1
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Mughis H, Lye P, Imperio GE, Bloise E, Matthews SG. Hypoxia modulates P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) drug transporters in brain endothelial cells of the developing human blood-brain barrier. Heliyon 2024; 10:e30207. [PMID: 38737275 PMCID: PMC11088273 DOI: 10.1016/j.heliyon.2024.e30207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.
Collapse
Affiliation(s)
- Hafsah Mughis
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Guinever E. Imperio
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departmento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Wilsch-Bräuninger M, Peters J, Huttner WB. High-resolution 3D ultrastructural analysis of developing mouse neocortex reveals long slender processes of endothelial cells that enter neural cells. Front Cell Dev Biol 2024; 12:1344734. [PMID: 38500687 PMCID: PMC10945550 DOI: 10.3389/fcell.2024.1344734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
The development of the neocortex involves an interplay between neural cells and the vasculature. However, little is known about this interplay at the ultrastructural level. To gain a 3D insight into the ultrastructure of the developing neocortex, we have analyzed the embryonic mouse neocortex by serial block-face scanning electron microscopy (SBF-SEM). In this study, we report a first set of findings that focus on the interaction of blood vessels, notably endothelial tip cells (ETCs), and the neural cells in this tissue. A key observation was that the processes of ETCs, located either in the ventricular zone (VZ) or subventricular zone (SVZ)/intermediate zone (IZ), can enter, traverse the cytoplasm, and even exit via deep plasma membrane invaginations of the host cells, including apical progenitors (APs), basal progenitors (BPs), and newborn neurons. More than half of the ETC processes were found to enter the neural cells. Striking examples of this ETC process "invasion" were (i) protrusions of apical progenitors or newborn basal progenitors into the ventricular lumen that contained an ETC process inside and (ii) ETC process-containing protrusions of neurons that penetrated other neurons. Our observations reveal a - so far unknown - complexity of the ETC-neural cell interaction.
Collapse
Affiliation(s)
| | | | - Wieland B. Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
5
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
6
|
Minić S, Cerovac N, Novaković I, Gazikalović S, Popadić S, Trpinac D. The Impact of the IKBKG Gene on the Appearance of the Corpus Callosum Abnormalities in Incontinentia Pigmenti. Diagnostics (Basel) 2023; 13:diagnostics13071300. [PMID: 37046518 PMCID: PMC10093331 DOI: 10.3390/diagnostics13071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Incontinentia pigmenti (IP) is a rare skin disease combined with anomalies of the teeth, eyes, and central nervous system (CNS). Mutations of the IKBKG gene are responsible for IP. Among the most frequent CNS abnormalities found in IP using magnetic resonance imaging (MRI) are corpus callosum (CC) abnormalities. The aim of the study was to determine the presence of CC abnormalities, their relationship with the IKBKG mutations, and the possible presence of mutations of other genes. A group of seven IP patients was examined. Analyses of the IKBKG gene and the X-chromosome inactivation pattern were performed, as well as MRI and whole exome sequencing (WES) with the focus on the genes relevant for neurodegeneration. WES analysis showed IKBKG mutation in all examined patients. A patient who had a mutation of a gene other than IKBKG was excluded from further study. Four of the seven patients had clinically diagnosed CNS anomalies; two out of four had MRI-diagnosed CC anomalies. The simultaneous presence of IKBKG mutation and CC abnormalities and the absence of other mutations indicate that IKBKG may be the cause of CC abnormalities and should be included in the list of genes responsible for CC abnormalities.
Collapse
|
7
|
Wang F, Liu X, Li S, Zhao C, Sun Y, Tian K, Wang J, Li W, Xu L, Jing J, Wang J, Evans SM, Li Z, Liu Y, Zhou Y. Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas. Protein Cell 2023; 14:105-122. [PMID: 36929001 PMCID: PMC10019576 DOI: 10.1093/procel/pwac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Collapse
Affiliation(s)
- Fangyu Wang
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Xuan Liu
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Shaowen Li
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yumei Sun
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Junbao Wang
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Jing
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Juan Wang
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy, Department of Medicine, Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, The RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Girard SD, Julien-Gau I, Molino Y, Combes BF, Greetham L, Khrestchatisky M, Nivet E. High and low permeability of human pluripotent stem cell-derived blood-brain barrier models depend on epithelial or endothelial features. FASEB J 2023; 37:e22770. [PMID: 36688807 DOI: 10.1096/fj.202201422r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023]
Abstract
The search for reliable human blood-brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human-induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC-based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell-like (EpC) features. We found that models containing EpC-like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC-based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC-like cells and displaying low permeability is still needed.
Collapse
Affiliation(s)
- Stéphane D Girard
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Yves Molino
- Faculty of Medicine, VECT-HORUS SAS, Marseille, France
| | | | - Louise Greetham
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Michel Khrestchatisky
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| | - Emmanuel Nivet
- Institute of NeuroPhysiopathology, INP, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
10
|
Critical Role of Neuronal Vps35 in Blood Vessel Branching and Maturation in Developing Mouse Brain. Biomedicines 2022; 10:biomedicines10071653. [PMID: 35884959 PMCID: PMC9313219 DOI: 10.3390/biomedicines10071653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vps35 (vacuolar protein sorting 35), a key component of retromer, plays a crucial role in selective retrieval of transmembrane proteins from endosomes to trans-Golgi networks. Dysfunctional Vps35/retromer is a risk factor for the development of neurodegenerative diseases. Vps35 is highly expressed in developing pyramidal neurons, both in the mouse neocortex and hippocampus, Although embryonic neuronal Vps35’s function in promoting neuronal terminal differentiation and survival is evident, it remains unclear whether and how neuronal Vps35 communicates with other types of brain cells, such as blood vessels (BVs), which are essential for supplying nutrients to neurons. Dysfunctional BVs contribute to the pathogenesis of various neurodegenerative disorders. Here, we provide evidence for embryonic neuronal Vps35 as critical for BV branching and maturation in the developing mouse brain. Selectively knocking out (KO) Vps35 in mouse embryonic, not postnatal, neurons results in reductions in BV branching and density, arteriole diameter, and BV-associated pericytes and microglia but an increase in BV-associated reactive astrocytes. Deletion of microglia by PLX3397 enhances these BV deficits in mutant mice. These results reveal the function of neuronal Vps35 in neurovascular coupling in the developing mouse brain and implicate BV-associated microglia as underlying this event.
Collapse
|
11
|
Marzano M, Chen X, Russell TA, Medina A, Wang Z, Hua T, Zeng C, Wang X, Sang QX, Tang H, Yun Y, Li Y. Studying the Inflammatory Responses to Amyloid Beta Oligomers in Brain-Specific Pericyte and Endothelial Co-culture from Human Stem Cells. FRONTIERS IN CHEMICAL ENGINEERING 2022; 4:927188. [PMID: 36561642 PMCID: PMC9771397 DOI: 10.3389/fceng.2022.927188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Recently, the in vitro blood brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications it has with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for the iPCs and iECs in transwell system and 3-D microfluidics channels. Results The derived iPCs expressed common markers PDGFRb and NG2, as well as brain-specific genes FOXF2, ABCC9, KCNJ8, and ZIC1. The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, as well as BBB-associated genes BRCP, GLUT-1, PGP, ABCC1, OCLN, SLC2A1. The co-culture of the two cell types responded to the stimulation of amyloid β42 oligomers by the upregulation of expression of TNFa, IL6, NFKB, Casp3, SOD2 and TP53. The co-culture also showed the property of trans-endothelial electrical resistance. The proof-of-concept vascularization strategy was demonstrated in a 3-D microfluidics-based device. Conclusion The derived iPCs and iECs have brain-specific properties and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening.
Collapse
Affiliation(s)
- Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teal A. Russell
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Zizheng Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA,The High-Performance Materials Institute, Florida State University, Tallahassee, Florida, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yeoheung Yun
- FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA,Corresponding author: Dr. Yan Li: address: 2525 Pottsdamer St., Tallahassee, FL 32310, Tel: 850-410-6320; Fax: 850-410-6150;
| |
Collapse
|
12
|
Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh H, Park YH, Song BS, Sim BW, Lee HJ, Lee JH, Kim SU. Human Blood Vessel Organoids Penetrate Human Cerebral Organoids and Form a Vessel-Like System. Cells 2021; 10:cells10082036. [PMID: 34440805 PMCID: PMC8393185 DOI: 10.3390/cells10082036] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Vascularization of tissues, organoids and organ-on-chip models has been attempted using endothelial cells. However, the cultured endothelial cells lack the capacity to interact with other somatic cell types, which is distinct from developing vascular cells in vivo. Recently, it was demonstrated that blood vessel organoids (BVOs) recreate the structure and functions of developing human blood vessels. However, the tissue-specific adaptability of BVOs had not been assessed in somatic tissues. Herein, we investigated whether BVOs infiltrate human cerebral organoids and form a blood-brain barrier. As a result, vascular cells arising from BVOs penetrated the cerebral organoids and developed a vessel-like architecture composed of CD31+ endothelial tubes coated with SMA+ or PDGFR+ mural cells. Molecular markers of the blood-brain barrier were detected in the vascularized cerebral organoids. We revealed that BVOs can form neural-specific blood-vessel networks that can be maintained for over 50 days.
Collapse
Affiliation(s)
- Yujin Ahn
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Ju-Hyun An
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
| | - Dong Gil Lee
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
| | - Jieun Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyebin Koh
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
| | - Hong J. Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea;
- Research Institute, eBiogen Inc., Seoul 04785, Korea
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea
- Correspondence: (J.-H.L.); (S.-U.K.); Tel.: +82-43-240-6312 (J.-H.L.); +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea; (Y.A.); (J.-H.A.); (H.-J.Y.); (D.G.L.); (J.K.); (H.K.); (Y.-H.P.); (B.-S.S.); (B.-W.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (J.-H.L.); (S.-U.K.); Tel.: +82-43-240-6312 (J.-H.L.); +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| |
Collapse
|
13
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
16
|
Jeske R, Albo J, Marzano M, Bejoy J, Li Y. Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:367-382. [PMID: 32571167 PMCID: PMC7462039 DOI: 10.1089/ten.teb.2020.0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-β, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor β signaling promotes PC cell survival, TGF-β signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Jonathan Albo
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
17
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B. Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Curr Neuropharmacol 2018; 15:892-905. [PMID: 28088914 PMCID: PMC5652032 DOI: 10.2174/1570159x15666170112170226] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Every year, strokes take millions of lives and leave millions of individuals living with permanent disabilities. Recently more researchers embrace the concept of the neurovascular unit (NVU), which encompasses neurons, endothelial cells (ECs), pericytes, astrocyte, microglia, and the extracellular matrix. It has been well-documented that NVU emerged as a new paradigm for the exploration of mechanisms and therapies in ischemic stroke. To better understand the complex NVU and broaden therapeutic targets, we must probe the roles of multiple cell types in ischemic stroke. The aims of this paper are to introduce the biological characteristics of brain pericytes and the available evidence on the diverse functions and mechanisms involving the pericytes in the context of ischemic stroke. Methods: Research and online content related to the biological characteristics and pathophysiological roles of pericytes is review. The new research direction on the Pericytes in ischemic stroke, and the potential therapeutic targets are provided. Results: During the different stages of ischemic stroke, pericytes play different roles: 1) On the hyperacute phase of stroke, pericytes constriction and death may be a cause of the no-reflow phenomenon in brain capillaries; 2) During the acute phase, pericytes detach from microvessels and participate in inflammatory-immunological response, resulting in the BBB damage and brain edema. Pericytes also provide benefit for neuroprotection by protecting endothelium, stabilizing BBB and releasing neurotrophins; 3) Similarly, during the later recovery phase of stroke, pericytes also contribute to angiogenesis, neurogenesis, and thereby promote neurological recovery. Conclusion: This emphasis on the NVU concept has shifted the focus of ischemic stroke research from neuro-centric views to the complex interactions within NVU. With this new perspective, pericytes that are centrally positioned in the NVU have been widely studied in ischemic stroke. More work is needed to elucidate the beneficial and detrimental roles of brain pericytes in ischemic stroke that may serve as a basis for potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Elvis Nana Opoku
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingqiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
19
|
Sances S, Ho R, Vatine G, West D, Laperle A, Meyer A, Godoy M, Kay PS, Mandefro B, Hatata S, Hinojosa C, Wen N, Sareen D, Hamilton GA, Svendsen CN. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development. Stem Cell Reports 2018; 10:1222-1236. [PMID: 29576540 PMCID: PMC5998748 DOI: 10.1016/j.stemcr.2018.02.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/10/2023] Open
Abstract
Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro. Microengineered organ-on-chip (or Organ-Chip) systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs) share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo-like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition.
Collapse
Affiliation(s)
- Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Gad Vatine
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Dylan West
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Alex Laperle
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Amanda Meyer
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Marlesa Godoy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Paul S Kay
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Berhan Mandefro
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; iPSC Core, The David Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seigo Hatata
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Chris Hinojosa
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA 02210, USA
| | - Norman Wen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA 02210, USA
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; iPSC Core, The David Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Jung B, Arnold TD, Raschperger E, Gaengel K, Betsholtz C. Visualization of vascular mural cells in developing brain using genetically labeled transgenic reporter mice. J Cereb Blood Flow Metab 2018; 38:456-468. [PMID: 28276839 PMCID: PMC5851136 DOI: 10.1177/0271678x17697720] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The establishment of a fully functional blood vascular system requires elaborate angiogenic and vascular maturation events in order to fulfill organ-specific anatomical and physiological needs. Although vascular mural cells, i.e. pericytes and vascular smooth muscle cells, are known to play fundamental roles during these processes, their characteristics during vascular development remain incompletely understood. In this report, we utilized transgenic reporter mice in which mural cells are genetically labeled to examine developing vascular mural cells in the central nervous system (CNS). We found platelet-derived growth factor receptor β gene ( Pdgfrb)-driven EGFP reporter expression as a suitable marker for vascular mural cells at the earliest stages of mouse brain vascularization. Furthermore, the combination of Pdgfrb and NG2 gene (Cspg4) driven reporter expression increased the specificity of brain vascular mural cell labeling at later stages. The expression of other known pericyte markers revealed time-, region- and marker-specific patterns, suggesting heterogeneity in mural cell maturation. We conclude that transgenic reporter mice provide an important tool to explore the development of CNS pericytes in health and disease.
Collapse
Affiliation(s)
- Bongnam Jung
- 1 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas D Arnold
- 2 Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth Raschperger
- 3 Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | - Konstantin Gaengel
- 1 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- 1 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,3 Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| |
Collapse
|
21
|
Jamieson JJ, Searson PC, Gerecht S. Engineering the human blood-brain barrier in vitro. J Biol Eng 2017; 11:37. [PMID: 29213304 PMCID: PMC5713119 DOI: 10.1186/s13036-017-0076-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) is the interface between the vasculature and the brain, regulating molecular and cellular transport into the brain. Endothelial cells (ECs) that form the capillary walls constitute the physical barrier but are dependent on interactions with other cell types. In vitro models are widely used in BBB research for mechanistic studies and drug screening. Current models have both biological and technical limitations. Here we review recent advances in stem cell engineering that have been utilized to create innovative platforms to replicate key features of the BBB. The development of human in vitro models is envisioned to enable new mechanistic investigations of BBB transport in central nervous system diseases.
Collapse
Affiliation(s)
- John J Jamieson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Peter C Searson
- Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Institute for Nanobiotechnology, 100 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|
22
|
Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. SCIENCE ADVANCES 2017; 3:e1701679. [PMID: 29134197 PMCID: PMC5677350 DOI: 10.1126/sciadv.1701679] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
The blood-brain barrier (BBB) is composed of specialized endothelial cells that are critical to neurological health. A key tool for understanding human BBB development and its role in neurological disease is a reliable and scalable source of functional brain microvascular endothelial cells (BMECs). Human pluripotent stem cells (hPSCs) can theoretically generate unlimited quantities of any cell lineage in vitro, including BMECs, for disease modeling, drug screening, and cell-based therapies. We demonstrate a facile, chemically defined method to differentiate hPSCs to BMECs in a developmentally relevant progression via small-molecule activation of key signaling pathways. hPSCs are first induced to mesoderm commitment by activating canonical Wnt signaling. Next, these mesoderm precursors progress to endothelial progenitors, and treatment with retinoic acid leads to acquisition of BBB-specific markers and phenotypes. hPSC-derived BMECs generated via this protocol exhibit endothelial properties, including tube formation and low-density lipoprotein uptake, as well as efflux transporter activities characteristic of BMECs. Notably, these cells exhibit high transendothelial electrical resistance above 3000 ohm·cm2. These hPSC-derived BMECs serve as a robust human in vitro BBB model that can be used to study brain disease and inform therapeutic development.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shaenah E. Maguire
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott G. Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaoping Bao
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William R. Olson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM, Grosse AS, Kaur H, Lawson ND, Herzog W, Stainier DY. Radial glia regulate vascular patterning around the developing spinal cord. eLife 2016; 5:20253. [PMID: 27852438 PMCID: PMC5123865 DOI: 10.7554/elife.20253] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI:http://dx.doi.org/10.7554/eLife.20253.001
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Avdesh Avdesh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann S Grosse
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Harmandeep Kaur
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Wiebke Herzog
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
24
|
Gao L, Chen X, Zeng Y, Li Q, Zou T, Chen S, Wu Q, Fu C, Xu H, Yin ZQ. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells. Sci Rep 2016; 6:29944. [PMID: 27435522 PMCID: PMC4951725 DOI: 10.1038/srep29944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022] Open
Abstract
The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies, human retinas can be generated in three-dimensional (3-D) culture in vitro. However, understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen, as the most essential element participating in metabolism, is a critical factor regulating organic development. In this study, using 3-D culture of human stem cells, we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38, 50, and 62. Additionally, the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition, the generation, migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state, suggesting that the hyperoxic state facilitated the retinal development in vitro.
Collapse
Affiliation(s)
- Lixiong Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China.,School of Medicine, Nankai University, Tianjin 300071, China.,Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Qian Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration &Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
25
|
Pombero A, Garcia-Lopez R, Martinez S. Brain mesenchymal stem cells: physiology and pathological implications. Dev Growth Differ 2016; 58:469-80. [PMID: 27273235 DOI: 10.1111/dgd.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine.
Collapse
Affiliation(s)
- Ana Pombero
- Intituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| |
Collapse
|
26
|
|
27
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
28
|
Reyahi A, Nik AM, Ghiami M, Gritli-Linde A, Pontén F, Johansson BR, Carlsson P. Foxf2 Is Required for Brain Pericyte Differentiation and Development and Maintenance of the Blood-Brain Barrier. Dev Cell 2015; 34:19-32. [PMID: 26120030 DOI: 10.1016/j.devcel.2015.05.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 02/09/2015] [Accepted: 05/12/2015] [Indexed: 11/29/2022]
Abstract
Pericytes are critical for cerebrovascular maturation and development of the blood-brain barrier (BBB), but their role in maintenance of the adult BBB, and how CNS pericytes differ from those of other tissues, is less well understood. We show that the forkhead transcription factor Foxf2 is specifically expressed in pericytes of the brain and that Foxf2(-/-) embryos develop intracranial hemorrhage, perivascular edema, thinning of the vascular basal lamina, an increase of luminal endothelial caveolae, and a leaky BBB. Foxf2(-/-) brain pericytes were more numerous, proliferated faster, and expressed significantly less Pdgfrβ. Tgfβ-Smad2/3 signaling was attenuated, whereas phosphorylation of Smad1/5 and p38 were enhanced. Tgfβ pathway components, including Tgfβ2, Tgfβr2, Alk5, and integrins αVβ8, were reduced. Foxf2 inactivation in adults resulted in BBB breakdown, endothelial thickening, and increased trans-endothelial vesicular transport. On the basis of these results, FOXF2 emerges as an interesting candidate locus for stroke susceptibility in humans.
Collapse
Affiliation(s)
- Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Mozhgan Ghiami
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30 Gothenburg, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Rudbecklaboratoriet, Uppsala University, 751 85 Uppsala, Sweden
| | - Bengt R Johansson
- Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden.
| |
Collapse
|
29
|
Vidal M, Maniglier M, Deboux C, Bachelin C, Zujovic V, Baron-Van Evercooren A. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination. Stem Cells 2015; 33:2011-24. [DOI: 10.1002/stem.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Marie Vidal
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Madlyne Maniglier
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Cyrille Deboux
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Corinne Bachelin
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Violetta Zujovic
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| | - Anne Baron-Van Evercooren
- Inserm, U 1127; F-75013 Paris France
- CNRS, UMR 7225; F-75013 Paris France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127; F-75013 Paris France
- Institut du Cerveau et de la Moelle épinière, ICM; F-75013 Paris France
| |
Collapse
|
30
|
Angiogenesis in the developing spinal cord: blood vessel exclusion from neural progenitor region is mediated by VEGF and its antagonists. PLoS One 2015; 10:e0116119. [PMID: 25585380 PMCID: PMC4293145 DOI: 10.1371/journal.pone.0116119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Blood vessels in the central nervous system supply a considerable amount of oxygen via intricate vascular networks. We studied how the initial vasculature of the spinal cord is formed in avian (chicken and quail) embryos. Vascular formation in the spinal cord starts by the ingression of intra-neural vascular plexus (INVP) from the peri-neural vascular plexus (PNVP) that envelops the neural tube. At the ventral region of the PNVP, the INVP grows dorsally in the neural tube, and we observed that these vessels followed the defined path at the interface between the medially positioned and undifferentiated neural progenitor zone and the laterally positioned differentiated zone. When the interface between these two zones was experimentally displaced, INVP faithfully followed a newly formed interface, suggesting that the growth path of the INVP is determined by surrounding neural cells. The progenitor zone expressed mRNA of vascular endothelial growth factor-A whereas its receptor VEGFR2 and FLT-1 (VEGFR1), a decoy for VEGF, were expressed in INVP. By manipulating the neural tube with either VEGF or the soluble form of FLT-1, we found that INVP grew in a VEGF-dependent manner, where VEGF signals appear to be fine-tuned by counteractions with anti-angiogenic activities including FLT-1 and possibly semaphorins. These results suggest that the stereotypic patterning of early INVP is achieved by interactions between these vessels and their surrounding neural cells, where VEGF and its antagonists play important roles.
Collapse
|
31
|
Yang K, Banerjee S, Proweller A. Regulation of pre-natal circle of Willis assembly by vascular smooth muscle Notch signaling. Dev Biol 2013; 381:107-20. [PMID: 23769842 DOI: 10.1016/j.ydbio.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022]
Abstract
The circle of Willis (cW) is a major arterial collateral structure interconnecting hemispheric circulation within the brain, and in humans, anatomical variation of the cW is linked to stroke risk. Our prior studies on adult mice deficient in vascular smooth muscle cell (vSMC) Notch signaling revealed altered cerebroarterial maturation and patterning, including an anatomically incompetent cW similar to human variants. However, a developmental dependency on Notch signaling for cW formation in this model remained uncharacterized. Through temporospatial embryonic analyses, we now demonstrate that cW assembly is a pre-natal process highly sensitive to vSMC Notch signals, whose absence results in delayed nascent vascular plexus formation and under-development of the cW including the key anterior communicating artery (AComA) interconnecting anterior forebrain circulation. Mutant embryos additionally feature reduced vSMC coverage, non-uniform calibers and asymmetric branching at bifurcations of the major proximal cerebral arteries. At the cellular level, a notable reduction in vascular endothelial cell proliferation exists in the region of AComA assembly despite the presence of Vegfa. Furthermore, Notch signaling-deficient vSMCs in developing cerebral vessels feature reduced Pdgfrβ and Jagged1 levels and impaired proliferation. These collective findings in the embryonic brain support studies in adult animals demonstrating a reliance on intact vSMC Notch signaling for optimal neovascular responses to angiogenic stimuli. Importantly, the new data provide unique insights into the native formation of the cW and underscore a pioneering developmental role for vSMC Notch signaling in regulating temporospatial assembly of the clinically relevant cW.
Collapse
Affiliation(s)
- Ke Yang
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
32
|
Lindhorst T, Kurz H, Sibbe M, Meseke M, Förster E. Congruence of vascular network remodeling and neuronal dispersion in the hippocampus of reelin-deficient mice. Histochem Cell Biol 2012; 137:629-39. [PMID: 22261923 DOI: 10.1007/s00418-012-0912-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/18/2022]
Abstract
In the hippocampus, neurons and fiber projections are strictly organized in layers and supplied with oxygen via a vascular network that also develops layer-specific characteristics in wild-type mice, as shown in the present study for the first time in a quantitative manner. By contrast, in the reeler mutant, well known for its neuronal migration defects due to the lack of the extracellular matrix protein reelin, emerging layer-specific characteristics of the vascular pattern were found to be remodeled during development of the dentate gyrus. Remarkably, in the first postnatal week, when a granule cell layer was still discernable in the reeler dentate gyrus, also the reeler vascular pattern resembled wild type. Thus, at postnatal day 6, unbranched microvessels traversed the granule cell layer and bifurcated when reaching the subgranular zone. Only after the first postnatal week vascular network remodeling in the reeler dentate gyrus became apparent, when the proportion of dispersed granule cells increased. Hence, vessel bifurcation frequency decreased in the maturing reeler dentate gyrus, but increased in wild type, resulting in significant differences (approx. 100%; p < 0.01) between adult wild type and reeler. Moreover, layer-specific vessel bifurcation frequencies disappeared in the maturing reeler dentate gyrus. Finally, a wild type-like vascular pattern was also found in the dentate gyrus of mice deficient for the reelin receptor very low density lipoprotein receptor (VLDLR), precluding a requirement of VLDLR for normal vascular pattern formation in the dentate gyrus. In sum, our findings show that vascular network remodeling in the reeler dentate gyrus is closely linked to the progression of granule cell dispersion.
Collapse
Affiliation(s)
- Tina Lindhorst
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14:1398-1405. [PMID: 22030551 DOI: 10.1038/nn.2946] [Citation(s) in RCA: 743] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease.
Collapse
Affiliation(s)
- Ethan A Winkler
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert D Bell
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurosurgery and Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
34
|
|
35
|
The Neurovascular Link in Health and Disease: Molecular Mechanisms and Therapeutic Implications. Neuron 2011; 71:406-24. [DOI: 10.1016/j.neuron.2011.07.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
|
36
|
Szczerba D, Kurz H, Szekely G. A computational model of intussusceptive microvascular growth and remodeling. J Theor Biol 2009; 261:570-83. [DOI: 10.1016/j.jtbi.2009.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 12/27/2022]
|