1
|
Şengelen A, Önay-Uçar E. Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156060. [PMID: 39341126 DOI: 10.1016/j.phymed.2024.156060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear. PURPOSE This study aimed to elucidate the anticancer effects of RA in 2D- and 3D-GB cells and the underlying mechanisms. METHODS 3D-tumor spheroids (mimics in vivo tumors) were obtained by the hanging-drop/agarose method. RA's anti-glioma activity on U-87MG (p53-wt/PTEN-mt) and LN229 (p53-mt/PTEN-wt) cells was evaluated through cell viability, colony-formation, migration/invasion/angiogenesis assays, fluorescence imaging, and spheroid growth analysis. The underlying mechanism of the anticancer effects of RA was investigated by Western blot and immunofluorescence analysis. The MEK inhibitor U0126 was used to block ERK phosphorylation. RESULTS RA treatments exerted anti-proliferative and pro-apoptotic effects on human GB cells. RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth, and migration/invasion in 2D-culture and cancer stem cell (CSC)-like 3D-spheroid culture (SPC). Repeated therapy in SPC was more effective by leading to disrupted structure than a single treatment. Treatments in SPC also suppressed epithelial-mesenchymal transition (EMT) and CSC-like properties. Strikingly, RA downregulated the SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function in both gliomas. Immunofluorescence labeling revealed decreased SIRT1 and NF-κB-p65 and increased FOXO1 and GAPDH proteins in nuclear location (associated with apoptosis). Surprisingly, RA increased p-ERK1/2 levels, but priming with U0126 abolished RA-mediated p-ERK upregulation; thus, autophagy and apoptosis induction in GB cells were prevented, and the growth of GB spheroids accelerated. Specifically, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells. Due to genetic differences in cells, U-87MG cells were more sensitive to RA treatments than LN229 cells. Meanwhile, our positive control drug trial results with FDA-approved temozolomide (TMZ) used in GB treatment showed that our test compound rosmarinic acid exhibited higher therapeutic effects than TMZ at lower doses. CONCLUSION Suppression of EMT, downregulation of SIRT1/FOXO1/NF-κB axis, inhibition of PTEN/PI3K/AKT signaling pathway, and ERK-induced apoptosis and autophagy were determined to be involved in stopping glioma progression. Our findings for the first time, revealed that RA may have potential therapeutic use by having multiple targets in human brain cancer with further clinical studies.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xu N, Jiang X, Liu Y, Junaid M, Ahmad M, Bi C, Guo W, Jiang C, Liu S. Chronic environmental level exposure to perfluorooctane sulfonate overshadows graphene oxide to induce apoptosis through activation of the ROS-p53-caspase pathway in marine medaka Oryzias melastigma. CHEMOSPHERE 2024; 365:143374. [PMID: 39306112 DOI: 10.1016/j.chemosphere.2024.143374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 μg/L and 5 μg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.
Collapse
Affiliation(s)
- Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Manzoor Ahmad
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chen'ao Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
4
|
Romashin D, Rusanov A, Tolstova T, Varshaver A, Netrusov A, Kozhin P, Luzgina N. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death. Biochem Biophys Res Commun 2024; 709:149834. [PMID: 38547608 DOI: 10.1016/j.bbrc.2024.149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 μM or higher, whereas wild-type cells displayed cell death at a concentration of 30 μM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 μM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 μM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.
Collapse
Affiliation(s)
- Daniil Romashin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia.
| | - Tatiana Tolstova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexandra Varshaver
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Alexander Netrusov
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Peter Kozhin
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow, 119121, Russia
| |
Collapse
|
5
|
Karagöz A, Beler M, Altun BD, Ünal İ, Cansız D, Gündüz H, Alturfan AA, Emekli-Alturfan E, Erçalık Yalçınkaya Ş. Panoramic dental X-ray exposure leads to oxidative stress, inflammation and apoptosis-mediated developmental defects in zebrafish embryos. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101661. [PMID: 37866507 DOI: 10.1016/j.jormas.2023.101661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Panoramic x-ray units are widely used in dental radiodiagnostics. Patients are exposed to relatively low radiation doses with panoramic imaging, but considering lifetime frequency of exposure, even a small risk can have serious health consequences. Our aim was to assess the effects of panoramic x-rays at two different exposure times on developing zebrafish embryos, focusing on oxidative stress, inflammation, apoptotic pathways, and development. Zebrafish embryos were divided into three groups: control, standard panoramic (SPE, 5.5 s exposure time) and pedodontic panoramic x-ray group (PPE, 4.8 s exposure time). Optically stimulated luminescence dosimeters were used to measure absorbed doses. Mean radiation doses for SPE and PPE were 7.83 mSv and 5.83 mSv respectively. At the end of 96 h post-fertilization, lipid peroxidation (LPO), nitric oxide (NO), reduced glutathione (GSH), glutathione S-transferase and superoxide dismutase were measured in the embryos. Expressions of genes related with inflammation (tnfα, il6, ill15, il21), immunoregulation (ifng) and apoptosis (p53, bax, casp2, casp3, casp8) were determined by RT-PCR. Even at reduced doses at high-speed mode, developmental toxicity was observed in both groups as evidenced by decreased pigmentation, yolk sac oedema, and spinal curvature. While deterioration of oxidant-antioxidant balance, suppression of immune response, induction of inflammation and apoptosis were observed through increased LPO, NO, decreased GSH, ifng, and increased expressions of genes related with inflammation and apoptosis, these effects were more pronounced in the SPE group. These results demonstrate the influence of exposure time and indicate the need for further consideration of optimal panoramic modes from a radiation-induced damage perspective.
Collapse
Affiliation(s)
- Atakan Karagöz
- Department Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Büşra Dilara Altun
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Hüseyin Gündüz
- Epsilon Landauer Dosimeter Technologies, Istanbul, Turkey
| | - Ahmet Ata Alturfan
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| | - Şebnem Erçalık Yalçınkaya
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Haagsma J, Kolendowski B, Buensuceso A, Valdes YR, DiMattia GE, Shepherd TG. Gain-of-function p53 R175H blocks apoptosis in a precursor model of ovarian high-grade serous carcinoma. Sci Rep 2023; 13:11424. [PMID: 37452087 PMCID: PMC10349050 DOI: 10.1038/s41598-023-38609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Ovarian high-grade serous carcinoma (HGSC) is a highly lethal malignancy for which early detection is a challenge and treatment of late-stage disease is ineffective. HGSC initiation involves exfoliation of fallopian tube epithelial (FTE) cells which form multicellular clusters called spheroids that colonize and invade the ovary. HGSC contains universal mutation of the tumour suppressor gene TP53. However, not all TP53 mutations are the same, as specific p53 missense mutants contain gain-of-function (GOF) properties that drive tumour formation. Additionally, the role of GOF p53 in spheroid-mediated spread is poorly understood. In this study, we developed and characterized an in vitro model of HGSC based on mutation of TP53 in mouse oviductal epithelial cells (OVE). We discovered increased bulk spheroid survival and increased anchorage-independent growth in OVE cells expressing the missense mutant p53R175H compared to OVE parental and Trp53ko cells. Transcriptomic analysis on spheroids identified decreased apoptosis signaling due to p53R175H. Further assessment of the apoptosis pathway demonstrated decreased expression of intrinsic and extrinsic apoptosis signaling molecules due to Trp53 deletion and p53R175H, but Caspase-3 activation was only decreased in spheroids with p53R175H. These results highlight this model as a useful tool for discovering early HGSC transformation mechanisms and uncover a potential anti-apoptosis GOF mechanism of p53R175H.
Collapse
Affiliation(s)
- Jacob Haagsma
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Bart Kolendowski
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Adrian Buensuceso
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Yudith Ramos Valdes
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Gabriel E DiMattia
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- London Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
7
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
8
|
Das B, Sahoo S, Mallick B. HIWI2 induces G2/M cell cycle arrest and apoptosis in human fibrosarcoma via the ROS/DNA damage/p53 axis. Life Sci 2022; 293:120353. [PMID: 35074406 DOI: 10.1016/j.lfs.2022.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
AIMS Piwi, like RNA-mediated gene silencing 4 (PIWIL4) or HIWI2, are seen deregulated in human cancers and possibly play critical roles in tumorigenesis. It is unknown what role HIWI2 plays in the regulation of fibrosarcoma, an early metastatic lethal type of soft tissue sarcoma (STS). The present study aimed to investigate the role of HIWI2 in the tumorigenesis of fibrosarcoma. MAIN METHODS The expression of HIWI2 in HT1080 fibrosarcoma cells was determined by qRT-PCR and western blotting. The MTT assay, colony formation assay, cell cycle, and PE-AnnexinV/7AAD apoptosis assay using flow cytometry, DNA laddering assay, comet assay, and γH2AX accumulation assay were performed to study the effect of HIWI2 overexpression in HT1080 cells. Further, the effect of silencing of HIWI2 was determined by cell viability assay, transwell migration, and invasion assay. KEY FINDINGS HIWI2 is under-expressed in STS cell lines and tissues, which is associated with poor disease-free survival, disease-specific survival, and progression-free survival of the patients. Overexpression of HIWI2 in HT1080 cells causes DNA damage by increasing intracellular ROS by inhibiting the expression of antioxidant genes (SOD1, SOD2, GPX1, GPX4, and CAT). Furthermore, an increase in H2AX phosphorylation was observed, which activates p53 that promotes p21 expression and caspase-3 activation, leading to G2/M phase cell cycle arrest and apoptosis. HIWI2 silencing, on the contrary, promotes cell growth, migration, and invasion by activating MMP2 and MMP9. SIGNIFICANCE These results are the first to show that HIWI2 acts as a tumor suppressor in fibrosarcoma by modulating the ROS/DNA damage/p53 pathway.
Collapse
Affiliation(s)
- Basudeb Das
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
9
|
Loss of peptidase D binding restores the tumor suppressor functions of oncogenic p53 mutants. Commun Biol 2021; 4:1373. [PMID: 34880421 PMCID: PMC8655031 DOI: 10.1038/s42003-021-02880-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor suppressor p53, a critical regulator of cell fate, is frequently mutated in cancer. Mutation of p53 abolishes its tumor-suppressing functions or endows oncogenic functions. We recently found that p53 binds via its proline-rich domain to peptidase D (PEPD) and is activated when the binding is disrupted. The proline-rich domain in p53 is rarely mutated. Here, we show that oncogenic p53 mutants closely resemble p53 in PEPD binding but are transformed into tumor suppressors, rather than activated as oncoproteins, when their binding to PEPD is disrupted by PEPD knockdown. Once freed from PEPD, p53 mutants undergo multiple posttranslational modifications, especially lysine 373 acetylation, which cause them to refold and regain tumor suppressor activities that are typically displayed by p53. The reactivated p53 mutants strongly inhibit cancer cell growth in vitro and in vivo. Our study identifies a cellular mechanism for reactivation of the tumor suppressor functions of oncogenic p53 mutants.
Collapse
|
10
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Erden Y. Sour black mulberry (Morus nigra L.) causes cell death by decreasing mutant p53 expression in HT-29 human colon cancer cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021; 10:antiox10040510. [PMID: 33805928 PMCID: PMC8064392 DOI: 10.3390/antiox10040510] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
- Correspondence:
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 11, 10125 Turin, Italy;
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| |
Collapse
|
13
|
Jiang X, Liu Y, Wang G, Yao Y, Mei C, Wu X, Ma W, Yuan Y. Up-regulation of CLIC1 activates MYC signaling and forms a positive feedback regulatory loop with MYC in Hepatocellular carcinoma. Am J Cancer Res 2020; 10:2355-2370. [PMID: 32905514 PMCID: PMC7471371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is leading cause of tumor-related deaths worldwide. The intracellular chloride channel protein (CLIC1) plays a role in the occurrence and progression of HCC, although the underlying mechanisms are still unclear. We evaluated the CLIC1 mRNA and protein levels in both patient tissues and HCC cell lines, and analyzed the correlation between CLIC1 expression and clinical features. The biological function of CLIC1 in HCC was examined in vivo and in vitro. The upstream regulatory factors were identified by bioinformatics programs, and downstream mechanisms affecting HCC behavior have also been explored and validated. CLIC1 was up-regulated in HCC tissues and cell lines, and promoted the proliferation, invasion and migration of HCC cells in vivo and in vitro. TP53 was identified as the upstream transcription factor of CLIC1. MiR-122-5p also regulated CLIC1 levels by degrading the transcripts. More importantly, we found that the increased CLIC1 was significantly related to the activation of MYC signaling. By binding with MYC, CLIC1 enhanced the transcription activity of MYC to downstream genes, rather than by altering its expression. Finally, a positive feedback regulatory loop between CLIC1 and MYC was established. CLIC1 is closely related to the occurrence, progression and prognosis of HCC, and a promising novel therapeutic target.
Collapse
Affiliation(s)
- Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
- Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan UniversityWuhan 430071, PR China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, PR China
| |
Collapse
|
14
|
Hao Q, Chen Y, Zhou X. The Janus Face of p53-Targeting Ubiquitin Ligases. Cells 2020; 9:cells9071656. [PMID: 32660118 PMCID: PMC7407405 DOI: 10.3390/cells9071656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor p53 prevents tumorigenesis and cancer progression by maintaining genomic stability and inducing cell growth arrest and apoptosis. Because of the extremely detrimental nature of wild-type p53, cancer cells usually mutate the TP53 gene in favor of their survival and propagation. Some of the mutant p53 proteins not only lose the wild-type activity, but also acquire oncogenic function, namely “gain-of-function”, to promote cancer development. Growing evidence has revealed that various E3 ubiquitin ligases are able to target both wild-type and mutant p53 for degradation or inactivation, and thus play divergent roles leading to cancer cell survival or death in the context of different p53 status. In this essay, we reviewed the recent progress in our understanding of the p53-targeting E3 ubiquitin ligases, and discussed the potential clinical implications of these E3 ubiquitin ligases in cancer therapy.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Yajie Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China;
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-54237325
| |
Collapse
|
15
|
Müller I, Strozyk E, Schindler S, Beissert S, Oo HZ, Sauter T, Lucarelli P, Raeth S, Hausser A, Al Nakouzi N, Fazli L, Gleave ME, Liu H, Simon HU, Walczak H, Green DR, Bartek J, Daugaard M, Kulms D. Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28. Mol Cell 2020; 77:970-984.e7. [PMID: 31982308 PMCID: PMC7060810 DOI: 10.1016/j.molcel.2019.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/28/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
Cytosolic caspase-8 is a mediator of death receptor signaling. While caspase-8 expression is lost in some tumors, it is increased in others, indicating a conditional pro-survival function of caspase-8 in cancer. Here, we show that tumor cells employ DNA-damage-induced nuclear caspase-8 to override the p53-dependent G2/M cell-cycle checkpoint. Caspase-8 is upregulated and localized to the nucleus in multiple human cancers, correlating with treatment resistance and poor clinical outcome. Depletion of caspase-8 causes G2/M arrest, stabilization of p53, and induction of p53-dependent intrinsic apoptosis in tumor cells. In the nucleus, caspase-8 cleaves and inactivates the ubiquitin-specific peptidase 28 (USP28), preventing USP28 from de-ubiquitinating and stabilizing wild-type p53. This results in de facto p53 protein loss, switching cell fate from apoptosis toward mitosis. In summary, our work identifies a non-canonical role of caspase-8 exploited by cancer cells to override the p53-dependent G2/M cell-cycle checkpoint.
Collapse
Affiliation(s)
- Ines Müller
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, TU-Dresden, Dresden 01307, Germany
| | - Elwira Strozyk
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, TU-Dresden, Dresden 01307, Germany
| | - Sebastian Schindler
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, TU-Dresden, Dresden 01307, Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Thomas Sauter
- Systems Biology, Life Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Philippe Lucarelli
- Systems Biology, Life Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Sebastian Raeth
- Institute of Cell Biology and Immunology and Stuttgart Research Centre Systems Biology, University of Stuttgart, Stuttgart 70569, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology and Stuttgart Research Centre Systems Biology, University of Stuttgart, Stuttgart 70569, Germany
| | - Nader Al Nakouzi
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - He Liu
- Institute of Pharmacology, University of Bern, Bern 3010, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern 3010, Switzerland
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Mads Daugaard
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, TU-Dresden, Dresden 01307, Germany.
| |
Collapse
|
16
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
17
|
Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int J Mol Sci 2019; 20:ijms20246197. [PMID: 31817996 PMCID: PMC6940767 DOI: 10.3390/ijms20246197] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The p53 protein is mutated in about 50% of human cancers. Aside from losing the tumor-suppressive functions of the wild-type form, mutant p53 proteins often acquire inherent, novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function (GOF). A growing body of evidence suggests that these pro-oncogenic functions of mutant p53 proteins are mediated by affecting the transcription of various genes, as well as by protein-protein interactions with transcription factors and other effectors. In the current review, we discuss the various GOF effects of mutant p53, and how it may serve as a central node in a network of genes and proteins, which, altogether, promote the tumorigenic process. Finally, we discuss mechanisms by which "Mother Nature" tries to abrogate the pro-oncogenic functions of mutant p53. Thus, we suggest that targeting mutant p53, via its reactivation to the wild-type form, may serve as a promising therapeutic strategy for many cancers that harbor mutant p53. Not only will this strategy abrogate mutant p53 GOF, but it will also restore WT p53 tumor-suppressive functions.
Collapse
|
18
|
Li XY, Zhang TJ, Kamara MO, Lu GQ, Xu HL, Wang DP, Meng FH. Discovery of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido) phenylurea-based thymidylate synthase (TS) inhibitor as a novel multi-effects antitumor drugs with minimal toxicity. Cell Death Dis 2019; 10:532. [PMID: 31296849 PMCID: PMC6624297 DOI: 10.1038/s41419-019-1773-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Thymidylate synthase (TS) is a hot target for tumor chemotherapy, and its inhibitors are an essential direction for anti-tumor drug research. To our knowledge, currently, there are no reported thymidylate synthase inhibitors that could inhibit cancer cell migration. Therefore, for optimal therapeutic purposes, combines our previous reports and findings, we hope to obtain a multi-effects inhibitor. This study according to the principle of flattening we designed and synthesized 18 of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)phenyl urea derivatives as multi-effects inhibitors. The biological evaluation results showed that target compounds could significantly inhibit the hTS enzyme, BRaf kinase and EGFR kinase activity in vitro, and most of the compounds had excellent anti-cell viability for six cancer cell lines. Notably, the candidate compound L14e (IC50 = 0.67 μM) had the superior anti-cell viability and safety to A549 and H460 cells compared with pemetrexed. Further studies had shown that L14e could cause G1/S phase arrest then induce intrinsic apoptosis. Transwell, western blot, and tube formation results proved that L14e could inhibit the activation of the EGFR signaling pathway, then ultimately achieve the purpose of inhibiting cancer cell migration and angiogenesis in cancer tissues. Furthermore, in vivo pharmacology evaluations of L14e showed significant antitumor activity in A549 cells xenografts with minimal toxicity. All of these results demonstrated that the L14e has the potential for drug discovery as a multi-effects inhibitor and provides a new reference for clinical treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Xin-Yang Li
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China
| | | | - Guo-Qing Lu
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China
| | - Hai-Li Xu
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China
| | - De-Pu Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, 110122, Shenyang, China.
| |
Collapse
|
19
|
Blandino G, Valenti F, Sacconi A, Di Agostino S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol 2019; 98:105-117. [PMID: 31112799 DOI: 10.1016/j.semcdb.2019.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell metabolism is one of the cancer hallmarks. Mitochondrial DNA mutations and enzyme defects, aberrant tumor suppressor or oncogenic activities cause mitochondrial dysfunction leading to deregulated cellular energetics. The tumor suppressor protein, p53 is a tetrameric transcription factor that in response to diverse genotoxic and non-genotoxic insults activates a plethora of target genes to preserve genome integrity. In the last two decades the discovery of cytoplasmic p53 localization focused intense research on its extra-nuclear functions. The ability of p53 to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm have been investigated. A role of cytoplasmic p53 in autophagy, pentose phosphate pathway, fatty acid synthesis and oxidation, and drug response has been proposed. TP53 gene is mutated in more than half of human cancers. In parallel to loss of tumor suppressive functions, mutant p53 proteins often gain new tumorigenic activities (GOF, gain of function). It has been recently shown that mutant p53 proteins mediate metabolic changes thereby promoting cancer development and metastases. Here we review the contribution of either wild-type p53 or mutant p53 proteins to the fine-tuning of mitochondrial metabolism of both normal and cancer cells. Greater knowledge at the mechanistic level might provide insights to develop new cancer therapeutic approaches.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
20
|
Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol 2019; 11:293-305. [PMID: 30508182 PMCID: PMC6487791 DOI: 10.1093/jmcb/mjy072] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Since wild-type p53 is central for maintaining genomic stability and preventing oncogenesis, its coding gene TP53 is highly mutated in ~50% of human cancers, and its activity is almost abrogated in the rest of cancers. Approximately 80% of p53 mutations are single point mutations with several hotspot mutations. Besides loss of function and dominant-negative effect on the wild-type p53 activity, the hotspot p53 mutants also acquire new oncogenic functions, so-called 'gain-of-functions' (GOF). Because the GOF of mutant p53 is highly associated with late-stage malignance and drug resistance, these p53 mutants have become hot targets for developing novel cancer therapies. In this essay, we review some recent progresses in better understanding of the role of mutant p53 GOF in chemoresistance and the underlying mechanisms, and discuss the pros and cons of targeting mutant p53 for the development of anti-cancer therapies.
Collapse
Affiliation(s)
- Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
21
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
22
|
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019; 26:199-212. [PMID: 30538286 PMCID: PMC6329812 DOI: 10.1038/s41418-018-0246-9] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, Trieste, Italy.
| |
Collapse
|
23
|
Steels A, Verhelle A, Zwaenepoel O, Gettemans J. Intracellular displacement of p53 using transactivation domain (p53 TAD) specific nanobodies. MAbs 2018; 10:1045-1059. [PMID: 30111239 DOI: 10.1080/19420862.2018.1502025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The tumor suppressor p53 is of crucial importance in the prevention of cellular transformation. In the presence of cellular stress signals, the negative feedback loop between p53 and Mdm2, its main negative regulator, is disrupted, which results in the activation and stabilization of p53. Via a complex interplay between both transcription-dependent and - independent functions of p53, the cell will go through transient cell cycle arrest, cellular senescence or apoptosis. However, it remains difficult to completely fathom the mechanisms behind p53 regulation and its responses, considering the presence of multiple layers involved in fine-tuning them. In order to take the next step forward, novel research tools are urgently needed. We have developed single-domain antibodies, also known as nanobodies, that specifically bind with the N-terminal transactivation domain of wild type p53, but that leave the function of p53 as a transcriptional transactivator intact. When the nanobodies are equipped with a mitochondrial-outer-membrane (MOM)-tag, we can capture p53 at the mitochondria. This nanobody-induced mitochondrial delocalization of p53 is, in specific cases, associated with a decrease in cell viability and with morphological changes in the mitochondria. These findings underpin the potential of nanobodies as bona fide research tools to explore protein function and to unravel their biochemical pathways.
Collapse
Affiliation(s)
- Anneleen Steels
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Adriaan Verhelle
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Olivier Zwaenepoel
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Jan Gettemans
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| |
Collapse
|
24
|
Pan Y, Li P, Jia R, Wang M, Yin Z, Cheng A. Regulation of Apoptosis During Porcine Circovirus Type 2 Infection. Front Microbiol 2018; 9:2086. [PMID: 30233552 PMCID: PMC6131304 DOI: 10.3389/fmicb.2018.02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis by removing unnecessary or damaged cells. It contains three signaling pathways: the mitochondria-mediated pathway, the death receptor pathway and the endoplasmic reticulum pathway. The importance of apoptosis in host defenses is stressed by the observation that multiple viruses have evolved various strategies to inhibit apoptosis, thereby blunting the host immune responses and promoting viral propagation. Porcine Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed cell death. In this article, we review the latest research progress of the apoptosis mechanisms during infection with PCV2, including several proteins of PCV2 regulate apoptosis via interacting with host proteins and multiple signaling pathways involved in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and prevention of PCV2.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Pengfei Li
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
25
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
26
|
Mantovani F, Walerych D, Sal GD. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J 2016; 284:837-850. [PMID: 27808469 DOI: 10.1111/febs.13948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/05/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
The TP53 tumor suppressor is the most frequently mutated gene in human cancers. In recent years, a blooming of research efforts based on both cell lines and mouse models have highlighted how deeply mutant p53 proteins affect fundamental cellular pathways with cancer-promoting outcomes. Neomorphic mutant p53 activities spread over multiple levels, impinging on chromatin structure, transcriptional regulation and microRNA maturation, shaping the proteome and the cell's metabolic pathways, and also exerting cytoplasmic functions and displaying cell-extrinsic effects. These tumorigenic activities are inextricably linked with the blend of highly corrupted processes that characterize the tumor context. Recent studies indicate that successful strategies to extract core aspects of mutant p53 oncogenic potential and to identify unique tumor dependencies entail the superimposition of large-scale analyses performed in multiple experimental systems, together with a mindful use of animal models. This will hopefully soon lead to the long-awaited inclusion of mutant p53 as an actionable target of clinical antitumor therapies.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Italy
| | | | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Italy
| |
Collapse
|
27
|
Castrogiovanni C, Vandaudenard M, Waterschoot B, De Backer O, Dumont P. Decrease of mitochondrial p53 during late apoptosis is linked to its dephosphorylation on serine 20. Cancer Biol Ther 2016; 16:1296-307. [PMID: 26252178 DOI: 10.1080/15384047.2015.1070978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following a genotoxic stress, the tumor suppressor p53 translocates to mitochondria to take part in direct induction of apoptosis, via interaction with BCL-2 family members such as BAK and BAX. We determined the kinetics of the mitochondrial translocation of p53 in HCT-116 and PA-1 cells exposed to different genotoxic stresses (doxorubicin, camptothecin, UVB). This analysis revealed an early escalation in the amount of mitochondrial p53, followed by a peak amount and a decrease of mitochondrial p53 at later time points. We show that the serine 20 phosphorylated form of p53 is present at the mitochondria and that the decrease of p53 mitochondrial level during late apoptosis correlates with a decrease of Ser-20 phosphorylation. Moreover, the S20A p53 mutant translocates well to mitochondria after a genotoxic stress but its mitochondrial localization is very low during late apoptosis when compared to wt p53. The S20A mutant also appears to be compromised for interaction with BAK. We propose here that the level of serine 20 phosphorylation is influential on p53 mitochondrial localization during late apoptosis. Additionally, we report the presence of a new ≃45 kDa caspase-cleaved fragment of p53 in the cytosolic and mitochondrial fractions of apoptotic cells.
Collapse
Affiliation(s)
- Cédric Castrogiovanni
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium.,b URPHYM (Unité de Recherche en Physiologie Moléculaire); University of Namur ; Namur , Belgium
| | - Marie Vandaudenard
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| | - Béranger Waterschoot
- c Earth and Life Institute / Biodiversity; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| | - Olivier De Backer
- b URPHYM (Unité de Recherche en Physiologie Moléculaire); University of Namur ; Namur , Belgium
| | - Patrick Dumont
- a Laboratory of Molecular and Cellular Biology; Institute of Life Sciences; Université Catholique de Louvain ; Louvain-la-Neuve , Belgium
| |
Collapse
|
28
|
Giorgi C, Bonora M, Missiroli S, Morganti C, Morciano G, Wieckowski MR, Pinton P. Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Front Oncol 2016; 6:42. [PMID: 26942128 PMCID: PMC4766755 DOI: 10.3389/fonc.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Claudia Morganti
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Giampaolo Morciano
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology , Warsaw , Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
29
|
Comel A, Sorrentino G, Capaci V, Del Sal G. The cytoplasmic side of p53's oncosuppressive activities. FEBS Lett 2014; 588:2600-9. [PMID: 24747877 DOI: 10.1016/j.febslet.2014.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/25/2023]
Abstract
The tumor suppressor p53 is a transcription factor that in response to a plethora of stress stimuli activates a complex and context-dependent cellular response ultimately protecting genome integrity. In the last two decades, the discovery of cytoplasmic p53 localization has driven an intense research on its extra-nuclear functions. The ability to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm and mitochondria have been dissected. However, recent works indicate the involvement of cytoplasmic p53 also in biological processes such as autophagy, metabolism, oxidative stress and drug response. This review will focus on the mechanisms of cytoplasmic p53 activation and the pathophysiological role of p53's transcription-independent functions, highlighting possible therapeutic implications.
Collapse
Affiliation(s)
- Anna Comel
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy.
| |
Collapse
|
30
|
Marchenko ND, Moll UM. Mitochondrial death functions of p53. Mol Cell Oncol 2014; 1:e955995. [PMID: 27308326 PMCID: PMC4905191 DOI: 10.1080/23723548.2014.955995] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 05/19/2023]
Abstract
The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria.
Collapse
Affiliation(s)
- N D Marchenko
- Department of Pathology; Stony Brook University; Stony Brook, NY USA
- Correspondence to: N D Marchenko;
| | - U M Moll
- Department of Pathology; Stony Brook University; Stony Brook, NY USA
- U M Moll;
| |
Collapse
|
31
|
Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17. [PMID: 24651012 PMCID: PMC3970583 DOI: 10.1016/j.ccr.2014.01.021] [Citation(s) in RCA: 1149] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Patricia A J Muller
- Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| | - Karen H Vousden
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
32
|
Zhuang Z, Yang D, Huang Y, Wang S. Study on the apoptosis mechanism induced by T-2 toxin. PLoS One 2013; 8:e83105. [PMID: 24386148 PMCID: PMC3873290 DOI: 10.1371/journal.pone.0083105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022] Open
Abstract
T-2 toxin is known to induce apoptosis in mammalian cells. The mechanism of apoptosis induced by T-2 toxin has been proposed to be linked with oxidative stress and mitochondrial pathway. In the current study, the toxic effect of T-2 on Hela, Bel-7402, and Chang liver cells was examined in dose-dependent and time-dependent manner by MTT assay. Caspase-3 was found to be up-regulated under T-2 toxin stress, which suggested that T-2 toxin induced cell apoptosis. Endogenous GSH and MDA levels in all three cell lines were found down- and up-regulated respectively, which indicated the link between toxic effect of T-2 toxin and intracellular oxidative stress. It was also found by MTT assay that NAC, which maintained the level of GSH in cells, could protect cells from death. Western-blot result showed that the level of both activated Caspase-8 and Caspase-9 increased when cells were treated by T-2 toxin. Caspase-9 was found to be activated earlier than Caspase-8. It was also found that p53 was up-regulated under T-2 toxin stress in the study. These results implied that the effect of T-2 toxin on cells was apoptosis rather than necrosis, and it was probably induced through mitochondrial pathway. To the best of our knowledge, the present study is the first to show that JunD is down-regulated in T-2 toxin induced apoptosis. By construction of an over-expression vector for the JunD gene, we observed that the survival ratio of JunD over-expressed cells obviously increased under T-2 toxin stress. These results suggested that the mechanism of T-2 induced cell death was closely connected with oxidative stress, and that JunD plays an important role in the defensive process against T-2 toxin stress.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daibin Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaling Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
33
|
Wickramasekera NT, Das GM. Tumor suppressor p53 and estrogen receptors in nuclear-mitochondrial communication. Mitochondrion 2013; 16:26-37. [PMID: 24177747 DOI: 10.1016/j.mito.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023]
Abstract
Several gene transcription regulators considered solely localized within the nuclear compartment are being reported to be present in the mitochondria as well. There is growing interest in the role of mitochondria in regulating cellular metabolism in normal and disease states. Various findings demonstrate the importance of crosstalk between nuclear and mitochondrial genomes, transcriptomes, and proteomes in regulating cellular functions. Both tumor suppressor p53 and estrogen receptor (ER) were originally characterized as nuclear transcription factors. In addition to their individual roles as regulators of various genes, these two proteins interact resulting in major cellular consequences. In addition to its nuclear role, p53 has been localized to the mitochondria where it executes various transcription-independent functions. Likewise, ERs are reported to be present in mitochondria; however their functional roles remain to be clearly defined. In this review, we provide an integrated view of the current knowledge of nuclear and mitochondrial p53 and ERs and how it relates to normal and pathological physiology.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
34
|
Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, Backendorf C, Zink JI, Kros A. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater 2013. [PMID: 23184490 DOI: 10.1002/adhm.201200176] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiola Porta
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012; 2012:170325. [PMID: 22911014 PMCID: PMC3403320 DOI: 10.1155/2012/170325] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/17/2012] [Indexed: 02/06/2023] Open
Abstract
Activation of the p53 signaling pathway by DNA-damaging agents was originally proposed to result either in cell cycle checkpoint activation to promote survival or in apoptotic cell death. This model provided the impetus for numerous studies focusing on the development of p53-based cancer therapies. According to recent evidence, however, most p53 wild-type human cell types respond to ionizing radiation by undergoing stress-induced premature senescence (SIPS) and not apoptosis. SIPS is a sustained growth-arrested state in which cells remain viable and secrete factors that may promote cancer growth and progression. The p21(WAF1) (hereafter p21) protein has emerged as a key player in the p53 pathway. In addition to its well-studied role in cell cycle checkpoints, p21 regulates p53 and its upstream kinase (ATM), controls gene expression, suppresses apoptosis, and induces SIPS. Herein, we review these and related findings with human solid tumor-derived cell lines, report new data demonstrating dynamic behaviors of p53 and p21 in the DNA damage response, and examine the gain-of-function properties of cancer-associated p53 mutations. We point out obstacles in cancer-therapeutic strategies that are aimed at reactivating the wild-type p53 function and highlight some alternative approaches that target the apoptotic threshold in cancer cells with differing p53 status.
Collapse
|
36
|
Chee JLY, Saidin S, Lane DP, Leong SM, Noll JE, Neilsen PM, Phua YT, Gabra H, Lim TM. Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9. Cell Cycle 2012; 12:278-88. [PMID: 23255126 DOI: 10.4161/cc.23054] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The p53 gene has been implicated in many cancers due to its frequent mutations as well as mutations in other genes whose proteins directly affect p53's functions. In addition, high expression of p53 [wild-type (WT) or mutant] has been found in the cytoplasm of many tumor cells, and studies have associated these observations with more aggressive tumors and poor prognosis. Cytoplasmic mis-localization of p53 subsequently reduced its transcriptional activity and this loss-of-function (LOF) was used to explain the lack of response to chemotherapeutic agents. However, this hypothesis seemed inadequate in explaining the apparent selection for tumor cells with high levels of p53 protein, a phenomenon that suggests a gain-of-function (GOF) of these mis-localized p53 proteins. In this study, we explored whether the direct involvement of p53 in the apoptotic response is via regulation of the caspase pathway in the cytoplasm. We demonstrate that p53, when present at high levels in the cytoplasm, has an inhibitory effect on caspase-9. Concurrently, knockdown of endogenous p53 caused an increase in the activity of caspase-9. p53 was found to interact with the p35 fragment of caspase-9, and this interaction inhibits the caspase-9 activity. In a p53-null background, the high-level expression of both exogenous WT and mutant p53 increased the resistance of these cells to cisplatin, and the data showed a correlation between high p53 expression and caspase-9 inhibition. These results suggest the inhibition of caspase-9 as a potential mechanism in evading apoptosis in tumors with high-level p53 expression that is cytoplasmically localized.
Collapse
Affiliation(s)
- Jacqueline L Y Chee
- Deparment of Biological Sciences, National University of Singapore, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|