1
|
Mpabalwani EM, Sakala C, Kamiji E, Simwaka J, Soko J, Kabwe M, Chisanga A, Chisanga K, Sakala J, Kiulia NM, Sakubita P, Kalesha-Masumbu P, Bakyaita N, Worwui AK, Mwenda JM. Challenges and lessons learned during the switching of rotavirus vaccine from Rotarix to Rotavac in Zambia. Vaccine 2025; 55:127012. [PMID: 40107130 DOI: 10.1016/j.vaccine.2025.127012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Active Rotavirus diarrhea surveillance has been ongoing in Zambia at three dedicated sentinel sites since 2007, focusing on hospitalized children under five years of age. During 2021 and 2022, many African countries, including Zambia, experienced a severe shortage of rotavirus vaccines. This vaccine shortage resulted in many children who were eligible for vaccination remaining unvaccinated. Consequently, these children were exposed to a higher risk of severe acute gastroenteritis. METHODS To ascertain the impact of rotavirus vaccine stock-out and switch in Zambia, a comprehensive desk review was conducted focusing on the switch of the vaccine from Rotarix to Rotavac and the change of the Rotavac formulation. This review encompassed all children under five years of age recruited at the surveillance sites between 2017 and 2023 and the country's comparison of national administrative and WUENIC 2023 rotavirus vaccine coverage rate estimates for 2014 to 2023. March 2022 to April 2023 was defined as the Rotarix vaccine stock-out period. Hospitalization trends, demographic and clinical data, and rotavirus confirmed ELISA results were analyzed. RESULTS Following the introduction of rotavirus vaccine, the number of fully vaccinated children increased steadily over the years, reaching 4.73 million in 2023. However, 2.63 million children missed vaccination between 2016 and 2023. The administrative and WUENIC 2023 estimates for rotavirus coverage rates were the same during the period under review. Hospitalized diarrhea cases and rotavirus positivity rates remained essentially the same during the in-stock and stock-out periods of rotavirus vaccine. However, mortality rates increased three-fold during the vaccine stock-out period. CONCLUSION The impact of the Rotarix vaccine era was reversed due to the global supply chain disruptions, leading to missed vaccinations, increased diarrhea-related hospitalizations, and higher infant mortality in Zambia. The COVID-19 pandemic may also have further disrupted the vaccination sessions, further impacting rotavirus vaccination. Rotarix shortages likely contributed to rising rotavirus cases. There is an urgent need to completely replace the old under-5 vaccination card with a revised one to improve documentation for new rotavirus vaccines.
Collapse
Affiliation(s)
- E M Mpabalwani
- University of Zambia, School of Medicine, Department of Paediatrics & Child Health, Lusaka, Zambia; University Teaching Hospitals, Children's Hospital, Lusaka, Zambia.
| | - C Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - E Kamiji
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - J Simwaka
- Levy Mwanawasa Medical University, Institute of Basic and Biomedical Sciences, Lusaka, Zambia
| | - J Soko
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - M Kabwe
- University Teaching Hospitals, Adult Hospital, Virology Laboratory, Lusaka, Zambia
| | - Andrew Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - Kelly Chisanga
- University Teaching Hospitals, Children's Hospital, Lusaka, Zambia
| | - J Sakala
- Ministry of Health, Headquarters, Child Health Unit, Expanded Programme on Immunization Secretariat, Lusaka, Zambia
| | - N M Kiulia
- Enteric Pathogens and Water Research Laboratory, Kenya Institute of Primate Research, Karen, Nairobi, Kenya
| | - P Sakubita
- WHO/Zambia Country Office, Lusaka, Zambia
| | | | - N Bakyaita
- WHO/Zambia Country Office, Lusaka, Zambia
| | - A K Worwui
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| | - J M Mwenda
- WHO Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of, Congo
| |
Collapse
|
2
|
Trujillo E, Angulo C. Plant-Made Vaccines Targeting Enteric Pathogens-Safe Alternatives for Vaccination in Developing Countries. Biotechnol Bioeng 2025; 122:457-480. [PMID: 39620322 DOI: 10.1002/bit.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
Enteric diseases by pathogenic organisms are one of the leading causes of death worldwide, particularly in low-income countries. Despite antibiotics, access to clean water and vaccination are the most economically affordable options to prevent those infections and their health consequences. Vaccines, such as those approved for rotavirus and cholera, have played a key role in preventing several enteric diseases. However, vaccines for other pathogens are still in clinical trials. Distribution and cost remain significant barriers to vaccine access in developing regions due to poor healthcare infrastructure, cold-chain requirements, and high production costs. Plant-made vaccines offer a promising alternative to address these challenges. Plants can be easily grown, lowering production costs, and can be administered in oral forms, potentially eliminating cold-chain dependency. Although there are some promising prototypes of vaccines produced in plants, challenges remain, including yields and achieving sufficient immunogenicity. This review aims to describe common enteric pathogens and available vaccines, followed by a strategic summary of plant-made vaccine development and a discussion of plant-made enteric vaccine prototypes. Trends to overcome the key challenges for plant-made vaccines are identified and placed in perspective for the development of affordable and effective vaccines for populations at the highest risk of enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
3
|
Zajac L, Landrigan PJ. Environmental Issues in Global Pediatric Health: Technical Report. Pediatrics 2025; 155:e2024070076. [PMID: 39832723 DOI: 10.1542/peds.2024-070076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Pediatricians and pediatric trainees in North America are increasingly involved in caring for children and adolescents in or from low- and middle-income countries (LMICs). In many LMICs, toxic environmental exposures-notably outdoor and household air pollution, water pollution, lead, hazardous waste disposal, pesticides, and other manufactured chemicals-are highly prevalent and account for twice as great a proportion of disease and deaths among young children as in North America. Climate change will likely worsen these exposures. It is important that pediatricians and other pediatric health professionals from high-income countries who plan to work in LMICs be aware of the disproportionately severe impacts of environmental hazards, become knowledgeable about the major toxic threats to children's health in the countries and communities where they will be working, and consider environmental factors in their differential diagnoses. Likewise, pediatricians in high-income countries who care for children and adolescents who have emigrated from LMICs need to be aware that these children may be at elevated risk of diseases caused by past exposures to toxic environmental hazards in their countries of origin as well as ongoing exposures in products such as traditional foods, medications, and cosmetics imported from their original home countries. Because diseases of toxic environmental origin seldom have unique physical signatures, the environmental screening history, supplemented by laboratory testing, is the principal diagnostic tool. The goal of this technical report is to enhance pediatricians' ability to recognize, diagnose, and manage disease caused by hazardous environmental exposures, especially toxic chemical exposures, in all countries and especially in LMICs.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Environmental Medicine and Public Health and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Chestnut Hill, Massachusetts; Centre Scientifique de Monaco, Monaco, MC
| |
Collapse
|
4
|
Zajac L, Landrigan PJ. Environmental Issues in Global Pediatric Health: Policy Statement. Pediatrics 2025; 155:e2024070075. [PMID: 39832724 DOI: 10.1542/peds.2024-070075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Pediatricians and pediatric trainees in North America are increasingly involved in caring for children and adolescents in or from low- and middle-income countries (LMICs). In many LMICs, hazardous environmental exposures-notably outdoor and household air pollution, water pollution, lead, pesticides, and other manufactured chemicals-are highly prevalent and account for twice the proportion of disease and deaths among young children as in North America. Climate change will likely worsen these exposures. It is important that pediatricians and other pediatric health professionals from high-income countries who work in LMICs be aware of the disproportionately severe impacts of toxic environmental hazards, become knowledgeable about the major local/regional environmental threats, and consider environmental factors in their differential diagnoses. Likewise, pediatricians in high-income countries who care for patients who have emigrated from LMICs need to be aware that these children may be at elevated risk of toxic environmental diseases from past exposures to toxic environmental hazards in their countries of origin as well as ongoing exposures in products imported from their home countries, including traditional foods, medications, and cosmetics. Because diseases of toxic environmental origin seldom have unique physical signatures, pediatricians can utilize the environmental screening history, supplemented by laboratory testing, as a diagnostic tool. To prepare pediatricians to care for children in and from LMICs, pediatric organizations could increase the amount of environmental health and climate change content offered in continuing medical education (CME) credits, maintenance of certification (MOC) credits, and certification and recertification examinations. Broadly, it is important that governments and international agencies increase resources directed to pollution prevention, strengthen the environmental health workforce, and expand public health infrastructure in all countries.
Collapse
Affiliation(s)
- Lauren Zajac
- Department of Environmental Medicine and Public Health and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Chestnut Hill, Massachusetts; Centre Scientifique de Monaco, Monaco, MC
| |
Collapse
|
5
|
Oishi T, Hasegawa S, Nakano T, Sudo S, Kuwajima H, Tokuriki S, Tamura T. Changes in vaccine coverage and incidence of acute gastroenteritis and severe rotavirus gastroenteritis in children <5 years in Shibata City, Niigata Prefecture, Japan. Hum Vaccin Immunother 2024; 20:2322202. [PMID: 38478958 PMCID: PMC10939147 DOI: 10.1080/21645515.2024.2322202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Rotavirus (RV) vaccines were first introduced in 2011 and adopted for universal vaccination in 2020 in Japan. However, the effectiveness of RV vaccines after being adopted for universal vaccination in 2020 has not been reported. Because of the easy accessibility of clinics in Japan, many children are not usually hospitalized for RV gastroenteritis (RVGE). Therefore, in order to evaluate the impact of the RV vaccine since 2008, we investigated the incidence of hospitalization for RVGE as well as the frequency of children aged < 5 years who received medical treatment for severe RVGE at clinics in Shibata City, Japan. The RV vaccine coverage rate was 94.0% (1,046/1,113) in Shibata City after universal vaccination in 2020; this was a significant increase from previous rates. The incidence per 1000 person - years for RVGE hospitalization and severe RVGE at clinics were significantly higher among children aged < 3 years than in previous time periods. The incidence in children with all acute gastroenteritis (AGE) decreased significantly after universal vaccination during the COVID-19 pandemic. The proportion of severe RVGE among all AGE cases also decreased significantly after universal vaccination among children aged < 3 years (0.0%) and those aged 3-4 years (0.6%). There were significant differences in the distribution of RV genotypes isolated from the feces of children with RVGE between different eras divided by RV vaccination rates, especially G1P[8], which was the major genotype before it recently almost disappeared. Further studies are warranted to assess the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tomohiro Oishi
- Department of Clinical Infectious Diseases, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Satoshi Hasegawa
- Pediatric Department, Niigata Prefectural Shibata Hospital, Shibata, Niigata, Japan
| | - Tokushi Nakano
- Pediatric Department, Nakano Children’s Clinic, Shibata, Niigata, Japan
| | - Shoji Sudo
- Pediatric Department, Sudo Pediatric Clinic, Shibata, Niigata, Japan
| | | | - Shuko Tokuriki
- Pediatric Department, Twin Smile Clinic, Shibata, Niigata, Japan
| | - Tsutomu Tamura
- Department of Virology, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| |
Collapse
|
6
|
Kang G, Lakhkar A, Bhamare C, Dharmadhikari A, Narwadkar J, Kanujia A, Desai S, Gunale B, Poonawalla CS, Kulkarni PS. Post-marketing safety surveillance of the rotavirus vaccine in India. Vaccine X 2023; 15:100362. [PMID: 37593522 PMCID: PMC10430202 DOI: 10.1016/j.jvacx.2023.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Background ROTASIIL, an oral live attenuated bovine-human reassortant pentavalent rotavirus vaccine, was approved in 2017. This post-marketing surveillance (PMS) was conducted to collect real-world data on the safety of ROTASIIL in India. Methods Observational, active PMS was conducted in approximately 10,000 infants aged ≥ 6 weeks. ROTASIIL was administered as a 3-dose regimen, at least 4 weeks apart, beginning at ≥ 6 weeks of age concomitantly with other Expanded Programme on Immunization (EPI) vaccines. Participants were followed for one month after the last dose. The adverse events (AEs) and serious adverse events (SAEs), including intussusception (IS) reported during the follow up period were collected. Findings A total of 9940 infants were enrolled and were considered for safety analysis. Around 9913 (99.7 %) infants received 2 doses, while 9893 (99.5 %) infants completed all three doses. Total 3693 AEs were reported in 2516 (25.3 %) participants. Most of these AEs were pyrexia (78.01 % of events) and injection-site reactions (19.14 % of events). Nearly all AEs were causally unrelated to orally administered ROTASIIL and could be caused by the concomitant injectable vaccines. Only 4 AEs (2 events of vomiting and 1 event each of discomfort and pyrexia) in 4 (<0.1 %) participants could be related to ROTASIIL. AEs were of mild or moderate severity and all resolved without any sequelae. A total of 2 SAEs (acute otitis media and skull fracture) were reported in 2 (<0.1 %) participants and were not related to ROTASIIL and recovered without sequelae. No case of IS was reported. Interpretation ROTASIIL was safe and well tolerated in this study. No safety concerns were reported. Funding The study was funded by SIIPL which is the manufacturer of the study product.
Collapse
Affiliation(s)
- Gagandeep Kang
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | | | - Arti Kanujia
- LabCorp Scientific Services & Solutions Pvt Ltd, Mumbai, India
| | | | | | | | | |
Collapse
|
7
|
Fellows T, Page N, Fix A, Flores J, Cryz S, McNeal M, Iturriza-Gomara M, Groome MJ. Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial. Viruses 2023; 15:1809. [PMID: 37766217 PMCID: PMC10536230 DOI: 10.3390/v15091809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
A correlate of protection for rotavirus (RV) has not been consistently identified. Shedding of RV following an oral rotavirus vaccine (ORV) challenge has been investigated as a potential model to assess protection of parenteral RV vaccines. We previously showed that shedding of a challenge ORV dose was significantly reduced among recipients of a parenteral monovalent RV subunit vaccine (P2-VP8-P[8]) compared to placebo recipients. This secondary data analysis assessed the association between fecal shedding of RV, as determined by ELISA one week after receipt of a Rotarix challenge dose at 18 weeks of age, and serum RV-specific antibody responses, one and six months after vaccination with the third dose of the P2-VP8-P[8] vaccine or placebo. We did not find any association between serum RV-specific immune responses measured one month post-P2-VP8-P[8] vaccination and fecal shedding of RV post-challenge. At nine months of age, six months after the third P2-VP8-P[8] or placebo injection and having received three doses of Rotarix, infants shedding RV demonstrated higher immune responses than non-shedders, showing that RV shedding is reflective of vaccine response following ORV. Further evaluation is needed in a larger sample before fecal shedding of an ORV challenge can be used as a measure of field efficacy in RV vaccine trials.
Collapse
Affiliation(s)
- Tamika Fellows
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa;
| | - Nicola Page
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Sandringham 2192, South Africa;
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Alan Fix
- PATH, Seattle, WA 98121, USA (S.C.)
| | | | | | - Monica McNeal
- Department of Pediatrics, University of Cincinnati Medical School, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Michelle J. Groome
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
8
|
Tate JE, Cortese MM, Offit PA, Parashar UD. Rotavirus Vaccines. PLOTKIN'S VACCINES 2023:1005-1024.e11. [DOI: 10.1016/b978-0-323-79058-1.00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Vetter V, Gardner RC, Debrus S, Benninghoff B, Pereira P. Established and new rotavirus vaccines: a comprehensive review for healthcare professionals. Hum Vaccin Immunother 2022; 18:1870395. [PMID: 33605839 PMCID: PMC8920198 DOI: 10.1080/21645515.2020.1870395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023] Open
Abstract
Robust scientific evidence related to two rotavirus (RV) vaccines available worldwide demonstrates their significant impact on RV disease burden. Improving RV vaccination coverage may result in better RV disease control. To make RV vaccination accessible to all eligible children worldwide and improve vaccine effectiveness in high-mortality settings, research into new RV vaccines continues. Although current and in-development RV vaccines differ in vaccine design, their common goal is the reduction of RV disease risk in children <5 years old for whom disease burden is the most significant. Given the range of RV vaccines available, informed decision-making is essential regarding the choice of vaccine for immunization. This review aims to describe the landscape of current and new RV vaccines, providing context for the assessment of their similarities and differences. As data for new vaccines are limited, future investigations will be required to evaluate their performance/added value in a real-world setting.
Collapse
Affiliation(s)
- Volker Vetter
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Robert C. Gardner
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Serge Debrus
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Bernd Benninghoff
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| | - Priya Pereira
- Medical Affairs Department, GSK, Wavre, Belgium
- Vaccines R&D – Technical R&D, GSK, Wavre, Belgium
| |
Collapse
|
10
|
Virus Association with Gastric Inflammation and Cancer: An Updated Overview. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Banerjee S, Sarkar R, Mukherjee A, Miyoshi SI, Kitahara K, Halder P, Koley H, Chawla-Sarkar M. Quercetin, a flavonoid, combats rotavirus infection by deactivating rotavirus-induced pro-survival NF-κB pathway. Front Microbiol 2022; 13:951716. [PMID: 35983320 PMCID: PMC9379144 DOI: 10.3389/fmicb.2022.951716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis and watery diarrhea in children under 5 years accounting for high morbidity and mortality in countries with poor socioeconomic status. Although vaccination against RV has been implemented in more than 100 countries, the efficacy of vaccine has been challenged in low-income settings. The lack of any FDA-approved drug against RV is an additional concern regarding the treatment associated with rotavirus-induced infantile death. With the purpose for the discovery of anti-RV therapeutics, we assessed anti-rotaviral potential of quercetin, a well-characterized antioxidant flavonoid. In vitro study revealed that quercetin treatment resulted in diminished production of RV-SA11 (simian strain) viral particles in a concentration-dependent manner as estimated by the plaque assay. Consistent with this result, Western blot analysis also revealed reduced synthesis of viral protein in quercetin-treated RV-SA11-infected MA104 cells compared to vehicle (DMSO) treated controls. Not surprisingly, infection of other RV strains A5-13 (bovine strain) and Wa (Human strain) was also found to be abridged in the presence of quercetin compared to DMSO. The IC50 of quercetin against three RV strains ranges between 2.79 and 4.36 Mm, and S.I. index is greater than 45. Concurrent to the in vitro results, in vivo study in mice model also demonstrated reduced expression of viral proteins and viral titer in the small intestine of quercetin-treated infected mice compared to vehicle-treated infected mice. Furthermore, the result suggested anti-rotaviral activity of quercetin to be interferon-independent. Mechanistic study revealed that the antiviral action of quercetin is co-related with the inhibition of RV-induced early activation of NF-κB pathway. Overall, this study delineates the strong anti-RV potential of quercetin and also proposes it as future therapeutics against rotaviral diarrhea.
Collapse
Affiliation(s)
- Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rakesh Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Shin-ichi Miyoshi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama University, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- *Correspondence: Mamta Chawla-Sarkar ;
| |
Collapse
|
12
|
Skrobarczyk JW, Martin CL, Bhatia SS, Pillai SD, Berghman LR. Electron-Beam Inactivation of Human Rotavirus (HRV) for the Production of Neutralizing Egg Yolk Antibodies. Front Immunol 2022; 13:840077. [PMID: 35359996 PMCID: PMC8964080 DOI: 10.3389/fimmu.2022.840077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Electron beam (eBeam) inactivation of pathogens is a commercially proven technology in multiple industries. While commonly used in a variety of decontamination processes, this technology can be considered relatively new to the pharmaceutical industry. Rotavirus is the leading cause of severe gastroenteritis among infants, children, and at-risk adults. Infections are more severe in developing countries where access to health care, clean food, and water is limited. Passive immunization using orally administered egg yolk antibodies (chicken IgY) is proven for prophylaxis and therapy of viral diarrhea, owing to the stability of avian IgY in the harsh gut environment. Since preservation of viral antigenicity is critical for successful antibody production, the aim of this study was to demonstrate the effective use of electron beam irradiation as a method of pathogen inactivation to produce rotavirus-specific neutralizing egg yolk antibodies. White leghorn hens were immunized with the eBeam-inactivated viruses every 2 weeks until serum antibody titers peaked. The relative antigenicity of eBeam-inactivated Wa G1P[8] human rotavirus (HRV) was compared to live virus, thermally, and chemically inactivated virus preparations. Using a sandwich ELISA (with antibodies against recombinant VP8 for capture and detection of HRV), the live virus was as expected, most immunoreactive. The eBeam-inactivated HRV’s antigenicity was better preserved when compared to thermally and chemically inactivated viruses. Additionally, both egg yolk antibodies and serum-derived IgY were effective at neutralizing HRV in vitro. Electron beam inactivation is a suitable method for the inactivation of HRV and other enteric viruses for use in both passive and active immunization strategies.
Collapse
Affiliation(s)
- Jill W. Skrobarczyk
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Cameron L. Martin
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Sohini S. Bhatia
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, United States
| | - Suresh D. Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, United States
- Department of Food Science and Technology, Texas A&M University, College Station, TX, United States
| | - Luc R. Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- *Correspondence: Luc R. Berghman,
| |
Collapse
|
13
|
Bergman H, Henschke N, Hungerford D, Pitan F, Ndwandwe D, Cunliffe N, Soares-Weiser K. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2021; 11:CD008521. [PMID: 34788488 PMCID: PMC8597890 DOI: 10.1002/14651858.cd008521.pub6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence). In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence). In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence). We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare. AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Daniel Hungerford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council , Cape Town, South Africa
| | - Nigel Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
14
|
Castillo-Esparza JF, Gómez-Lim MA. Transient Expression in Cytoplasm and Apoplast of Rotavirus VP6 Protein Fused to Anti-DEC205 Antibody in Nicotiana benthamiana and Nicotiana sylvestris. Mol Biotechnol 2021; 63:973-982. [PMID: 34146324 PMCID: PMC8214057 DOI: 10.1007/s12033-021-00359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Collapse
Affiliation(s)
- J Francisco Castillo-Esparza
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
15
|
Kurokawa N, Robinson MK, Bernard C, Kawaguchi Y, Koujin Y, Koen A, Madhi S, Polasek TM, McNeal M, Dargis M, Couture MMJ, Trépanier S, Forrest BD, Tsutsui N. Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine 2021; 39:5513-5523. [PMID: 34454786 DOI: 10.1016/j.vaccine.2021.08.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is the first clinical trial for a parenteral non-replicating rotavirus vaccine developed using virus-like particle (VLP) technology. METHODS This open-labeled, randomized, placebo-controlled trial was conducted in two parts: Part A (a first-in-human study in Australian adults) and Part B (ascending dose and descending age in South African adults, toddlers and infants). In Part A, two cohorts of 10 adults were assigned to receive a single intramuscular injection of 1 of 2 escalating dose levels of the rotavirus VLP (Ro-VLP) vaccine (7 μg or 21 μg) or placebo. In Part B, one cohort of 10 adults was assigned to receive a single injection of the Ro-VLP vaccine (21 μg) or placebo, two cohorts of 10 toddlers were assigned to receive 2 injections of 1 of 2 escalating dose levels of the Ro-VLP vaccine (7 μg or 21 μg) or placebo 28 days apart, and three cohorts of 20 infants were assigned to receive 3 injections of 1 of 3 escalating dose levels of the Ro-VLP vaccine (2.5 μg, 7 μg or 21 μg) or placebo or 2 doses of oral Rotarix 28 days apart. Safety, reactogenicity and immunogenicity were assessed. RESULTS There were no safety or tolerability concerns after administration of the Ro-VLP vaccine. The Ro-VLP vaccine induced an anti-G1P[8] IgG response in infants 4 weeks after the second and third doses. Neutralizing antibody responses against homologous G1P[8] rotavirus were higher in all Ro-VLP infant groups than in the placebo group 4 weeks after the third dose. No heterotypic immunity was elicited by the Ro-VLP vaccine. CONCLUSIONS The Ro-VLP vaccine was well tolerated and induced a homotypic immune response in infants, suggesting that this technology platform is a favorable approach for a parenteral non-replicating rotavirus vaccine. CLINICAL TRIAL REGISTRATION NCT03507738.
Collapse
Affiliation(s)
- Natsuki Kurokawa
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan.
| | | | - Catherine Bernard
- International Regulatory Affairs Services, Inc., 10626 Wagon Box Way, Highlands Ranch, CO 80130, USA
| | - Yutaka Kawaguchi
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Yoshito Koujin
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Anthonet Koen
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Shabir Madhi
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Thomas M Polasek
- Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Road, Adelaide, SA 5000, Australia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Manon M-J Couture
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Bruce D Forrest
- Cognoscenti Bioscience, LLC., PO Box 444, Nyack, NY 10960, USA
| | - Naohisa Tsutsui
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| |
Collapse
|
16
|
Moodley Y, Moodley VM, Mashele SS, Kiran RP, Madiba TE. Geospatial distribution of severe paediatric intussusception in KwaZulu-Natal province, South Africa. Pan Afr Med J 2020; 36:320. [PMID: 33193974 PMCID: PMC7603819 DOI: 10.11604/pamj.2020.36.320.19814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction intussusception in South African (SA) children is often severe. A proportion of cases require management at quaternary hospitals which are a scare resource in SA. A geospatial investigation of severe paediatric intussusception (SPI) in the KwaZulu-Natal (KZN) province of SA would assist with identifying regions which should be targeted for preventative interventions. This could reduce resource utilisation for this condition at quaternary hospitals. The objective of this study was to determine the geospatial distribution of SPI in KZN. Methods this was a retrospective analysis of data for patients with SPI who were admitted to a quaternary hospital in KZN over an 11-year period. Data related to patient demographics, duration of hospitalization, surgical intervention, inpatient mortality and residential postal code were extracted from the electronic hospital admissions system. Each residential postal code was linked to a corresponding KZN district municipality. Descriptive statistical methods were used to determine the distribution of various characteristics in the study sample. Semi-quantitative geospatial analysis was used to determine the distribution of patients with SPI in each KZN district municipality. Results the study sample consisted of 182 patients with SPI. Most patients were <1 year old (83.5%), male (51.1%) and black African (87.9%). All patients underwent surgical intervention. Inpatient mortality was 2.7%. The majority of patients in the study sample resided in the eThekwini and King Cetshwayo district municipalities (51.1% and 14.8%, respectively). Conclusion preventative interventions for SPI should be considered for rollout in the eThekwini and King Cetshwayo district municipalities of KZN, SA.
Collapse
Affiliation(s)
- Yoshan Moodley
- Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | | | - Sitheni Samson Mashele
- Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Ravi Pokala Kiran
- Columbia University Medical Center and Mailman School of Public Health, New York, USA
| | | |
Collapse
|
17
|
Groome MJ, Glass RI. Winning the Battle Against Rotavirus Diarrhea…One Step at a Time. J Infect Dis 2020; 222:1587-1588. [PMID: 32123895 DOI: 10.1093/infdis/jiaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michelle J Groome
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roger I Glass
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Oishi T, Matsunaga M, Nakano T, Sudo S, Kuwajima H, Tokuriki S, Study SR. Occurrence of severe rotavirus gastroenteritis in children younger than three years of age before and after the introduction of rotavirus vaccine: a prospective observational study in four pediatric clinics in Shibata City, Niigata Prefecture, Japan. Hum Vaccin Immunother 2020; 16:2495-2501. [PMID: 32609565 PMCID: PMC7644216 DOI: 10.1080/21645515.2020.1720435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Japan, rotavirus (RV) vaccines have already been introduced but not used for universal vaccination as of 2018. Therefore, we identified cases of severe rotavirus gastroenteritis (RVGE) in children younger than three years of age and investigated the occurrence of infection before and after the introduction of RV vaccines. An ecological study through prospective surveillance was conducted in four pediatric clinics in Shibata City, Niigata Prefecture, Japan, during the 2011 to 2018 RVGE epidemic seasons. We divided the study period into three eras: pre-vaccine introduction era (2011), low-mid coverage transitional era (2012 to 2014, RV vaccine coverage rate: 32.9–56.5%), and high coverage plateau era (2015 to 2018, 67.7–81.7%). In this study, the incidence rate of severe RVGE was significantly lower in the plateau era than in the pre-vaccine introduction and transitional eras. Furthermore, the hospitalization rate due to RVGE in Shibata City was lower in the plateau era than in the pre-vaccination introduction and transitional eras. The number of hospitalizations due to RVGE in subjects who required or did not require intravenous rehydration at the pediatric clinics significantly decreased with the increase in vaccine coverage rates by more than 70% in the plateau era.
Collapse
Affiliation(s)
- Tomohiro Oishi
- Department of Pediatrics, Kawasaki Medical School , Kurashiki, Japan
| | - Masamichi Matsunaga
- Pediatric Department, Niigata Prefectural Shibata Hospital , Shibata City, Japan
| | - Tokushi Nakano
- Pediatric Department, Nakano Children's Clinic , Shibata City, Japan
| | - Shoji Sudo
- Pediatric Department, Sudo Pediatric Clinic , Shibata City, Japan
| | | | - Shuko Tokuriki
- Pediatric Department, Twin Smile Clinic , Shibata City, Japan
| | | |
Collapse
|
19
|
Risk of intussusception after monovalent rotavirus vaccine (Rotavac) in Indian infants: A self-controlled case series analysis. Vaccine 2020; 39:78-84. [PMID: 32972735 PMCID: PMC7738754 DOI: 10.1016/j.vaccine.2020.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
Background An association between rotavirus vaccination and intussusception has been documented in post-licensure studies in some countries. We evaluated the risk of intussusception associated with monovalent rotavirus vaccine (Rotavac) administered at 6, 10 and 14 weeks of age in India. Methods Active prospective surveillance for intussusception was conducted at 22 hospitals across 16 states from April 2016 through September 2017. Data on demography, clinical features and vaccination were documented. Age-adjusted relative incidence for 1–7, 8–21, and 1–21 days after rotavirus vaccination in children aged 28–364 days at intussusception onset was estimated using the self-controlled case-series (SCCS) method. Only Brighton Collaboration level 1 cases were included. Results Out of 670 children aged 2–23 months with intussusception, 311 (46.4%) children were aged 28–364 days with confirmed vaccination status. Out of these, 52 intussusception cases with confirmed receipt of RVV were included in the SCCS analysis. No intussusception case was observed within 21 days of dose 1. Only one case occurred during 8–21 days after the dose 2. Post-dose 3, two cases in 1–7 days and 7 cases during 8–21 days period were observed. There was no increased risk of intussusception during 1–7 days after the doses 1 and 2 (zero cases observed) or dose 3 (relative incidence [RI], 1.71 [95% confidence interval {CI} 0.0–5.11]). Similarly, no increased risk during 8–21 days after the dose 1 (zero cases observed), dose 2 (RI, 0.71 [95% CI, 0.0–3.28]) or dose 3 (RI, 2.52 [95% CI, 0.78–5.61]). The results were similar for 1–21 day periods after the doses separately or pooled. Conclusions The risk of intussusception during the first 21 days after any dose of rotavirus vaccine (Rotavac) was not higher among the Indian infants than the background risk, based on limited SCCS analysis of 52 children.
Collapse
|
20
|
Prospective surveillance for intussusception in Indian children aged under two years at nineteen tertiary care hospitals. BMC Pediatr 2020; 20:413. [PMID: 32873281 PMCID: PMC7461288 DOI: 10.1186/s12887-020-02293-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background India introduced rotavirus vaccines (RVV, monovalent, Rotavac™ and pentavalent, Rotasiil™) in April 2016 with 6, 10 and 14 weeks schedule and expanded countrywide in phases. We describe the epidemiology of intussusception among children aged 2–23 months in India. Methods The prospective surveillance at 19 nationally representative sentinel hospitals from four regions recruited children with intussusception from April 2016 to September 2017. Data on sociodemography, immunization, clinical, treatment and outcome were collected. Along with descriptive analysis, key parameters between four regions were compared using Chi-Square/Fisher’s exact/Mann–Whitney U/Kruskal-Wallis tests. The pre- and post-RVV periods were compared to estimate the risk ratios. Results Six hundred twenty-one children with intussusception from South (n = 262), East (n = 190), North (n = 136) and West (n = 33) regions were recruited. Majority (n = 465, 74.8%) were infants (40.0% aged 4–7 months) with median age 8 months (IQR 5, 13 months), predominantly males (n = 408, 65.7%) and half (n = 311, 50.0%) occurred during March–June months. A shorter interval between weaning and intussusception was observed for ragi based food (median 1 month, IQR 0–4.2 months) compared to rice (median 4 months, IQR 1–9 months) and wheat (median 3 months, IQR 1–7 months) based food (p < 0.01). Abdominal pain or excessive crying (82.8%), vomiting (72.6%), and bloody stool (58.1%) were the leading symptoms. Classical triad (abdominal pain, vomiting and bloody stool) was observed in 34.8% cases (24.4 to 45.8% across regions). 95.3% of the cases were diagnosed by ultrasound. 49.3% (10.5 to 82.4% across regions) cases were managed by reduction, 39.5% (11.5 to 71.1% across regions) cases underwent surgery and 11.1% spontaneously resolved. Eleven (1.8%) cases died. 89.1% cases met Brighton criteria level 1 and 7.6% met Level 2. RVV was received by 12 cases within 1–21 days prior to intussusception. No increase in case load (RR = 0.44; 95% CI 0.22–1.18) or case ratio (RR = 0.5; 95% CI 0.3–1.2) was observed after RVV introduction in select sites. Conclusions Intussusception cases were observed across all sites, although there were variations in cases, presentation and mode of management. The high case load age coincided with age of the RVV third dose. The association with ragi based weaning food in intussusception needs further evaluation.
Collapse
|
21
|
Shah BR, Li B, Al Sabbah H, Xu W, Mráz J. Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends Food Sci Technol 2020; 102:178-192. [PMID: 32834500 PMCID: PMC7309926 DOI: 10.1016/j.tifs.2020.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Background Dietary fibers (DFs) are known as potential formulations in human health due to their beneficial effects in control of life-threatening chronic diseases including cardiovascular disease (CVD), diabetes mellitus, obesity and cancer. In recent decades scientists around the globe have shown tremendous interest to evaluate the interplay between DFs and gastrointestinal (GIT) microbiota. Evidences from various epidemiological and clinical trials have revealed that DFs modulate formation and metabolic activities of the microbial communities residing in the human GIT which in turn play significant roles in maintaining health and well-being. Furthermore, interestingly, a rapidly growing literature indicates success of DFs being prebiotics in immunomodulation, namely the stimulation of innate, cellular and humoral immune response, which could also be linked with their significant roles in modulation of the probiotics (live beneficial microorganisms). Scope and approach The main focus of the current review is to expressively highlight the importance of DFs being prebiotics in human health in association with their influence on gut microbiota. Now in order to significantly achieve the promising health benefits from these prebiotics, it is aimed to develop novel formulations to enhance and scale up their efficacy. Therefore, finally, herein unlike previously published articles, we highlighted different kinds of prebiotic and probiotic formulations which are being regarded as hot research topics among the scientific community now a days. Conclusion The information in this article will specifically provide a platform for the development of novel functional foods the demands for which has risen drastically in recent years.
Collapse
Key Words
- CS, chitosan
- Dietary fiber
- Encapsulation
- FOS, Fructooligosaccharide
- Formulations
- GIT, Gastro intestinal tract
- GO, gum odina
- Gut micro-biota
- Human health
- In, Inulin
- MD, maltodextrin
- OL, oligofructose
- OSA, octenyl-succinic anhydride
- PS, potato starch
- PSY, plantago psyllium
- Prebiotics
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haleama Al Sabbah
- Department of Public Health Nutrition, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Jan Mráz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
22
|
Hallowell BD, Tate J, Parashar U. An overview of rotavirus vaccination programs in developing countries. Expert Rev Vaccines 2020; 19:529-537. [PMID: 32543239 DOI: 10.1080/14760584.2020.1775079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Rotavirus is the leading cause of acute diarrhea among children <5 years worldwide. As all children are equally susceptible to infection and disease development, rotavirus vaccination programs are the best upstream approach to preventing rotavirus disease, and the subsequent risk of hospitalization or death. AREAS COVERED We provide an overview of global rotavirus vaccine policy, summarize the burden of rotavirus disease in developing countries, review data on the effectiveness, impact, safety, and the cost-effectiveness of rotavirus vaccination programs, and identify areas for further research and improvement. EXPERT OPINION Rotavirus vaccines continue to be an effective, safe, and cost-effective solution to preventing rotavirus disease. As two new rotavirus vaccines enter the market (Rotasiil and Rotavac) and Asian countries continue to introduce rotavirus vaccines into their national immunization programs, documenting vaccine safety, effectiveness, and impact in these settings will be paramount.
Collapse
Affiliation(s)
- Benjamin D Hallowell
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA.,Epidemic Intelligence Service, CDC , Atlanta, GA, USA
| | - Jacqueline Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| |
Collapse
|
23
|
De Jesus MCS, Santos VS, Storti-Melo LM, De Souza CDF, Barreto ÍDDC, Paes MVC, Lima PAS, Bohland AK, Berezin EN, Machado RLD, Cuevas LE, Gurgel RQ. Impact of a twelve-year rotavirus vaccine program on acute diarrhea mortality and hospitalization in Brazil: 2006-2018. Expert Rev Vaccines 2020; 19:585-593. [DOI: 10.1080/14760584.2020.1775081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Victor Santana Santos
- Departamento De Enfermagem. Núcleo De Epidemiologia E Saúde Pública, Universidade Federal De Alagoas, Arapiraca, Brazil
| | | | | | | | | | | | | | - Eitan N. Berezin
- Department of Pediatrics, Santa Casa De Misericórdia School of Medicine, São Paulo, Brazil
| | - Ricardo Luiz Dantas Machado
- Postgraduate Program in Applied Microbiology and Parasitology, Federal University of Fluminense, Rio De Janeiro, Brazil
- Centro De Investigação De Microrganismos, Universidade Federal Fluminense, Rio De Janeiro, Brazil
| | - Luis Eduardo Cuevas
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | |
Collapse
|
24
|
Sato Y, Yamaki Y, Sasaki Y, Kajino H. Rotavirus Vaccine Effectiveness against the Risk of Hospitalization and the Impact of Using Public Funds for the Vaccine on a Regional Rotavirus Gastroenteritis Epidemic in Japan. Jpn J Infect Dis 2020; 73:161-163. [DOI: 10.7883/yoken.jjid.2019.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yuko Sato
- Department of pediatrics, Abashiri-Kosei General Hospital
- Department of Microbiology, Fukushima Medical University
| | - Yukari Yamaki
- Department of pediatrics, Abashiri-Kosei General Hospital
- Department of pediatrics, Asahikawa-Kosei General Hospital
| | | | - Hiroki Kajino
- Department of pediatrics, Abashiri-Kosei General Hospital
| |
Collapse
|
25
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
26
|
Platts-Mills JA, Amour C, Gratz J, Nshama R, Walongo T, Mujaga B, Maro A, McMurry TL, Liu J, Mduma E, Houpt ER. Impact of Rotavirus Vaccine Introduction and Postintroduction Etiology of Diarrhea Requiring Hospital Admission in Haydom, Tanzania, a Rural African Setting. Clin Infect Dis 2019; 65:1144-1151. [PMID: 28575304 PMCID: PMC5850044 DOI: 10.1093/cid/cix494] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023] Open
Abstract
Background No data are available on the etiology of diarrhea requiring hospitalization after rotavirus vaccine introduction in Africa. The monovalent rotavirus vaccine was introduced in Tanzania on 1 January 2013. We performed a vaccine impact and effectiveness study as well as a quantitative polymerase chain reaction (qPCR)–based etiology study at a rural Tanzanian hospital. Methods We obtained data on admissions among children <5 years to Haydom Lutheran Hospital between 1 January 2010 and 31 December 2015 and estimated the impact of vaccine introduction on all-cause diarrhea admissions. We then performed a vaccine effectiveness study using the test-negative design. Finally, we tested diarrheal specimens during 2015 by qPCR for a broad range of enteropathogens and calculated pathogen-specific attributable fractions (AFs). Results Vaccine introduction was associated with a 44.9% (95% confidence interval [CI], 17.6%–97.4%) reduction in diarrhea admissions in 2015, as well as delay of the rotavirus season. The effectiveness of 2 doses of vaccine was 74.8% (95% CI, –8.2% to 94.1%) using an enzyme immunoassay–based case definition and 85.1% (95% CI, 26.5%–97.0%) using a qPCR-based case definition. Among 146 children enrolled in 2015, rotavirus remained the leading etiology of diarrhea requiring hospitalization (AF, 25.8% [95% CI, 24.4%–26.7%]), followed by heat-stable enterotoxin-producing Escherichia coli (AF, 18.4% [95% CI, 12.9%–21.9%]), Shigella/enteroinvasive E. coli (AF, 14.5% [95% CI, 10.2%–22.8%]), and Cryptosporidium (AF, 7.9% [95% CI, 6.2%–9.3%]). Conclusions Despite the clear impact of vaccine introduction in this setting, rotavirus remained the leading etiology of diarrhea requiring hospitalization. Further efforts to maximize vaccine coverage and improve vaccine performance in these settings are warranted.
Collapse
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Caroline Amour
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville.,Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Rosemary Nshama
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Thomas Walongo
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Buliga Mujaga
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Athanasia Maro
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; and
| | - Timothy L McMurry
- Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Estomih Mduma
- Haydom Global Health Research Centre, Haydom Lutheran Hospital, and
| | - Eric R Houpt
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; and
| |
Collapse
|
27
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
28
|
Wilson SE, Rosella LC, Wang J, Renaud A, Le Saux N, Crowcroft NS, Desai S, Harris T, Bolotin S, Gubbay J, Deeks SL. Equity and impact: Ontario's infant rotavirus immunization program five years following implementation. A population-based cohort study. Vaccine 2019; 37:2408-2414. [PMID: 30765171 DOI: 10.1016/j.vaccine.2019.01.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ontario implemented a publicly-funded rotavirus (RV) immunization program in 2011. Our objectives were to evaluate its impact on hospitalizations and emergency department (ED) visits for acute gastroenteritis (AGE) five years after implementation. METHODS We performed a population-based longitudinal retrospective cohort study to identify hospitalizations and ED visits for RV-AGE and overall AGE in all age groups using ICD-10 codes between August 1, 2005 and March 31, 2016. A negative binomial regression model that included the effect of time was used to calculate rates, rate ratios (RRs) and 95% confidence intervals (CIs) for AGE before and after the program's implementation, after adjusting for age, seasonality and secular trends. We examined the seasonality of RV-AGE hospitalizations among children under five before and after the program and explored its equity impact. RESULTS Following program implementation, RV-AGE hospitalizations and ED visits among children under five years declined by 76% (RR 0.24, 95% CI 0.20-0.28) and 68% (RR 0.32, 95% CI 0.21-0.50), respectively. In addition, hospitalizations and ED visits for overall AGE declined by 38% (RR 0.62, 95% CI 0.59-0.65) and 26% (RR 0.74, 95% CI 0.73-0.76), respectively, among children under age five. Significant reductions in both outcomes were also found across a range of age-strata. In the pre-program period, the mean monthly hospitalization rate for RV-AGE among children residing in the most marginalized neighbourhoods was 33% higher than those residing in the least marginalized (RR 1.33, 95% CI 1.17-1.52), this disparity was not evident in the program period (RR 0.95, 95% CI 0.69-1.32). We found no evidence of a seasonal shift in rotavirus pediatric hospitalizations. INTERPRETATION The introduction of routine infant rotavirus immunization has had a substantial population impact in Ontario. Our study confirms herd effects and suggests the program may have reduced previous inequities in the burden of pediatric rotavirus hospitalizations.
Collapse
Affiliation(s)
- Sarah E Wilson
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.
| | - Laura C Rosella
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Jun Wang
- Public Health Ontario, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | | | - Nicole Le Saux
- Division of Infectious Disease, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Department of Pediatrics, University of Ottawa, Ontario, Canada
| | - Natasha S Crowcroft
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shalini Desai
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Tara Harris
- Public Health Ontario, Toronto, Ontario, Canada
| | - Shelly Bolotin
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Gubbay
- Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Shelley L Deeks
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
30
|
Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA. Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PLoS One 2018; 13:e0203700. [PMID: 30192869 PMCID: PMC6128627 DOI: 10.1371/journal.pone.0203700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 01/21/2023] Open
Abstract
Rotaviruses are the primary cause of acute gastroenteritis in children worldwide. Although the implementation of live attenuated vaccines has reduced the number of rotavirus-associated deaths, variance in their effectiveness has been reported in different countries. This fact, among other concerns, leads to continuous efforts for the development of new generation of vaccines against rotavirus.In this work, we describe the obtention of cell wall-derived particles from a recombinant Lactococcus lactis expressing a cell wall-anchored version of the rotavirus VP6 protein. After confirming by SDS-PAGE, Western blot, flow cytometry and electronic immunomicroscopy that these particles were carrying the VP6 protein, their immunogenic potential was evaluated in adult BALB/c mice. For that, mucosal immunizations (oral or intranasal), with or without the dmLT [(double mutant Escherichia coli heat labile toxin LT(R192G/L211A)] adjuvant were performed. The results showed that these cell wall-derived particles were able to generate anti-rotavirus IgG and IgA antibodies only when administered intranasally, whether the adjuvant was present or not. However, the presence of dmLT was necessary to confer protection against rotavirus infection, which was evidenced by a 79.5 percent viral shedding reduction.In summary, this work describes the production of cell wall-derived particles which were able to induce a protective immune response after intranasal immunization. Further studies are needed to characterize the immune response elicited by these particles as well as to determine their potential as an alternative to the use of live L. lactis for mucosal antigen delivery.
Collapse
Affiliation(s)
- C. Facundo Temprana
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| | - Marcelo H. Argüelles
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolás M. Gutierrez
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Patricia A. Barril
- Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI A.C.)–CONICET, Centenario, Neuquén, Argentina
| | - Laura E. Esteban
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Dalila Silvestre
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Marcelo G. Mandile
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Alejandro A. Castello
- Laboratorio de Inmunología y Virología (LIV), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
- * E-mail: (AAC); (CFT)
| |
Collapse
|
31
|
Lopman B, Dahl R, Shah M, Parashar UD. Timing of Birth as an Emergent Risk Factor for Rotavirus Hospitalization and Vaccine Performance in the Postvaccination Era in the United States. Am J Epidemiol 2018; 187:1745-1751. [PMID: 29546358 DOI: 10.1093/aje/kwy054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/08/2018] [Indexed: 11/12/2022] Open
Abstract
Rotavirus vaccines were introduced in the United States in 2006, and in the years since they have fundamentally altered the seasonality of rotavirus infection and have shifted disease outbreaks from annual epidemics to biennial epidemics. We investigated whether season and year of birth have emerged as risk factors for rotavirus or have affected vaccine performance. We constructed a retrospective birth cohort of US children under age 5 years using the 2001-2014 MarketScan database (Truven Health Analytics, Chicago, Illinois). We evaluated the associations of season of birth, even/odd year of birth, and interactions with vaccination. We fitted Cox proportional hazards models to estimate the hazard of rotavirus hospitalization according to calendar year of birth and season of birth assessed for interaction with vaccination. After the introduction of rotavirus vaccine, we observed monotonically decreasing rates of rotavirus hospitalization for each subsequent birth cohort but a biennial incidence pattern by calendar year. In the postvaccine period, children born in odd calendar years had a higher hazard of rotavirus hospitalization than those born in even years. Children born in winter had the highest hazard of hospitalization but also had greater vaccine effectiveness than children born in spring, summer, or fall. With the emergence of a strong biennial pattern of disease following vaccine introduction, the timing of a child's birth has become a risk factor for rotavirus infection.
Collapse
Affiliation(s)
- Benjamin Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rebecca Dahl
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Minesh Shah
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
32
|
Abstract
BACKGROUND Rotavirus vaccines are less effective in developing countries versus developed countries. One hypothesis for this difference in performance is that higher levels of maternal antibodies in developing countries may interfere with vaccine response, suggesting that delayed dosing could be beneficial. The present analysis aims to assess whether rotavirus vaccine effectiveness (VE) varies by age at vaccination during routine use in Bolivia. METHODS Data were merged from 2 postlicensure evaluations of monovalent rotavirus vaccine (RV1) in Bolivia, where 2 doses of RV1 are recommended at 2 and 4 months of age. For each dose, children were classified as receiving each dose "early," "on-time" or "late." Stratified unconditional logistic regression models were used to estimate VE, using unvaccinated children as the referent. VE was calculated as (1 - odds ratio) × 100%. Models were adjusted for hospital, age and time since RV1 introduction (via including terms for month and year of birth). RESULTS VE for 2 doses of RV1 tended to be higher in infants receiving the first dose early (VE, 92%; 95% confidence interval: 70%-98%), when compared with infants receiving their first dose on-time [72% (62%-81%)] or late [68% (51%-79%)]. Estimates of VE were not substantially different when comparing children by age at second dose [early: VE, 76% (50%-89%); on-time: VE, 70% (50%-89%); late: VE, 75% (60%, 84%)], including all children. CONCLUSIONS Our results indicate that early administration may improve VE and support the current World Health Organization recommendations for the RV1 schedule.
Collapse
|
33
|
Abstract
Rotavirus is the leading cause of diarrheal death among children < 5 years old worldwide, estimated to have caused ~ 215,000 deaths in 2013. Prior to rotavirus vaccine implementation, > 65% of children had at least one rotavirus diarrhea illness by 5 years of age and rotavirus accounted for > 40% of all-cause diarrhea hospitalizations globally. Two live, oral rotavirus vaccines have been implemented nationally in > 100 countries since 2006 and their use has substantially reduced the burden of severe diarrheal illness in all settings. Vaccine efficacy and effectiveness estimates suggest there is a gradient in vaccine performance between low child-mortality countries (> 90%) and medium and high child-mortality countries (57-75%). Additionally, an increased risk of intussusception (~ 1-6 per 100,000 vaccinated infants) following vaccination has been documented in some countries, but this is outweighed by the large benefits of vaccination. Two additional live, oral rotavirus vaccines were recently licensed and these have improved on some programmatic limitations of earlier vaccines, such as heat stability, cost, and cold-chain footprint. Non-replicating rotavirus vaccines that are parenterally administered are in clinical testing, and these have the potential to reduce the performance differential and safety concerns associated with live oral rotavirus vaccines.
Collapse
Affiliation(s)
- Eleanor Burnett
- CDC Foundation for Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329-4027, USA.
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
34
|
Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M. The Lancet Commission on pollution and health. Lancet 2018; 391:462-512. [PMID: 29056410 DOI: 10.1016/s0140-6736(17)32345-0] [Citation(s) in RCA: 1906] [Impact Index Per Article: 272.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/09/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Philip J Landrigan
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | | - Olusoji Adeyi
- Department of Health, Nutrition, and Population Global Practice, The World Bank, Washington, DC, USA
| | - Robert Arnold
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Niladri Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Roberto Bertollini
- Scientific Committee on Health, Environmental and Emerging Risks of the European Commission, Luxembourg City, Luxembourg; Office of the Minister of Health, Ministry of Public Health, Doha, Qatar
| | - Stephan Bose-O'Reilly
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital of LMU Munich, Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | | | - Patrick N Breysse
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Chiles
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | | - Maureen L Cropper
- Department of Economics, University of Maryland, College Park, MD, USA; Resources for the Future, Washington, DC, USA
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| | - Valentin Fuster
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Andy Haines
- Department of Social and Environmental Health Research and Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | | | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mukesh Khare
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | | | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bindu Lohani
- Centennial Group, Washington, DC, USA; The Resources Center, Lalitpur, Nepal
| | - Keith Martin
- Consortium of Universities for Global Health, Washington, DC, USA
| | - Karen V Mathiasen
- Office of the US Executive Director, The World Bank, Washington, DC, USA
| | | | | | | | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Janez Potočnik
- UN International Resource Panel, Paris, France; SYSTEMIQ, London, UK
| | - Alexander S Preker
- Department of Environmental Medicine and Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY, USA; Health Investment & Financing Corporation, New York, NY, USA
| | | | - Johan Rockström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | | - Leona D Samson
- Department of Biological Engineering and Department of Biology, Center for Environmental Health Sciences, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Kirk R Smith
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Achim Steiner
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Richard B Stewart
- Guarini Center on Environmental, Energy, and Land Use Law, New York University, New York, NY, USA
| | - William A Suk
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Onno C P van Schayck
- Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Gautam N Yadama
- School of Social Work, Boston College, Chestnut Hill, MA, USA
| | - Kandeh Yumkella
- United Nations Industrial Development Organization, Vienna, Austria
| | - Ma Zhong
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| |
Collapse
|
35
|
|
36
|
Bonkoungou IJO, Aliabadi N, Leshem E, Kam M, Nezien D, Drabo MK, Nikiema M, Ouedraogo B, Medah I, Konaté S, Ouédraogo-Traoré R, Sangaré L, Kam L, Yé D, Ouattara M, Biey JN, Mwenda JM, Tate JE, Parashar UD. Impact and effectiveness of pentavalent rotavirus vaccine in children <5 years of age in Burkina Faso. Vaccine 2017; 36:7170-7178. [PMID: 29290478 DOI: 10.1016/j.vaccine.2017.12.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Burkina Faso was one of the first African nations to introduce pentavalent rotavirus vaccine (RV5, RotaTeq) into its national immunization program in October 2013. We describe the impact and effectiveness of rotavirus vaccine on acute gastroenteritis (AGE) hospitalizations among Burkinabe children. METHODS Sentinel hospital-based surveillance for AGE was conducted at four hospitals during December 2013 - February 2017. Demographic, clinical, and vaccination information was collected and stool specimens were tested by EIA. Trends in rotavirus AGE hospitalizations and changes in the proportion of AGE hospitalizations due to rotavirus were examined at two sentinel sites from January 2014 - December 2016. Unconditional logistic regression models using data from all 4 surveillance sites were used to calculate vaccine effectiveness (VE, defined as 1-odds ratio) by comparing the odds of vaccination among rotavirus AGE (cases) and non-rotavirus AGE (controls) patients, controlling for age, season, hospital site and socioeconomic factors. RESULTS The proportion of AGE hospitalizations that tested positive for rotavirus declined significantly among children <5 years of age, from 36% (154/422) in 2014 to 22% (71/323, 40% reduction, p < .01) in 2015 and 20% (61/298, 44% reduction, p < .01) in 2016. Among infants, the percentage of AGE admissions due to rotavirus fell significantly from 38% (94/250) in 2014 to 21% (32/153, 44% reduction, p < .01) in 2015 and 17% (26/149, 54% reduction, p < .01) in 2016. The adjusted VE for full 3-dose series of RV5 against rotavirus hospitalization was 58% (95% [CI], 10%, 81%) in children 6-11 months of age and 19% (-78%, 63%) in children ≥12 months. CONCLUSION Rotavirus hospitalizations declined after introduction of pentavalent rotavirus vaccine in children, particularly among infants. RV5 significantly protected against severe rotavirus gastroenteritis in infants, but effectiveness decreased in older children.
Collapse
Affiliation(s)
- Isidore Juste O Bonkoungou
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso; National Public Health Laboratory, Ouagadougou, Burkina Faso.
| | - Negar Aliabadi
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eyal Leshem
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Internal Medicine C, Sheba Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Madibèlè Kam
- Charles de Gaulle Pediatric University Hospital, Ouagadougou, Burkina Faso
| | - Désiré Nezien
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Maxime K Drabo
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Moumouni Nikiema
- National Immunization Program, Minister of Health, Ouagadougou, Burkina Faso
| | - Boureima Ouedraogo
- National Immunization Program, Minister of Health, Ouagadougou, Burkina Faso
| | - Isaïe Medah
- National Immunization Program, Minister of Health, Ouagadougou, Burkina Faso
| | | | - Rasmata Ouédraogo-Traoré
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso; Charles de Gaulle Pediatric University Hospital, Ouagadougou, Burkina Faso
| | - Lassana Sangaré
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso; Yalgado Ouédraogo University Hospital, Ouagadougou, Burkina Faso
| | - Ludovic Kam
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso; Yalgado Ouédraogo University Hospital, Ouagadougou, Burkina Faso
| | - Diarra Yé
- University Ouaga 1 Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso; Charles de Gaulle Pediatric University Hospital, Ouagadougou, Burkina Faso
| | - Ma Ouattara
- World Health Organization, Burkina Faso Office, Ouagadougou, Burkina Faso
| | - Joseph N Biey
- World Health Organization, IST/WA, Ouagadougou, Burkina Faso
| | - Jason M Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Jacqueline E Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
37
|
Abstract
Vaccinations have had tremendous success in the 20th century. However, in the 21st century, we are facing complex immunological issues in relation to controlling underlying infectious diseases. Therefore, new technologies are needed to develop vaccines against infectious diseases like respiratory syncytial virus, human immunodeficiency virus, and cytomegalovirus. In addition, recent emerging infections have taught us that we must prepare preventative measures in advance using our scientific abilities.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania , Doylestown, Pennsylvania
| |
Collapse
|
38
|
Shah MP, Tate JE, Mwenda JM, Steele AD, Parashar UD. Estimated reductions in hospitalizations and deaths from childhood diarrhea following implementation of rotavirus vaccination in Africa. Expert Rev Vaccines 2017; 16:987-995. [PMID: 28832219 PMCID: PMC6829907 DOI: 10.1080/14760584.2017.1371595] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rotavirus is the leading cause of hospitalizations and deaths from diarrhea. 33 African countries had introduced rotavirus vaccines by 2016. We estimate reductions in rotavirus hospitalizations and deaths for countries using rotavirus vaccination in national immunization programs and the potential of vaccine introduction across the continent. Areas covered: Regional rotavirus burden data were reviewed to calculate hospitalization rates, and applied to under-5 population to estimate baseline hospitalizations. Rotavirus mortality was based on 2013 WHO estimates. Regional pre-licensure vaccine efficacy and post-introduction vaccine effectiveness studies were used to estimate summary effectiveness, and vaccine coverage was applied to calculate prevented hospitalizations and deaths. Uncertainties around input parameters were propagated using boot-strapping simulations. In 29 African countries that introduced rotavirus vaccination prior to end 2014, 134,714 (IQR 112,321-154,654) hospitalizations and 20,986 (IQR 18,924-22,822) deaths were prevented in 2016. If all African countries had introduced rotavirus vaccines at benchmark immunization coverage, 273,619 (47%) (IQR 227,260-318,102) hospitalizations and 47,741 (39%) (IQR 42,822-52,462) deaths would have been prevented. Expert commentary: Rotavirus vaccination has substantially reduced hospitalizations and deaths in Africa; further reductions are anticipated as additional countries implement vaccination. These estimates bolster wider introduction and continued support of rotavirus vaccination programs.
Collapse
Affiliation(s)
- Minesh P. Shah
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville, Republic of Congo
| | - A. Duncan Steele
- Enteric and Diarrheal Diseases, Bill and Melinda Gates Foundation, Seattle, USA
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
39
|
Abstract
Approximately 40 years have passed since the discovery of the rotavirus and 10 years since the introduction and progressive dissemination of rotavirus vaccines worldwide. Currently, 92 countries have introduced rotavirus vaccines into national or subnational programs with evident impact in disease reduction. Two vaccines have been widely used, and four additional vaccines have been licensed and are being used in defined regions. In this context, one main issue that remains unsolved is the lower vaccine efficacy/effectiveness in low-income countries. An additional partially answered issue relates to rotavirus strain circulation in vaccinated populations. These issues are discussed in this review. The most imperative challenge ahead is to fulfill the WHO’s recommendation to introduce rotavirus vaccines in all countries.
Collapse
Affiliation(s)
- Miguel O'Ryan
- Institute of Biomedical Sciences and Millenium Institute of Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
40
|
Abeid KA, Jani B, Cortese MM, Kamugisha C, Mwenda JM, Pandu AS, Msaada KA, Mohamed AS, Khamis AU, Parashar UD, Saleh AA. Monovalent Rotavirus Vaccine Effectiveness and Impact on Rotavirus Hospitalizations in Zanzibar, Tanzania: Data From the First 3 Years After Introduction. J Infect Dis 2017; 215:183-191. [PMID: 27815381 DOI: 10.1093/infdis/jiw524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Background Low-income settings challenge the level of protection provided by live attenuated oral rotavirus vaccines. Rotarix (RV1) was introduced in the United Republic of Tanzania in early 2013, with 2 doses given at the World Health Organization-recommended schedule of ages 6 and 10 weeks, along with oral poliovirus vaccine. Methods We performed active surveillance for rotavirus hospitalizations at the largest hospital in Zanzibar, Tanzania, from 2010 through 2015. Using a case-test-negative control design, we estimated the vaccine effectiveness (VE) of 2 RV1 doses in preventing rotavirus hospitalizations. Results Based on 204 rotavirus case patients and 601 test-negative controls aged 5-23 months, the VE of 2 RV1 doses against hospitalization for rotavirus diarrhea was 57% (95% confidence interval, 14%-78%). VE tended to increase against hospitalizations with higher severity, reaching 69% (95% confidence interval, 15%-88%) against the severity score for the top quarter of case patients. Compared with the prevaccine period, there were estimated reductions of 40%, 46%, and 69% in the number of rotavirus hospitalizations among infants in 2013, 2014, and 2015, respectively, and reductions of 36%, 26%, and 64%, respectively, among children aged <5 years. Conclusions With data encompassing 3 years before and 3 years after vaccine introduction, our results indicate that successful delivery of RV1 on the current World Health Organization schedule can provide substantial health benefits in a resource-limited setting.
Collapse
Affiliation(s)
| | | | - Margaret M Cortese
- Divison of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Jason M Mwenda
- World Health Organization Regional Office for Africa (WHO/AFRO), Brazzaville, Republic of Congo
| | | | | | | | - Asha Ussi Khamis
- Immunization Program, Ministry of Health, Zanzibar, United Republic of Tanzania.,Tanzania Field Epidemiology and Laboratory Training Program, Ministry of Health, Community Development, Gender, Elderly and Children, Dar Es Salaam
| | - Umesh D Parashar
- Divison of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Abdulhamid A Saleh
- Immunization Program, Ministry of Health, Zanzibar, United Republic of Tanzania
| |
Collapse
|
41
|
Feng H, Li X, Song W, Duan M, Chen H, Wang T, Dong J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. FRONTIERS IN PLANT SCIENCE 2017; 8:910. [PMID: 28620404 PMCID: PMC5449476 DOI: 10.3389/fpls.2017.00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Rotavirus is the leading cause of severe diarrheal disease among newborns. Plant-based rotavirus vaccines have been developed in recent years and have been proven to be effective in animal models. In the present study, we report a bivalent vaccine candidate expressing rotavirus subunits VP6 and NSP4 fused with the adjuvant subunit B of E. coli heat-labile enterotoxin (LTB) in maize seeds. The RT-PCR and Western blot results showed that VP6 and LTB-NSP4 antigens were expressed and accumulated in maize seeds. The expression levels were as high as 0.35 and 0.20% of the total soluble protein for VP6 and LTB-NSP4, respectively. Oral administration of transgenic maize seeds successfully stimulated systemic and mucosal responses, with high titers of serum IgG and mucosal IgA antibodies, even after long-term storage. This study is the first to use maize seeds as efficient generators for the development of a bivalent vaccine against rotavirus.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
42
|
O'Ryan M, Lopman BA. Parenteral protein-based rotavirus vaccine. THE LANCET. INFECTIOUS DISEASES 2017; 17:786-787. [PMID: 28483417 PMCID: PMC7218797 DOI: 10.1016/s1473-3099(17)30244-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Miguel O'Ryan
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Nealon NJ, Yuan L, Yang X, Ryan EP. Rice Bran and Probiotics Alter the Porcine Large Intestine and Serum Metabolomes for Protection against Human Rotavirus Diarrhea. Front Microbiol 2017; 8:653. [PMID: 28484432 PMCID: PMC5399067 DOI: 10.3389/fmicb.2017.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Human rotavirus (HRV) is a leading cause of severe childhood diarrhea, and there is limited vaccine efficacy in the developing world. Neonatal gnotobiotic pigs consuming a prophylactic synbiotic combination of probiotics and rice bran (Pro+RB) did not exhibit HRV diarrhea after challenge. Multiple immune, gut barrier protective, and anti-diarrheal mechanisms contributed to the prophylactic efficacy of Pro+RB when compared to probiotics (Pro) alone. In order to understand the molecular signature associated with diarrheal protection by Pro+RB, a global non-targeted metabolomics approach was applied to investigate the large intestinal contents and serum of neonatal gnotobiotic pigs. The ultra-high performance liquid chromatography-tandem mass spectrometry platform revealed significantly different metabolites (293 in LIC and 84 in serum) in the pigs fed Pro+RB compared to Pro, and many of these metabolites were lipids and amino acid/peptides. Lipid metabolites included 2-oleoylglycerol (increased 293.40-fold in LIC of Pro+RB, p = 3.04E-10), which can modulate gastric emptying, andhyodeoxycholate (decreased 0.054-fold in the LIC of Pro+RB, p = 0.0040) that can increase colonic mucus production to improve intestinal barrier function. Amino acid metabolites included cysteine (decreased 0.40-fold in LIC, p = 0.033, and 0.62-fold in serum, p = 0.014 of Pro+RB), which has been found to reduce inflammation, lower oxidative stress and modulate mucosal immunity, and histamine (decreased 0.18-fold in LIC, p = 0.00030, of Pro+RB and 1.57-fold in serum, p = 0.043), which modulates local and systemic inflammatory responses as well as influences the enteric nervous system. Alterations to entire LIC and serum metabolic pathways further contributed to the anti-diarrheal and anti-viral activities of Pro+RB such as sphingolipid, mono/diacylglycerol, fatty acid, secondary bile acid, and polyamine metabolism. Sphingolipid and long chain fatty acid profiles influenced the ability of HRV to both infect and replicate within cells, suggesting that Pro+RB created a protective lipid profile that interferes with HRV activity. Polyamines act on enterocyte calcium-sensing receptors to modulate intracellular calcium levels, and may directly interfere with rotavirus replication. These results support that multiple host and probiotic metabolic networks, notably those involving lipid and amino acid/peptide metabolism, are important mechanisms through which Pro+RB protected against HRV diarrhea in neonatal gnotobiotic pigs.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| | - Lijuan Yuan
- Yuan Laboratory, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, BlacksburgVA, USA
| | - Xingdong Yang
- Laboratory of Infectious Diseases, Viral Pathogenesis and Evolution Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, BethesdaMD, USA
| | - Elizabeth P Ryan
- Nutrition and Toxicology Laboratory, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort CollinsCO, USA
| |
Collapse
|
44
|
Mahapatro S, Mahilary N, Satapathy AK, Das RR. Nitazoxanide in Acute Rotavirus Diarrhea: A Randomized Control Trial from a Developing Country. J Trop Med 2017; 2017:7942515. [PMID: 28331496 PMCID: PMC5346365 DOI: 10.1155/2017/7942515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/17/2016] [Indexed: 02/05/2023] Open
Abstract
Background. Acute diarrhea is one of the leading causes of childhood mortality, with rotavirus being an important pathogen. Nitazoxanide, an antiparasitic agent, has been shown to inhibit rotavirus. Objective. This double-blind, randomized trial was designed to study the role of nitazoxanide in acute rotavirus diarrhea. Methods. Of 174 children (12 months to 5 years) with acute diarrhea, 50 rotavirus positive cases were randomized. The intervention group received syrup nitazoxanide twice daily (100 mg in 12-47 months, 200 mg in ≥4 yr) for 3 days along with standard treatment of diarrhea. Duration of diarrhea was the primary outcome measure. Results. The median duration (hrs) of diarrhea (54 versus 80; 95% CI: -26 [-13.2 to -38.8]) and hospitalization (68 versus 90; 95% CI: -22 [-12.98 to -31.02]) was significantly shorter in the nitazoxanide group. No significant difference was seen in the median duration (hrs) of fever or vomiting or the proportion of children requiring parenteral rehydration. There was no report of any adverse events. Conclusions. Oral nitazoxanide is effective and safe in the management of acute rotavirus diarrhea in Indian children (CTRI REF/2016/10/012507).
Collapse
Affiliation(s)
- Samarendra Mahapatro
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Nijwm Mahilary
- Department of Pediatrics, Hi-Tech Medical College and Hospital, Bhubaneswar, India
| | - Amit Kumar Satapathy
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Rashmi Ranjan Das
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
45
|
Gheorghita S, Birca L, Donos A, Wasley A, Birca I, Cojocaru R, Melnick A, Ciobanu S, Mosina L, Cortese MM, Parashar UD, Lopman B. Impact of Rotavirus Vaccine Introduction and Vaccine Effectiveness in the Republic of Moldova. Clin Infect Dis 2016; 62 Suppl 2:S140-6. [PMID: 27059348 DOI: 10.1093/cid/civ1209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Republic of Moldova was the first low- to middle-income country in the World Health Organization European Region to introduce rotavirus vaccine (July 2012). We aimed to assess the impact of the rotavirus vaccine program and estimate vaccine effectiveness (VE). METHODS Surveillance for rotavirus gastroenteritis was conducted in 2 hospitals in the capital city of Chisinau starting in September 2009. Monthly rotavirus admissions by age were examined before and after introduction of rotavirus vaccination using interrupted time-series analyses. We performed a case-control study of VE by comparing rotavirus case patients with test-negative controls. RESULTS Coverage with at least 1 dose of vaccine increased from 35% in year 1 to 55% in year 2 for children <1 year of age. The percentage of hospital admissions positive for rotavirus fell from 45% in the prevaccine period to 25% (rate reduction, 36%; 95% confidence interval [CI], 26%-44%) and 14% (rate reduction, 67%; 95% CI, 48%-88%) in the first and second years after vaccine introduction, respectively, among children aged <5 years. Reductions were most pronounced among those aged <1 year. Significant reductions among cohorts too old to be vaccinated suggest indirect benefits. Two-dose VE was 79% (95% CI, 62%-88%) against rotavirus hospitalization and 84% (95% CI, 64%-93%) against moderate to severe rotavirus. CONCLUSIONS These results consistently point to profound direct and herd immunity impacts of the rotavirus vaccine program in young children in the Republic of Moldova. Vaccine coverage was modest in these early years following introduction, so there remains potential for further disease reductions.
Collapse
Affiliation(s)
| | - Ludmila Birca
- Chisinau City Infectious Diseases Hospital for Children
| | - Ala Donos
- Chisinau Municipal Hospital for Children, Republic of Moldova
| | - Annemarie Wasley
- Vaccine-Preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | | | | | | | - Silviu Ciobanu
- World Health Organization Regional Office for Moldova, Chisinau
| | - Liudmila Mosina
- Vaccine-Preventable Diseases and Immunization, World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Margaret M Cortese
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ben Lopman
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
46
|
Olaya Galán NN, Ulloa Rubiano JC, Velez Reyes FA, Fernandez Duarte KP, Salas Cárdenas SP, Gutierrez Fernandez MF. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP4 protein production. J Appl Microbiol 2016; 120:1041-51. [PMID: 26801008 DOI: 10.1111/jam.13069] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/23/2015] [Accepted: 01/17/2016] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to determine the antiviral activity of four probiotic metabolites (Lactobacillus and Bifidobacetrium species) against rotavirus in vitro infection monitored by the NSP4 protein production and Ca(2+) release. METHODS AND RESULTS The antiviral effect of the metabolites was performed due a comparison between a blocking model and an intracelullar model on MA104 cells, with the response of NSP4 production and Ca(2+) liberation measured by flow cytometry. Significant results were obtained with the metabolites of Lactobacillus casei, and Bifidobacterium adolescentis in the reduction of the protein production (P = 0·04 and P = 0·014) and Ca(2+) liberation (P = 0·094 and P = 0·020) in the intracellular model, which suggests a successful antiviral activity against RV infection. CONCLUSIONS This study demonstrates that probiotic metabolites were able to interfere with the final amount of intracellular NSP4 protein and a successful Ca(2+) regulation, which suggests a new approach to the mechanism exerted by probiotics against the rotavirus infection. SIGNIFICANCE AND IMPACT OF THE STUDY A novel anti-rotaviral effect exerted by probiotic metabolites monitored by the NSP4 protein during the RV in vitro infection and the effect on the Ca(2+) release is reported; suggesting a reduction on the impact of the infection by decreasing the damage of the cells preventing the electrolyte loss.
Collapse
Affiliation(s)
- N N Olaya Galán
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J C Ulloa Rubiano
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - F A Velez Reyes
- Departamento de Matemáticas, Facultad de Ciencias, Universidad El Bosque, Bogotá, Colombia
| | - K P Fernandez Duarte
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - S P Salas Cárdenas
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - M F Gutierrez Fernandez
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
47
|
Rotavirus genotypes in children with gastroenteritis in Erzurum: first detection of G12P[6] and G12P[8] genotypes in Turkey. GASTROENTEROLOGY REVIEW 2016; 12:122-127. [PMID: 28702101 PMCID: PMC5497125 DOI: 10.5114/pg.2016.59423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
Introduction Rotavirus is one of the leading pathogens which cause acute gastroenteritis in children and is responsible for a substantial proportion of childhood deaths worldwide. Aim To determine the group A rotavirus (RVA) prevalence and genotypes of circulating RVA strains in 0–5-year-old children with complaints of vomiting and diarrhoea in Eastern Anatolia in Turkey. Material and methods RNA extracted from stool specimens of 329 children aged 0–5 years with acute diarrhoea was subjected to reverse transcription polymerase reaction (RT-PCR) and multiplex-nested PCR. The genotypes were identified based on the expected size of the amplicon, which was amplified with a genotype-specific primer. Results Out of 329 stool samples analyzed, 109 (33.1%) were positive for RVA. G1P[8] was the dominant genotype combination (42.2%), followed by G9P[8] (21.1%) and G12P[6] (11.0%). Mixed infections were identified in 5 cases: G3,9 in 2 cases, G1,9 in 1 case, P[4,8] in 1 case, and P[6,8] in 1 case. The P genotype could not be typed in two patients. Conclusions In the study, we detected six different rotavirus G genotypes, 3 different P genotypes, 11 different G-P combinations and 5 different mixed genotypes combinations. G1, G9, G12 and P[8] were found to be the predominant genotypes. G12P[6] and G12P[8] genotypes, showing an increase as new rotavirus genotypes in the world, are reported for the first time for our regions. We determined the dominant genotypes, mixed genotypes and unconventional genotypes of rotavirus in our region.
Collapse
|
48
|
Wu D, Yen C, Yin ZD, Li YX, Liu N, Liu YM, Wang HQ, Cui FQ, Gregory CJ, Tate JE, Parashar UD, Yin DP, Li L. The Public Health Burden of Rotavirus Disease in Children Younger Than Five Years and Considerations for Rotavirus Vaccine Introduction in China. Pediatr Infect Dis J 2016; 35:e392-e398. [PMID: 27626917 PMCID: PMC6502223 DOI: 10.1097/inf.0000000000001327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rotavirus is the leading cause of severe diarrhea among young children worldwide. Rotavirus vaccines have demonstrated substantial benefits in many countries that have introduced vaccine nationally. In China, where rotavirus vaccines are not available through the national immunization program, it will be important to review relevant local and global information to determine the potential value of national introduction. Therefore, we reviewed evidence of rotavirus disease burden among Chinese children younger than 5 years to help inform rotavirus vaccine introduction decisions. METHODS We reviewed scientific literature on rotavirus disease burden in China from 1994 through 2014 in China National Knowledge Infrastructure, Wanfang and PubMed. Studies were selected if they were conducted for periods of 12 month increments, had more than 100 patients enrolled and used an accepted diagnostic test. RESULTS Overall, 45 reports were included and indicate that rotavirus causes ~40% and ~30% of diarrhea-related hospitalizations and outpatient visits, respectively, among children younger than 5 years in China. Over 50% of rotavirus-related hospitalizations occur by age 1 year; ~90% occur by age 2 years. Regarding circulating rotavirus strains in China, there has been natural, temporal variation, but the predominant local strains are the same as those that are globally dominant. CONCLUSIONS These findings affirm that rotavirus is a major cause of childhood diarrheal disease in China and suggest that a vaccination program with doses given early in infancy has the potential to prevent the majority of the burden of severe rotavirus disease.
Collapse
Affiliation(s)
- Dan Wu
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Catherine Yen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Zun-Dong Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi-Xing Li
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Liu
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan-Min Liu
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua-Qing Wang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fu-Qiang Cui
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Christopher J. Gregory
- Division of Global Health Protection, Centers for Disease Control and Prevention, Nonthaburi, Thailand
| | - Jacqueline E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Da-Peng Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Li
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
49
|
Loganathan T, Jit M, Hutubessy R, Ng CW, Lee WS, Verguet S. Rotavirus vaccines contribute towards universal health coverage in a mixed public-private healthcare system. Trop Med Int Health 2016; 21:1458-1467. [PMID: 27503549 DOI: 10.1111/tmi.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate rotavirus vaccination in Malaysia from the household's perspective. The extended cost-effectiveness analysis (ECEA) framework quantifies the broader value of universal vaccination starting with non-health benefits such as financial risk protection and equity. These dimensions better enable decision-makers to evaluate policy on the public finance of health programmes. METHODS The incidence, health service utilisation and household expenditure related to rotavirus gastroenteritis according to national income quintiles were obtained from local data sources. Multiple birth cohorts were distributed into income quintiles and followed from birth over the first five years of life in a multicohort, static model. RESULTS We found that the rich pay more out of pocket (OOP) than the poor, as the rich use more expensive private care. OOP payments among the poorest although small are high as a proportion of household income. Rotavirus vaccination results in substantial reduction in rotavirus episodes and expenditure and provides financial risk protection to all income groups. Poverty reduction benefits are concentrated amongst the poorest two income quintiles. CONCLUSION We propose that universal vaccination complements health financing reforms in strengthening Universal Health Coverage (UHC). ECEA provides an important tool to understand the implications of vaccination for UHC, beyond traditional considerations of economic efficiency.
Collapse
Affiliation(s)
- Tharani Loganathan
- Department of Social and Preventive Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mark Jit
- Modeling and Economics Unit, Public Health England, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Raymond Hutubessy
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - Chiu-Wan Ng
- Department of Social and Preventive Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Julius Centre University of Malaya, University of Malaya, Kuala Lumpur, Malaysia
| | - Way-Seah Lee
- Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia.,University Malaya Paediatrics and Child Health Research Group, Kuala Lumpur, Malaysia
| | - Stéphane Verguet
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
50
|
Yen C, Healy K, Tate JE, Parashar UD, Bines J, Neuzil K, Santosham M, Steele AD. Rotavirus vaccination and intussusception - Science, surveillance, and safety: A review of evidence and recommendations for future research priorities in low and middle income countries. Hum Vaccin Immunother 2016; 12:2580-2589. [PMID: 27322835 PMCID: PMC5084992 DOI: 10.1080/21645515.2016.1197452] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023] Open
Abstract
As of January 2016, 80 countries have introduced rotavirus vaccines into their national immunization programs. Many have documented significant declines in rotavirus-specific and all-cause diarrheal illnesses following vaccine introduction. Two globally licensed rotavirus vaccines have been associated with a low risk of intussusception in several studies. In July 2014, the Rotavirus Organization of Technical Allies Council convened a meeting of research and advocacy organizations, public health experts, funders, and vaccine manufacturers to discuss post-marketing intussusception surveillance and rotavirus vaccine impact data. Meeting objectives were to evaluate updated data, identify and prioritize research gaps, discuss best practices for intussusception monitoring in lower-income settings and risk communication, and provide insight to country-level stakeholders on best practices for intussusception monitoring and communication. Meeting participants agreed with statements from expert bodies that the benefits of vaccination with currently available rotavirus vaccines outweigh the low risk of vaccination-associated intussusception. However, further research is needed to better understand the relationship of intussusception to wild-type rotavirus and rotavirus vaccines and delineate potential etiologies and mechanisms of intussusception. Additionally, evidence from research and post-licensure evaluations should be presented with evidence of the benefits of vaccination to best inform policymakers deciding on vaccine introduction or vaccination program sustainability.
Collapse
Affiliation(s)
- Catherine Yen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kelly Healy
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julie Bines
- Murdoch Childrens Research Institute, The University of Melbourne, Victoria, Australia
| | - Kathleen Neuzil
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mathuram Santosham
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - A. Duncan Steele
- Enteric and Diarrhoeal Diseases, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|