1
|
Sewnath CAN, Damelang T, Bentlage AEH, Ten Kroode L, Tuk CW, Visser R, Wuhrer M, Van Coillie J, Rispens T, van Egmond M, Vidarsson G. Enhancing activity of FcαRI-bispecific antibodies using glycoengineering. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf027. [PMID: 40156381 DOI: 10.1093/jimmun/vkaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 04/01/2025]
Abstract
Macrophages and natural killer (NK) cells can effectively kill tumor cells in the presence of anti-cancer IgG monoclonal antibodies (mAbs), but neutrophils are less effective. We previously showed that IgG1 bispecific antibodies (BsAb), which target the IgA Fc receptor (FcαRI, CD89) and a tumor associated antigen induce effective neutrophil recruitment and tumor cell killing in vivo. Here we investigated if the efficacy of an anti-EGFR (CetuximAb)/FcαRI-bispecific antibody could be further improved by implementing glycoengineering of the IgG-Fc, aimed at increasing FcγRIIIa/b binding and/or complement activity. Fc afucosylation was introduced to enhance antibody-dependent cellular cytotoxicity (ADCC) by FcγRIIIa on NK/macrophages, which can also reduce neutrophil-mediated ADCC through their GPI-linked FcγRIIIb. Fc galactylation was found to enhance antibody hexamerization and thereby complement dependent cytotoxicity (CDC). Low fucosylated BsAbs moderately increased NK cell-mediated tumor cell killing, but did not affect neutrophil-mediated tumor cell killing nor phagocytosis by macrophages. Glycoengineering of these EGFR-specific BsAb, which normally are devoid of CDC-activity, did not enable their complement activities. In conclusion, glycoengineered FcαRI BsAbs increased ADCC by NK cells but had little effect on neutrophil or macrophage mediated tumor killing.
Collapse
Affiliation(s)
- Céline A N Sewnath
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Timon Damelang
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Arthur E H Bentlage
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Luuk Ten Kroode
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Cornelis W Tuk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Remco Visser
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Manfred Wuhrer
- Department of Proteomics and Metabolomics, Leids Universitair Medisch Centrum (LUMC), LUMC, The Netherlands
| | - Julie Van Coillie
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology Program, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Immunohematology and Landsteiner Laboratory, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
2
|
Goldberg BS, Ackerman ME. Underappreciated layers of antibody-mediated immune synapse architecture and dynamics. mBio 2025; 16:e0190024. [PMID: 39660921 PMCID: PMC11708040 DOI: 10.1128/mbio.01900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The biologic activities of antibody drugs are dictated by structure-function relationships-emerging from the kind, composition, and degree of interactions with a target antigen and with soluble and cellular antibody receptors of the innate immune system. These activities are canonically understood to be both modular: antigen recognition is driven by the heterodimeric antigen-binding fragment, and innate immune recruitment by the homodimeric constant/crystallizable fragment. The model that treats these domains with a high degree of independence has served the field well but is not without limitations. Here, we consider how new insights, particularly from structural studies, complicate the model of neat biophysical separation between these domains and shape our understanding of antibody effector functions. The emerging model endeavors to explain the phenotypic impact of both antibody intrinsic characteristics and extrinsic features-fitting them within a spatiotemporal paradigm that better accounts for observed antibody activities. In this review, we will use insights from recent models of classical complement complexes and T cell immune synapse formation to explore how structural differences in antibody-mediated immune synapses may relate to their functional diversity.
Collapse
Affiliation(s)
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Chan C, Jansen JHM, Hendriks IST, van der Peet IC, Verdonschot MEL, Passchier EM, Tsioumpekou M, Nederend M, Klomp SA, Valerius T, Peipp M, Leusen JHW, Olofsen PA. Enhancing Neutrophil Cytotoxicity of a Panel of Clinical EGFR Antibodies by Fc Engineering to IgA3.0. Mol Cancer Ther 2024; 23:1317-1331. [PMID: 38958494 DOI: 10.1158/1535-7163.mct-24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
EGFR plays an essential role in cellular signaling pathways that regulate cell growth, proliferation, and survival and is often dysregulated in cancer. Several monoclonal IgG antibodies have been clinically tested over the years, which exert their function via blocking the ligand binding domain (thereby inhibiting downstream signaling) and inducing Fc-related effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, these IgG antibodies do not optimally recruit neutrophils, which are the most abundant white blood cell population in humans. Therefore, we reformatted six therapeutic EGFR antibodies (cetuximab, panitumumab, nimotuzumab, necitumumab, zalutumumab, and matuzumab) into the IgA3.0 format, which is an IgA2 isotype adapted for clinical application. Reformatting these antibodies preserved Fab-mediated functions such as EGFR binding, growth inhibition, and ligand blockade. In addition, whole leukocyte ADCC was significantly increased when using this panel of IgA3.0 antibodies compared with their respective IgG counterparts, with no major differences between IgA3.0 antibodies. In vivo, IgA3.0 matuzumab outperformed the other antibodies, resulting in the strongest suppression of tumor outgrowth in a long intraperitoneal model. We showed that neutrophils are important for the suppression of tumor outgrowth. IgA3.0 matuzumab exhibited reduced receptor internalization compared with the other antibodies, possibly accounting for its superior in vivo Fc-mediated tumor cell killing efficacy. In conclusion, reformatting EGFR antibodies into an IgA3.0 format increased Fc-mediated killing while retaining Fab-mediated functions and could therefore be a good alternative for the currently available antibody therapies.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J H Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ilona S T Hendriks
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ida C van der Peet
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meggy E L Verdonschot
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elsemieke M Passchier
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sharon A Klomp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Al-brechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Lustig M, Chan C, Jansen JHM, Bräutigam M, Kölling MA, Gehlert CL, Baumann N, Mester S, Foss S, Andersen JT, Bastian L, Sondermann P, Peipp M, Burger R, Leusen JHW, Valerius T. Disruption of the sialic acid/Siglec-9 axis improves antibody-mediated neutrophil cytotoxicity towards tumor cells. Front Immunol 2023; 14:1178817. [PMID: 37346044 PMCID: PMC10279866 DOI: 10.3389/fimmu.2023.1178817] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. H. Marco Jansen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Max A. Kölling
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Simone Mester
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
5
|
Mohammadi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Arjmand M, Torkashvand F, Bahadori T, Judaki MA, Shiravi F, Ahmadi Zare H, Notash Haghighat F, Mobini M, Shokri F, Amiri MM. A Novel Fc-Engineered Anti-HER2 Bispecific Antibody With Enhanced Antitumor Activity. J Immunother 2023; 46:121-131. [PMID: 36939675 DOI: 10.1097/cji.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been demonstrated in a variety of cancers. Targeted therapy with anti-HER2 monoclonal antibodies (mAbs) has been approved as a therapeutic modality. Despite the efficacy of mAbs in tumor treatment, many patients do not benefit from this therapeutic platform. Fragment crystallizable (Fc) engineering is a common approach to improve the efficacy of therapeutic mAbs. Five Fc-engineered mAbs have so far been approved by FDA. We have recently developed an anti-HER2 bispecific mAb, BiHT, constructed from variable domains of trastuzumab, and our novel humanized anti-HER2 mAb, hersintuzumab. BiHT displayed promising antitumor activity as potently as the combination of the parental mAbs. Here, we aimed to modify the Fc of BiHT to improve its therapeutic efficacy. The Fc-engineered BiHT (MBiHT) bound to recombinant HER2 and its subdomains with an affinity similar to BiHT. It also recognized native HER2 on different cell lines, inhibited their proliferation, downregulated HER2 expression, and suppressed downstream signaling pathways similar to BiHT. Compared with BiHT, MBiHT displayed enhanced antibody-dependent cellular cytotoxicity activity against various tumor cell lines. It also inhibited the growth of ovarian xenograft tumors in nude mice more potently than BiHT. Our findings suggest that MBiHT could be a potent therapeutic candidate for the treatment of HER2-overexpressing cancer types.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| |
Collapse
|
6
|
Lipinski B, Arras P, Pekar L, Klewinghaus D, Boje AS, Krah S, Zimmermann J, Klausz K, Peipp M, Siegmund V, Evers A, Zielonka S. NKp46-specific single domain antibodies enable facile engineering of various potent NK cell engager formats. Protein Sci 2023; 32:e4593. [PMID: 36775946 PMCID: PMC9951198 DOI: 10.1002/pro.4593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Herein, we describe the generation of potent NK cell engagers (NKCEs) based on single domain antibodies (sdAbs) specific for NKp46 harboring the humanized Fab version of Cetuximab for tumor targeting. After immunization of camelids, a plethora of different VHH domains were retrieved by yeast surface display. Upon reformatting into Fc effector-silenced NKCEs targeting NKp46 and EGFR in a strictly monovalent fashion, the resulting bispecific antibodies elicited potent NK cell-mediated killing of EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. This was further augmented via co-engagement of Fcγ receptor IIIa (FcγRIIIa). Importantly, NKp46-specific sdAbs enabled the construction of various NKCE formats with different geometries and valencies which displayed favorable biophysical and biochemical properties without further optimization. By this means, killing capacities were further improved significantly. Hence, NKp46-specific sdAbs are versatile building blocks for the construction of different NKCE formats.
Collapse
Affiliation(s)
- Britta Lipinski
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Paul Arras
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Lukas Pekar
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Ammelie Svea Boje
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | - Simon Krah
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
| | - Jasmin Zimmermann
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Katja Klausz
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | - Matthias Peipp
- Division of Antibody‐Based Immunotherapy, Department of Internal Medicine IIUniversity Hospital Schleswig‐Holstein and Christian‐Albrechts‐University KielKielGermany
| | | | - Andreas Evers
- Computational Chemistry and BiologyMerck Healthcare KGaADarmstadtGermany
| | - Stefan Zielonka
- Protein Engineering and Antibody TechnologiesMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| |
Collapse
|
7
|
Baumann N, Arndt C, Petersen J, Lustig M, Rösner T, Klausz K, Kellner C, Bultmann M, Bastian L, Vogiatzi F, Leusen JHW, Burger R, Schewe DM, Peipp M, Valerius T. Myeloid checkpoint blockade improves killing of T-acute lymphoblastic leukemia cells by an IgA2 variant of daratumumab. Front Immunol 2022; 13:949140. [PMID: 36052078 PMCID: PMC9427194 DOI: 10.3389/fimmu.2022.949140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.
Collapse
Affiliation(s)
- Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christian Arndt
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Judith Petersen
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian- Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Miriam Bultmann
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fotini Vogiatzi
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Children’s Hospital, University Medical Center Magdeburg, Magdeburg, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian- Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- *Correspondence: Thomas Valerius,
| |
Collapse
|
8
|
Chan C, Lustig M, Baumann N, Valerius T, van Tetering G, Leusen JHW. Targeting Myeloid Checkpoint Molecules in Combination With Antibody Therapy: A Novel Anti-Cancer Strategy With IgA Antibodies? Front Immunol 2022; 13:932155. [PMID: 35865547 PMCID: PMC9295600 DOI: 10.3389/fimmu.2022.932155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy with therapeutic antibodies has shown a lack of durable responses in some patients due to resistance mechanisms. Checkpoint molecules expressed by tumor cells have a deleterious impact on clinical responses to therapeutic antibodies. Myeloid checkpoints, which negatively regulate macrophage and neutrophil anti-tumor responses, are a novel type of checkpoint molecule. Myeloid checkpoint inhibition is currently being studied in combination with IgG-based immunotherapy. In contrast, the combination with IgA-based treatment has received minimal attention. IgA antibodies have been demonstrated to more effectively attract and activate neutrophils than their IgG counterparts. Therefore, myeloid checkpoint inhibition could be an interesting addition to IgA treatment and has the potential to significantly enhance IgA therapy.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Geert van Tetering
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Jeanette H. W. Leusen,
| |
Collapse
|
9
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
10
|
Joubert S, Guimond J, Perret S, Malenfant F, Elahi SM, Marcil A, Parat M, Gilbert M, Lenferink A, Baardsnes J, Durocher Y. Production of afucosylated antibodies in CHO cells by co-expression of an anti-FUT8 intrabody. Biotechnol Bioeng 2022; 119:2206-2220. [PMID: 35509261 DOI: 10.1002/bit.28127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Some effector functions prompted by IgG antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC), strongly depend on the N-glycans linked to asparagine 297 of the Fc region of the protein. A single alpha-(1,6)-fucosyltransferase (FUT8) is responsible for catalyzing the addition of an α-1,6-linked fucose residue to the first GlcNAc residue of the N-linked glycans. Antibodies missing this core fucose show a significantly enhanced ADCC and increased anti-tumor activity, which could help reduce therapeutic dose requirement, potentially translating into reduced safety concerns and manufacturing costs. Several approaches have been developed to modify glycans and improve the biological functions of antibodies. Here, we demonstrate that expression of a membrane-associated anti-FUT8 intrabody engineered to reside in the endoplasmic reticulum and Golgi apparatus can efficiently reduce FUT8 activity and therefore the core-fucosylation of the Fc N-glycan of an antibody. IgG1-producing CHO cells expressing the intrabody secrete antibodies with reduced core fucosylation as demonstrated by lectin blot analysis and UPLC-HILIC glycan analysis. Cells engineered to inhibit directly and specifically alpha-(1,6)-fucosyltransferase activity allows for the production of g/L levels of IgGs with strongly enhanced ADCC effector function, for which the level of fucosylation can be selected. The quick and efficient method described here should have broad practical applicability for the development of next-generation therapeutic antibodies with enhanced effector functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simon Joubert
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Marie Parat
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Anne Lenferink
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada
| |
Collapse
|
11
|
Evers M, Stip M, Keller K, Willemen H, Nederend M, Jansen M, Chan C, Budding K, Nierkens S, Valerius T, Meyer-Wentrup F, Eijkelkamp N, Leusen J. Anti-GD2 IgA kills tumors by neutrophils without antibody-associated pain in the preclinical treatment of high-risk neuroblastoma. J Immunother Cancer 2021; 9:jitc-2021-003163. [PMID: 34716207 PMCID: PMC8559241 DOI: 10.1136/jitc-2021-003163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background The addition of monoclonal antibody therapy against GD2 to the treatment of high-risk neuroblastoma led to improved responses in patients. Nevertheless, administration of GD2 antibodies against neuroblastoma is associated with therapy-limiting neuropathic pain. This severe pain is evoked at least partially through complement activation on GD2-expressing sensory neurons. Methods To reduce pain while maintaining antitumor activity, we have reformatted the approved GD2 antibody ch14.18 into the IgA1 isotype. This novel reformatted IgA is unable to activate the complement system but efficiently activates leukocytes through the FcαRI (CD89). Results IgA GD2 did not activate the complement system in vitro nor induced pain in mice. Importantly, neutrophil-mediated killing of neuroblastoma cells is enhanced with IgA in comparison to IgG, resulting in efficient tumoricidal capacity of the antibody in vitro and in vivo. Conclusions Our results indicate that employing IgA GD2 as a novel isotype has two major benefits: it halts antibody-induced excruciating pain and improves neutrophil-mediated lysis of neuroblastoma. Thus, we postulate that patients with high-risk neuroblastoma would strongly benefit from IgA GD2 therapy.
Collapse
Affiliation(s)
- Mitchell Evers
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Kaylee Keller
- Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hanneke Willemen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Kevin Budding
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands.,Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Friederike Meyer-Wentrup
- Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Lippold S, Knaupp A, de Ru AH, Tjokrodirijo RTN, van Veelen PA, van Puijenbroek E, de Taeye SW, Reusch D, Vidarsson G, Wuhrer M, Schlothauer T, Falck D. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry. MAbs 2021; 13:1982847. [PMID: 34674601 PMCID: PMC8726612 DOI: 10.1080/19420862.2021.1982847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcɣR). FcɣRIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcɣRIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography–mass spectrometry (AC-MS) assay for analyzing IgG-FcɣRIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcɣRIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure–function relationships of the IgG-FcɣRIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayman T N Tjokrodirijo
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development, Roche Innovation Center, Munich, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany.,Biological Technologies, Genentech Inc, South San Francisco, USA
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
The selection of variable regions affects effector mechanisms of IgA antibodies against CD20. Blood Adv 2021; 5:3807-3820. [PMID: 34525171 DOI: 10.1182/bloodadvances.2021004598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Blockade of the CD47-SIRPα axis improves lymphoma cell killing by myeloid effector cells, which is an important effector mechanism for CD20 antibodies in vivo. The approved CD20 antibodies rituximab, ofatumumab, and obinutuzumab are of human immunoglobulin G1 (IgG1) isotype. We investigated the impact of the variable regions of these 3 CD20 antibodies when expressed as human IgA2 isotype variants. All 3 IgA2 antibodies mediated antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cellular cytotoxicity (ADCC) by polymorphonuclear cells. Both effector mechanisms were significantly enhanced in the presence of a CD47-blocking antibody or by glutaminyl cyclase inhibition to interfere with CD47-SIRPα interactions. Interestingly, an IgA2 variant of obinutuzumab (OBI-IgA2) was consistently more potent than an IgA2 variant of rituximab (RTX-IgA2) or an IgA2 variant of ofatumumab (OFA-IgA2) in triggering ADCC. Furthermore, we observed more effective direct tumor cell killing by OBI-IgA2 compared with RTX-IgA2 and OFA-IgA2, which was caspase independent and required a functional cytoskeleton. IgA2 variants of all 3 antibodies triggered complement-dependent cytotoxicity, with OBI-IgA2 being less effective than RTX-IgA2 and OFA-IgA2. When we investigated the therapeutic efficacy of the CD20 IgA2 antibodies in different in vivo models, OBI-IgA2 was therapeutically more effective than RTX-IgA2 or OFA-IgA2. In vivo efficacy required the presence of a functional IgA receptor on effector cells and was independent of complement activation or direct lymphoma cell killing. These data characterize the functional activities of human IgA2 antibodies against CD20, which were affected by the selection of the respective variable regions. OBI-IgA2 proved particularly effective in vitro and in vivo, which may be relevant in the context of CD47-SIRPα blockade.
Collapse
|
14
|
CD47-SIRPα Checkpoint Inhibition Enhances Neutrophil-Mediated Killing of Dinutuximab-Opsonized Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13174261. [PMID: 34503071 PMCID: PMC8428220 DOI: 10.3390/cancers13174261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Current immunotherapy for high-risk neuroblastoma patients involves treatment with anti-GD2 antibody dinutuximab, which has significantly improved the survival rate. Still, approximately half of the patients succumb to the tumor; therefore, efforts to improve their prognosis are urgently needed. Since T cell targeting immune checkpoint inhibitors in neuroblastoma are limited due to the low immunogenicity of these tumors, alternative immunotherapeutic approaches should be studied. The therapeutic targeting of the innate immune checkpoint CD47-SIRPα has the ability to enhance antitumor effects of myeloid cells, especially in the presence of cancer-opsonizing antibodies. Given that neutrophil ADCC is a dominant effector mechanism leading to the eradication of dinutuximab-opsonized neuroblastoma cells, we have investigated the therapeutic potential of anti-GD2 antibody in combination with CD47-SIRPα inhibition. We demonstrate here that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is controlled by the CD47-SIRPα axis and its disruption promotes their cytotoxic potential even further, significantly improving dinutuximab responsiveness. Abstract High-risk neuroblastoma, especially after recurrence, still has a very low survival rate. Immune checkpoint inhibitors targeting T cells have shown remarkable clinical efficacy in adult solid tumors, but their effects in pediatric cancers have been limited so far. On the other hand, targeting myeloid immune checkpoints, such as CD47-SIPRα, provide the opportunity to enhance antitumor effects of myeloid cells, including that of neutrophils, especially in the presence of cancer-opsonizing antibodies. Disialoganglioside (GD2)-expressing neuroblastoma cells targeted with anti-GD2 antibody dinutuximab are in part eradicated by neutrophils, as they recognize and bind the antibody targeted tumor cells through their Fc receptors. Therapeutic targeting of the innate immune checkpoint CD47-SIRPα has been shown to promote the potential of neutrophils as cytotoxic cells in different solid tumor indications using different cancer-targeting antibodies. Here, we demonstrate that the capacity of neutrophils to kill dinutuximab-opsonized neuroblastoma cells is also controlled by the CD47-SIRPα axis and can be further enhanced by antagonizing CD47-SIRPα interactions. In particular, CD47-SIRPa checkpoint inhibition enhanced neutrophil-mediated ADCC of dinutuximab-opsonized adrenergic neuroblastoma cells, whereas mesenchymal neuroblastoma cells may evade immune recognition by a reduction of GD2 expression. These findings provide a rational basis for targeting CD47-SIRPα interactions to potentiate dinutuximab responsiveness in neuroblastomas with adrenergic phenotype.
Collapse
|
15
|
Hamdan F, Ylösmäki E, Chiaro J, Giannoula Y, Long M, Fusciello M, Feola S, Martins B, Feodoroff M, Antignani G, Russo S, Kari O, Lee M, Järvinen P, Nisen H, Kreutzman A, Leusen J, Mustjoki S, McWilliams TG, Grönholm M, Cerullo V. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J Immunother Cancer 2021; 9:jitc-2021-003000. [PMID: 34362830 PMCID: PMC8351494 DOI: 10.1136/jitc-2021-003000] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
Background Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. Methods The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. Results Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. Conclusion Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Erkko Ylösmäki
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yvonne Giannoula
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland
| | - Maeve Long
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Otto Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Moon Lee
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Petrus Järvinen
- Abdominal Center, Urology, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - Harry Nisen
- Abdominal Center, Urology, Helsinki University Central Hospital, Helsinki, Uusimaa, Finland
| | - Anna Kreutzman
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Satu Mustjoki
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Uusimaa, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Mikaela Grönholm
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland.,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, University of Helsinki Faculty of Pharmacy, Helsinki, Uusimaa, Finland .,TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland.,Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University 24 Federico II, 80131, Naples, Italy
| |
Collapse
|
16
|
Baumann N, Rösner T, Jansen JHM, Chan C, Marie Eichholz K, Klausz K, Winterberg D, Müller K, Humpe A, Burger R, Peipp M, Schewe DM, Kellner C, Leusen JHW, Valerius T. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Sci 2021; 112:3029-3040. [PMID: 34058788 PMCID: PMC8353920 DOI: 10.1111/cas.14999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.
Collapse
Affiliation(s)
- Niklas Baumann
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Thies Rösner
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - J. H. Marco Jansen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chilam Chan
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Klara Marie Eichholz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Katja Klausz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Dorothee Winterberg
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Kristina Müller
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Renate Burger
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Matthias Peipp
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Denis M. Schewe
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Jeanette H. W. Leusen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| |
Collapse
|
17
|
Young WC, Carpp LN, Chaudhury S, Regules JA, Bergmann-Leitner ES, Ockenhouse C, Wille-Reece U, deCamp AC, Hughes E, Mahoney C, Pallikkuth S, Pahwa S, Dennison SM, Mudrak SV, Alam SM, Seaton KE, Spreng RL, Fallon J, Michell A, Ulloa-Montoya F, Coccia M, Jongert E, Alter G, Tomaras GD, Gottardo R. Comprehensive Data Integration Approach to Assess Immune Responses and Correlates of RTS,S/AS01-Mediated Protection From Malaria Infection in Controlled Human Malaria Infection Trials. Front Big Data 2021; 4:672460. [PMID: 34212134 PMCID: PMC8239149 DOI: 10.3389/fdata.2021.672460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit–with this dataset–in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a “quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.
Collapse
Affiliation(s)
- William Chad Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Sidhartha Chaudhury
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elke S Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ellis Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Sarah V Mudrak
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - S Munir Alam
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States.,Department of Pathology, Duke University, Durham, NC, United States
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Rachel L Spreng
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jon Fallon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
18
|
Roßkopf S, Eichholz KM, Winterberg D, Diemer KJ, Lutz S, Münnich IA, Klausz K, Rösner T, Valerius T, Schewe DM, Humpe A, Gramatzki M, Peipp M, Kellner C. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering. Antibodies (Basel) 2020; 9:antib9040063. [PMID: 33212776 PMCID: PMC7709100 DOI: 10.3390/antib9040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody’s Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. Results: Four versions of a CD19 antibody based on tafasitamab’s V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. Conclusions: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.
Collapse
Affiliation(s)
- Sophia Roßkopf
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Klara Marie Eichholz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Dorothee Winterberg
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Katarina Julia Diemer
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Sebastian Lutz
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Ira Alexandra Münnich
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Denis Martin Schewe
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (D.W.); (D.M.S.)
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (S.R.); (K.M.E.); (K.J.D.); (K.K.); (T.R.); (T.V.); (M.G.)
- Correspondence: ; Tel.: +49-431-500-22701
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany; (S.L.); (I.A.M.); (A.H.); (C.K.)
| |
Collapse
|
19
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
20
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Xu Y, Xiao Y, Luo C, Liu Q, Wei A, Yang Y, Zhao L, Wang Y. Blocking PD-1/PD-L1 by an ADCC enhanced anti-B7-H3/PD-1 fusion protein engages immune activation and cytotoxicity. Int Immunopharmacol 2020; 84:106584. [PMID: 32422527 DOI: 10.1016/j.intimp.2020.106584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Antibody therapy based on PD-1/PD-L1 blocking or ADCC effector has produced significant clinical benefit for cancer patients. We generated a novel anti-B7-H3 antibody (07B) and engineered the Fc fragment to enhance ADCC. To improve efficacy and tumor selectivity, we developed anti-B7-H3/PD-1 bispecific fusion proteins that simultaneously engaged tumor associate marker B7-H3 and immune suppressing ligand PD-L1 as well as enhanced ADCC to promote potent and highly selective tumor killing. Fusion proteins were designed by fusing human PD-1 extra domain to 07B in four different formats and showed good binding capacity to both targets. Indeed, the affinity of fusion proteins to B7-H3 is over 10,000 fold higher compared to that of the analogous PD-L1 and the blocking of fusion proteins to PD-L1 was worse but it greatly enhanced when bound to B7-H3, thus achieving directly PD-L1-blockade to B7-H3-expressing tumor cells. Importantly, IL-2 production was enhanced by fusion proteins from staphylococcal enterotoxin B (SEB) stimulated PBMC. Similarly, cytokines induced by fusion proteins was enhanced when co-cultured with stimulated CD8+ T cells and B7-H3/PD-L1 transfected raji cells. Additionally, fusion proteins improved activation to CD16a by Fc modification and delivered selective cytotoxicity to B7-H3 expressing tumor cells. In conclusion, fusion proteins blocked the PD-1/PD-L1 signal pathway and significantly increased potency of ADCC in a B7-H3-directed manner, thereby selectively activating CD8+ T cells and enhancing natural killing towards tumor. This novel fusion protein with its unique targeting preference may be useful to enhance efficacy and safety of immunotherapy for B7-H3-overexpressing malignancies.
Collapse
Affiliation(s)
- Yao Xu
- Sanhome-CPU Joint Laboratory, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yang Xiao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Cheng Luo
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Qingxia Liu
- Sanhome-CPU Joint Laboratory, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Aiqi Wei
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yang Yang
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Liwen Zhao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yong Wang
- Sanhome-CPU Joint Laboratory, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China.
| |
Collapse
|
22
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
25
|
Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol 2019; 9:3124. [PMID: 30761158 PMCID: PMC6363688 DOI: 10.3389/fimmu.2018.03124] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab')2 blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of FCGR3B causing different levels of surface FcγRIIIb expression. Individuals with one copy of FCGR3B showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG1 heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine W Bruggeman
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris van der Heijden
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q Nagelkerke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood 2019; 133:1395-1405. [PMID: 30655272 DOI: 10.1182/blood-2018-07-864538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
We have identified a rare healthy FcγRIIIB (CD16B)-null donor completely lacking FCGR3B RNA and protein expression and dissected the role of the different neutrophil Fcγ receptors in the response to therapeutic anti-CD20 monoclonal antibodies. We observed that polymorphonuclear neutrophils (PMNs) from FcγRIIIB wild-type (WT) individuals or the null donor were more effectively activated by chronic lymphocytic leukemia (CLL) B-cell targets opsonized with glycoengineered anti-CD20 antibodies compared with fully core-fucosylated anti-CD20 antibodies, suggesting the presence and role of FcγRIIIA (CD16A) on PMNs. Indeed, we demonstrated by reverse-transcription polymerase chain reaction, flow cytometry, and western blot analysis that PMNs from FcγRIIIB WT donors and the null individual express low levels of FcγRIIIA on their surfaces. FcγRIIIA is a functional and activating molecule on these cells, because anti-CD16 F(ab')2 antibodies alone were able to activate highly purified PMNs from the FcγRIIIB-null donor. Use of blocking anti-CD16 and anti-CD32 antibodies showed that FcγRIIIA is also a major mediator of phagocytosis of CD20-opsonized beads by FcγRIIIB WT and null PMNs. In contrast, trogocytosis of antibody-opsonized CLL B cells by PMNs was mediated primarily by FcγRIIIB in WT PMNs and by FcγRIIA in null PMNs. We conclude that FcγRIIIA is an important player in PMN functions, whereas FcγRIIIB is dispensable for activation and phagocytosis. We discuss the clinical implications of these findings.
Collapse
|
27
|
Rösner T, Kahle S, Montenegro F, Matlung HL, Jansen JHM, Evers M, Beurskens F, Leusen JHW, van den Berg TK, Valerius T. Immune Effector Functions of Human IgG2 Antibodies against EGFR. Mol Cancer Ther 2018; 18:75-88. [PMID: 30282813 DOI: 10.1158/1535-7163.mct-18-0341] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022]
Abstract
Three FDA-approved epidermal growth factor receptor (EGFR) antibodies (cetuximab, panitumumab, necitumumab) are clinically available to treat patients with different types of cancers. Interestingly, panitumumab is of human IgG2 isotype, which is often considered to have limited immune effector functions. Unexpectedly, our studies unraveled that human IgG2 antibodies against EGFR mediated effective CDC when combined with another noncross-blocking EGFR antibody. This second antibody could be of human IgG1 or IgG2 isotype. Furthermore, EGFR antibodies of human IgG2 isotype were highly potent in recruiting myeloid effector cells such as M1 macrophages and PMN for tumor cell killing by ADCC. Tumor cell killing by PMN was more effective with IgG2 than with IgG1 antibodies if tumor cells expressed lower levels of EGFR. Additionally, lower expression levels of the "don't eat me" molecule CD47 on tumor cells enabled ADCC also by M2 macrophages, and improved PMN and macrophage-mediated ADCC. A TCGA enquiry revealed broadly varying CD47 expression levels across different solid tumor types. Together, these results demonstrate that human IgG2 antibodies against EGFR can promote significant Fc-mediated effector functions, which may contribute to their clinical efficacy. The future challenge will be to identify clinical situations in which myeloid effector cells can optimally contribute to antibody efficacy.
Collapse
Affiliation(s)
- Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Steffen Kahle
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Francesca Montenegro
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J H Marco Jansen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Mitchell Evers
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
28
|
Zahavi D, AlDeghaither D, O'Connell A, Weiner LM. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib Ther 2018; 1:7-12. [PMID: 33928217 PMCID: PMC7990127 DOI: 10.1093/abt/tby002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
The targeting of surface antigens expressed on tumor cells by monoclonal antibodies (mAbs) has revolutionized cancer therapeutics. One mechanism of action of antibody-based immunotherapy is the activation of immune effector cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This review will summarize the process of ADCC, its important role in the efficacy of mAb therapy, how to measure it, and finally future strategies for antibody design that can take advantage of it to improve clinical performance.
Collapse
Affiliation(s)
- David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Dalal AlDeghaither
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Allison O'Connell
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center,3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
29
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
30
|
Kellner C, Otte A, Cappuzzello E, Klausz K, Peipp M. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy. Transfus Med Hemother 2017; 44:327-336. [PMID: 29070978 DOI: 10.1159/000479980] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
31
|
Boesch AW, Miles AR, Chan YN, Osei-Owusu NY, Ackerman ME. IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs. MAbs 2017; 9:455-465. [PMID: 28055295 DOI: 10.1080/19420862.2016.1274845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.
Collapse
Affiliation(s)
- Austin W Boesch
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA
| | - Adam R Miles
- b Wasatch Microfluidics , Salt Lake City , UT , USA
| | - Ying N Chan
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA
| | - Nana Y Osei-Owusu
- c Department of Microbiology and Immunology , Geisel School of Medicine , Lebanon , NH , USA
| | - Margaret E Ackerman
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA.,c Department of Microbiology and Immunology , Geisel School of Medicine , Lebanon , NH , USA
| |
Collapse
|
32
|
Shrestha S, Kim SY, Yun YJ, Kim JK, Lee JM, Shin M, Song DK, Hong CW. Retinoic acid induces hypersegmentation and enhances cytotoxicity of neutrophils against cancer cells. Immunol Lett 2017; 182:24-29. [PMID: 28065603 DOI: 10.1016/j.imlet.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/02/2017] [Indexed: 02/08/2023]
Abstract
Hypersegmentation of nuclei is considered a distinct characteristic of the antitumoral phenotype of neutrophils. Retinoic acid, a metabolite of retinol, reorganizes and induces segmentation of the nucleus during the differentiation of neutrophils. However, the role of retinoic acid in the phenotype polarization of neutrophils has not been fully established. Here, we investigated the effect of retinoic acid on phenotype polarization of neutrophils. Retinoic acid-induced the hypersegmentation of human neutrophils via retinoic acid receptors and mTOR pathways. Retinoic acid-induced hypersegmented neutrophils enhanced neutrophil extracellular traps (NETs) formation in response to phorbol-12-myristate 13-acetate (PMA) and fMLP (N-Formylmethionine-leucyl-phenylalanine) stimulation, and increased cytotoxicity against various tumor cells. Moreover, retinoic acid treatment attenuated tumor growth in a murine model of tumor. Taken together, these results suggests that retinoic acid induces the phenotype polarization of neutrophils to exert antitumor effects.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Shin-Yeong Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Young-Jin Yun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
33
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Saxena A, Wu D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front Immunol 2016; 7:580. [PMID: 28018347 PMCID: PMC5149539 DOI: 10.3389/fimmu.2016.00580] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downstream signaling pathways that may lead to the inhibition of tumor growth, induction of tumor apoptosis, and differentiation. The Fc region can further improve mAbs’ efficacy by mediating effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cell-mediated phagocytosis. Moreover, Fc is the region interacting with the neonatal Fc receptor in a pH-dependent manner that can slow down IgG’s degradation and extend its serum half-life. Loss of the antibody Fc region dramatically shortens its serum half-life and weakens its anticancer effects. Given the essential roles that the Fc region plays in the modulation of the efficacy of mAb in cancer treatment, Fc engineering has been extensively studied in the past years. This review focuses on the recent advances in therapeutic Fc engineering that modulates its related effector functions and serum half-life. We also discuss the progress made in aglycosylated mAb development that may substantially reduce the cost of manufacture but maintain similar efficacies as conventional glycosylated mAb. Finally, we highlight several Fc engineering-based mAbs under clinical trials.
Collapse
Affiliation(s)
- Abhishek Saxena
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| |
Collapse
|
35
|
Khalil DN, Postow MA, Ibrahim N, Ludwig DL, Cosaert J, Kambhampati SRP, Tang S, Grebennik D, Kauh JSW, Lenz HJ, Flaherty KT, Hodi FS, Lawrence DP, Wolchok JD. An Open-Label, Dose-Escalation Phase I Study of Anti-TYRP1 Monoclonal Antibody IMC-20D7S for Patients with Relapsed or Refractory Melanoma. Clin Cancer Res 2016; 22:5204-5210. [PMID: 27797971 PMCID: PMC5117650 DOI: 10.1158/1078-0432.ccr-16-1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Tyrosinase-related protein-1 (TYRP1) is a transmembrane glycoprotein that is specifically expressed in melanocytes and melanoma cells. Preclinical data suggest that mAbs targeting TYRP1 confer antimelanoma activity. IMC-20D7S is a recombinant human IgG1 mAb targeting TYRP1. Here, we report the first-in-human phase I/Ib trial of IMC-20D7S. EXPERIMENTAL DESIGN The primary objective of this study was to establish the safety profile and the MTD of IMC-20D7S. Patients with advanced melanoma who progressed after or during at least one line of treatment or for whom standard therapy was not indicated enrolled in this standard 3 + 3 dose-escalation, open-label study. IMC-20D7S was administered intravenously every 2 or 3 weeks. RESULTS Twenty-seven patients were enrolled. The most common adverse events were fatigue and constipation experienced by nine (33%) and eight (30%) patients, respectively. There were no serious adverse events related to treatment, no discontinuations of treatment due to adverse events, and no treatment-related deaths. Given the absence of dose-limiting toxicities, an MTD was not defined, but a provisional MTD was established at the 20 mg/kg every 2-week dose based on serum concentration and safety data. One patient experienced a complete response. A disease control rate, defined as stable disease or better, of 41% was observed. CONCLUSION IMC-20D7S is well tolerated among patients with advanced melanoma with evidence of antitumor activity. Further investigation of this agent as monotherapy in selected patients or as part of combination regimens is warranted. Clin Cancer Res; 22(21); 5204-10. ©2016 AACR.
Collapse
Affiliation(s)
- Danny N Khalil
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York
| | | | | | | | | | | | | | | | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York.
| |
Collapse
|
36
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
37
|
Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 2016; 8:1512-1524. [PMID: 27492264 DOI: 10.1080/19420862.2016.1218586] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immunoglobulin G1 (IgG1) is the most abundant circulating human antibody and also the scaffold for many therapeutic monoclonal antibodies (mAbs). The destruction of IgG-coated targets by cell-mediated pathways begins with an interaction between the IgG Fc region and multiple varieties of membrane-bound Fc γ receptors (FcγRs) on the surface of leukocytes. This interaction requires the presence of an asparagine-linked (N-)glycan on the Fc, and variations in the N-glycan composition can affect the affinity of CD16A binding (an FcγR). Contemporary efforts to glycoengineer mAbs focus on increasing CD16A affinity, and thus treatment efficacy, but it is unclear how these changes affect affinity for the other FcγRs. Here, we measure binding of the extracellular Fc-binding domains for human CD16A and B, CD32A, B and C, and CD64 to 6 well-defined IgG1 Fc glycoforms that cover ∼85% of the pool of human IgG1 Fc glycoforms. Core α1-6 fucosylation showed the greatest changes with CD16B (8.5-fold decrease), CD16A (3.9-fold decrease) and CD32B/C (1.8-fold decrease), but did not affect binding to CD32A. Adding galactose to the non-reducing termini of the complex-type, biantennary glycan increased affinity for all CD16s and 32s tested by 1.7-fold. Sialylation did not change the affinity of core-fucosylated Fc, but increased the affinity of afucosylated Fc slightly by an average of 1.16-fold for all CD16s and CD32s tested. The effects of fucose and galactose modification are additive, suggesting the contributions of these residues to Fc γ receptor affinity are independent.
Collapse
Affiliation(s)
- Ganesh P Subedi
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| | - Adam W Barb
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| |
Collapse
|
38
|
Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Curr Opin HIV AIDS 2016; 10:160-9. [PMID: 25700208 DOI: 10.1097/coh.0000000000000149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW A wealth of recent animal model data suggests that as exciting possibilities for the use of antibodies in passive immunotherapy strategies continue to develop, it will be important to broadly consider how antibodies achieve anti-HIV-1 effect in vivo. RECENT FINDINGS Beyond neutralization breadth and potency, substantial evidence from natural infection, vaccination, and studies in animal models points to a critical role for antibody Fc receptor (FcR) engagement in reducing risk of infection, decreasing postinfection viremia, and delaying viral rebound. Supporting these findings in the setting of HIV, the clinical maturation of recombinant antibody therapeutics has reinforced the importance of Fc-driven activity in vivo across many disease settings, as well as opportunely resulted in the development and exploration of a number of engineered Fc sequence and glycosylation variants that possess differential binding to FcRs. Exploiting these variants as tools, the individual and concerted effects of antibody effector functions such as antibody-dependent cellular cytotoxicity, antibody-dependent cell-mediated virus inhibition, phagocytosis, complement-dependent cytotoxicity, antibody half-life, and compartmentalization are now being explored. As exciting molecular therapies are advanced, these studies promise to provide insight into optimal in-vivo antibody activity profiles. SUMMARY Careful consideration of recent progress in understanding protective antibody activities in vivo can point toward how tailoring antibody activity via Fc domain modification may enable optimization of HIV prevention and eradication strategies.
Collapse
|
39
|
Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res 2015; 2015:983698. [PMID: 26819959 PMCID: PMC4706937 DOI: 10.1155/2015/983698] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.
Collapse
|
40
|
Derer S, Cossham M, Rösner T, Kellner C, Beurskens FJ, Schwanbeck R, Lohse S, Sina C, Peipp M, Valerius T. A Complement-Optimized EGFR Antibody Improves Cytotoxic Functions of Polymorphonuclear Cells against Tumor Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:5077-87. [DOI: 10.4049/jimmunol.1501458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/20/2015] [Indexed: 11/19/2022]
|
41
|
Meyer S, Nederend M, Jansen JHM, Reiding KR, Jacobino SR, Meeldijk J, Bovenschen N, Wuhrer M, Valerius T, Ubink R, Boross P, Rouwendal G, Leusen JHW. Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. MAbs 2015; 8:87-98. [PMID: 26466856 PMCID: PMC4966554 DOI: 10.1080/19420862.2015.1106658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.
Collapse
Affiliation(s)
- Saskia Meyer
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Maaike Nederend
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - J H Marco Jansen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Karli R Reiding
- b Center for Proteomics and Metabolomics; Leiden University Medical Center ; Leiden , The Netherlands
| | - Shamir R Jacobino
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Jan Meeldijk
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | - Niels Bovenschen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands.,c Department of Pathology ; UMC Utrecht ; Utrecht , The Netherlands
| | - Manfred Wuhrer
- b Center for Proteomics and Metabolomics; Leiden University Medical Center ; Leiden , The Netherlands
| | - Thomas Valerius
- d Division of Stem Cell Transplantation and Immunotherapy ; Department of Internal Medicine II; Christian-Albrechts-University ; Kiel , Germany
| | - Ruud Ubink
- e Synthon Biopharmaceuticals BV ; Nijmegen , The Netherlands
| | - Peter Boross
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| | | | - Jeanette H W Leusen
- a Laboratory of Translational Immunology; UMC Utrecht ; Utrecht , The Netherlands
| |
Collapse
|
42
|
Brandsma AM, ten Broeke T, Nederend M, Meulenbroek LA, van Tetering G, Meyer S, Jansen JM, Beltrán Buitrago MA, Nagelkerke SQ, Németh I, Ubink R, Rouwendal G, Lohse S, Valerius T, Leusen JH, Boross P. Simultaneous Targeting of FcγRs and FcαRI Enhances Tumor Cell Killing. Cancer Immunol Res 2015; 3:1316-24. [DOI: 10.1158/2326-6066.cir-15-0099-t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/03/2015] [Indexed: 11/16/2022]
|
43
|
Kellner C, Günther A, Humpe A, Repp R, Klausz K, Derer S, Valerius T, Ritgen M, Brüggemann M, van de Winkel JG, Parren PW, Kneba M, Gramatzki M, Peipp M. Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30. Oncoimmunology 2015; 5:e1058459. [PMID: 26942070 DOI: 10.1080/2162402x.2015.1058459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated through the IgG Fc receptor FcγRIIIa represents a major effector function of many therapeutic antibodies. In an attempt to further enhance natural killer (NK) cell-mediated ADCC, we combined therapeutic antibodies against CD20 and CD38 with recombinant immunoligands against the stimulatory NK cell receptors NKG2D or NKp30. These immunoligands, respectively designated as ULBP2:7D8 and B7-H6:7D8, contained the CD20 scFv 7D8 as a targeting moiety and a cognate ligand for either NKG2D or NKp30 (i.e. ULBP2 and B7-H6, respectively). Both the immunoligands synergistically augmented ADCC in combination with the CD20 antibody rituximab and the CD38 antibody daratumumab. Combinations with ULBP2:7D8 resulted in higher cytotoxicity compared to combinations with B7-H6:7D8, suggesting that coligation of FcγRIIIa with NKG2D triggered NK cells more efficiently than with NKp30. Addition of B7-H6:7D8 to ULBP2:7D8 and rituximab in a triple combination did not further increase the extent of tumor cell lysis. Importantly, immunoligand-mediated enhancement of ADCC was also observed for tumor cells and autologous NK cells from patients with hematologic malignancies, in which, again, ULBP2:7D8 was particularly active. In summary, co-targeting of NKG2D was more effective in promoting rituximab or daratumumab-mediated ADCC by NK cells than co-ligation of NKp30. The observed increase in the ADCC activity of these therapeutic antibodies suggests promise for a 'dual-dual-targeting' approach in which tumor cell surface antigens are targeted in concert with two distinct activating NK cell receptors (i.e. FcγRIIIa and NKG2D or B7-H6).
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Roland Repp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Matthias Ritgen
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Monika Brüggemann
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Jan Gj van de Winkel
- Genmab; Utrecht, the Netherlands; Department of Immunology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Paul Whi Parren
- Genmab; Utrecht, the Netherlands; Department of Cancer and Inflammation Research; Institute of Molecular Medicine; University of Southern Denmark; Odense, Denmark; Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Michael Kneba
- 2nd Department of Medicine; Christian-Albrechts-University Kiel ; Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine; Christian-Albrechts-University Kiel; Kiel, Germany
| |
Collapse
|
44
|
Abstract
The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo.
Collapse
|
45
|
Grevys A, Bern M, Foss S, Bratlie DB, Moen A, Gunnarsen KS, Aase A, Michaelsen TE, Sandlie I, Andersen JT. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:5497-508. [PMID: 25904551 DOI: 10.4049/jimmunol.1401218] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/23/2015] [Indexed: 12/18/2022]
Abstract
Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge-CH2 region, structurally distant from the binding site for FcRn at the CH2-CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn-IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants.
Collapse
Affiliation(s)
- Algirdas Grevys
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway
| | - Malin Bern
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway
| | - Stian Foss
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway
| | - Diane Bryant Bratlie
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, 0403 Oslo, Norway
| | - Anders Moen
- Department of Biosciences and the Mass Spectrometry and Proteomics Unit, University of Oslo, 0371 Oslo, Norway; and
| | - Kristin Støen Gunnarsen
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway
| | - Audun Aase
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, 0403 Oslo, Norway
| | - Terje Einar Michaelsen
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, 0403 Oslo, Norway; Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway
| | - Jan Terje Andersen
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, 0372 Oslo, Norway;
| |
Collapse
|
46
|
Development of a cell-based assay measuring the activation of FcγRIIa for the characterization of therapeutic monoclonal antibodies. PLoS One 2014; 9:e95787. [PMID: 24752341 PMCID: PMC3994145 DOI: 10.1371/journal.pone.0095787] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is one of the important mechanisms of action of the targeting of tumor cells by therapeutic monoclonal antibodies (mAbs). Among the human Fcγ receptors (FcγRs), FcγRIIIa is well known as the only receptor expressed in natural killer (NK) cells, and it plays a pivotal role in ADCC by IgG1-subclass mAbs. In addition, the contributions of FcγRIIa to mAb-mediated cytotoxicity have been reported. FcγRIIa is expressed in myeloid effector cells including neutrophils and macrophages, and it is involved in the activation of these effector cells. However, the measurement of the cytotoxicity via FcγRIIa-expressing effector cells is complicated and inconvenient for the characterization of therapeutic mAbs. Here we report the development of a cell-based assay using a human FcγRIIa-expressing reporter cell line. The FcγRIIa reporter cell assay was able to estimate the activation of FcγRIIa by antigen-bound mAbs by a very simple method in vitro. The usefulness of this assay for evaluating the activity of mAbs with different abilities to activate FcγRIIa was confirmed by the examples including the comparison of the activity of the anti-CD20 mAb rituximab and its Fc-engineered variants, and two anti-EGFR mAbs with different IgG subclasses, cetuximab (IgG1) and panitumumab (IgG2). We also applied this assay to the characterization of a force-oxidized mAb, and we observed that oxidation significantly decreased the FcγRIIa activation by EGFR-bound cetuximab. These results suggest that our FcγRIIa reporter assay is a promising tool for the characterization of therapeutic mAbs, including Fc-engineered mAbs, IgG2-subclass mAbs, and their product-related variants.
Collapse
|