecting and monitoring HPV-driven gynecologic cancers. NavDx+Gyn is an extension of the NavDx assay, which identifies five high-risk HPV types. NavDx has been clinically validated in multiple independent studies for the surveillance of HPV-driven oropharyngeal cancer and has been integrated into clinical practice by over 1300 healthcare providers at over 500 medical sites in the US. The NavDx+Gyn assay incorporates an analysis of nine additional high-risk HPV types. Here, we report a detailed analytical validation of the NavDx+Gyn assay for use in cervical, vaginal, and vulvar cancer patients to detect fourteen high-risk HPV types related to HPV-driven gynecologic cancers. Methods: Parameters include specificity as measured by limits of blank (LoBs) and sensitivity illustrated via limits of detection and quantitation (LoDs and LoQs). Results: The LoBs were between 0 and 0.0926 copies/μL, LoDs were 0.1009 to 0.3147 copies/μL, and LoQs were 0.1009 to 0.3147 copies/μL, demonstrating the high analytic sensitivity and specificity provided by NavDx+Gyn. In-depth evaluations, including accuracy and intra- and inter-assay precision studies, were shown to be within acceptable ranges. Regression analysis revealed a high degree of correlation between expected and effective concentrations, demonstrating excellent linearity (R2 > 0.99) across a broad range of analyte concentrations. Conclusions: These results demonstrate that NavDx+Gyn accurately and reproducibly detects fourteen types of high-risk HPV, which aids in the diagnosis and surveillance of the vast majority of HPV-driven gynecologic cancers.
Collapse
|
4
|
Wojcik J, Sikorski T, Wang J, Huang Y, Sugimoto H, Baratta M, Ciccimaro E, Green R, Jian W, Kar S, Kim YJ, Lassman M, Mohapatra S, Qian M, Rosenbaum AI, Sarvaiya H, Tian Y, Vainshtein I, Yuan L, Tao L, Ji A, Kochansky C, Qiu H, Maes E, Chen LZ, Cooley M, Dufield D, Hyer E, Johnson J, Li W, Liu A, Lu Y, Meissen J, Palandra J, Tang X, Vigil A, Wei W, Vinter S, Xue Y, Yang L, Zheng N, Benson K, McCush F, Liang Z, Abberley L, Andisik M, Araya M, Cho S(J, Colligan L, Dasgupta A, Dudek M, Edmison A, Fischer S, Folian B, Garofolo F, Ishii-Watabe A, Ivanova D, Gijsel SKD, Luo L, McGuinness M, ’Day CO, Salehzadeh-Asl R, Neto JT, Verhaeghe T, Wan K, Whale E, Yan W, Yang E, Zhang J. 2024 White Paper on Recent Issues in Bioanalysis: Three Way-Cross Validation; Urine Clinical Analysis; Automated Methods; Regulatory Queries on Plasma Protein Binding; Automated Biospecimen Management; ELN Migration; Ultra-Sensitivity Mass Spectrometry ( Part 1A - Recommendations on Advanced Strategies for Mass Spectrometry Assays, Chromatography, Sample Preparation and BMV/Regulated Bioanalysis Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV). Bioanalysis 2025; 17:299-337. [PMID: 39862144 PMCID: PMC12054924 DOI: 10.1080/17576180.2025.2450194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "IVDR Implementation in EU & Changes for LDT in the US" and on "Harmonization of Vaccine Clinical Assays Validation" were the special features of the 18th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2024 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2024 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 1) covers in Part 1A the Recommendations on Mass Spectrometry Assays and Regulated Bioanalysis/BMV and in Part 1B the Regulatory Inputs on these topics. Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) and Part 2 (Biomarkers/BAV, IVD/CDx, LBA and Cell-Based Assays) are published in volume 17 of Bioanalysis, issues 3 and 4 (2025), respectively.
Collapse
Affiliation(s)
| | | | | | - Yue Huang
- Revolution Medicines, South San Francisco, CA, USA
| | | | | | | | | | - Wenying Jian
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | - Wei Wei
- Boehringer Ingelheim, Ridgefield, CT, USA
| | | | - Yongjun Xue
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Naiyu Zheng
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lina Luo
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | - Tom Verhaeghe
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | | | | | - Weili Yan
- Genentech, South San Francisco, CA, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | |
Collapse
|
5
|
Yu L, Kou X, Liu Z, Guan C, Sun B. Establishment and validation of a dual qPCR method for the detection of carbapenem-resistant Acinetobacter baumannii in bloodstream infections. Front Cell Infect Microbiol 2025; 15:1490528. [PMID: 40078872 PMCID: PMC11897477 DOI: 10.3389/fcimb.2025.1490528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Bloodstream infections(BSIs) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have a high mortality rate due to the high levels of drug resistance. There is an urgent need to establish a sensitive and accurate detection method to rapidly detect CRAB in BSIs. Methods A new method was developed based on fluorescence quantitative PCR (qPCR) targeting the specific region of 16sRNA and OXA-23 gene from CRAB. The parameters were evaluated and optimized. This qPCR method was further applied in the detection of AB from 30 clinical specimens. Results The qPCR method established in this study showed high specificity. The method successfully differentiated Acinetobacter baumannii(A. baumanii) from 26 other common pathogens in BSIs and identify the carbapenem resistance gene. The qPCR method shows a limit of detection (LOD) of 3×10-3 ng/μL, and displays good linear relationship between 16sRNA and OXA-23 and excellent repeatability (CV ≤2%). The results for the detection of 30 clinical specimens using this new qPCR method are in complete agreement with those using blood culture and drug susceptibility test. Conclusion The qPCR method established in this study has strong specificity, wide linear range, good repeatability, and a lower LOD than PCR (Non-fluorescence quantification). The method provides new technical support for the early clinical diagnosis of CRAB in BSIs.
Collapse
Affiliation(s)
- Lin Yu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| | - Xianglan Kou
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| | - Ze Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chushi Guan
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guizhou, China
| |
Collapse
|
6
|
Tounekti O, Prior S, Wassmer S, Xu J, Wong A, Fang X, Sonderegger I, Smeraglia J, Huleatt J, Loo L, Beaver C, DelCarpini J, Dessy F, Diebold S, Fiscella M, Garofolo F, Grimaldi C, Gupta S, Hou V, Irwin C, Jani D, Joseph J, Kalina W, Kar S, Kavita U, Lu Y, Marshall JC, Mayer C, Mora J, Nolan K, Peng K, Riccitelli N, Scully I, Seitzer J, Stern M, Wadhwa M, Xu Y, Verthelyi D, Sumner G, Clements-Egan A, Chen C, Gorovits B, Torri A, Baltrukonis D, Gunn G, Ishii-Watabe A, Kramer D, Kubiak RJ, Mullins G, Pan L, Partridge MA, Poetzl J, Rasamoelisolo M, Sirtori FR, Richards S, Saad OM, Shao W, Song Y, Song S, Staack RF, Wu B, Manangeeswaran M, Thacker S. 2024 White Paper on Recent Issues in Bioanalysis: Evolution of Immunogenicity Assessment beyond ADA/NAb; Regulated Genomic/NGS Assays; Hypersensitivity Reactions; Minimum Noise Reduction; False Positive Range; Modernized Vaccine Approaches; NAb/TAb Correlation (PART 3A - Recommendations on Advanced Strategies for Molecular Assays and Immunogenicity of Gene Therapy, Cell Therapy, Vaccine; Biotherapeutics Immunogenicity Assessment & Clinical Relevance PART 3B - Regulatory Agencies' Input on Immunogenicity/Technologies of Biotherapeutics, Gene, Cell & Vaccine Therapies). Bioanalysis 2025; 17:105-149. [PMID: 39862111 PMCID: PMC11863570 DOI: 10.1080/17576180.2024.2439229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025] Open
Abstract
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "IVDR Implementation in EU & Changes for LDT in the US" and on "Harmonization of Vaccine Clinical Assays Validation" were the special features of the 18th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and Regulatory Agencies experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2024 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2024 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 3) covers in the Part 3A the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity and in Part 3B the Regulatory Inputs on these topics. Part 1 (Mass Spectrometry Assays and Regulated Bioanalysis/BMV) and Part 2 (Biomarkers/BAV, IVD/CDx, LBA and Cell-Based Assays) are published in volume 17 of Bioanalysis, issues 4 and 5 (2025), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James Huleatt
- Gates Medical Research Institute, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yanmei Lu
- Sangamo, South San Francisco, CA, USA
| | | | | | | | | | - Kun Peng
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Mark Stern
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | - Cecil Chen
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | - Roland F. Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Bonnie Wu
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | |
Collapse
|
7
|
Fujita E, Yamamoto S, Hanada T, Jogasaki S, Koga Y, Yatsuda Y, Kakizaki Y, Jo Y, Asano Y, Yonezawa K, Moriya Y, Nakayama M, Arimura Y, Okawa Y, Komatsu H, Ito M, Suzuki S, Kuroda T, Yasuda S, Kamiyama Y, Sato Y. Using qPCR and ddPCR to study biodistribution of cell therapy products: a multi-site evaluation. Cytotherapy 2025; 27:51-65. [PMID: 39453335 DOI: 10.1016/j.jcyt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUD AIMS Regenerative therapies employing cell therapy products (CTPs) have attracted considerable attention. Biodistribution (BD) evaluation of CTPs is mainly performed to clarify the cell survival time, engraftment, and distribution site. This evaluation is crucial for predicting the efficacy and safety profiles of clinical studies based on non-clinical BD study outcomes. However, no internationally unified method has been established for assessing cell BD after administration. Here, we aimed to standardize the BD assay method used for CTPs, conducting the following evaluations using the same protocol across multiple study facilities: (1) in vitro validation of quantitative polymerase chain reaction (qPCR) and droplet digital PCR (ddPCR) analyses using the primate-specific Alu gene, and (2) in vivo BD studies after the intravenous administration of human mesenchymal stem cells (hMSCs) to immunodeficient mice, commonly used in non-clinical tumorigenicity studies. METHODS Quality control samples were prepared and analyzed by adding a fixed number of human-derived cells to several mouse tissues. The respective quantitative performances of the qPCR and ddPCR methods were compared for accuracy and precision. hMSCs were intravenously administered to immunodeficient mice, and tissues were collected at 1, 4, and 24 h after administration. RESULTS Both methods demonstrated an accuracy (relative error) generally within ±50% and a precision (coefficient of variation) generally less than 50%. While differences in calibration curve ranges were observed between qPCR and ddPCR, no significant differences in quantification were found among the assay facilities. The BD of hMSCs in mice was evaluated at seven facilities (qPCR at three facilities; ddPCR at four facilities), revealing similar tissue distribution profiles in all facilities, with the lungs showing the highest cell distribution among the tissues tested. CONCLUSIONS Quantitative evaluation of qPCR and ddPCR using Alu sequences was conducted, demonstrating that the test method can be adapted for BD evaluation.
Collapse
Affiliation(s)
- Eriko Fujita
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan
| | - Shingo Jogasaki
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, Mediford Corporation, Uto, Kumamoto, Japan
| | - Yukinori Yatsuda
- Life Science Sales, Bio-Rad Laboratories K.K., 14th Warehouse B-Wing, Keihin Truck Terminal, Ohta-ku, Tokyo, Japan
| | - Yoshiyuki Kakizaki
- Non-Clinical Research Department, CMIC Pharma Science Co., Ltd., Yamanashi, Japan
| | - Yoshinori Jo
- Tsukuba Research Institute, BoZo Research Center Inc., Tsukuba, Ibaraki, Japan
| | - Yuya Asano
- Nihon Bioresearch Inc., Hashima, Gifu, Japan
| | - Koichi Yonezawa
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yukiko Arimura
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Yurie Okawa
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Hiroyuki Komatsu
- Non-Clinical Research Department, CMIC Pharma Science Co., Ltd., Yamanashi, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., Tsukuba, Ibaraki, Japan
| | | | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yoshiteru Kamiyama
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan.
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
8
|
Yuan S, Jia N, Lu G, Lai J, Liang W, Li L, Zhang C, Diao J. Development and validation of an ultrasensitive qPCR method to identify and quantify EGFR T790M in cell-free DNA. Bioanalysis 2025; 17:49-62. [PMID: 39812332 PMCID: PMC11749345 DOI: 10.1080/17576180.2025.2451527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) is a promising biomarker for cancer prognosis and drug development. A major challenge in the ctDNA determination method is discriminating ctDNA from highly similar but significantly more abundant wild-type DNA sensitively and accurately. METHOD An ultrasensitive qPCR method termed Triple Enrichment Amplification of Mutation PCR (TEAM-PCR) was developed to detect EGFR T790M mutation. RESULTS EGFR T790M was quantified over the assay range of 25-106 copies/reaction in the presence of 106 wild-type copies. This method was fully validated following the essential bioanalysis guidance, with the limit of detection (LOD) being five copies/reaction. CONCLUSION This study established and validated a qPCR-based strategy to detect EGFR T790M mutation with ultra-high sensitivity and reliability.
Collapse
Affiliation(s)
- Shenglei Yuan
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Nan Jia
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Guofu Lu
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Jinping Lai
- Bioanalytical Services Department, WuXi AppTec, Plainsboro, NJ, USA
| | - Wenzhong Liang
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Lan Li
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Chenpu Zhang
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| | - Jianbo Diao
- Bioanalytical Services Department, WuXi AppTec (Shanghai) Co. Ltd, Shanghai, China
| |
Collapse
|
9
|
Zhou M, Zhang X, Yan H, Xing L, Tao Y, Shen L. Review on the bioanalysis of non-virus-based gene therapeutics. Bioanalysis 2024; 16:1279-1294. [PMID: 39673530 PMCID: PMC11703353 DOI: 10.1080/17576180.2024.2437418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.
Collapse
Affiliation(s)
- Maotian Zhou
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Xue Zhang
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Huan Yan
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Lili Xing
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Yi Tao
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Liang Shen
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| |
Collapse
|
10
|
Ali S, Bruno M, Celestin C, Chauhan P, Mitola M, Sharma S, Hsiao CJ, Li M, Ci L, Burdette D, Singh H. A comparison of branched DNA and reverse transcriptase quantitative polymerase chain reaction methodologies for quantitation of lipid nanoparticle encapsulated mRNA. Bioanalysis 2024; 16:1141-1154. [PMID: 39422341 PMCID: PMC11583626 DOI: 10.1080/17576180.2024.2411914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Messenger RNA (mRNA)-based therapeutics have emerged as a promising modality for various clinical applications, necessitating robust methods for mRNA quantification. This biodistribution study compares the performance of branched DNA and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays for measuring lipid nanoparticle-encapsulated mRNA. Following intravenous administration of nascent peptide imaging luciferase mRNA (1 mg/kg) to rats, mRNA levels in various tissues and serum were quantified using both assays. Statistical analyses, including Bland-Altman, Deming regression and Passing-Bablok regression, were employed to assess method comparability and reproducibility. The results indicated that mRNA pharmacokinetics measured by branched DNA and RT-qPCR were largely consistent across tissues, with RT-qPCR showing greater reproducibility across multiple laboratories. RT-qPCR also demonstrated a wider dynamic range and higher sensitivity, making it a more versatile option for large-scale studies. Despite some differences in data due to tissue types and timepoints, both methods provided comparable pharmacokinetic profiles for mRNA quantification. This study underscores the importance of selecting an appropriate quantification method based on study requirements and highlights RT-qPCR's adaptability for multisite research, especially for the clinical development of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Syed Ali
- Moderna, Inc., Cambridge, MA02142, USA
| | | | | | | | | | | | | | | | - Lei Ci
- Moderna, Inc., Cambridge, MA02142, USA
| | | | | |
Collapse
|
11
|
Gupta M, Bradley JD, Massaad E, Burns EJ, Georgantas NZ, Maron GE, Batten JM, Gallagher A, Thierauf J, Nayyar N, Gordon A, Jones SS, Pisapia M, Sun Y, Jones PS, Barker FG, Curry WT, Gupta R, Romero JM, Wang N, Brastianos PK, Martinez-Lage M, Tateishi K, Forst DA, Nahed BV, Batchelor TT, Ritterhouse LL, Iser F, Kessler T, Jordan JT, Dietrich J, Meyerson M, Cahill DP, Lennerz JK, Carter BS, Shankar GM. Rapid tumor DNA analysis of cerebrospinal fluid accelerates treatment of central nervous system lymphoma. Blood 2024; 144:1093-1100. [PMID: 38776489 PMCID: PMC11406186 DOI: 10.1182/blood.2024023832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown cause. Participants underwent genotyping of CSF-derived DNA using a quantitative polymerase chain reaction-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF, and H3F3A genes within 80 minutes of sample acquisition. Canonical mutations were detected in 42% of patients with neoplasms, including cases of primary and secondary CNS lymphoma, glioblastoma, IDH-mutant brainstem glioma, and H3K27M-mutant diffuse midline glioma. Genotyping results eliminated the need for surgical biopsies in 7 of 33 cases (21.2%) of newly diagnosed neoplasms, resulting in significantly accelerated initiation of disease-directed treatment (median, 3 vs 12 days; P = .027). This assay was then implemented in a Clinical Laboratory Improvement Amendments environment, with 2-day median turnaround for diagnosis of CNS lymphoma from 66 patients across 4 clinical sites. Our study prospectively demonstrates that targeted rapid CSF genotyping influences oncologic management for suspected CNS tumors.
Collapse
Affiliation(s)
- Mihir Gupta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
- Department of Neurosurgery, University of California San Diego, La Jolla, CA
| | - Joseph D. Bradley
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Elie Massaad
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Evan J. Burns
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | | | - Garrett E. Maron
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Julie M. Batten
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Aidan Gallagher
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Julia Thierauf
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Head and Neck Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Naema Nayyar
- Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Amanda Gordon
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - SooAe S. Jones
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Michelle Pisapia
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Ying Sun
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Pamela S. Jones
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Fred G. Barker
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - William T. Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Rajiv Gupta
- Department of Neuroradiology, Massachusetts General Hospital, Boston, MA
| | - Javier M. Romero
- Department of Neuroradiology, Massachusetts General Hospital, Boston, MA
| | - Nancy Wang
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Priscilla K. Brastianos
- Cancer Center, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Maria Martinez-Lage
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | | | - Brian V. Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Tracy T. Batchelor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | | | - Florian Iser
- Department of Neurology and Neuro-Oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Kessler
- Department of Neurology and Neuro-Oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Justin T. Jordan
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jorg Dietrich
- Cancer Center, Massachusetts General Hospital, Boston, MA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | | | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| | - Ganesh M. Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
12
|
Agrawal K, Calliste LK, Ji S, Xu S, Ayers SA, Jian W. Comparison of multiple bioanalytical assay platforms for the quantitation of siRNA therapeutics. Bioanalysis 2024; 16:651-667. [PMID: 39254503 PMCID: PMC11389733 DOI: 10.1080/17576180.2024.2350266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 09/11/2024] Open
Abstract
Aim: Oligonucleotide therapeutics can be quantified using various bioanalytical methods, and these methods have been compared extensively. However, few comparisons exist where the same analyte is evaluated by multiple assay platforms.Materials & methods: Hybrid LC-MS, SPE-LC-MS, HELISA and SL-RT-qPCR methods were developed for an siRNA analyte, and samples from a pharmacokinetic study were analyzed by all four methods.Results: All assay platforms provided comparable data, though higher concentrations were observed using the non-LC-MS assays. Hybrid LC-MS and SL-RT-qPCR were the most sensitive methodologies, and SL-RT-qPCR and HELISA demonstrated the highest throughput.Conclusion: Each assay platform is suitable for oligonucleotide bioanalysis, and the ultimate choice of methodology will depend on the prioritization of needs such as sensitivity, specificity and throughput.
Collapse
Affiliation(s)
- Karan Agrawal
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Laurelle K Calliste
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Shaofei Ji
- Translational PK/PD & Investigative Toxicology, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Shengsheng Xu
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Stephen A Ayers
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Wenying Jian
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| |
Collapse
|
13
|
Zimmer J, Hays A, Lester T, Diaz M, Thomas E, O'Dell M, Hyer E, Tangri S, Dakappagari N, Yuan M, Lavelle A, Karnik S, Liu A, Xu B, Sales K, Gorityala S, Reynolds G, Sangster T, Franckaert D, Love I, Patel V, Roberge M, Lin J, Jerks E, Xu T, Garofolo W, Nadarajah S, Kernstock R, Dufield D, Ambrose D, Warrino D, Luna M, Marco CD, Tudoroniu A, Iordachescu A, Sanghvi M, Barton H, Brown M, Hoffpauir B, Rocha A, Dong K, Yamashita J. 16 th GCC Closed Forum: ICH M10 implementation; NGS, qPCR/dPCR, flow cytometry validation; tissue biomarkers; IS response; immunogenicity harmonization; bioanalytical industry status. Bioanalysis 2024; 16:505-517. [PMID: 38864397 PMCID: PMC11299793 DOI: 10.1080/17576180.2024.2342691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
The 16th GCC Closed Forum was held in Orlando, FL, USA, on 23 June 2023. Representatives from international bioanalytical Contract Research Organizations were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The issues discussed at the meeting included: IS response, flow cytometry, changes to the bioanalytical industry, NGS assays, biomarker assay for tissues, dPCR validation, immunogenicity harmonization and ICH M10 implementation. Conclusions and consensus from discussions of these topics are included in this article.
Collapse
Affiliation(s)
| | | | | | - Manisha Diaz
- Eurofins Viracor, BioPharma Services, Lenexa, Kansas, USA
| | | | | | | | | | | | - Moucun Yuan
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | - Amy Lavelle
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | - Shane Karnik
- Aliri Bioanalysis, Colorado Springs, Colorado, USA
| | - Aihua Liu
- Resolian (Formally Alliance Pharma), Malvern, Pennsylvania, USA
| | - Bin Xu
- Accurant Biotech, Cranbury, New Jersey, USA
| | | | | | | | | | | | - Iain Love
- Charles River Laboratories, Edinburgh, Tranent, UK
| | - Vimal Patel
- Charles River Laboratories, Reno, Nevada, USA
| | - Martin Roberge
- CIRION BioPharma Research (a Cerba Research Company), Laval, Quebec, Canada
| | - Jenny Lin
- CMIC, Hoffman Estates, Illinois, USA
| | - Erik Jerks
- Eurofins Pharma Bioanalytics, Lake St. Louis, Missouri, USA
| | - Tao Xu
- Frontage Laboratory, Exton, Pennsylvania, USA
| | | | | | | | - Dawn Dufield
- KCAS Bioanalytical & Biomarker Services, Olathe, Kansas, USA
| | - David Ambrose
- KCAS Bioanalytical & Biomarker Services, Olathe, Kansas, USA
| | - Dominic Warrino
- KCAS Bioanalytical & Biomarker Services, Olathe, Kansas, USA
| | - Marsha Luna
- KCAS Bioanalytical & Biomarker Services, Olathe, Kansas, USA
| | | | | | | | | | - Hollie Barton
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | | | | | | | - Kelly Dong
- United-Power Pharma Tech Co., Beijing, China
| | | |
Collapse
|
14
|
Mora J, Palmer R, Wagner L, Wu B, Partridge M, Meena, Sonderegger I, Smeraglia J, Bivi N, Dakappagari N, Diebold S, Garofolo F, Grimaldi C, Kalina W, Kamerud J, Kar S, Marshall JC, Mayer C, Melton A, Merdek K, Nolan K, Picard S, Shao W, Seitzer J, Tanaka Y, Tounekti O, Vigil A, Walravens K, Xu J, Xu W, Xu Y, Yang L, Zhu L, Verthelyi D, Kubiak RJ, Coble K, Gupta S, Abhari MR, Richards S, Song Y, Ullmann M, Calderon B, Cludts I, Gunn GR, Gupta S, Ishii-Watabe A, Manangeeswaran M, Maxfield K, McCush F, O'Day C, Peng K, Poetzl J, Rasamoelisolo M, Saad OM, Scheibner K, Shubow S, Song S, Thacker S. 2023 White Paper on Recent Issues in Bioanalysis: ISR for ADA Assays, the Rise of dPCR vs qPCR, International Reference Standards for Vaccine Assays, Anti-AAV TAb Post-Dose Assessment, NanoString Validation, ELISpot as Gold Standard (Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccines Immunogenicity & Technologies; Biotherapeutics Immunogenicity & Risk Assessment; ADA/NAb Assay/Reporting Harmonization). Bioanalysis 2024; 16:77-119. [PMID: 38389403 DOI: 10.4155/bio-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with these NEW Regulations" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1A (Mass Spectrometry Assays and Regulated Bioanalysis/BMV), P1B (Regulatory Inputs) and Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) are published in volume 16 of Bioanalysis, issues 8 and 9 (2024), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Meena
- Stoke, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua Xu
- US FDA, Jefferson, AR, USA
- Regenxbio, Rockville, MD, USA
| | | | | | - Lin Yang
- US FDA, Jefferson, AR, USA
- Regenxbio, Rockville, MD, USA
| | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Kate Peng
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Turski MK, Albertolle ME. Utilizing droplet digital polymerase chain reaction for siRNA quantitation in rodent plasma and tissue via stem-loop reverse transcription. Bioanalysis 2024; 16:375-388. [PMID: 38380639 DOI: 10.4155/bio-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Background: siRNA is a promising therapeutic modality highlighted by several US FDA approvals since 2018, with many more oligonucleotide assets in clinical development. To support siRNA discovery and development, robust and sensitive quantitative platforms for bioanalysis must be established to assess pharmacokinetic/pharmacodynamic relationships and toxicology. Droplet digital PCR offers improved sensitivity and throughput, as well as reduced susceptibility to matrix effects, compared with other analytical platforms. Methodology: The authors developed a stem-loop reverse transcription droplet digital PCR method to measure siRNA in mouse plasma and liver extract using bioanalytical method qualification guidelines. Conclusion: This newly developed assay has been demonstrated to be a superior alternative to other platforms, with the added benefit of greater sensitivity, with dynamic range from 390 to 400,000 copies/reaction and readiness for FDA investigational new drug-enabling applications.
Collapse
Affiliation(s)
- Megan K Turski
- Global Drug Metabolism. Pharmacokinetics & Modeling, Takeda Development Center Americas, San Diego, CA, USA
| | - Matthew E Albertolle
- Global Drug Metabolism. Pharmacokinetics & Modeling, Takeda Development Center Americas, San Diego, CA, USA
| |
Collapse
|
16
|
Hays A, Wissel M, Colletti K, Soon R, Azadeh M, Smith J, Doddareddy R, Chalfant M, Adamowicz W, Ramaswamy SS, Dholakiya SL, Guelman S, Gullick B, Durham J, Rennier K, Nagilla P, Muruganandham A, Diaz M, Tierney C, John K, Valentine J, Lockman T, Liu HY, Moritz B, Ouedraogo JP, Piche MS, Smet M, Murphy J, Koenig K, Zybura A, Vyhlidal C, Mercier J, Jani N, Kubista M, Birch D, Morse K, Johansson O. Recommendations for Method Development and Validation of qPCR and dPCR Assays in Support of Cell and Gene Therapy Drug Development. AAPS J 2024; 26:24. [PMID: 38316745 DOI: 10.1208/s12248-023-00880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
The emerging use of qPCR and dPCR in regulated bioanalysis and absence of regulatory guidance on assay validations for these platforms has resulted in discussions on lack of harmonization on assay design and appropriate acceptance criteria for these assays. Both qPCR and dPCR are extensively used to answer bioanalytical questions for novel modalities such as cell and gene therapies. Following cross-industry conversations on the lack of information and guidelines for these assays, an American Association of Pharmaceutical Scientists working group was formed to address these gaps by bringing together 37 industry experts from 24 organizations to discuss best practices to gain a better understanding in the industry and facilitate filings to health authorities. Herein, this team provides considerations on assay design, development, and validation testing for PCR assays that are used in cell and gene therapies including (1) biodistribution; (2) transgene expression; (3) viral shedding; (4) and persistence or cellular kinetics of cell therapies.
Collapse
Affiliation(s)
- Amanda Hays
- BioAgilytix Laboratories, Durham, North Carolina, USA.
| | - Mark Wissel
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | - Russell Soon
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc., Novato, Calfornia, USA
| | | | | | | | - Wendy Adamowicz
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | | | | | | | - Bryan Gullick
- BioAgilytix Laboratories, Durham, North Carolina, USA
| | | | | | - Pruthvi Nagilla
- Asher Biotherapeutics, Inc., South San Francisco, California, USA
| | | | - Manisha Diaz
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | | | | | - Timothy Lockman
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | - Hsing-Yin Liu
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | | | - Jacqueline Murphy
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kaylyn Koenig
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Agnes Zybura
- Labcorp Drug Development, Greenfield, Indiana, USA
| | - Carrie Vyhlidal
- KCAS Bioanalytical and Biomarker Services, Shawnee, Kansas, USA
| | | | - Niketa Jani
- BioAgilytix Laboratories, Boston, Massachusetts, USA
| | - Mikael Kubista
- Institute of Biotechnology Czech Academy of Sciences, Prague, Czech Republic
| | - Donald Birch
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Karlin Morse
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | | |
Collapse
|
17
|
Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev 2023; 31:101132. [PMID: 37964893 PMCID: PMC10641278 DOI: 10.1016/j.omtm.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The field of gene therapy has evolved and improved so that today the treatment of thousands of genetic diseases is now possible. An integral aspect of the drug development process is generating analytical methods to be used throughout clinical and commercial manufacturing. Enumeration and identification assays using genetic testing are critical to ensure the safety, efficacy, and stability of many active pharmaceutical ingredients. While nucleic acid-based methods are already reliable and rapid, there are unique biological, technological, and regulatory aspects in gene therapies that must be considered. This review surveys aspects of method development and validation using nucleic acid-based testing of gene therapies by focusing on adeno-associated virus (AAV) vectors and their co-transfection factors. Key differences between quantitative PCR and droplet digital technologies are discussed to show how improvements can be made while still adhering to regulatory guidance. Example validation parameters for AAV genome titers are described to demonstrate the scope of analytical development. Finally, several areas for improving analytical testing are presented to inspire future innovation, including next-generation sequencing and artificial intelligence. Reviewing the broad characteristics of gene therapy assessment serves as an introduction for new researchers, while clarifying processes for professionals already involved in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Emmanuel Blay
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Elaine Hardyman
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Wesley Morovic
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| |
Collapse
|
18
|
Sun Y, Nakamura T, Ohtsu Y, Kakehi M, Danno N, Shimizu H, Tanaka Y, Serelli-Lee V, Tanaka S, Okayama T, Suda Y, Moriya Y, Hanada T, Saito Y. Development and validation of qPCR methods for nucleic acid biomarkers as a drug development tool: points to consider. Bioanalysis 2023; 15:1069-1081. [PMID: 37584367 DOI: 10.4155/bio-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Nucleic acid (NA) biomarkers play critical roles in drug development. However, the global regulatory guidelines for assessing quantification methods specific to NA biomarkers are limited. The validation of analytical methods is crucial for the use of biomarkers in clinical and post-marketing evaluations of drug efficacy and adverse reactions. Given that quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR) methods are the gold standards for the quantification of NA biomarkers, the Biomarker Analytical Method Validation Study Group in Japan has discussed considerations and made recommendations for the development and validation of qPCR- and RT-qPCR-based analytical methods for endogenous NA biomarkers as drug development tools. This white paper aims to contribute to the global harmonization of NA biomarker assay validation.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Takahiro Nakamura
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, 891-1394, Japan
| | | | - Masaaki Kakehi
- Takeda Pharmaceutical Company, Limited, Kanagawa, 251-8555, Japan
| | - Noriyuki Danno
- CMIC Pharma Science Co., Ltd, Yamanashi, 408-0044, Japan
| | | | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Victoria Serelli-Lee
- Eli Lilly Japan KK, Hyogo, 651-0086, Japan
- Clinical evaluation sub-committee, Medicinal Evaluation Committee, Japan Pharmaceuticals Manufacturers Association, Tokyo, 103-0023, Japan
| | - Seiji Tanaka
- ASKA Pharmaceutical Co., Ltd, Kanagawa, 251-8555, Japan
| | | | - Yusuke Suda
- Nippon Shinyaku Co., Ltd, Kyoto, 601-8550, Japan
| | - Yuu Moriya
- Takeda Pharmaceutical Company, Limited, Kanagawa, 251-8555, Japan
| | | | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| |
Collapse
|
19
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
20
|
Schröder HM, Niebergall-Roth E, Norrick A, Esterlechner J, Ganss C, Frank MH, Kluth MA. Drug Regulatory-Compliant Validation of a qPCR Assay for Bioanalysis Studies of a Cell Therapy Product with a Special Focus on Matrix Interferences in a Wide Range of Organ Tissues. Cells 2023; 12:1788. [PMID: 37443822 PMCID: PMC10340683 DOI: 10.3390/cells12131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | | |
Collapse
|
21
|
Pan L, Mora J, Walravens K, Wagner L, Hopper S, Loo L, Bettoun D, Bond S, Dessy F, Downing S, Garofolo F, Gupta S, Henderson N, Irwin C, Ishii-Watabe A, Kar S, Jawa V, Joseph J, Malvaux L, Marshall JC, McDevitt J, Mohapatra S, Seitzer J, Smith J, Solstad T, Sugimoto H, Tounekti O, Wu B, Wu Y, Xu Y, Xu J, Yamamoto T, Yang L, Torri A, Kirshner S, Maxfield K, Vasconcelos JP, Abhari MR, Verthelyi D, Brodsky E, Carrasco-Triguero M, Kamerud J, Andisik M, Baltrukonis D, Bivi N, Cludts I, Coble K, Gorovits B, Gunn GR, Gupta S, Millner AH, Joyce A, Kubiak RJ, Kumar S, Liao K, Manangeeswaran M, Partridge M, Pine S, Poetzl J, Rajadhyaksha M, Rasamoelisolo M, Richards S, Song Y, Swanson S, Thacker S, Wadhwa M, Wolf A, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: FDA Draft Guidance on Immunogenicity Information in Prescription Drug Labeling, LNP & Viral Vectors Therapeutics/Vaccines Immunogenicity, Prolongation Effect, ADA Affinity, Risk-based Approaches, NGS, qPCR, ddPCR Assays ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccines Immunogenicity & Technologies; Immunogenicity & Risk Assessment of Biotherapeutics and Novel Modalities; NAb Assays Integrated Approach). Bioanalysis 2023; 15:773-814. [PMID: 37526071 DOI: 10.4155/bio-2023-0135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Rodgers BD, Herring SK, Carias DR, Chen J, Rocha AG. Development and validation of a model gene therapy biodistribution assay for AVGN7 using digital droplet polymerase chain reaction. Mol Ther Methods Clin Dev 2023; 29:494-503. [PMID: 37273901 PMCID: PMC10236005 DOI: 10.1016/j.omtm.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
Biodistribution assays are integral to gene therapy commercialization and have traditionally used real-time qPCR. Droplet digital PCR (ddPCR), however, has distinct advantages including higher sensitivity and absolute quantification but is underused because of lacking regulatory guidance and meaningful examples in the literature. We report a fit-for-purpose model process to validate a good laboratory practice (GLP)-compliant ddPCR assay for AVGN7, a Smad7 gene therapeutic for muscle wasting. Duplexed primer/probe sets for Smad7 and mouse TATA-box binding protein were optimized using gBlock DNA over a dynamic range of 10-80,000 copies/reaction in 250 ng mouse gDNA. Linearized plasmid and mouse gDNA were used for validation, which determined precision, accuracy, ruggedness/robustness, selectivity, recovery, specificity, dilution linearity, and stability. Inter-run precision and accuracy met previously established criteria with bias between -5% and 15%, coefficient of variation (CV) less than 19%, and total error within 8%-35%. The limit of detection was 2.5 copies/reaction, linearity was confirmed at 40-80,000 copies/reaction, specificity was demonstrated by single droplet populations and assay stability was demonstrated for benchtop, refrigerated storage, and repeated freeze-thaw cycles. The procedural road map provided exceeds recently established standards. It is also relevant to many IND-enabling processes, as validated ddPCR assays can be used in biodistribution studies and with vector titering and manufacturing quality control.
Collapse
Affiliation(s)
| | | | - Dereck R Carias
- Smithers Pharmaceutical Development Services, Ewing, NJ 08628, USA
| | - Joyce Chen
- Smithers Pharmaceutical Development Services, Ewing, NJ 08628, USA
| | | |
Collapse
|
23
|
Rusak A, Buzalewicz I, Mrozowska M, Wiatrak B, Haczkiewicz-Leśniak K, Olbromski M, Kmiecik A, Krzyżak E, Pietrowska A, Moskal J, Podhorska-Okołów M, Podbielska H, Dzięgiel P. Multimodal study of CHI3L1 inhibition and its effect on angiogenesis, migration, immune response and refractive index of cellular structures in glioblastoma. Biomed Pharmacother 2023; 161:114520. [PMID: 36921538 DOI: 10.1016/j.biopha.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma is one of the most aggressive tumours with a poor response to treatment and a poor prognosis for patients. One of the proteins expressed in glioblastoma tissue is CHI3L1 (YKL-40), which is upregulated and known for its angiogenesis-supporting and pro-tumour immunomodulatory effects in a variety of cancers. In this paper we present the anti-angiogenic, anti-migratory and immunomodulatory effects of the compound G721-0282, an inhibitor of CHI3L1. The inhibitor-induced changes were investigated using conventional techniques as well as the novel label-free digital holographic tomography (DHT), a quantitative phase imaging technique that allows the reconstruction of the refractive index (RI), which is used as an image contrast for 3D visualisation of living cells. DHT allowed digital staining of individual cells and intercellular structures based only on their specific RI. Quantitative spatially resolved analysis of the RI data shows that the concentration of G721-0282 leads to significant changes in the density of cells and their intracellular structures (in particular the cytoplasm and nucleus), in the volume of lipid droplets and in protein concentrations. Studies in the U-87 MG glioblastoma cell line, THP-1 monocytes differentiated into macrophages, human microvascular endothelial cells (HMEC-1) and in the spheroid model of glioblastoma composed of U-87 MG, HMEC-1 and macrophages suggest that inhibition of CHI3L1 may have potential in the antitumour treatment of glioblastoma. In this paper, we also propose a spheroid model for in vitro studies that mimics this type of tumour.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, 50-345 Wroclaw, Poland.
| | - Katarzyna Haczkiewicz-Leśniak
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland.
| | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, S. Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; Department of Physiotherapy, University School of Physical Education, I. Paderewskiego 35 Al., 51-612 Wroclaw, Poland.
| |
Collapse
|
24
|
Nakayama M, Yamamoto S, Hirabayashi H. Novel Cell Quantification Method Using a Single Surrogate Calibration Curve Across Various Biological Samples. AAPS J 2023; 25:26. [PMID: 36806998 DOI: 10.1208/s12248-023-00791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) is generally used to quantify transplanted cell therapy products in biological samples. As the matrix effects on PCR amplification and variability in DNA recovery from biological samples are well-known limitations that hinder the assay's performance, a calibration curve is conventionally established for each matrix. Droplet digital PCR (ddPCR) is based on the endpoint assay and advantageous in avoiding matrix effects. Moreover, the use of an external control gene may correct assay fluctuations to minimize the effects caused by inconsistent DNA recovery. In this study, we aimed to establish a novel and robust ddPCR method capable of quantifying human cells across various mouse biological samples using a single surrogate calibration curve in combination with an external control gene and DNA recovery normalization. Acceptable accuracy and precision were observed for quality control samples from different tissues, indicating the excellent quantitative and versatile potential of the developed method. Furthermore, the established method enabled the evaluation of human CD8+ T cell biodistribution in immunodeficient mice. Our findings provide new insights into the use of ddPCR-based quantification methods in biodistribution studies of cell therapy products.
Collapse
Affiliation(s)
- Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan.
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
25
|
Development and validation of methods that enable high-quality droplet digital PCR and hematological profiling data from microvolume blood samples. Bioanalysis 2022; 14:1197-1211. [PMID: 36331037 DOI: 10.4155/bio-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: Mouse models have been crucial to preclinical studies in the increasingly relevant fields of cell and gene therapy. However, only small quantities of mouse blood can be collected without producing adverse physiological effects that compromise data integrity. Results: To address this limitation, two combined methods were developed to create detailed droplet digital PCR (ddPCR) and hematological profiles using only ∼20 μl of mouse blood. The validation of these methods, which can serve as a foundation for a standardized regulatory pipeline for ddPCR, is discussed. Even when using small amounts of input, this ddPCR protocol is accurate, precise, selective, specific, stable and robust. Conclusion: These techniques enable more frequent sample collection for higher-resolution pharmacokinetic data that meets or exceeds quality standards.
Collapse
|
26
|
Understanding quantitative polymerase chain reaction bioanalysis issues before validation planning: Japan Bioanalysis Forum discussion group. Bioanalysis 2022; 14:1391-1405. [PMID: 36621859 DOI: 10.4155/bio-2022-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Investigating the biodistribution of cell and gene therapy products may play an important role in evaluating their safety and pharmacology. As quantitative polymerase chain reaction (qPCR) is often used for these analyses, it is essential to improve the reliability of bioanalysis performed using qPCR. In this report, the authors discuss the use of qPCR in nonclinical studies, as it can be used to detect target DNA/RNA and it is quantitative and applicable for long-term analysis. The authors also discuss points to consider during bioanalysis using qPCR and present appropriate validation items and their criteria. The authors anticipate the discussion provided herein to contribute to the development of validation and sample analysis for pharmaceuticals analyzed using qPCR.
Collapse
|