1
|
Roth DM, Piña JO, MacPherson M, Budden C, Graf D. Physiology and Clinical Manifestations of Pathologic Cranial Suture Widening. Cleft Palate Craniofac J 2024; 61:1750-1759. [PMID: 37271984 PMCID: PMC11468227 DOI: 10.1177/10556656231178438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Cranial sutures are complex structures integrating mechanical forces with osteogenesis which are often affected in craniofacial syndromes. While premature fusion is frequently described, rare pathological widening of cranial sutures is a comparatively understudied phenomenon. This narrative review aims to bring to light the biologically variable underlying causes of widened sutures and persistent fontanelles leading to a common outcome. The authors herein present four syndromes, selected from a literature review, and their identified biological mechanisms in the context of altered suture physiology, exploring the roles of progenitor cell differentiation, extracellular matrix production, mineralization, and bone resorption. This article illustrates the gaps in understanding of complex craniofacial disorders, and the potential for further unification of genetics, cellular biology, and clinical pillars of health science research to improve treatment outcomes for patients.
Collapse
Affiliation(s)
- Daniela M. Roth
- School of Dentistry, University of Alberta, Edmonton, Canada
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | - Curtis Budden
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Jiang J, Ren R, Fang W, Miao J, Wen Z, Wang X, Xu J, Jin H. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Front Cell Dev Biol 2024; 12:1431566. [PMID: 39170917 PMCID: PMC11335558 DOI: 10.3389/fcell.2024.1431566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Lysosomes serve as catabolic centers and signaling hubs in cells, regulating a multitude of cellular processes such as intracellular environment homeostasis, macromolecule degradation, intracellular vesicle trafficking and autophagy. Alterations in lysosomal level and function are crucial for cellular adaptation to external stimuli, with lysosome dysfunction being implicated in the pathogenesis of numerous diseases. Osteoclasts (OCs), as multinucleated cells responsible for bone resorption and maintaining bone homeostasis, have a complex relationship with lysosomes that is not fully understood. Dysregulated function of OCs can disrupt bone homeostasis leading to the development of various bone disorders. The regulation of OC differentiation and bone resorption for the treatment of bone disease have received considerable attention in recent years, yet the role and regulation of lysosomes in OCs, as well as the potential therapeutic implications of intervening in lysosomal biologic behavior for the treatment of bone diseases, remain relatively understudied. This review aims to elucidate the mechanisms involved in lysosomal biogenesis and to discuss the functions of lysosomes in OCs, specifically in relation to differentiation, bone resorption, and autophagy. Finally, we explore the potential therapeutic implication of targeting lysosomes in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Junchen Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Rufeng Ren
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyuan Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijun Wen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
4
|
Ono S, Tsuji N, Sakamoto T, Oguchi S, Nakamura T, Hoshi K, Hikita A. Inhibition of cysteine protease disturbs the topological relationship between bone resorption and formation in vitro. J Bone Miner Metab 2024; 42:166-184. [PMID: 38376670 PMCID: PMC10982105 DOI: 10.1007/s00774-023-01489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Osteoporosis is a global health issue. Bisphosphonates that are commonly used to treat osteoporosis suppress both bone resorption and subsequent bone formation. Inhibition of cathepsin K, a cysteine proteinase secreted by osteoclasts, was reported to suppress bone resorption while preserving or increasing bone formation. Analyses of the different effects of antiresorptive reagents such as bisphosphonates and cysteine proteinase inhibitors will contribute to the understanding of the mechanisms underlying bone remodeling. MATERIALS AND METHODS Our team has developed an in vitro system in which bone remodeling can be temporally observed at the cellular level by 2-photon microscopy. We used this system in the present study to examine the effects of the cysteine proteinase inhibitor E-64 and those of zoledronic acid on bone remodeling. RESULTS In the control group, the amount of the reduction and the increase in the matrix were correlated in each region of interest, indicating the topological and quantitative coordination of bone resorption and formation. Parameters for osteoblasts, osteoclasts, and matrix resorption/formation were also correlated. E-64 disrupted the correlation between resorption and formation by potentially inhibiting the emergence of spherical osteoblasts, which are speculated to be reversal cells in the resorption sites. CONCLUSION These new findings help clarify coupling mechanisms and will contribute to the development of new drugs for osteoporosis.
Collapse
Affiliation(s)
- Sayaka Ono
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Naoki Tsuji
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Shuya Oguchi
- Department of Oral-Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
- Department of Oral-Maxillofacial Surgery, and Orthodontics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| |
Collapse
|
5
|
Chen C, Zheng L, Zeng G, Chen Y, Liu W, Song W. Identification of potential diagnostic biomarkers for tenosynovial giant cell tumour by integrating microarray and single-cell RNA sequencing data. J Orthop Surg Res 2023; 18:905. [PMID: 38017559 PMCID: PMC10685511 DOI: 10.1186/s13018-023-04279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE Tenosynovial giant cell tumour (TGCT) is a benign hyperplastic and inflammatory disease of the joint synovium or tendon sheaths, which may be misdiagnosed due to its atypical symptoms and imaging features. We aimed to identify biomarkers with high sensitivity and specificity to aid in diagnosing TGCT. METHODS Two scRNA-seq datasets (GSE210750 and GSE152805) and two microarray datasets (GSE3698 and GSE175626) were downloaded from the Gene Expression Omnibus (GEO) database. By integrating the scRNA-seq datasets, we discovered that the osteoclasts are abundant in TGCT in contrast to the control. The single-sample gene set enrichment analysis (ssGSEA) further validated this discovery. Differentially expressed genes (DEGs) of the GSE3698 dataset were screened and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were conducted. Osteoclast-specific up-regulated genes (OCSURGs) were identified by intersecting the osteoclast marker genes in the scRNA-seq and the up-regulated DEGs in the microarray and by the least absolute shrinkage and selection operator (LASSO) regression algorithm. The expression levels of OCSURGs were validated by an external dataset GSE175626. Then, single gene GSEA, protein-protein interaction (PPI) network, and gene-drug network of OCSURGs were performed. RESULT 22 seurat clusters were acquired and annotated into 10 cell types based on the scRNA-seq data. TGCT had a larger population of osteoclasts compared to the control. A total of 159 osteoclast marker genes and 104 DEGs (including 61 up-regulated genes and 43 down-regulated genes) were screened from the scRNA-seq analysis and the microarray analysis. Three OCSURGs (MMP9, SPP1, and TYROBP) were finally identified. The AUC of the ROC curve in the training and testing datasets suggested a favourable diagnostic capability. The PPI network results illustrated the protein-protein interaction of each OCSURG. Drugs that potentially target the OCSURGs were predicted by the DGIdb database. CONCLUSION MMP9, SPP1, and TYROBP were identified as osteoclast-specific up-regulated genes of the tenosynovial giant cell tumour via bioinformatic analysis, which had a reasonable diagnostic efficiency and served as potential drug targets.
Collapse
Affiliation(s)
- Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road, 33rd, Haizhu District, Guangzhou, 510000, Guangdong Province, China
| | - Linli Zheng
- Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road, 33rd, Haizhu District, Guangzhou, 510000, Guangdong Province, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road, 33rd, Haizhu District, Guangzhou, 510000, Guangdong Province, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road, 33rd, Haizhu District, Guangzhou, 510000, Guangdong Province, China.
| | - Weidong Song
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road, 33rd, Haizhu District, Guangzhou, 510000, Guangdong Province, China.
| |
Collapse
|
6
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
7
|
Tokuda K, Lu SL, Zhang Z, Kato Y, Chen S, Noda K, Hirose K, Usami Y, Uzawa N, Murakami S, Toyosawa S, Fukuda M, Sun-Wada GH, Wada Y, Noda T. Rab32 and Rab38 maintain bone homeostasis by regulating intracellular traffic in osteoclasts. Cell Struct Funct 2023; 48:223-239. [PMID: 37793839 PMCID: PMC11496785 DOI: 10.1247/csf.23061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Osteoclasts play a crucial role in bone homeostasis by forming resorption pits on bone surfaces, resulting in bone resorption. The osteoclast expression of Rab38 protein is highly induced during differentiation from macrophages. Here we generated mice with double knockout (DKO) of Rab38 and its paralogue, Rab32, to investigate the roles of these proteins in osteoclasts. Bone marrow-derived macrophages from Rab32/38 DKO mice differentiated normally into osteoclasts in vitro. However, DKO osteoclasts showed reduced bone resorption activity. These osteoclasts also demonstrated defective secretion of tartrate-resistant acid phosphatase and cathepsin K into culture medium. Furthermore, the plasma membrane localization of a3, an osteoclast-specific a subunit of V-ATPase, was abrogated in DKO mice, substantiating the reduced resorption activity. In vivo, Rab32- and Rab38-positive cells were attached to the bone surface. Eight-week-old DKO mice showed significantly thickened trabecular bones in micro-CT and histomorphometry analysis, as well as reduced serum levels of cross-linked C-telopeptide of type I collagen, indicating diminished bone resorption in vivo. In DKO male mice over 10 weeks of age, hyperostosis appeared at the talofibular syndesmosis, the distal junction of the tibia and fibula. Furthermore, middle-aged mice (10 to 12 months of age) exhibited kyphosis, which is not usually observed in wild-type male mice until around 24 months of age. These results indicate that Rab32 and Rab38 contribute to osteoclast function by supporting intracellular traffic, thereby maintaining normal bone homeostasis.Key words: Rab32, Rab38, osteoclast, lysosome-related organelle, secretory lysosome.
Collapse
Affiliation(s)
- Kanako Tokuda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shiou-Ling Lu
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Zidi Zhang
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Yumiko Kato
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
- Department of Oral & Maxillofacial Oncology and Surgery, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Siyu Chen
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Kazuya Noda
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
- Department of Periodontology and Regenerative Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College, Kyoto 610-0395, Japan
| | - Yoh Wada
- Department of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
9
|
Tian H, Gu C, Li W, Tong T, Wang Y, Yang Y, Wang H, Dai Z, Chen P, Wang F, Lin X, Shangguan L, Wang L. Neutralization of Intracellular pH Homeostasis to Inhibit Osteoclasts Based on a Spatiotemporally Selective Delivery System. NANO LETTERS 2023; 23:4101-4110. [PMID: 37183806 DOI: 10.1021/acs.nanolett.2c04295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a global disease caused by abnormal overactivation of osteoclasts. The acidic environment in sealing zone of osteoclasts with H+ pumped from cytoplasm is critical to the maturation of osteoclasts. Therefore, reducing the intracellular H+ concentration can reduce the H+ secretion of osteoclasts from the source. In our study, we developed a novel nanovesicle which encapsulates Na2HPO4 with a liposome hybridizes with preosteoclast membrane (Na2HPO4@Lipo-pOCm). These nanovesicles release Na2HPO4 into the preosteoclast by targeting preosteoclasts and membrane fusion, reducing the intracellular H+ concentration, and achieve biological cascade regulation of osteoclasts through simple pH regulation. In vitro and in vivo experiments confirmed that these nanovesicles reduce mitochondrial membrane potential by decreasing intracellular H+ concentration, thereby reducing the ROS in osteoclasts as well as the expression of the upstream transcription factor FOXM1 of Acp5. In short, this nanovesicle can significantly inhibit the osteoclasts and ameliorate osteoporosis caused by OVX.
Collapse
Affiliation(s)
- Hongsen Tian
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenhui Gu
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Wenshuai Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Tong Tong
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Yunsheng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Yang Yang
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Haoli Wang
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Zhanqiu Dai
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Pengfei Chen
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Feng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xianfeng Lin
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Liqing Shangguan
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Linfeng Wang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| |
Collapse
|
10
|
León-Reyes G, Argoty-Pantoja AD, Becerra-Cervera A, López-Montoya P, Rivera-Paredez B, Velázquez-Cruz R. Oxidative-Stress-Related Genes in Osteoporosis: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12040915. [PMID: 37107290 PMCID: PMC10135393 DOI: 10.3390/antiox12040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Anna D Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- National Council of Science and Technology (CONACYT), Mexico City 03940, Mexico
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
11
|
Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko J, Mitera T, Maksoudian C, Manshian BB, Soenen S, Rose CD, Matthys P, Wouters C, Behmoaras J. Multinucleation resets human macrophages for specialized functions at the expense of their identity. EMBO Rep 2023; 24:e56310. [PMID: 36597777 PMCID: PMC9986822 DOI: 10.15252/embr.202256310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Marie Pereira
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Jeong‐Hun Ko
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Tania Mitera
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Carlos D Rose
- Division of Pediatric Rheumatology Nemours Children's HospitalThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
- Division Pediatric RheumatologyUZ LeuvenLeuvenBelgium
- European Reference Network for Rare ImmunodeficiencyAutoinflammatory and Autoimmune Diseases (RITA) at University Hospital LeuvenLeuvenBelgium
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational BiologyDuke‐NUS Medical School SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Aguilera AC, Leiva N, Alvarez PA, Pulcini G, Pereyra LL, Morales CR, Sosa MÁ, Carvelli L. Sortilin knock-down alters the expression and distribution of cathepsin D and prosaposin and up-regulates the cation-dependent mannose-6-phosphate receptor in rat epididymal cells. Sci Rep 2023; 13:3461. [PMID: 36859404 PMCID: PMC9977780 DOI: 10.1038/s41598-023-29157-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The selective transport to lysosomes can be mediated by either mannose-6-phosphate receptors (CD-MPR and CI-MPR) or sortilin. In mammalian epididymis, some lysosomal proteins are secreted into the lumen through unknown mechanisms. To investigate the underlying mechanisms of lysosomal protein transport in epididymal cells we studied the expression and distribution of cathepsin D (CatD) and prosaposin (PSAP) in a sortilin knocked down RCE-1 epididymal cell line (RCE-1 KD) in comparison with non-transfected RCE-1 cells. In RCE-1 cells, CatD was found in the perinuclear zone and co-localize with sortilin, whereas in RCE-1 KD cells, the expression, distribution and processing of the enzyme were altered. In turn, PSAP accumulated intracellularly upon sortilin knock-down and redistributed from LAMP-1-positive compartment to a perinuclear location, remaining co-localized with CatD. Interestingly, the sortilin knock-down induced CD-MPR overexpression and a redistribution of the receptor from the perinuclear zone to a dispersed cytoplasmic location, accompanied by an increased co-localization with CatD. The increase in CD-MPR could result from a compensatory response for the proper delivery of CatD to lysosomes in epididymal cells. The intracellular pathway taken by lysosomal proteins could be an approach for addressing further studies to understand the mechanism of exocytosis and therefore the role of these proteins in the epididymis.
Collapse
Affiliation(s)
- Andrea Carolina Aguilera
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Natalia Leiva
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Pablo Ariel Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Georgina Pulcini
- IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Laura Lucía Pereyra
- IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | | | - Miguel Ángel Sosa
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Lorena Carvelli
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina. .,IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.
| |
Collapse
|
13
|
Lachuer H, Le L, Lévêque-Fort S, Goud B, Schauer K. Spatial organization of lysosomal exocytosis relies on membrane tension gradients. Proc Natl Acad Sci U S A 2023; 120:e2207425120. [PMID: 36800388 PMCID: PMC9974462 DOI: 10.1073/pnas.2207425120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/17/2022] [Indexed: 02/18/2023] Open
Abstract
Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-β-cyclodextrin were found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allow to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs.
Collapse
Affiliation(s)
- Hugo Lachuer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Laurent Le
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Sandrine Lévêque-Fort
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay91405, Orsay, France
| | - Bruno Goud
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
| | - Kristine Schauer
- Institut Curie, Paris Sciences et Lettres Research University, CNRS UMR 144 Cell Biology and Cancer, 75005Paris, France
- Tumor Cell Dynamics Unit, Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif94800, France
| |
Collapse
|
14
|
Nε-Carboxymethyl-Lysine Mediates Vascular Calcification in Diabetes Caused by Impaired Osteoclastic Resorption Activity Through NFATc1-GNPTAB. J Cardiovasc Transl Res 2023; 16:233-243. [PMID: 35972719 DOI: 10.1007/s12265-022-10300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Nε-carboxymethyl-lysine (CML) is closely associated with vascular calcification in diabetes. Osteoclasts are the only cells with bone resorption activity that have the potential to reverse calcification. This study aimed to investigate the mechanism of CML in the bone resorption activity of macrophage-derived osteoclasts in diabetic calcified plaques. Macrophage-derived osteoclasts were found to be present in calcified plaques of the anterior tibial artery in patients with diabetic amputation. Furthermore, in vitro studies showed that CML induced the differentiation of macrophages into osteoclasts, although, the bone resorption activity of these macrophage-derived osteoclasts was impaired. CML significantly increased the levels of NFATc1and GNPTAB. In vivo studies showed that there was more calcium deposition and less TRAP was less in the CML group while this effect was reversed after silencing of NFATc1. In conclusion, CML mediates NFATc1-GNPTAB to regulate bone resorption activity of osteoclasts in diabetic calcified plaques. CML promotes macrophage differentiation into osteoclasts, but their function is impaired in diabetic calcified plaques through NFATc1-GNPTAB, which eventually leads to the further progression of vascular calcification in diabetes.
Collapse
|
15
|
Wu B, Shang J, Lin S, Jiang N, Xing B, Peng R, Xu X, Lu H. A Novel Role for RILP in Regulating Osteoclastogenesis and Bone Resorption. J Transl Med 2023; 103:100067. [PMID: 36801641 DOI: 10.1016/j.labinv.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Increased bone resorption caused by excessive number or activity of osteoclasts is the main cause of osteoporosis. Osteoclasts are multinucleated cells that are formed by the fusion of precursor cells. Although osteoclasts are primarily characterized by bone resorption, our understanding of the mechanisms that regulate the formation and function of osteoclasts is poor. Here we showed that the expression level of Rab interacting lysosomal protein (RILP) was strongly induced by receptor activator of NF-κB ligand in mouse bone marrow macrophages. Inhibition of RILP expression induced a drastic decrease in the number, size, F-actin ring formation of osteoclasts, and the expression level of osteoclast-related genes. Functionally, inhibition of RILP reduced the migration of preosteoclasts through PI3K-Akt signaling and suppressed bone resorption by inhibiting the secretion of lysosome cathepsin K. Treatments with siRNA-RILP attenuated pathologic bone loss in disease models induced by lipopolysaccharide. Thus, this work indicates that RILP plays an important role in the formation and bone resorption function of osteoclasts and may have a therapeutic potential to treat bone diseases caused by excessive or hyperactive osteoclasts.
Collapse
Affiliation(s)
- Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shiyuan Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Baizhou Xing
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rong Peng
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xianghe Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Huading Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
16
|
Qiu H, Hosking C, Rothzerg E, Samantha A, Chen K, Kuek V, Jin H, Zhu S, Vrielink A, Lim K, Foley M, Xu J. ADR3, a next generation i-body to human RANKL, inhibits osteoclast formation and bone resorption. J Biol Chem 2023; 299:102889. [PMID: 36634847 PMCID: PMC9929471 DOI: 10.1016/j.jbc.2023.102889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Osteoporosis is a chronic skeletal condition characterized by low bone mass and deteriorated microarchitecture of bone tissue and puts tens of millions of people at high risk of fractures. New therapeutic agents like i-bodies, a class of next-generation single-domain antibodies, are needed to overcome some limitations of conventional treatments. An i-body is a human immunoglobulin scaffold with two long binding loops that mimic the shape and position of those found in shark antibodies, the variable new antigen receptors of sharks. Its small size (∼12 kDa) and long binding loops provide access to drug targets, which are considered undruggable by traditional monoclonal antibodies. Here, we have successfully identified a human receptor activator of nuclear factor-κB ligand (RANKL) i-body, ADR3, which demonstrates a high binding affinity to human RANKL (hRANKL) with no adverse effect on the survival or proliferation of bone marrow-derived macrophages. Differential scanning fluorimetry suggested that ADR3 is stable and able to tolerate a wide range of physical environments (including both temperature and pH). In addition, in vitro studies showed a dose-dependent inhibitory effect of ADR3 on osteoclast differentiation, podosome belt formation, and bone resorption activity. Further investigation on the mechanism of action of ADR3 revealed that it can inhibit hRANKL-mediated signaling pathways, supporting the in vitro functional observations. These clues collectively indicate that hRANKL antagonist ADR3 attenuates osteoclast differentiation and bone resorption, with the potential to serve as a novel therapeutic to protect against bone loss.
Collapse
Affiliation(s)
- Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Christopher Hosking
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ariela Samantha
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Vincent Kuek
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia,Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sipin Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin Lim
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Michael Foley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia,AdAlta Pty. Ltd, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
17
|
Kalev-Altman R, Janssen JN, Ben-Haim N, Levy T, Shitrit-Tovli A, Milgram J, Shahar R, Sela-Donenfeld D, Monsonego-Ornan E. The gelatinases, matrix metalloproteinases 2 and 9, play individual roles in skeleton development. Matrix Biol 2022; 113:100-121. [DOI: 10.1016/j.matbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
|
18
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
19
|
Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Biol Pharm Bull 2022; 45:1426-1431. [PMID: 36184499 DOI: 10.1248/bpb.b22-00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
Collapse
Affiliation(s)
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
20
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
21
|
Barsony J, Xu Q, Verbalis JG. Hyponatremia elicits gene expression changes driving osteoclast differentiation and functions. Mol Cell Endocrinol 2022; 554:111724. [PMID: 35843385 PMCID: PMC10586021 DOI: 10.1016/j.mce.2022.111724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Growing evidence indicates that chronic hyponatremia represents a significant risk for bone loss, osteoporosis, and fractures in our aging population. Our prior studies on a rat model of the syndrome of inappropriate antidiuretic hormone secretion indicated that chronic hyponatremia causes osteoporosis by increasing osteoclastic bone resorption, thereby liberating stored sodium from bone. Moreover, studies in RAW264.7 pre-osteoclastic cells showed increased osteoclast formation and resorptive activity in response to low extracellular fluid sodium ion concentration (low [Na+]). These studies implicated a direct stimulatory effect of low [Na+] rather than the low osmolality on cultured osteoclastic cells. In the present cellular studies, we explored gene expression changes triggered by low [Na+] using RNA sequencing and gene ontology analysis. Results were confirmed by mouse whole genome microarray, and quantitative RT-PCR. Findings confirmed gene expression changes supporting osteoclast growth and differentiation through stimulation of receptor activator of nuclear factor kappa-B ligand (RANKL), and PI3K/Akt pathways, and revealed additional pathways. New findings on low [Na+]-induced upregulation of lysosomal genes, mitochondrial energy production, MMP-9 expression, and osteoclast motility have supported the significance of osteoclast transcriptomic responses. Functional assays demonstrated that RANL and low [Na+] independently enhance osteoclast functions. Understanding the molecular mechanisms of hyponatremia-induced osteoporosis provides the basis for future studies identifying sodium-sensing mechanisms in osteoclasts, and potentially other bone cells, and developing strategies for treatment of bone fragility in the vulnerable aging population most affected by both chronic hyponatremia and osteoporosis. ISSUE SECTIONS: Signaling Pathways; Parathyroid, Bone, and Mineral Metabolism.
Collapse
Affiliation(s)
- Julianna Barsony
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA.
| | - Qin Xu
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA
| | - Joseph G Verbalis
- Division of Endocrinology & Metabolism, Georgetown University, Washington, DC, 20007, USA
| |
Collapse
|
22
|
Di Pompo G, Kusuzaki K, Ponzetti M, Leone VF, Baldini N, Avnet S. Radiodynamic Therapy with Acridine Orange Is an Effective Treatment for Bone Metastases. Biomedicines 2022; 10:biomedicines10081904. [PMID: 36009451 PMCID: PMC9405350 DOI: 10.3390/biomedicines10081904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Current multimodal treatment of bone metastases is partially effective and often associated with side effects, and novel therapeutic options are needed. Acridine orange is a photosensitizing molecule that accumulates in acidic compartments. After photo- or radiodynamic activation (AO-PDT or AO-RDT), acridine orange can induce lysosomal-mediated cell death, and we explored AO-RDT as an acid-targeted anticancer therapy for bone metastases. We used osteotropic carcinoma cells and human osteoclasts to assess the extracellular acidification and invasiveness of cancer cells, acridine orange uptake and lysosomal pH/stability, and the AO-RDT cytotoxicity in vitro. We then used a xenograft model of bone metastasis to compare AO-RDT to another antiacid therapeutic strategy (omeprazole). Carcinoma cells showed extracellular acidification activity and tumor-derived acidosis enhanced cancer invasiveness. Furthermore, cancer cells accumulated acridine orange more than osteoclasts and were more sensitive to lysosomal death. In vivo, omeprazole did not reduce osteolysis, whereas AO-RDT promoted cancer cell necrosis and inhibited tumor-induced bone resorption, without affecting osteoclasts. In conclusion, AO-RDT was selectively toxic only for carcinoma cells and effective to impair both tumor expansion in bone and tumor-associated osteolysis. We therefore suggest the use of AO-RDT, in combination with the standard antiresorptive therapies, to reduce disease burden in bone metastasis.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Katsuyuki Kusuzaki
- Department of Musculoskeletal Oncology, Takai Hospital, Tenri 632-0372, Japan
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
23
|
Yamaguchi Y, Kadowaki T, Aibara N, Ohyama K, Okamoto K, Sakai E, Tsukuba T. Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. Int J Mol Sci 2022; 23:ijms23126619. [PMID: 35743062 PMCID: PMC9224296 DOI: 10.3390/ijms23126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
- Correspondence: ; Tel.: +81-95-819-7652
| |
Collapse
|
24
|
Chakraborty R, Acharya TK, Tiwari N, Majhi RK, Kumar S, Goswami L, Goswami C. Hydrogel-Mediated Release of TRPV1 Modulators to Fine Tune Osteoclastogenesis. ACS OMEGA 2022; 7:9537-9550. [PMID: 35350319 PMCID: PMC8945112 DOI: 10.1021/acsomega.1c06915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Bone defects, including bone loss due to increased osteoclast activity, have become a global health-related issue. Osteoclasts attach to the bone matrix and resorb the same, playing a vital role in bone remodeling. Ca2+ homeostasis plays a pivotal role in the differentiation and maturation of osteoclasts. In this work, we examined the role of TRPV1, a nonselective cation channel, in osteoclast function and differentiation. We demonstrate that endogenous TRPV1 is functional and causes Ca2+ influx upon activation with pharmacological activators [resiniferatoxin (RTX) and capsaicin] at nanomolar concentration, which enhances the generation of osteoclasts, whereas the TRPV1 inhibitor (5'-IRTX) reduces osteoclast differentiation. Activation of TRPV1 upregulates tartrate-resistant acid phosphatase activity and the expression of cathepsin K and calcitonin receptor genes, whereas TRPV1 inhibition reverses this effect. The slow release of capsaicin or RTX at a nanomolar concentration from a polysaccharide-based hydrogel enhances bone marrow macrophage (BMM) differentiation into osteoclasts whereas release of 5'-IRTX, an inhibitor of TRPV1, prevents macrophage fusion and osteoclast formation. We also characterize several subcellular parameters, including reactive oxygen (ROS) and nitrogen (RNS) species in the cytosol, mitochondrial, and lysosomal profiles in BMMs. ROS were found to be unaltered upon TRPV1 modulation. NO, however, had elevated levels upon RTX-mediated TRPV1 activation. Capsaicin altered mitochondrial membrane potential (ΔΨm) of BMMs but not 5'-IRTX. Channel modulation had no significant impact on cytosolic pH but significantly altered the pH of lysosomes, making these organelles less acidic. Since BMMs are precursors for osteoclasts, our findings of the cellular physiology of these cells may have broad implications in understanding the role of thermosensitive ion channels in bone formation and functions, and the TRPV1 modulator-releasing hydrogel may have application in bone tissue engineering and other biomedical sectors.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
| | - Tusar Kanta Acharya
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nikhil Tiwari
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rakesh Kumar Majhi
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satish Kumar
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Luna Goswami
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
- School of
Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chandan Goswami
- School
of Biological Sciences, National Institute
of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
25
|
Multitarget-Based Virtual Screening for Identification of Herbal Substances toward Potential Osteoclastic Targets. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Osteoporosis is a complex bone disease indicating porous bone with low bone mass density and fragility. Cathepsin K, V-ATPase, and αVβ3 integrin are exhibited as novel targets for osteoporosis treatment. Our preliminary study uses a state-of-the-art method, including target-based virtual screening and clustering methods to determine promising candidates with multitarget properties. Phytochemicals with osteoprotective properties from the literature are used to elucidate the molecular interactions toward three targets. The binding scores of compounds are normalized and rescored. The K-means and hierarchical clustering methods are applied to filter and define the promising compounds, and the silhouette analysis is supposed to validate the clustering method. We explore 108 herbal compounds by virtual screening and the cluster approach, and find that rutin, sagittatoside A, icariin, and kaempferitrin showed strong binding affinities against Cathepsin K, V-ATPase, and αVβ3 integrin. Dockings of candidates toward three targets also provide the protein-ligand interactions and crucial amino acids for binding. Our study provides a straightforward and less time-consuming approach to exploring the new multitarget candidates for further investigations, using a combination of in silico methods.
Collapse
|
26
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
27
|
Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis. Proc Natl Acad Sci U S A 2021; 118:2113174118. [PMID: 34607961 PMCID: PMC8522270 DOI: 10.1073/pnas.2113174118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are organelles that also act as cell-signaling hubs. They regulate functions ranging from antigen presentation to autophagy. Spherical lysosomes can spontaneously elongate into tubules in starving or inflamed immune cells. We describe a DNA-based reagent, denoted Tudor, that tubulates lysosomes in macrophages without triggering either an immune response or autophagy. Chemical imaging revealed that tubular lysosomes differ from vesicular ones in terms of their pH, calcium, and proteolytic activity. Tudor revealed a role for tubular lysosomes in that they enhance MMP9 secretion and phagocytosis in resting macrophages. The ability to tubulate lysosomes in resting immune cells without starving or inflaming them may help reveal new insights into how tubular lysosomes function. Lysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution, and autophagy. Tubular lysosomes are studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the biochemical properties lysosomes acquire upon tubulation that could drive their functionality. Here we describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Proteolytic activity maps at single-lysosome resolution revealed that tubular lysosomes were less degradative and showed proximal to distal luminal pH and Ca2+ gradients. Such gradients had been predicted but never previously observed. We identify a role for tubular lysosomes in promoting phagocytosis and activating MMP9. The ability to tubulate lysosomes without starving or activating immune cells may help reveal new roles for tubular lysosomes.
Collapse
|
28
|
Tran MT, Okusha Y, Feng Y, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Tsukuba T, Okamoto K. A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119096. [PMID: 34242681 DOI: 10.1016/j.bbamcr.2021.119096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes. In this study, using an in vitro model of osteoclasts differentiated from murine macrophage-like RAW-D cells, we revealed that Rab11b interacted with both HSP90 isoforms, HSP90 alpha (HSP90α) and HSP90 beta (HSP90β), suggesting that Rab11b is an HSP90 client. Using at specific blocker for HSP90 ATPase activity, 17-allylamino-demethoxygeldanamycin (17-AAG), we found that the HSP90 ATPase domain is indispensable for maintaining the interaction between HSP90 and Rab11b in osteoclasts. Nonetheless, its ATPase activity is not required for regulating the turnover of endogenous Rab11b. Interestingly, blocking the interaction between HSP90 and Rab11b by either HSP90-targeting small interfering RNA (siHSP90) or 17-AAG abrogated the inhibitory effects of Rab11b on osteoclastogenesis by suppressing the Rab11b-mediated transport of c-fms and RANK surface receptors to lysosomes via the axis of early endosome-late endosome-lysosomes, alleviating the Rab11b-mediated proteolysis of these surface receptors in osteoclasts. Based on our observations, we propose a HSP90/Rab11b-mediated regulatory mechanism for osteoclastogenesis by directly modulating the c-fms and RANK surface receptors in osteoclasts, thereby contributing to the maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yunxia Feng
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; College of Basic Medicine, China Medical University, Shenyang 1110112, China
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
29
|
Comparative antler proteome of sika deer from different developmental stages. Sci Rep 2021; 11:10484. [PMID: 34006919 PMCID: PMC8131589 DOI: 10.1038/s41598-021-89829-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Antler is a special bone tissue that has the ability to regenerate completely periodically. It is the fastest growing bone in the animal kingdom. Antler provides a valuable research model for bone growth and mineralization. Antler grows longitudinally by endochondral ossification with their growth center located in its tip. Many scholars have carried out detailed studies on morphology and gene expression of antler tip. However, few scholars have analyzed the protein expression patterns of antler tip at different development stages. This study used label-free proteomics approach to analyze the protein expression dynamics of the antler tip in six developmental periods (15, 25, 45, 65, 100 and 130 days after the previous antler cast) and costal cartilage. In result, 2052 proteins were confidently quantified, including 1937 antler proteins and 1044 costal cartilage proteins. Moreover, 913 antler core proteins and 132 antler-special proteins were obtained. Besides, the stages special proteins and differentially expressed proteins (DEPs) in different development stages were analyzed. A total of 875 DEPs were determined by one-way AVOVA. It is found that the growth period (15, 25, 45 and 65 days) showed more up-regulated protein including several chondrogenesis-associated proteins (collagen types II, collagen types XI, HAPLN1, PAPSS1 and PAPSS2). In ossification stages, the up-regulated proteins related with lysosome (CTSD, CTSB, MMP9, CAII) indicated that the antler has higher bone remodeling activity. Given the up-regulated expression of immune-related molecules (S100A7, CATHL7, LTF, AZU1, ELANE and MPO), we speculate that the local immune system may contribute to the ossification of antler tip. In conclusion, proteomics technology was used to deeply analyze the protein expression patterns of antler at different development stages. This provides a strong support for the research on the molecular regulation mechanism of rapid growth and ossification of velvet antler.
Collapse
|
30
|
Ellegaard M, Hegner T, Ding M, Ulmann L, Jørgensen NR. Bone phenotype of P2X4 receptor knockout mice: implication of a P2X7 receptor mutation? Purinergic Signal 2021; 17:241-246. [PMID: 33856623 DOI: 10.1007/s11302-021-09784-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Transgenic and knockout animal models are widely used to investigate the role of receptors, signaling pathways, and other peptides and proteins. Varying results are often published on the same model from different groups, and much effort has been put into understanding the underlying causes of these sometimes conflicting results. Recently, it has been shown that a P2X4R knockout model carries a so-called passenger mutation in the P2X7R gene, potentially affecting the interpretation of results from studies using this animal model. We therefore report this case to raise awareness about the potential pitfalls using genetically modified animal models, especially within P2 receptor research. Although purinergic signaling has been recognized as an important contributor to the regulation of bone remodeling, the process that maintains the bone quality during life, little is known about the role of the P2X4 receptor (P2X4R) in regulation of bone remodeling in health and disease. To address this, we analyzed the bone phenotype of P2rx4tm1Rass (C57BL/6J) knockout mice and corresponding wildtype using microCT and biomechanical testing. Overall, we found that the P2X4R knockout mice displayed improved bone microstructure and stronger bones in an age- and gender-dependent manner. While cortical BMD, trabecular BMD, and bone volume were higher in the 6-month-old females and 3-month-old males, this was not the case for the 3-month-old females and the 6-month-old males. Bone strength was only affected in the females. Moreover, we found that P2X4R KO mice carried the P2X7 receptor 451P wildtype allele, whereas the wildtype mice carried the 451L mutant allele. In conclusion, this study suggests that P2X4R could play a role in bone remodeling, but more importantly, it underlines the potential pitfalls when using knockout models and highlights the importance of interpreting results with great caution. Further studies are needed to verify any specific effects of P2X4R on bone metabolism.
Collapse
Affiliation(s)
- Maria Ellegaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Tanja Hegner
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ming Ding
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark
| | - Lauriane Ulmann
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx ICST, Montpellier, France
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Ferlias N, Gjørup H, Aagaard Doherty M, Haagerup A, Klit Pedersen T. Three-dimensional analysis of craniofacial morphology in patients with pycnodysostosis. Orthod Craniofac Res 2021; 24:568-574. [PMID: 33608959 DOI: 10.1111/ocr.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To perform a 3D cephalometric analysis of the craniofacial characteristics of patients with pycnodysostosis and compare this with a matched control group. SETTING AND SAMPLE POPULATION This cross-sectional descriptive study assessed eight CBCTs obtained in patients with pycnodysostosis (4 males, 4 females, mean age: 31.8 years). MATERIALS AND METHODS Eight Danish patients with pycnodysostosis were seen at the University's Orthodontic Clinic. All CBCTs were analysed using the Mimics 21.0 software (Materialise®, Belgium) and compared with a control group (6 males, 8 females, mean age: 33.6 years). RESULTS Interclass correlation coefficient showed excellent intra-rater reliability (> 0.93). All measurements in the 3D cephalometric analysis revealed statistical significance (P < .05) when compared with controls. Patients with pycnodysostosis generally had significantly smaller maxilla in the transverse (P < .001), sagittal (P < .002) and vertical (P < .001) dimensions. Their mandibles were also smaller vertically (P < .001) and in length (P < .001). Gonial angle was significantly larger than controls (P < .001), while mandibular volumes were considerably smaller (P < .001). CONCLUSION Patients with pycnodysostosis have significantly smaller jaws in the vertical, sagittal and transverse dimensions compared with controls. Furthermore, the gonial angle was significantly larger, while the volume of the mandible was significantly smaller.
Collapse
Affiliation(s)
- Nikolaos Ferlias
- Section of Orthodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Hans Gjørup
- Department of Oral and Maxillofacial Surgery, Center for Oral Health in Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Annette Haagerup
- NIDO Denmark, Hospital Unit West and Institute of Clinical Medicine Faculty of Health Aarhus University, Aarhus, Denmark
| | - Thomas Klit Pedersen
- Section of Orthodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Department of Oral and Maxillofacial Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Jiang Z, Lau YK, Wu M, Casal ML, Smith LJ. Ultrastructural analysis of different skeletal cell types in mucopolysaccharidosis dogs at the onset of postnatal growth. J Anat 2021; 238:416-425. [PMID: 32895948 PMCID: PMC7812126 DOI: 10.1111/joa.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Abnormal development of the vertebrae and long bones is a hallmark of skeletal disease in several MPS subtypes; however, the underlying cellular mechanisms remain poorly understood. The objective of this study was to conduct an ultrastructural examination of how lysosomal storage differentially affects major skeletal cell types in MPS I and VII using naturally occurring canine disease models. We showed that both bone and cartilage cells from MPS I and VII dog vertebrae exhibit significantly elevated storage from early in postnatal life, with storage generally greater in MPS VII than MPS I. Storage was most striking for vertebral osteocytes, occupying more than forty percent of cell area. Secondary to storage, dilation of the rough endoplasmic reticulum (ER), a marker of ER stress, was observed most markedly in MPS I epiphyseal chondrocytes. Significantly elevated immunostaining of light chain 3B (LC3B) in MPS VII epiphyseal chondrocytes suggested impaired autophagy, while significantly elevated apoptotic cell death in both MPS I and VII chondrocytes was also evident. The results of this study provide insights into how lysosomal storage differentially effects major skeletal cell types in MPS I and VII, and suggests a potential relationship between storage, ER stress, autophagy, and cell death in the pathogenesis of MPS skeletal defects.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yian Khai Lau
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Meilun Wu
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced MedicineSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lachlan J. Smith
- Department of Orthopedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
33
|
Tancini B, Buratta S, Delo F, Sagini K, Chiaradia E, Pellegrino RM, Emiliani C, Urbanelli L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. MEMBRANES 2020; 10:E406. [PMID: 33316913 PMCID: PMC7764620 DOI: 10.3390/membranes10120406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (B.T.); (S.B.); (F.D.); (K.S.); (R.M.P.)
| |
Collapse
|
34
|
Tran MT, Okusha Y, Feng Y, Morimatsu M, Wei P, Sogawa C, Eguchi T, Kadowaki T, Sakai E, Okamura H, Naruse K, Tsukuba T, Okamoto K. The Inhibitory Role of Rab11b in Osteoclastogenesis through Triggering Lysosome-Induced Degradation of c-Fms and RANK Surface Receptors. Int J Mol Sci 2020; 21:ijms21249352. [PMID: 33302495 PMCID: PMC7763820 DOI: 10.3390/ijms21249352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.
Collapse
Affiliation(s)
- Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yunxia Feng
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
- College of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Masatoshi Morimatsu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (M.M.); (K.N.)
| | - Penggong Wei
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (E.S.); (T.T.)
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (M.M.); (K.N.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (E.S.); (T.T.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan; (M.T.T.); (Y.O.); (Y.F.); (P.W.); (C.S.); (T.E.)
- Correspondence: ; Tel.: +81-86-235-6660
| |
Collapse
|
35
|
Cohen MJ, Chirico WJ, Lipke PN. Through the back door: Unconventional protein secretion. Cell Surf 2020; 6:100045. [PMID: 33225116 PMCID: PMC7666356 DOI: 10.1016/j.tcsw.2020.100045] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.
Collapse
Affiliation(s)
- Michael J. Cohen
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| | - William J. Chirico
- Department of Cell Biology, Molecular and Cellular Biology Program, SUNY Downstate Medical Center, United States
| | - Peter N. Lipke
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| |
Collapse
|
36
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
37
|
Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking. Int J Mol Sci 2020; 21:ijms21228581. [PMID: 33203061 PMCID: PMC7696459 DOI: 10.3390/ijms21228581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
For the optimal resorption of mineralized bone matrix, osteoclasts require the generation of the ruffled border and acidic resorption lacuna through lysosomal trafficking and exocytosis. Coumarin-type aesculetin is a naturally occurring compound with anti-inflammatory and antibacterial effects. However, the direct effects of aesculetin on osteoclastogenesis remain to be elucidated. This study found that aesculetin inhibited osteoclast activation and bone resorption through blocking formation and exocytosis of lysosomes. Raw 264.7 cells were differentiated in the presence of 50 ng/mL receptor activator of nuclear factor-κB ligand (RANKL) and treated with 1–10 μM aesculetin. Differentiation, bone resorption, and lysosome biogenesis of osteoclasts were determined by tartrate-resistance acid phosphatase (TRAP) staining, bone resorption assay, Western blotting, immunocytochemical analysis, and LysoTracker staining. Aesculetin inhibited RANKL-induced formation of multinucleated osteoclasts with a reduction of TRAP activity. Micromolar aesculetin deterred the actin ring formation through inhibition of induction of αvβ3 integrin and Cdc42 but not cluster of differentiation 44 (CD44) in RANKL-exposed osteoclasts. Administering aesculetin to RANKL-exposed osteoclasts attenuated the induction of autophagy-related proteins, microtubule-associated protein light chain 3, and small GTPase Rab7, hampering the lysosomal trafficking onto ruffled border crucial for bone resorption. In addition, aesculetin curtailed cellular induction of Pleckstrin homology domain-containing protein family member 1 and lissencephaly-1 involved in lysosome positioning to microtubules involved in the lysosomal transport within mature osteoclasts. These results demonstrate that aesculetin retarded osteoclast differentiation and impaired lysosomal trafficking and exocytosis for the formation of the putative ruffled border. Therefore, aesculetin may be a potential osteoprotective agent targeting RANKL-induced osteoclastic born resorption for medicinal use.
Collapse
|
38
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
39
|
Vacher J, Bruccoleri M, Pata M. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation. Int J Mol Sci 2020; 21:ijms21165600. [PMID: 32764302 PMCID: PMC7460669 DOI: 10.3390/ijms21165600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
The maintenance of bone mass is a dynamic process that requires a strict balance between bone formation and resorption. Bone formation is controlled by osteoblasts, while osteoclasts are responsible for resorption of the bone matrix. The opposite functions of these cell types have to be tightly regulated not only during normal bone development, but also during adult life, to maintain serum calcium homeostasis and sustain bone integrity to prevent bone fractures. Disruption of the control of bone synthesis or resorption can lead to an over accumulation of bone tissue in osteopetrosis or conversely to a net depletion of the bone mass in osteoporosis. Moreover, high levels of bone resorption with focal bone formation can cause Paget’s disease. Here, we summarize the steps toward isolation and characterization of the osteopetrosis associated trans-membrane protein 1 (Ostm1) gene and protein, essential for proper osteoclast maturation, and responsible when mutated for the most severe form of osteopetrosis in mice and humans.
Collapse
Affiliation(s)
- Jean Vacher
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
- Correspondence:
| | - Michael Bruccoleri
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
- Departement de Medecine, Universite de Montreal, Montreal, QC H2W 1R7, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada; (M.B.); (M.P.)
| |
Collapse
|
40
|
Machuca-Gayet I, Quinaux T, Bertholet-Thomas A, Gaillard S, Claramunt-Taberner D, Acquaviva-Bourdain C, Bacchetta J. Bone Disease in Nephropathic Cystinosis: Beyond Renal Osteodystrophy. Int J Mol Sci 2020; 21:ijms21093109. [PMID: 32354056 PMCID: PMC7246679 DOI: 10.3390/ijms21093109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic kidney disease (CKD) display significant mineral and bone disorders (CKD-MBD) that induce significant cardiovascular, growth and bone comorbidities. Nephropathic cystinosis is an inherited metabolic disorder caused by the lysosomal accumulation of cystine due to mutations in the CTNS gene encoding cystinosin, and leads to end-stage renal disease within the second decade. The cornerstone of management relies on cysteamine therapy to decrease lysosomal cystine accumulation in target organs. However, despite cysteamine therapy, patients display severe bone symptoms, and the concept of “cystinosis metabolic bone disease” is currently emerging. Even though its exact pathophysiology remains unclear, at least five distinct but complementary entities can explain bone impairment in addition to CKD-MBD: long-term consequences of renal Fanconi syndrome, malnutrition and copper deficiency, hormonal disturbances, myopathy, and intrinsic/iatrogenic bone defects. Direct effects of both CTNS mutation and cysteamine on osteoblasts and osteoclasts are described. Thus, the main objective of this manuscript is not only to provide a clinical update on bone disease in cystinosis, but also to summarize the current experimental evidence demonstrating a functional impairment of bone cells in this disease and to discuss new working hypotheses that deserve future research in the field.
Collapse
Affiliation(s)
- Irma Machuca-Gayet
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
| | - Thomas Quinaux
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
| | - Aurélia Bertholet-Thomas
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
| | - Ségolène Gaillard
- INSERM CIC 1407, CNRS UMR 5558 and Service de Pharmacotoxicologie Clinique, Hospices Civils de Lyon, 69500 Bron, France;
| | - Débora Claramunt-Taberner
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
| | | | - Justine Bacchetta
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
- Faculté de Médecine Lyon Est, Université de Lyon, 69008 Lyon, France
- Correspondence: ; Tel.: +33-4-27-85-61-30
| |
Collapse
|
41
|
Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020; 125:154821. [DOI: 10.1016/j.cyto.2019.154821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
42
|
Khan YA, Maurya SK, Kulkarni C, Tiwari MC, Nagar GK, Chattopadhyay N. Fasciola
helminth defense molecule‐1 protects against experimental arthritis by inhibiting osteoclast formation and function without modulating the systemic immune response. FASEB J 2019; 34:1091-1106. [DOI: 10.1096/fj.201901480rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yasir Akhtar Khan
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Section of Parasitology Department of Zoology Aligarh Muslim University Aligarh India
| | | | - Chirag Kulkarni
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| | | | - Geet Kumar Nagar
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
| | - Naibedya Chattopadhyay
- Division of Endocrinology CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
43
|
Sultana F, Morse LR, Picotto G, Liu W, Jha PK, Odgren PR, Battaglino RA. Snx10 and PIKfyve are required for lysosome formation in osteoclasts. J Cell Biochem 2019; 121:2927-2937. [PMID: 31692073 DOI: 10.1002/jcb.29534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Bone resorption and organelle homeostasis in osteoclasts require specialized intracellular trafficking. Sorting nexin 10 (Snx10) is a member of the sorting nexin family of proteins that plays crucial roles in cargo sorting in the endosomal pathway by its binding to phosphoinositide(3)phosphate (PI3P) localized in early endosomes. We and others have shown previously that the gene encoding sorting Snx10 is required for osteoclast morphogenesis and function, as osteoclasts from humans and mice lacking functional Snx10 are dysfunctional. To better understand the role and mechanisms by which Snx10 regulates vesicular transport, the aim of the present work was to study PIKfyve, another PI3P-binding protein, which phosphorylates PI3P to PI(3,5)P2. PI(3,5)P2 is known to be required for endosome/lysosome maturation, and the inhibition of PIKfyve causes endosome enlargement. Overexpression of Snx10 also induces accumulation of early endosomes suggesting that both Snx10 and PIKfyve are required for normal endosome/lysosome transition. Apilimod is a small molecule with specific, nanomolar inhibitory activity on PIKfyve but only in the presence of key osteoclast factors CLCN7, OSTM1, and Snx10. This observation suggests that apilimod's inhibitory effects are mediated by endosome/lysosome disruption. Here we show that both Snx10 and PIKfyve colocalize to early endosomes in osteoclasts and coimmunoprecipitate in vesicle fractions. Treatment with 10 nM apilimod or genetic deletion of PIKfyve in cells resulted in the accumulation of early endosomes, and in the inhibition of osteoclast differentiation, lysosome formation, and secretion of TRAP from differentiated osteoclasts. Snx10 and PIKfyve also colocalized in gastric zymogenic cells, another cell type impacted by Snx10 mutations. Apilimod-specific inhibition of PIKfyve required Snx10 expression, as it did not inhibit lysosome biogenesis in Snx10-deficient osteoclasts. These findings suggest that Snx10 and PIKfyve are involved in the regulation of endosome/lysosome homeostasis via the synthesis of PI(3,5)P2 and may point to a new strategy to prevent bone loss.
Collapse
Affiliation(s)
- Farhath Sultana
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Gabriela Picotto
- Cátedra de Bioquímica y Biología Molecular, Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Weimin Liu
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO
| | - Prakash K Jha
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Paul R Odgren
- Departments of Cell Biology and Radiology (retired), University of Massachusetts Medical School, Worcester, MA
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
44
|
Astaburuaga R, Quintanar Haro OD, Stauber T, Relógio A. A Mathematical Model of Lysosomal Ion Homeostasis Points to Differential Effects of Cl - Transport in Ca 2+ Dynamics. Cells 2019; 8:E1263. [PMID: 31623161 PMCID: PMC6848924 DOI: 10.3390/cells8101263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The establishment and maintenance of ion gradients between the interior of lysosomes and the cytosol are crucial for numerous cellular and organismal functions. Numerous ion transport proteins ensure the required variation in luminal concentrations of the different ions along the endocytic pathway to fit the needs of the organelles. Failures in keeping proper ion homeostasis have pathological consequences. Accordingly, several human diseases are caused by the dysfunction of ion transporters. These include osteopetrosis, caused by the dysfunction of Cl-/H+ exchange by the lysosomal transporter ClC-7. To better understand how chloride transport affects lysosomal ion homeostasis and how its disruption impinges on lysosomal function, we developed a mathematical model of lysosomal ion homeostasis including Ca2+ dynamics. The model recapitulates known biophysical properties of ClC-7 and enables the investigation of its differential activation kinetics on lysosomal ion homeostasis. We show that normal functioning of ClC-7 supports the acidification process, is associated with increased luminal concentrations of sodium, potassium, and chloride, and leads to a higher Ca2+ uptake and release. Our model highlights the role of ClC-7 in lysosomal acidification and shows the existence of differential Ca2+ dynamics upon perturbations of Cl-/H+ exchange and its activation kinetics, with possible pathological consequences.
Collapse
Affiliation(s)
- Rosario Astaburuaga
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungzentrum (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| | - Orlando Daniel Quintanar Haro
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
| | - Tobias Stauber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany.
- Department of Human Medicine, Medical School Hamburg, 20457 Hamburg, Germany.
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungzentrum (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
| |
Collapse
|
45
|
Urso K, Caetano-Lopes J, Lee PY, Yan J, Henke K, Sury M, Liu H, Zgoda M, Jacome-Galarza C, Nigrovic PA, Duryea J, Harris MP, Charles JF. A role for G protein-coupled receptor 137b in bone remodeling in mouse and zebrafish. Bone 2019; 127:104-113. [PMID: 31173907 PMCID: PMC6708790 DOI: 10.1016/j.bone.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane receptor of unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in vivo and is upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, we tested the effect of GPR137b deficiency on osteoclast maturation and resorbing activity. We used CRISPR/Cas9 gene editing in mouse-derived ER-Hoxb8 immortalized myeloid progenitors to generate GPR137b-deficient osteoclast precursors. Decreasing Gpr137b in these precursors led to increased osteoclast differentiation and bone resorption activity. To explore the role of GPR137b during skeletal development, we generated zebrafish deficient for the ortholog gpr137ba. Gpr137ba-deficient zebrafish are viable and fertile and do not display overt morphological defects as adults. However, analysis of osteoclast function in gpr137ba-/- mutants demonstrated increased bone resorption. Micro-computed tomography evaluation of vertebral bone mass and morphology demonstrated that gpr137ba-deficiency altered the angle of the neural arch, a skeletal site with high osteoclast activity. Vital staining of gpr137ba-/- fish with calcein and alizarin red indicated that bone formation in the mutants is also increased, suggesting high bone turnover. These results identify GPR137b as a conserved negative regulator of osteoclast activity essential for normal resorption and patterning of the skeleton. Further, these data suggest that coordination of osteoclast and osteoblast activity is a conserved process among vertebrates and may have similar regulation.
Collapse
Affiliation(s)
- K Urso
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Caetano-Lopes
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - P Y Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Yan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - K Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M Sury
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Zgoda
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C Jacome-Galarza
- Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - P A Nigrovic
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Duryea
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - J F Charles
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Yu J, Adapala NS, Doherty L, Sanjay A. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Bone 2019; 127:376-385. [PMID: 31299383 PMCID: PMC6708784 DOI: 10.1016/j.bone.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effective bone resorption by osteoclasts is critical for balanced bone remodeling. We have previously reported that mice harboring a substitution mutation of tyrosine 737 to phenylalanine in the adapter protein Cbl (CblY737F, YF) have increased bone volume partly due to decreased osteoclast-mediated bone resorption. The CblY737F mutation abrogates interaction between Cbl and the p85 subunit of PI3K. Here, we studied the mechanism for defective resorptive function of YF mutant osteoclasts. The YF osteoclasts had intact actin cytoskeletons and sealing zones. Expression and localization of proteins needed for acidification of the resorptive lacunae were also comparable between the WT and YF osteoclasts. In contrast, secretion of Cathepsin K, a major protease needed to degrade collagen, was diminished in the conditioned media derived from YF osteoclasts. The targeting of Cathepsin K into LAMP2-positive vesicles was also compromised due to decreased number of LAMP2-positive vesicles in YF osteoclasts. Further, we found that in contrast to WT, conditioned media derived from YF osteoclasts promoted increased numbers of alkaline phosphatase positive colonies, and increased expression of osteogenic markers in WT calvarial cultures. Cumulatively, our results suggest that the Cbl-PI3K interaction regulates Cathepsin K secretion required for proper bone resorption, and secretion of factors which promote osteogenesis.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
47
|
Lee HI, Lee J, Hwang D, Lee G, Kim N, Kwon M, Lee H, Piao D, Kim HJ, Kim NY, Kim HS, Seo EK, Kang D, Jeong W. Dehydrocostus lactone suppresses osteoclast differentiation by regulating NFATc1 and inhibits osteoclast activation through modulating migration and lysosome function. FASEB J 2019; 33:9685-9694. [DOI: 10.1096/fj.201900862r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hye In Lee
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Jiae Lee
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Donghyun Hwang
- Department of Biomedical Engineering Yonsei University Wonju Republic of Korea
| | - Gong‐Rak Lee
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Narae Kim
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Minjeong Kwon
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Hana Lee
- Department of Biomedical Engineering Yonsei University Wonju Republic of Korea
| | - Donglan Piao
- College of Pharmacy Ewha Womans University Seoul Republic of Korea
| | - Hyun Jin Kim
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Nam Young Kim
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering Yonsei University Wonju Republic of Korea
| | - Eun Kyoung Seo
- College of Pharmacy Ewha Womans University Seoul Republic of Korea
| | - Dongmin Kang
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| | - Woojin Jeong
- Department of Life Science Ewha Womans University Seoul Republic of Korea
| |
Collapse
|
48
|
Brooks PJ, Glogauer M, McCulloch CA. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1145-1158. [PMID: 30926333 DOI: 10.1016/j.ajpath.2019.02.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Monocyte lineage cells play important roles in health and disease. Their differentiation into macrophages is crucial for a broad array of immunologic processes that regulate inflammation, neoplasia, and infection. In certain pathologic conditions, such as foreign body reactions and peripheral inflammatory lesions, monocytes fuse to form large, multinucleated giant cells (MGCs). Currently, our knowledge of the fusion mechanisms of monocytes and the regulation of MGC formation and function in discrete pathologies is limited. Herein, we consider the types and function of MGCs in disease and assess the mechanisms by which monocyte fusion contributes to the formation of MGCs. An improved understanding of the cellular origins and metabolic functions of MGCs will facilitate their identification and ultimately the treatment of diseases and disorders that involve MGCs.
Collapse
Affiliation(s)
- Patricia J Brooks
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Michael Glogauer
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
49
|
Plotkin LI, Bruzzaniti A. Molecular signaling in bone cells: Regulation of cell differentiation and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:237-281. [PMID: 31036293 PMCID: PMC7416488 DOI: 10.1016/bs.apcsb.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The achievement of proper bone mass and architecture, and their maintenance throughout life requires the concerted actions of osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells. The differentiation and activity of osteoblasts and osteoclasts are regulated by molecules produced by matrix-embedded osteocytes, as well as by cross talk between osteoblasts and osteoclasts through secreted factors. In addition, it is likely that direct contact between osteoblast and osteoclast precursors, and the contact of these cells with osteocytes and cells in the bone marrow, also modulates bone cell differentiation and function. With the advancement of molecular and genetic tools, our comprehension of the intracellular signals activated in bone cells has evolved significantly, from early suggestions that osteoblasts and osteoclasts have common precursors and that osteocytes are inert cells in the bone matrix, to the very sophisticated understanding of a network of receptors, ligands, intracellular kinases/phosphatases, transcription factors, and cell-specific genes that are known today. These advances have allowed the design and FDA-approval of new therapies to preserve and increase bone mass and strength in a wide variety of pathological conditions, improving bone health from early childhood to the elderly. We have summarized here the current knowledge on selected intracellular signal pathways activated in osteoblasts, osteocytes, and osteoclasts.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Angela Bruzzaniti
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, United States
| |
Collapse
|
50
|
Claramunt-Taberner D, Flammier S, Gaillard S, Cochat P, Peyruchaud O, Machuca-Gayet I, Bacchetta J. Bone disease in nephropathic cystinosis is related to cystinosin-induced osteoclastic dysfunction. Nephrol Dial Transplant 2018; 33:1525-1532. [PMID: 29365190 DOI: 10.1093/ndt/gfx362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Background Bone impairment is a poorly described complication of nephropathic cystinosis (NC). The objectives of this study were to evaluate in vitro effects of cystinosin (CTNS) mutations on bone resorption and of cysteamine treatment on bone cells [namely human osteoclasts (OCs) and murine osteoblasts]. Methods Human OCs were differentiated from peripheral blood mononuclear cells (PBMCs) of patients and healthy donors (HDs). Cells were treated with increasing doses of cysteamine in PBMCs or on mature OCs to evaluate its impact on differentiation and resorption, respectively. Similarly, cysteamine-treated osteoblasts derived from murine mesenchymal stem cells were assessed for differentiation and activity with toxicity and proliferation assays. Results CTNS was expressed in human OCs derived from HDs; its expression was regulated during monocyte colony-stimulating factor- and receptor activator of nuclear factor-κB-dependent osteoclastogenesis and required for efficient bone resorption. Cysteamine had no impact on osteoclastogenesis but inhibited in vitro HD osteoclastic resorption; however, NC OC-mediated bone resorption was impaired only at high doses. Only low concentrations of cysteamine (50 μM) stimulated osteoblastic differentiation and maturation, while this effect was no longer observed at higher concentrations (200 µM). Conclusion CTNS is required for proper osteoclastic activity. In vitro low doses of cysteamine have beneficial antiresorptive effects on healthy human-derived OCs and may partly correct the CTNS-induced osteoclastic dysfunction in patients with NC. Moreover, in vitro low doses of cysteamine also stimulate osteoblastic differentiation and mineralization, with an inhibitory effect at higher doses, likely explaining, at least partly, the bone toxicity observed in patients receiving high doses of cysteamine.
Collapse
Affiliation(s)
- Debora Claramunt-Taberner
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Sacha Flammier
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Ségolène Gaillard
- INSERM CIC 1407, CNRS UMR 5558 and Service de Pharmacotoxicologie Clinique, Hospices Civils de Lyon, Bron, France
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Université de Lyon, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- Université de Lyon, Lyon, France
| |
Collapse
|