1
|
Picchietti S, Pianese V, Fausto AM, Scapigliati G. The Mediterranean sea bass Dicentrarchus labrax: A marine model species in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110288. [PMID: 40120781 DOI: 10.1016/j.fsi.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The Mediterranean sea bass, Dicentrarchus labrax, is a species of great interest due to the extensive knowledge accumulated about its immune system and the application of these findings in aquaculture health management. The available data indicate that sea bass has the morphological and immunological features typical of jawed vertebrates, with minor anatomical differences compared to evolutionarily older teleosts. Namely, all the master genes coding for Tc and Th T cells have been found to be expressed, together with related cytokine families, and Tc/Th activities can be investigated using in vitro models. The B lymphocytes produce IgM/IgT/IgD antibodies in response to antigenic/vaccine stimulation and maintain an IgM-B cell memory for antigens and vaccines. Mucosal and systemic immunity with associated leukocyte populations is present and functional, and it can be modulated by substances added to water or food. Studies on the ontogenesis of immune components defined precise points of lymphocyte development during larval life. Finally, the central nervous system of sea bass has been shown to contain resident lymphocytes, whose number can be modulated by pathogenic infection. Based on the available knowledge summarized in this review, it can be certainly assumed that the Dicentrarchus labrax is a valuable marine model species for studies in immunology and physiology of vertebrates.
Collapse
Affiliation(s)
- S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| |
Collapse
|
2
|
Okeugo B, Armbrister SA, Daniel RC, Saleh ZM, Wang J, Giorgberidze S, Rhoads JM, Liu Y. Reduced autoimmunity associated with deletion of host CD73. Immunohorizons 2025; 9:vlae004. [PMID: 39846845 PMCID: PMC11841978 DOI: 10.1093/immhor/vlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.
Collapse
Affiliation(s)
- Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rhea C Daniel
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeina M Saleh
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jessica Wang
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Salomea Giorgberidze
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Tetteh DN, Isono K, Hikosaka‐Kuniishi M, Yamazaki H. Neural Crest-Derived Mesenchymal Cells Support Thymic Reconstitution After Lethal Irradiation. Eur J Immunol 2025; 55:e202451305. [PMID: 39548921 PMCID: PMC11739676 DOI: 10.1002/eji.202451305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Reconstitution of the thymus is essential for assessing thymic function following injury. However, the currently employed cytoreductive regimes unvaryingly affect the thymic microenvironment, thereby impeding the recovery of T lymphopoiesis. The thymic stroma is composed of epithelial and mesenchymal cells. Thymic mesenchymal cells originate from the Neural crest (NC) and mesoderm and contribute to thymus organogenesis, yet their role in thymic regeneration is unclear. In this study, using transgenic mice expressing NC-specific Cre and Cre-driven DT receptors, we investigated the role of NC-derived mesenchymal cells in thymic regeneration following total body irradiation. We revealed that NC-derived mesenchymal cells have reduced susceptibility to irradiation and induce the upregulation of hematopoietic factors that promote thymus regeneration after irradiation. Additionally, using adult thymic organ culture and renal capsule transplantation, depletion of NC-derived mesenchymal cells resulted in a reduction of DN1-like early T-cell progenitors (ETP) and impaired thymic regeneration. Furthermore, among the numerous factors upregulated by NC-derived mesenchymal cells, Periostin and Flt3L were markedly increased after irradiation and promoted abundance of DN1-like ETPs during thymic reconstitution. Collectively, these findings highlight the importance of NC-derived mesenchymal cells in thymic regeneration.
Collapse
Affiliation(s)
- Doris Narki Tetteh
- Department of Stem Cell and Developmental BiologyMie University Graduate School of MedicineTsuJapan
| | - Kana Isono
- Department of Stem Cell and Developmental BiologyMie University Graduate School of MedicineTsuJapan
| | - Mari Hikosaka‐Kuniishi
- Department of Stem Cell and Developmental BiologyMie University Graduate School of MedicineTsuJapan
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmacological ScienceUniversity of ToyamaToyamaJapan
| | - Hidetoshi Yamazaki
- Department of Stem Cell and Developmental BiologyMie University Graduate School of MedicineTsuJapan
| |
Collapse
|
4
|
Phomvisith O, Muroya S, Otomaru K, Oshima K, Oshima I, Nishino D, Haginouchi T, Gotoh T. Maternal Undernutrition Affects Fetal Thymus DNA Methylation, Gene Expression, and, Thereby, Metabolism and Immunopoiesis in Wagyu (Japanese Black) Cattle. Int J Mol Sci 2024; 25:9242. [PMID: 39273192 PMCID: PMC11395129 DOI: 10.3390/ijms25179242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to determine the effects of maternal nutrient restriction (MNR) on the DNA methylation and gene expression patterns associated with metabolism and immunopoiesis in the thymuses of fetal Wagyu cattle. Pregnant cows were allocated to two groups: a low-nutrition (LN; 60% nutritional requirement; n = 5) and a high-nutrition (HN; 120% nutritional requirement, n = 6) group, until 8.5 months of gestation. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing were used to analyze DNA methylation and gene expression, while capillary electrophoresis-Fourier transform mass spectrometry assessed the metabolome. WGBS identified 4566 hypomethylated and 4303 hypermethylated genes in the LN group, with the intergenic regions most frequently being methylated. Pathway analysis linked hypoDMGs to Ras signaling, while hyperDMGs were associated with Hippo signaling. RNA sequencing found 94 differentially expressed genes (66 upregulated, 28 downregulated) in the LN group. The upregulated genes were tied to metabolic pathways and oxidative phosphorylation; the downregulated genes were linked to natural killer cell cytotoxicity. Key overlapping genes (GRIA1, CACNA1D, SCL25A4) were involved in cAMP signaling. The metabolomic analysis indicated an altered amino acid metabolism in the MNR fetuses. These findings suggest that MNR affects DNA methylation, gene expression, and the amino acid metabolism, impacting immune system regulation during fetal thymus development in Wagyu cattle.
Collapse
Affiliation(s)
- Ouanh Phomvisith
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Susumu Muroya
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan
| | - Ichiro Oshima
- Department of Animal Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Kagoshima, Japan
| | - Daichi Nishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Taketo Haginouchi
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| | - Takafumi Gotoh
- Field Science Center for Northern Biosphere, Hokkaido University, N11W10, Kita, Sapporo 060-0811, Hokkaido, Japan
| |
Collapse
|
5
|
Kuehu DL, Fu Y, Nasu M, Yang H, Khadka VS, Deng Y. Effects of Heat-Induced Oxidative Stress and Astaxanthin on the NF-kB, NFE2L2 and PPARα Transcription Factors and Cytoprotective Capacity in the Thymus of Broilers. Curr Issues Mol Biol 2024; 46:9215-9233. [PMID: 39194761 DOI: 10.3390/cimb46080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The thymus, a central lymphoid organ in animals, serves as the site for T cell development, differentiation and maturation, vital to adaptive immunity. The thymus is critical for maintaining tissue homeostasis to protect against tumors and tissue damage. An overactive or prolonged immune response can lead to oxidative stress from increased production of reactive oxygen species. Heat stress induces oxidative stress and overwhelms the natural antioxidant defense mechanisms. This study's objectives were to investigate the protective properties of astaxanthin against heat-induced oxidative stress and apoptosis in the chicken thymus, by comparing the growth performance and gene signaling pathways among three groups: thermal neutral, heat stress, and heat stress with astaxanthin. The thermal neutral temperature was 21-22 °C, and the heat stress temperature was 32-35 °C. Both heat stress groups experienced reduced growth performance, while the astaxanthin-treated group showed a slightly lesser decline. The inflammatory response and antioxidant defense system were activated by the upregulation of the NF-kB, NFE2L2, PPARα, cytoprotective capacity, and apoptotic gene pathways during heat stress compared to the thermal neutral group. However, expression levels showed no significant differences between the thermal neutral and heat stress with antioxidant groups, suggesting that astaxanthin may mitigate inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Donna Lee Kuehu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanyuan Fu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Masaki Nasu
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Hua Yang
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
6
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
7
|
Abdelfatah SH, Yassin AM, Khattab MS, Abdel-Razek AS, Saad AH. Spirulina platensis as a growth booster for broiler; Insights into their nutritional, molecular, immunohistopathological, and microbiota modulating effects. BMC Vet Res 2024; 20:11. [PMID: 38183085 PMCID: PMC10768351 DOI: 10.1186/s12917-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The present study is designed to assess the effect of adding various doses of Spirulina platensis (SP) on broiler chicken growth performance, gut health, antioxidant biomarkers, cecal microbiota, histopathology, and immunohistochemistry of inducible nitric oxide synthase (iNOS). 240 male Cobb 500 broiler chicks (1 day old) were placed into four groups (sixty birds/group), then each group was further divided into three replicates of 20 chickens each for 35 days. Birds were allocated as follows; the 1st group (G1), the control group, fed on basal diet, the 2nd group (G2): basal diet plus SP (0.1%), the 3rd group (G3): basal diet plus SP (0.3%), and the 4th group (G4): basal diet plus SP (0.5%). RESULTS Throughout the trial (d 1 to 35), SP fortification significantly increased body weight growth (BWG) and feed conversion rate (FCR) (P < 0.05). Bursa considerably increased among the immunological organs in the Spirulina-supplemented groups. Within SP-supplemented groups, there was a substantial increase in catalase activity, blood total antioxidant capacity, jejunal superoxide dismutase (SOD), and glutathione peroxidase (GPX) activity (P < 0.05). Fatty acid binding protein 2 (FABP2), one of the gut barrier health biomarkers, significantly increased in the SP-supplemented groups but the IL-1β gene did not significantly differ across the groups (P < 0.05). Different organs in the control group showed histopathological changes, while the SP-supplemented chicken showed fewer or no signs of these lesions. The control group had higher levels of iNOS expression in the gut than the SP-supplemented groups (p < 0.05). Cecal Lactobacillus count significantly elevated with increasing the rate of SP inclusion rate (p < 0.05). CONCLUSION Supplementing broiler diets with SP, particularly at 0.5%, can improve productivity and profitability by promoting weight increase, feed utilization, antioxidant status, immunity, and gastrointestinal health.
Collapse
Affiliation(s)
- Samar H Abdelfatah
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo, University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Abdel-Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Center, Dokki-Giza, Egypt
| | - Adel H Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
8
|
Xu X, Tao N, Sun C, Hoffman RD, Shi D, Ying Y, Dong S, Gao J. Ligustilide prevents thymic immune senescence by regulating Thymosin β15-dependent spatial distribution of thymic epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155216. [PMID: 38061285 DOI: 10.1016/j.phymed.2023.155216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Thymus is the most crucial organ connecting immunity and aging. The progressive senescence of thymic epithelial cells (TECs) leads to the involution of thymus under aging, chronic stress and other factors. Ligustilide (LIG) is a major active component of the anti-aging Chinese herbal medicine Angelica sinensis (Oliv.) Diels, but its role in preventing TEC-based thymic aging remains elusive. PURPOSE This study explored the protective role of Ligustilide in alleviating ADM (adriamycin) -induced thymic immune senescence and its underlying molecular mechanisms. METHOD The protective effect of Ligustilide on ADM-induced thymic atrophy was examined by mouse and organotypic models, and conformed by SA-β-gal staining in TECs. The abnormal spatial distribution of TECs in the senescent thymus was analyzed using H&E, immunofluorescence and flow cytometry. The possible mechanisms of Ligustilide in ADM-induced thymic aging were elucidated by qPCR, fluorescence labeling and Western blot. The mechanism of Ligustilide was subsequently validated through actin polymerization inhibitor, genetic engineering to regulate Thymosin β15 (Tβ15) and Tβ4 expression, molecular docking and β Thymosin-G-actin cross-linking assay. RESULTS At a 5 mg/kg dose, Ligustilide markedly ameliorated ADM-induced weight loss and limb grip weakness in mice. It also reversed thymic damage and restored positive selection impaired by ADM. In vitro, ADM disrupted thymic structure, reduced TECs number and hindered double negative (DN) T cell differentiation. Ligustilide counteracted these effects, promoted TEC proliferation and reticular differentiation, leading to an increase in CD4+ single positive (CD4SP) T cell proportion. Mechanistically, ADM diminished the microfilament quantity in immortalized TECs (iTECs), and lowered the expression of cytoskeletal marker proteins. Molecular docking and cross-linking assay revealed that Ligustilide inhibited the protein binding between G-actin and Tβ15 by inhibiting the formation of the Tβ15-G-actin complex, thus enhancing the microfilament assembly capacity in TECs. CONCLUSION This study, for the first time, reveals that Ligustilide can attenuate actin depolymerization, protects TECs from ADM-induced acute aging by inhibiting the binding of Tβ15 to G-actin, thereby improving thymic immune function. Moreover, it underscores the interesting role of Ligustilide in maintaining cytoskeletal assembly and network structure of TECs, offering a novel perspective for deeper understanding of anti thymic aging.
Collapse
Affiliation(s)
- Xie Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Caihua Sun
- Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA 90066, USA.
| | - Dongling Shi
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China.
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China.
| |
Collapse
|
9
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
10
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
11
|
Hegewisch-Solloa E, Melsen JE, Ravichandran H, Rendeiro AF, Freud AG, Mundy-Bosse B, Melms JC, Eisman SE, Izar B, Grunstein E, Connors TJ, Elemento O, Horowitz A, Mace EM. Mapping human natural killer cell development in pediatric tonsil by imaging mass cytometry and high-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556371. [PMID: 37732282 PMCID: PMC10508773 DOI: 10.1101/2023.09.05.556371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Janine E Melsen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiranmayi Ravichandran
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - André F Rendeiro
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032
- Program for Mathematical Genomics, Columbia University, New York, NY, 10032
| | - Eli Grunstein
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, New York 10032
| | - Thomas J Connors
- Department of Pediatrics, Division of Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, NY 10024
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
12
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
13
|
Depoërs L, Dumont-Lagacé M, Trinh VQH, Houques C, Côté C, Larouche JD, Brochu S, Perreault C. Klf4 protects thymus integrity during late pregnancy. Front Immunol 2023; 14:1016378. [PMID: 37180153 PMCID: PMC10174329 DOI: 10.3389/fimmu.2023.1016378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.
Collapse
Affiliation(s)
- Lucyle Depoërs
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Maude Dumont-Lagacé
- ExCellThera, Inc., Montréal, QC, Canada
- Piercing Star Technologies, Rabat, Morocco
| | - Vincent Quoc-Huy Trinh
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cellular Biology, Institute for Research in Immunology and Cancer, and Centre de recherche du Centre hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Chloé Houques
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Caroline Côté
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-David Larouche
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| | - Claude Perreault
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| |
Collapse
|
14
|
Xu X, He K, Hoffman RD, Ying Y, Tao N, Guo W, Shen J, Liu X, Li M, Yan M, Lv G, Gao J. Thymosin Beta 15 Alters the Spatial Development of Thymic Epithelial Cells. Cells 2022; 11:cells11223679. [PMID: 36429107 PMCID: PMC9688846 DOI: 10.3390/cells11223679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The thymus is the most sensitive organ under various pathophysiological conditions, such as aging, starvation, and infection. As a key stromal cell for T cell development, it is well-known that thymic epithelial cells (TECs) play an important role in the thymus response to the external environment. Thymosin beta 15 (Tβ15) is a G-actin binding protein secreted by TECs, it plays an important role in maintaining the dynamic balance of actin, angiogenesis, axonal formation, and wound healing, but the relationship between Tβ15 and TECs is not clear yet. Here, we show the impact of Tβ15 on the TEC's spatial development, as well as the T-cell differentiation and thymic output. As a result, TEC is the main effector cell of Tβ15 in the thymus. Tβ15 OX inhibits the chemotaxis of TECs to the medulla and subsequently blocks the positive selection of thymocytes from CD3+TCRβ+CD4+CD8+ double positive cells to CD3+TCRβ+CD4+CD8- single-positive (CD4SP) cells. Tβ15-knockdown accelerates the reticular differentiation of astral TECs and medullary TECs. Importantly, mice implanted with Tβ15-knockdown iTECs show high thymic output but low peripheral T cell maturity and activity. In a word, our results explain the role of Tβ15 on the differentiation and function of TECs and provide a new perspective for understanding the process of thymus development and degeneration.
Collapse
Affiliation(s)
- Xie Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kai He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Robert D. Hoffman
- Department of Traditional Chinese Medicine, Yo San University of Traditional Chinese Medicine, Los Angeles, CA 90066, USA
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenqin Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaman Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence: (G.L.); (J.G.); Tel.: +86-571-86613601 (G.L.); +86-571-6613504 (J.G.)
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
- Correspondence: (G.L.); (J.G.); Tel.: +86-571-86613601 (G.L.); +86-571-6613504 (J.G.)
| |
Collapse
|
15
|
Silva CS, Cerqueira MT, Reis RL, Martins A, Neves NM. Laminin-2 immobilized on a 3D fibrous structure impacts cortical thymic epithelial cells behaviour and their interaction with thymocytes. Int J Biol Macromol 2022; 222:3168-3177. [DOI: 10.1016/j.ijbiomac.2022.10.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
16
|
Onoda A, Okamoto S, Shimizu R, El-Sayed YS, Watanabe S, Ogawa S, Abe R, Kamimura M, Soga K, Tachibana K, Takeda K, Umezawa M. Effect of Carbon Black Nanoparticle on Neonatal Lymphoid Tissues Depending on the Gestational Period of Exposure in Mice. FRONTIERS IN TOXICOLOGY 2022; 3:700392. [PMID: 35295157 PMCID: PMC8915855 DOI: 10.3389/ftox.2021.700392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Particulate air pollution, containing nanoparticles, enhances the risk of pediatric allergic diseases that is potentially associated with disruption of neonatal immune system. Previous studies have revealed that maternal exposure to carbon black nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns. Interestingly, the CB-NP-induced immune profiles were observed to be different depending on the gestational period of exposure. It is important to identify the critical exposure period to prevent toxic effects of nanoparticles on the development of the immune system. Therefore, the present study was aimed to investigate the effect of CB-NP on the development of neonatal lymphoid tissues in mice, depending on the gestational period of exposure. Methods: Pregnant ICR mice were treated with a suspension of CB-NP (95 μg/kg body weight) by intranasal instillation; the suspension was administered twice during each gestational period as follows: the pre-implantation period (gestational days 4 and 5), organogenesis period (gestational days 8 and 9), and fetal developmental period (gestational days 15 and 16). The spleen and thymus were collected from offspring mice at 1, 3, and 5-days post-partum. Splenocyte and thymocyte phenotypes were examined by flow cytometry. Gene expression in the spleen was examined by quantitative reverse transcription-polymerase chain reaction. Results: The numbers of total splenocytes and splenic CD3−B220− phenotype (non-T/non-B lymphocytes) in offspring on postnatal day 5 were significantly increased after exposure to CB-NP during the organogenesis period compared with other gestational periods of exposure and control (no exposure). In contrast, expression levels of mRNA associated with chemotaxis and differentiation of immune cells in the spleen were not affected by CB-NP exposure during any gestational period. Conclusion: The organogenesis period was the most susceptible period to CB-NP exposure with respect to lymphoid tissue development. Moreover, the findings of the present and previous studies suggested that long-term exposure to CB-NP across multiple gestational periods including the organogenesis period, rather than acute exposure only organogenesis period, may more severely affect the development of the immune system.
Collapse
Affiliation(s)
- Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Saki Okamoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryuhei Shimizu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasser S El-Sayed
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Shiho Watanabe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shuhei Ogawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Advanced Comprehensive Research Center, Teikyo University, Hachioji, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Ken Tachibana
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| |
Collapse
|
17
|
CXCL12-driven thymocyte migration is increased by thymic epithelial cells treated with prolactin in vitro. J Biosci 2021. [PMID: 34815373 PMCID: PMC8608580 DOI: 10.1007/s12038-021-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prolactin hormone (PRL), in addition to its known effects on breast development and lactation, exerts effects on the immune system, including pleiotropic effects on the thymus. The aim of this study was to evaluate the influence of PRL on the epithelial compartment of the thymus. Thymic epithelial cells (TECs) (2BH4 cells) and fresh thymocytes were used. Immunofluorescence assay revealed that PRL treatment (10 ng/mL) increases the deposition of laminin and expression of the chemokine CXCL12 in 2BH4 cells. However, no change was observed in the deposition of fibronectin. Moreover, PRL altered F-actin polymerisation, allowing the formation of focal adhesion complexes in treated cells. When 2BH4 cells were pre-treated with PRL, thymocyte adhesion was not altered. However, in the cell migration assay, pre-treatment with PRL potentiated the chemotactic effect of CXCL12 on the migration of total, double-positive, CD4-positive, and CD8-positive thymocytes. Together, the results of this study demonstrate the effect of PRL on thymic epithelial cells, particularly on CXCL12-driven thymocyte migration, confirming that this hormone is a regulator of thymic physiology.
Collapse
|
18
|
Hosaka N, Kanda S, Shimono T, Nishiyama T. Induction of γδT cells from HSC-enriched BMCs co-cultured with iPSC-derived thymic epithelial cells. J Cell Mol Med 2021; 25:10604-10613. [PMID: 34687276 PMCID: PMC8581322 DOI: 10.1111/jcmm.16993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co-culturing HSC-enriched bone marrow cells (HSC-eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC-eBMCs and iTECs cultured with IL-2 + IL-7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T-cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia-bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.
Collapse
Affiliation(s)
- Naoki Hosaka
- Department of Pathology, Fuchu Hospital, Izumi, Osaka, Japan.,Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hitakata, Osaka, Japan
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hitakata, Osaka, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan
| |
Collapse
|
19
|
Haunerdinger V, Moccia MD, Opitz L, Vavassori S, Dave H, Hauri-Hohl MM. Novel Combination of Surface Markers for the Reliable and Comprehensive Identification of Human Thymic Epithelial Cells by Flow Cytometry: Quantitation and Transcriptional Characterization of Thymic Stroma in a Pediatric Cohort. Front Immunol 2021; 12:740047. [PMID: 34659232 PMCID: PMC8514761 DOI: 10.3389/fimmu.2021.740047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Thymic epithelial cells (TECs) are essential in supporting the development of mature T cells from hematopoietic progenitor cells and facilitate their lineage-commitment, proliferation, T-cell receptor repertoire selection and maturation. While animal model systems have greatly aided in elucidating the contribution of stromal cells to these intricate processes, human tissue has been more difficult to study, partly due to a lack of suitable surface markers comprehensively defining human TECs. Here, we conducted a flow cytometry based surface marker screen to reliably identify and quantify human TECs and delineate medullary from cortical subsets. These findings were validated by transcriptomic and histologic means. The combination of EpCAM, podoplanin (pdpn), CD49f and CD200 comprehensively identified human TECs and not only allowed their reliable distinction in medullary and cortical subsets but also their detailed quantitation. Transcriptomic profiling of each subset in comparison to fibroblasts and endothelial cells confirmed the identity of the different stromal cell subsets sorted according to the proposed strategy. Our dataset not only demonstrated transcriptional similarities between TEC and cells of mesenchymal origin but furthermore revealed a subset-specific distribution of a specific set of extracellular matrix-related genes in TECs. This indicates that TECs significantly contribute to the distinct compartmentalization - and thus function - of the human thymus. We applied the strategy to quantify TEC subsets in 31 immunologically healthy children, which revealed sex-specific differences of TEC composition early in life. As the distribution of mature CD4- or CD8-single-positive thymocytes was correspondingly altered, the composition of the thymic epithelial compartment may directly impact on the CD4-CD8-lineage choice of thymocytes. We prove that the plain, reliable strategy proposed here to comprehensively identify human TEC subpopulations by flow cytometry based on surface marker expression is suitable to determine their frequency and phenotype in health and disease and allows sorting of live cells for downstream analysis. Its use reaches from a reliable diagnostic tool for thymic biopsies to improved phenotypic characterization of thymic grafts intended for therapeutic use.
Collapse
Affiliation(s)
- Veronika Haunerdinger
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Maria Domenica Moccia
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology and Children's Research Center, University Children's Hospital, Pediatric Immunology, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Mathias M Hauri-Hohl
- Division of Stem Cell Transplantation and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
20
|
Hu L, Zhou Y, Yang J, Zhao X, Mao L, Zheng W, Zhao J, Guo M, Chen C, He Z, Xu L. MicroRNA-7 overexpression positively regulates the CD8 + SP cell development via targeting PIK3R1. Exp Cell Res 2021; 407:112824. [PMID: 34516985 DOI: 10.1016/j.yexcr.2021.112824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022]
Abstract
microRNA-7 (miR-7), a distinct miRNA family member, has been reported to be involved in the biological functions of immune cells. However, the potential role of miR-7 in the CD8+ T cell development remains to be elucidated. In this study, we estimated the potential effects of miR-7 overexpression in the thymic CD8+ SP cell development using miR-7 overexpression mice. Our results showed that compared with those in control wild type (WT) mice, the volume, weight and total cell numbers of thymus in miR-7 overexpression (OE) mice increased significantly. The absolute cell number of CD8+ SP cells in miR-7 OE mice increased and its ability of activation and proliferation enhanced. Futhermore, we clarified that miR-7 overexpression had an intrinsic promote role in CD8+ SP cell development by adoptive cell transfer assay. Mechanistically, the expression level of PIK3R1, a target of miR-7, decreased significantly in CD8+ SP cells of miR-7 OE mice. Moreover, the expression level of phosphorylated (p)-AKT and p-ERK changed inversely and indicating that miR-7 overexpression impaired the balance of AKE and ERK pathways. In summary, our work reveals an essential role of miR-7 in promoting CD8+ SP cell development through the regulation of PIK3R1 and balance of AKT and ERK pathways.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Wen Zheng
- Department of Laboratory Medicine, Qiannan Medical University for Nationalities, Guizhou 558000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China
| | - Zhixu He
- Department of Paediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guizhou, 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Provincial Education Department, Guizhou, 563000, China; Department of Immunology & Talent Base of Biological Therapy of Guizhou Province, Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
21
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
22
|
Moreira C, Hétru J, Paiola M, Duflot A, Chan P, Vaudry D, Pinto PIS, Monsinjon T, Knigge T. Proteomic changes in the extracellular environment of sea bass thymocytes exposed to 17α-ethinylestradiol in vitro. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100911. [PMID: 34583305 DOI: 10.1016/j.cbd.2021.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
The thymus is an important immune organ providing the necessary microenvironment for the development of a diverse, self-tolerant T cell repertoire, which is selected to allow for the recognition of foreign antigens while avoiding self-reactivity. Thymus function and activity are known to be regulated by sex steroid hormones, such as oestrogen, leading to sexual dimorphisms in immunocompetence between males and females. The oestrogenic modulation of the thymic function provides a potential target for environmental oestrogens, such as 17α-ethynylestradiol (EE2), to interfere with the cross-talk between the endocrine and the immune system. Oestrogen receptors have been identified on thymocytes and the thymic microenvironment, but it is unclear how oestrogens regulate thymic epithelial and T cell communication including paracrine signalling. Much less is known regarding intrathymic signalling in fish. Secretomics allows for the analysis of complex mixtures of immunomodulatory signalling factors secreted by T cells. Thus, in the present study, isolated thymocytes of the European sea bass, Dicentrarchus labrax, were exposed in vitro to 30 nM EE2 for 4 h and the T cell-secretome (i.e., extracellular proteome) was analysed by quantitative label-free mass-spectrometry. Progenesis revealed a total of 111 proteins differentially displayed between EE2-treated and control thymocytes at an α-level of 5% and a 1.3-fold change cut off (n = 5-6). The EE2-treatment significantly decreased the level of 90 proteins. Gene ontology revealed the proteasome to be the most impacted pathway. In contrast, the abundance of 21 proteins was significantly increased, with cathepsins showing the highest level of induction. However, no particular molecular pathway was significantly altered for these upregulated proteins. To the best of our knowledge, this work represents the first study of the secretome of the fish thymus exposed to the environmental oestrogen EE2, highlighting the impact on putative signalling pathways linked to immune surveillance, which may be of crucial importance for fish health and defence against pathogens.
Collapse
Affiliation(s)
- Catarina Moreira
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Julie Hétru
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Matthieu Paiola
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France; Department of Microbiology and Immunology, University of Rochester Medical Center, 14642 Rochester, NY, United States
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Philippe Chan
- Normandie Univ, UNIROUEN, PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), F-76183 Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Inserm U1239, 76821 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), F-76183 Rouen, France
| | - Patrícia I S Pinto
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, 8005-139 Faro, Portugal
| | - Tiphaine Monsinjon
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Thomas Knigge
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France.
| |
Collapse
|
23
|
Tian H, Ding M, Guo Y, Su A, Zhai M, Tian Y, Li K, Sun G, Jiang R, Han R, Kang X, Yan F. Use of transcriptomic analysis to identify microRNAs related to the effect of stress on thymus immune function in a chicken stress model. Res Vet Sci 2021; 140:233-241. [PMID: 34534905 DOI: 10.1016/j.rvsc.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In modern poultry production, stress-induced immunosuppression leads to serious economic losses and harm to animals, but the molecular mechanisms governing the effects of stress on the chicken thymus have not been elucidated. In this study, we successfully constructed a stress model of 7-day-old Gushi chickens by adding exogenous corticosterone (CORT) to their diet and determined the microRNA (miRNA) expression profile of thymus tissues using RNA-seq technology. The results identified 51 differentially expressed miRNAs (DEMs), including 30 upregulated miRNAs and 21 downregulated miRNAs. A total of 164 target genes of the DEMs were predicted based on bioinformatic analysis methods, and Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these target genes were performed. The results from the GO enrichment analysis of the target genes identified 349 significantly enriched terms, including terms associated with the stress response and immune function that are primarily involved in the negative regulation of phagocytosis, the response to stress and the cellular response to stimulus. The KEGG pathway analysis indicated that the enriched pathways related to immunity or stress included the MAPK signaling pathway, lysosomes, endocytosis, and the RIG-I-like receptor signaling pathway. Among these pathways, DEMs (such as gga-miR-2954, gga-miR-106-5p, and gga-miR-16-5p) and corresponding target genes (such as IL11Ra, SIKE1, and CX3CL1) might be strongly correlated with thymic immunity in chickens. The results of this study provide a reference for further research on the molecular regulatory mechanisms governing the effect of stress on the immune function of the chicken thymus.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Aru Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Minxi Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
24
|
Oh S, Gray DHD, Chong MMW. Single-Cell RNA Sequencing Approaches for Tracing T Cell Development. THE JOURNAL OF IMMUNOLOGY 2021; 207:363-370. [PMID: 34644259 DOI: 10.4049/jimmunol.2100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development.
Collapse
Affiliation(s)
- Seungyoul Oh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; and.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark M W Chong
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; .,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
25
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
26
|
Li J, Xiong X, Gan X, Pu F, Ma S, Bai L, Mustafa A, Li L, Liu H, Yang C, Twumasi G. Transcriptome analysis of the bursa of Fabricius and thymus of laying ducks reveals immune gene expression changes underlying the impacts of stocking densities. Br Poult Sci 2021; 62:820-826. [PMID: 34148438 DOI: 10.1080/00071668.2021.1943309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The thymus and bursa of Fabricius are important immune organs in poultry as they play essential roles in sustaining the normal immune function to maintain health. The following trial investigated whether the stocking density affected gene expressions in immune organs.Jinding ducklings were raised in either low or high density (4 or 8 birds/m2) conditions from four to 14 weeks of age, and were then slaughtered and tissues removed. Samples were subjected to high-throughput sequencing to sequence RNA extraction. After filtering calculations with R software, a total of 508 (thymus) and 1,356 (bursa of Fabricius) differentially expressed genes (DEGs) were identified, suggesting that stocking density has an effect on gene expression in duck immune organs.A total of 112 immune factor genes and 112 immune pattern receptor genes in ducks, of which four thymus genes and 18 bursa of Fabricius genes were differentially expressed in ducks, which indicated that the change of stocking density could affect the expression of immune genes in poultry.
Collapse
Affiliation(s)
- Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xia Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xinmeng Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Fajun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Chaowu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Grace Twumasi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
27
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
28
|
Lin CH, Anggelia MR, Cheng HY, Wang AYL, Chuang WY, Lin CH, Lee WPA, Wei FC, Brandacher G. The intragraft vascularized bone marrow component plays a critical role in tolerance induction after reconstructive transplantation. Cell Mol Immunol 2021; 18:363-373. [PMID: 31754236 PMCID: PMC8027407 DOI: 10.1038/s41423-019-0325-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/20/2019] [Indexed: 11/08/2022] Open
Abstract
The role of the vascularized bone marrow component as a continuous source of donor-derived hematopoietic stem cells that facilitate tolerance induction of vascularized composite allografts is not completely understood. In this study, vascularized composite tissue allograft transplantation outcomes between recipients receiving either conventional bone marrow transplantation (CBMT) or vascularized bone marrow (VBM) transplantation from Balb/c (H2d) to C57BL/6 (H2b) mice were compared. Either high- or low-dose CBMT (1.5 × 108 or 3 × 107 bone marrow cells, respectively) was applied. In addition, recipients were treated with costimulation blockade (1 mg anti-CD154 and 0.5 mg CTLA4Ig on postoperative days 0 and 2, respectively) and short-term rapamycin (3 mg/kg/day for the first posttransplant week and then every other day for another 3 weeks). Similar to high-dose conventional bone marrow transplantation, 5/6 animals in the vascularized bone marrow group demonstrated long-term allograft survival (>120 days). In contrast, significantly shorter median survival was noted in the low-dose CBMT group (~64 days). Consistently high chimerism levels were observed in the VBM transplantation group. Notably, low levels of circulating CD4+ and CD8+ T cells and a higher ratio of Treg to Teff cells were maintained in VBM transplantation and high-dose CBMT recipients (>30 days) but not in low-dose VBM transplant recipients. Donor-specific hyporesponsiveness was shown in tolerant recipients in vitro. Removal of the vascularized bone marrow component after secondary donor-specific skin transplantation did not affect either primary allograft or secondary skin graft survival.
Collapse
Affiliation(s)
- Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
| | - Madonna R Anggelia
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, China
| | - Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
| | - Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
| | - Chih-Hung Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China
- Department of Plastic and Reconstructive Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County, Taiwan, China
| | - W P Andrew Lee
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan, China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, China.
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
29
|
Medeiros NC, Porto FL, de Menezes CA, dos Santos Reis MD, Smaniotto S, Lins MP. CXCL12-driven thymocyte migration is increased by thymic epithelial cells treated with prolactin in vitro. J Biosci 2021; 46:103. [PMID: 34815373 PMCID: PMC8608580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/21/2021] [Indexed: 02/27/2024]
Abstract
The prolactin hormone (PRL), in addition to its known effects on breast development and lactation, exerts effects on the immune system, including pleiotropic effects on the thymus. The aim of this study was to evaluate the influence of PRL on the epithelial compartment of the thymus. Thymic epithelial cells (TECs) (2BH4 cells) and fresh thymocytes were used. Immunofluorescence assay revealed that PRL treatment (10 ng/ mL) increases the deposition of laminin and expression of the chemokine CXCL12 in 2BH4 cells. However, no change was observed in the deposition of fibronectin. Moreover, PRL altered F-actin polymerisation, allowing the formation of focal adhesion complexes in treated cells. When 2BH4 cells were pre-treated with PRL, thymocyte adhesion was not altered. However, in the cell migration assay, pre-treatment with PRL potentiated the chemotactic effect of CXCL12 on the migration of total, double-positive, CD4-positive, and CD8-positive thymocytes. Together, the results of this study demonstrate the effect of PRL on thymic epithelial cells, particularly on CXCL12-driven thymocyte migration, confirming that this hormone is a regulator of thymic physiology.
Collapse
Affiliation(s)
- Návylla Candeia Medeiros
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Clarice Agudo de Menezes
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Maria Danielma dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Silva CS, Pinto RD, Amorim S, Pires RA, Correia-Neves M, Reis RL, Alves NL, Martins A, Neves NM. Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules 2020; 21:4771-4780. [PMID: 33238090 DOI: 10.1021/acs.biomac.0c00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic epithelial cells (TECs) are the main regulators of T lymphocyte development and selection, requiring a three-dimensional (3D) environment to properly perform these biological functions. The aim of this work was to develop a 3D culture substrate that allows the survival and proliferation of TECs. Thus, electrospun fibrous meshes (eFMs) were functionalized with fibronectin, one of the major extracellular matrix (ECM) proteins of the thymus. For that, highly porous eFMs were activated using oxygen plasma treatment followed by amine insertion, which allows the immobilization of fibronectin through EDC/NHS chemistry. The medullary TECs presented increased proliferation, viability, and protein synthesis when cultured on fibronectin-functionalized eFMs (FN-eFMs). These cells showed a spread morphology, with increased migration toward the inner layers of FN-eFMs and the production of thymic ECM proteins, such as collagen type IV and laminin. These results suggest that FN-eFMs are an effective substrate for supporting thymic cell cultures.
Collapse
Affiliation(s)
- Catarina S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rute D Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Margarida Correia-Neves
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of Minho, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
31
|
Pérez AR, de Meis J, Rodriguez-Galan MC, Savino W. The Thymus in Chagas Disease: Molecular Interactions Involved in Abnormal T-Cell Migration and Differentiation. Front Immunol 2020; 11:1838. [PMID: 32983098 PMCID: PMC7492291 DOI: 10.3389/fimmu.2020.01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chagas disease, caused by the protozoan parasite T. cruzi, is a prevalent parasitic disease in Latin America. Presently, it is spreading around the world by human migration, thus representing a new global health issue. Chronically infected individuals reveal a dissimilar disease progression: while nearly 60% remain without apparent disease for life, 30% develop life-threatening pathologies, such as chronic chagasic cardiomyopathy (CCC) or megaviscerae. Inflammation driven by parasite persistence seems to be involved in the pathophysiology of the disease. However, there is also evidence of the occurrence of autoimmune events, mainly caused by molecular mimicry and bystander activation. In experimental models of disease, is well-established that T. cruzi infects the thymus and causes locally profound structural and functional alterations. The hallmark is a massive loss of CD4+CD8+ double positive (DP) thymocytes, mainly triggered by increased levels of glucocorticoids, although other mechanisms seem to act simultaneously. Thymic epithelial cells (TEC) exhibited an increase in extracellular matrix deposition, which are related to thymocyte migratory alterations. Moreover, medullary TEC showed a decreased expression of AIRE and altered expression of microRNAs, which might be linked to a disrupted negative selection of the T-cell repertoire. Also, almost all stages of thymocyte development are altered, including an abnormal output of CD4−CD8− double negative (DN) and DP immature and mature cells, many of them carrying prohibited TCR-Vβ segments. Evidence has shown that DN and DP cells with an activated phenotype can be tracked in the blood of humans with chronic Chagas disease and also in the secondary lymphoid organs and heart of infected mice, raising new questions about the relevance of these populations in the pathogenesis of Chagas disease and their possible link with thymic alterations and an immunoendocrine imbalance. Here, we discuss diverse molecular mechanisms underlying thymic abnormalities occurring during T. cruzi infection and their link with CCC, which may contribute to the design of innovative strategies to control Chagas disease pathology.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-Universidad Nacional de Rosario, Rosario, Argentina.,Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Lins MP, Viana IMMN, Smaniotto S, Reis MDDS. Interactions between thymic endothelial cells and thymocytes are influenced by growth hormone. Growth Factors 2020; 38:177-188. [PMID: 34028312 DOI: 10.1080/08977194.2021.1924699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Growth hormone (GH), in addition to its classic actions on growth and metabolism in the body, exerts pleiotropic effects on the immune system, particularly on the thymus. The aim of this study was to evaluate the influence of GH on the interactions between mature thymocytes and the thymic endothelium involved in the migratory process. To this end, fresh thymocytes (C57BL/6 mice) and the thymic endothelial cell line (tEnd.1) were used. In the cell adhesion assay, the GH-treated thymocytes adhered more to tEnd.1 cells. Additionally, there was an improvement in the deposition of fibronectin by tEnd.1 cells when co-cultured with GH-pre-treated thymocytes. Furthermore, GH induced thymocyte F-actin polymerization. In the transendothelial migration assay, a large number of GH-treated thymocytes, mainly the CD4-CD8+ subset, migrated towards the endothelium under the stimulus of insulin-like growth factor 1. In conclusion, we demonstrated the positive actions of GH in thymocyte/thymic endothelium interactions, including transendothelial migration.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | | | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Hidalgo Y, Núñez S, Fuenzalida MJ, Flores-Santibáñez F, Sáez PJ, Dorner J, Lennon-Dumenil AM, Martínez V, Zorn E, Rosemblatt M, Sauma D, Bono MR. Thymic B Cells Promote Germinal Center-Like Structures and the Expansion of Follicular Helper T Cells in Lupus-Prone Mice. Front Immunol 2020; 11:696. [PMID: 32411134 PMCID: PMC7199236 DOI: 10.3389/fimmu.2020.00696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.
Collapse
Affiliation(s)
- Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Cells for Cells-Consorcio Regenero, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Maria Jose Fuenzalida
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | | | - Pablo J Sáez
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, France
| | - Jessica Dorner
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | | | - Victor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Emmanuel Zorn
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
34
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020; 367:367/6480/eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/16/2020] [Indexed: 11/03/2022]
Abstract
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.,WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
35
|
Chen C, Li J, Zhang W, Shah SWA, Ishfaq M. Mycoplasma gallisepticum triggers immune damage in the chicken thymus by activating the TLR-2/MyD88/NF-κB signaling pathway and NLRP3 inflammasome. Vet Res 2020; 51:52. [PMID: 32276652 PMCID: PMC7149927 DOI: 10.1186/s13567-020-00777-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies reported that Mycoplasma gallisepticum (MG) causes immune dysregulation in chickens. However, the underlying mechanisms of immune dysregulation in chickens are still unclear. The thymus is a primary lymphoid organ where the proliferation, differentiation and selection of T-lymphocytes occur, whereas T-lymphocytes play a crucial role in innate immune responses. To evaluate the effects of MG-infection on chicken thymus, White Leghorn chickens were divided into (1) control group and (2) MG-infection group. ATPase activities were detected by commercial kits. The hallmarks of inflammation, autophagy and energy metabolism were examined in chicken thymus tissues by histopathology, transmission electron microscopy, immunofluorescence microscopy, RT-PCR and western blotting. Immunofluorescence examination revealed that the number of CD8+ lymphocytes has significantly reduced in MG-infection group. In addition, morphological analysis revealed that MG induced inflammatory cells infiltration. The mitochondria were swollen and chromatin material was condensed in MG-infection group. The mRNA and protein expression results showed that MG-infection triggered the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome through TLR-2/MyD88/NF-κB signaling pathway. Meanwhile, the expressions of autophagy-related genes were reduced both at mRNA and protein level in MG-infection group. While, ATPase activities and the expression of energy metabolism-related genes were reduced in the thymus of MG-infected chickens. These results showed that MG-infection triggered inflammatory response through TLR-2/MyD88/NF-κB signaling pathway, activated NLRP3 inflammasome, reduced the level of autophagy and impaired energy metabolism, which then lead to tissue damage in chicken thymus. The data provide new insights in MG-infection-mediated immune damage and provide possible therapeutic targets for future targeted therapy.
Collapse
Affiliation(s)
- Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
36
|
Streptococcus suis Serotype 2 Infection Causes Host Immunomodulation through Induction of Thymic Atrophy. Infect Immun 2020; 88:IAI.00950-19. [PMID: 31932328 DOI: 10.1128/iai.00950-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine and is also an emerging zoonotic agent that may be harmful to human health. Although the virulence genes of S. suis have been extensively studied, the mechanisms by which they damage the central immune organs have rarely been studied. In the current work, we wanted to uncover more details about the impact and mechanisms of S. suis on specific populations of thymic and immune cells in infected mice. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed that S. suis infection induced apoptosis in CD3+, CD14+, and epithelial cells from the thymus. S. suis infection resulted in a rapid depletion of mitochondrial permeability and release of cytochrome c (CytC) and apoptosis-inducing factor (AIF) through upregulation of Bax expression and downregulation of Bcl-xl and Bcl2 expression in thymocytes. Moreover, S. suis infection increased cleavage of caspase-3, caspase-8, and caspase-9. Thus, S. suis induced thymocyte apoptosis through a p53- and caspase-dependent pathway, which led to a decrease of CD3+ cells in the thymus, subsequently decreasing the numbers of CD4+ and CD8+ cells in the peripheral blood. Finally, expression dysregulation of proinflammatory cytokines in the serum, including interleukin 2 (IL-2), IL-6, IL-12 (p70), tumor necrosis factor (TNF), and IL-10, was observed in mice after S. suis type 2 infection. Taken together, these results suggest that S. suis infection can cause atrophy of the thymus and induce apoptosis of thymocytes in mice, thus likely suppressing host immunity.
Collapse
|
37
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. [DOI: 10.1126/science.aay3224 32079746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A. Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J. Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R. Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A. Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R. Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
38
|
Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun 2019; 2:100021. [PMID: 32743507 PMCID: PMC7388352 DOI: 10.1016/j.jtauto.2019.100021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Autoimmune diseases evolve from complex interactions between the immune system and self-antigens and involve several genetic attributes, environmental triggers and diverse cell types. Research using experimental mouse models has contributed key knowledge on the mechanisms that underlie these diseases in humans, but differences between the mouse and human immune systems can and, at times, do undermine the translational significance of these findings. The use of human immune system (HIS) mice enables the utility of mouse models with greater relevance for human diseases. As the name conveys, these mice are reconstituted with mature human immune cells transferred directly from peripheral blood or via transplantation of human hematopoietic stem cells that nucleate the generation of a complex human immune system. The function of the human immune system in HIS mice has improved over the years with the stepwise development of better models. HIS mice exhibit key benefits of the murine animal model, such as small size, robust and rapid reproduction and ease of experimental manipulation. Importantly, HIS mice also provide an applicable in vivo setting that permit the investigation of the physiological and pathological functions of the human immune system and its response to novel treatments. With the gaining popularity of HIS mice in the last decade, the potential of this model has been exploited for research in basic science, infectious diseases, cancer, and autoimmunity. In this review we focus on the use of HIS mice in autoimmune studies to stimulate further development of these valuable models. Human immune system (HIS) mice bear components of the human immune system. HIS mice engraft with human blood or hematopoietic stem cells, and sometimes thymus. HIS mice are used to investigate development and function of the human immune system. Immunological tolerance and autoimmune responses can be studied in HIS mice. HIS models of autoimmunity vary in complexity and in ability to represent disease.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Corresponding author. University of Colorado School of Medicine, 12800 East 19th Avenue Mail Stop 8333, Aurora, CO, 80045-2508, USA.
| |
Collapse
|
39
|
Lewkiewicz SM, Chuang YL, Chou T. Dynamics of T cell receptor distributions following acute thymic atrophy and resumption. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2019; 17:28-55. [PMID: 31731338 PMCID: PMC8788929 DOI: 10.3934/mbe.2020002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Naive human T cells are produced and developed in the thymus, which atrophies abruptly and severely in response to physical or psychological stress. To understand how an instance of stress affects the size and "diversity" of the peripheral naive T cell pool, we derive a mean-field autonomous ODE model of T cell replenishment that allows us to track the clone abundance distribution (the mean number of different TCRs each represented by a specific number of cells). We identify equilibrium solutions that arise at different rates of T cell production, and derive analytic approximations to the dominant eigenvalues and eigenvectors of the mathematical model linearized about these equilibria. From the forms of the eigenvalues and eigenvectors, we estimate rates at which counts of clones of different sizes converge to and depart from equilibrium values-that is, how the number of clones of different sizes "adjusts" to the changing rate of T cell production. Under most physiological realizations of our model, the dominant eigenvalue (representing the slowest dynamics of the clone abundance distribution) scales as a power law in the thymic output for low output levels, but saturates at higher T cell production rates. Our analysis provides a framework for quantitatively understanding how the clone abundance distribution evolves under small changes in the overall T cell production rate.
Collapse
Affiliation(s)
| | - Yao-Li Chuang
- Department of Mathematics, CalState Northridge, Northridge, CA 91330, USA
| | - Tom Chou
- Department of Mathematics, UCLA, Los Angeles, CA, 90095-1555, USA
- Department of Biomathematics, UCLA, Los Angeles, CA, 90095-1766, USA
| |
Collapse
|
40
|
Genetic lines respond uniquely within the chicken thymic transcriptome to acute heat stress and low dose lipopolysaccharide. Sci Rep 2019; 9:13649. [PMID: 31541148 PMCID: PMC6754502 DOI: 10.1038/s41598-019-50051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Exposure to high temperatures is known to impair immune functions and disease resistance of poultry. Characterizing changes in the transcriptome can help identify mechanisms by which immune tissues, such as the thymus, respond to heat stress. In this study, 22-day-old chickens from two genetic lines (a relatively resistant Fayoumi line and a more susceptible broiler line) were exposed to acute heat stress (35 °C) and/or immune simulation with lipopolysaccharide (LPS; 100 µg/kg). Transcriptome responses in the thymus were identified by RNA-sequencing (RNA-seq). Expression of most genes was unaffected by heat and/or LPS in the Fayoumi line, whereas these treatments had more impact in the broiler line. Comparisons between the broiler and Fayoumi transcriptomes identified a large number of significant genes both at homeostasis and in response to treatment. Functional analyses predicted that gene expression changes impact immune responses, apoptosis, cell activation, migration, and adhesion. In broilers, acute heat stress changed thymic expression responses to LPS and could impact thymocyte survival and trafficking, and thereby contribute to the negative effects of high temperatures on immune responses. Identification of these genes and pathways provides a foundation for testing targets to improve disease resistance in heat-stressed chickens.
Collapse
|
41
|
Losada-Barragán M, Umaña-Pérez A, Durães J, Cuervo-Escobar S, Rodríguez-Vega A, Ribeiro-Gomes FL, Berbert LR, Morgado F, Porrozzi R, Mendes-da-Cruz DA, Aquino P, Carvalho PC, Savino W, Sánchez-Gómez M, Padrón G, Cuervo P. Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:252. [PMID: 31355153 PMCID: PMC6639785 DOI: 10.3389/fcimb.2019.00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Departamento de Biologia, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Umaña-Pérez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonathan Durães
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Sergio Cuervo-Escobar
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávia L Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luiz R Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | | | - Paulo C Carvalho
- Computational Mass Spectrometry and Proteomics Group, Fiocruz, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | - Myriam Sánchez-Gómez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Xue Z, Ansari AR, Zhao X, Zang K, Liang Y, Cui L, Hu Y, Cheng R, Zhang X, Zhong J, Liu H. RNA-Seq-Based Gene Expression Pattern and Morphological Alterations in Chick Thymus during Postnatal Development. Int J Genomics 2019; 2019:6905194. [PMID: 31179312 PMCID: PMC6501151 DOI: 10.1155/2019/6905194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
The thymus is a lobulated unique lymphoid immune organ that plays a critical role in the selection, development, proliferation, and differentiation of T cells. The thymus of developing chickens undergoes continued morphological alterations; however, the biomolecular and transcriptional dynamics of the postnatal thymus in avian species is not clear yet. Therefore, the thymuses from chickens at different stages of development (at weeks 0, 1, 5, 9, 18, and 27) were used in the present study. The RNA-seq method was used to study the gene expression patterns. On average, 24120819 clean reads were mapped, differentially expressed genes (DEGs) were identified on the basis of log values (fold change), including 744 upregulated and 425 downregulated genes. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are PCNA, CCNA2, CCNB2, and CDK1. Thus, the current study revealed that during postnatal development, the thymus undergoes severe atrophy. Thymus structure was damaged and gene expression changed dramatically, especially at the 27th week of age. Moreover, we found significant changes of several signaling pathways such as the cytokine-cytokine receptor interaction and cell cycle signaling pathways. Hence, it may be inferred that those signaling pathways might be closely related to the postnatal chicken thymus development.
Collapse
Affiliation(s)
- Zhouyiyuan Xue
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Xing Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kun Zang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Liang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yafang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ranran Cheng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juming Zhong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
43
|
Apavaloaei A, Brochu S, Dong M, Rouette A, Hardy MP, Villafano G, Murata S, Melichar HJ, Perreault C. PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:966-978. [PMID: 30567730 DOI: 10.4049/jimmunol.1801288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
T cell development depends on sequential interactions of thymocytes with cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells. PSMB11 is a catalytic proteasomal subunit present exclusively in cTECs. Because proteasomes regulate transcriptional activity, we asked whether PSMB11 might affect gene expression in cTECs. We report that PSMB11 regulates the expression of 850 cTEC genes that modulate lymphostromal interactions primarily via the WNT signaling pathway. cTECs from Psmb11 -/- mice 1) acquire features of medullary thymic epithelial cells and 2) retain CD8 thymocytes in the thymic cortex, thereby impairing phase 2 of positive selection, 3) perturbing CD8 T cell development, and 4) causing dramatic oxidative stress leading to apoptosis of CD8 thymocytes. Deletion of Psmb11 also causes major oxidative stress in CD4 thymocytes. However, CD4 thymocytes do not undergo apoptosis because, unlike CD8 thymocytes, they upregulate expression of chaperones and inhibitors of apoptosis. We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | - Mengqi Dong
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Alexandre Rouette
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | - Geno Villafano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269; and
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Heather J Melichar
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
44
|
Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility. iScience 2018; 10:98-113. [PMID: 30508722 PMCID: PMC6277225 DOI: 10.1016/j.isci.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) plays critical roles in T cell development in the thymus. Nevertheless, the dynamics of ERK activity and the role of ERK in regulating thymocyte motility remain largely unknown due to technical limitations. To visualize ERK activity in thymocytes, we here developed knockin reporter mice expressing a Förster/fluorescence resonance energy transfer (FRET)-based biosensor for ERK from the ROSA26 locus. Live imaging of thymocytes isolated from the reporter mice revealed that ERK regulates thymocyte motility in a subtype-specific manner. Negative correlation between ERK activity and motility was observed in CD4/CD8 double-positive thymocytes and CD8 single-positive thymocytes, but not in CD4 single-positive thymocytes. Interestingly, however, the temporal deviations of ERK activity from the average correlate with the motility of CD4 single-positive thymocytes. Thus, live-cell FRET imaging will open a window to understanding the dynamic nature and the diverse functions of ERK signaling in T cell biology. Mice expressing EKAREV from ROSA26 locus enable ERK activity monitoring in T cells ERK activity negatively regulates the motility of thymocytes in the thymus Temporal dynamics of ERK activity regulates cell motility of CD4-SP in the medulla TCR signal from intercellular association induces ERK activity dynamics in CD4-SP
Collapse
|
45
|
Georgescu MT, Moorehead PC, van Velzen AS, Nesbitt K, Reipert BM, Steinitz KN, Schuster M, Hough C, Lillicrap D. Dexamethasone promotes durable factor VIII-specific tolerance in hemophilia A mice via thymic mechanisms. Haematologica 2018; 103:1403-1413. [PMID: 29674503 PMCID: PMC6068046 DOI: 10.3324/haematol.2018.189852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/19/2018] [Indexed: 11/12/2022] Open
Abstract
The development of inhibitory antibodies to factor VIII is the most serious complication of replacement therapy in hemophilia A. Activation of the innate immune system during exposure to this protein contributes to inhibitor development. However, avoidance of factor VIII exposure during innate immune system activation by external stimuli (e.g., vaccines) has not been consistently shown to prevent inhibitors. We hypothesized that dexamethasone, a drug with potent anti-inflammatory effects, could prevent inhibitors by promoting immunologic tolerance to factor VIII in hemophilia A mice. Transient dexamethasone treatment during ainitial factor VIII exposure reduced the incidence of anti-factor VIII immunoglobulin G in both a conventional hemophilia A mouse model (E16KO, 77% vs. 100%, P=0.048) and a hemophilia A mouse model with a humanized major histocompatibility complex type II transgene (E17KO/hMHC, 6% vs. 33%, P=0.0048). More importantly, among E17KO/hMHC mice that did not develop anti-factor VIII immunoglobulin G after initial exposure, dexamethasone-treated mice were less likely to develop a response after re-exposure six (7% vs. 52%, P=0.005) and 16 weeks later (7% vs. 50%, P=0.097). Similar results were obtained even when factor VIII re-exposure occurred in the context of lipopolysaccharide (30% vs. 100%, P=0.069). The ability of these mice to develop immunoglobulin G to human von Willebrand factor, a structurally unrelated antigen, remained unaffected by treatment. Transient dexamethasone administration therefore promotes antigen-specific immunologic tolerance to factor VIII. This effect is associated with an increase in the percentage of thymic regulatory T cells (12.06% vs. 4.73%, P<0.001) and changes in the thymic messenger ribonucleic acid transcription profile.
Collapse
Affiliation(s)
- Maria T Georgescu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Paul C Moorehead
- Janeway Children's Health and Rehabilitation Centre, St. John's, NL, Canada.,Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Alice S van Velzen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Kate Nesbitt
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | | - Christine Hough
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
46
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan
- University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Tomar MS, Kumar S, Kumar S, Gautam PK, Singh RK, Verma PK, Singh SP, Acharya A. NK Cell Effector Functions Regulation by Modulating nTreg Cell Population During Progressive Growth of Dalton’s Lymphoma in Mice. Immunol Invest 2017; 47:40-56. [DOI: 10.1080/08820139.2017.1368545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Munendra Singh Tomar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| | - Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Albama State University, Montgomery, AL, USA
| | - Pramod Kumar Gautam
- Department of Biochemistry, All India Institutes of Medical Sciences, New Delhi, India
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| | - Praveen Kumar Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| | - Surya Pratap Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, U.P., India
| |
Collapse
|
48
|
Losada-Barragán M, Umaña-Pérez A, Cuervo-Escobar S, Berbert LR, Porrozzi R, Morgado FN, Mendes-da-Cruz DA, Savino W, Sánchez-Gómez M, Cuervo P. Protein malnutrition promotes dysregulation of molecules involved in T cell migration in the thymus of mice infected with Leishmania infantum. Sci Rep 2017; 7:45991. [PMID: 28397794 PMCID: PMC5387407 DOI: 10.1038/srep45991] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Protein malnutrition, the most deleterious cause of malnutrition in developing countries, has been considered a primary risk factor for the development of clinical visceral leishmaniasis (VL). Protein malnutrition and infection with Leishmania infantum leads to lymphoid tissue disorganization, including changes in cellularity and lymphocyte subpopulations in the thymus and spleen. Here we report that protein malnutrition modifies thymic chemotactic factors by diminishing the CCL5, CXCL12, IGF1, CXCL9 and CXCL10 protein levels in infected animals. Nevertheless, T cells preserve their migratory capability, as they were able to migrate ex vivo in response to chemotactic stimuli, indicating that malnutrition may compromise the thymic microenvironment and alter in vivo thymocyte migration. Decrease in chemotactic factors protein levels was accompanied by an early increase in the parasite load of the spleen. These results suggest that the precondition of malnutrition is affecting the cell-mediated immune response to L. infantum by altering T cell migration and interfering with the capacity of protein-deprived animals to control parasite spreading and proliferation. Our data provide evidence for a disturbance of T lymphocyte migration involving both central and peripheral T-cells, which likely contribute to the pathophysiology of VL that occurs in malnourished individuals.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Adriana Umaña-Pérez
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Grupo de Investigación en Hormonas, Bogotá, Colombia
| | - Sergio Cuervo-Escobar
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Grupo de Investigación en Hormonas, Bogotá, Colombia
| | - Luiz Ricardo Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renato Porrozzi
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Fernanda N Morgado
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Wilson Savino
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Myriam Sánchez-Gómez
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Grupo de Investigación en Hormonas, Bogotá, Colombia.
| | - Patricia Cuervo
- Laboratório de Pesquisas em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
49
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
50
|
Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, Sartori A, Burger E, Verinaud L. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS One 2016; 11:e0164745. [PMID: 27736987 PMCID: PMC5063316 DOI: 10.1371/journal.pone.0164745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
T cell maturation takes place within the thymus, a primary lymphoid organ that is commonly targeted during infections. Previous studies showed that acute infection with Paracoccidioides brasiliensis (Pb), the causative agent of paracoccidioidomycosis (PCM), promotes thymic atrophy that is associated with the presence of yeast cells in the organ. However, as human PCM is a chronic infection, it is imperative to investigate the consequences of Pb infection over the thymic structure and function in chronic infection. In this sense, we developed a new experimental model where Pb yeast cells are injected through the intraperitoneal route and mice are evaluated over 120 days of infection. Thymuses were analyzed in chronically infected mice and we found that the thymus underwent extensive morphological alterations and severe infiltration of P. brasiliensis yeast cells. Further analyses showed an altered phenotype and function of thymocytes that are commonly found in peripheral mature T lymphocytes. We also observed activation of the NLRP3 inflammasome in the thymus. Our data provide new information on the severe changes observed in the thymic microenvironment in a model of PCM that more closely mimics the human infection.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|