1
|
Zhao Z, Li Q, Qu C, Jiang Z, Jia G, Lan G, Luan Y. A collagenase nanogel backpack improves CAR-T cell therapy outcomes in pancreatic cancer. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01924-1. [PMID: 40389641 DOI: 10.1038/s41565-025-01924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of haematological malignancies. Challenges in overcoming physical barriers however greatly limit CAR-T cell efficacy in solid tumours. Here we show that an approach based on collagenase nanogel generally improves the outcome of T cell-based therapies, and specifically of CAR-T cell therapy. The nanogels are created by cross-linking collagenase and subsequently modifying them with a CXCR4 antagonist peptide. These nanogels can bind CAR-T cells via receptor-ligand interaction, resulting in cellular backpack delivery systems. The nanogel backpacks modulate tumoural infiltration and localization of CAR-T cells by surmounting physical barriers and disrupting chemokine-mediated CAR-T cell imprisonment, thereby addressing their navigation deficiency within solid tumours. Our approach offers a promising strategy for pancreatic cancer therapy and holds potential for advancing CAR-T cell therapy towards clinical applications.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenghao Qu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zeyu Jiang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoqing Jia
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongde Lan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Luan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Hong K, Cao J, Jiang W, Deng W, Huang G, Huang T, Fang J, Wang Y. A nanodrug provokes antitumor immune responses via synchronous multicellular regulation for enhanced cancer immunotherapy. J Colloid Interface Sci 2025; 678:750-762. [PMID: 39265345 DOI: 10.1016/j.jcis.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Hepatocellular carcinoma (HCC) exhibits a low response to immunotherapy due to the dense extracellular matrix (ECM) filled with immunosuppressive cells including dendritic cells (DCs) of blocked maturation. Herein, we develop a nanoprodrug self-assembled from polyethylene glycol-poly-4-borono-l-phenylalanine (mPEG-PBPA) conjugating with quercetin (QUE) via boronic ester bonds. In addition, an immune adjuvant of imiquimod (R837) is incorporated. The nanodrug (denoted as Q&R@NPs) is prepared from a simple mixing means with a high loading content of QUE reaching more than 30%. Owing to the acid and reactive oxygen species (ROS) sensitivities of boronic ester bonds, Q&R@NPs can respond to the tumor microenvironment (TME) and release QUE and R837 to synchronously exert multicellular regulation functions. Specifically, QUE inhibits the activation state of hepatic stellate cells and reduces highly expressed programmed death receptor ligand 1 (PD-L1) on tumor cells, meanwhile R837 exposes calreticulin on tumor cell surface as an "eat me" signal and leads to a large number of DCs maturing for enhanced antigen presentation. Consequently, the cooperative immune regulation results in a remodeled TME with high infiltration of cytotoxic T lymphocytes for enhanced HCC immunotherapy, which demonstrates an effective immunotherapy paradigm for dense ECM characterized solid tumors with high PD-L1 expression.
Collapse
Affiliation(s)
- Keze Hong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jianrong Cao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Weiting Jiang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wei Deng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guohong Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Tao Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Jin Fang
- Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
4
|
Hirakawa Y, Zhan Q, Essien S, Yu KK, Murad F, Piris A, Ramsey MR, Schatton T, Carucci JA, Schmults CD. Desmoplasia Is Associated with Decreased Cytotoxic and Helper T Cells and Increased T-Cell Exhaustion in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2024; 144:1901-1904.e2. [PMID: 38309575 PMCID: PMC11350961 DOI: 10.1016/j.jid.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Yuka Hirakawa
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qian Zhan
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sernah Essien
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kenneth K Yu
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Fadi Murad
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Adriano Piris
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew R Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John A Carucci
- Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Chrysalyne D Schmults
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
6
|
Anand S, Vikramdeo KS, Sudan SK, Sharma A, Acharya S, Khan MA, Singh S, Singh AP. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024; 43:409-421. [PMID: 37950087 PMCID: PMC11015973 DOI: 10.1007/s10555-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Amod Sharma
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Srijan Acharya
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
7
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Wang R, Hong K, Zhang Q, Cao J, Huang T, Xiao Z, Wang Y, Shuai X. A nanodrug simultaneously inhibits pancreatic stellate cell activation and regulatory T cell infiltration to promote the immunotherapy of pancreatic cancer. Acta Biomater 2023; 169:451-463. [PMID: 37572982 DOI: 10.1016/j.actbio.2023.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix flooded with immune suppressive cells, resulting in extremely poor clinical response to immunotherapy. It has been revealed that the activation of pancreatic stellate cells (PSCs) makes considerable contributions to the immunological "cold" tumor microenvironment (TME). Herein, we developed a polyamino acid-based nanodrug incorporating the PSC activation inhibitor calcipotriol and anti-CXCL12 siRNA. The nanodrug was easily prepared with a small particle size and is capable of penetrating pancreatic tumors to inactivate PSCs and downregulate CXCL12. The in vivo results of orthotopic pancreatic tumor treatment demonstrated that codelivery of calcipotriol and anti-CXCL12 siRNA remodeled the PDAC TME with reduced extracellular matrix and decreased immunosuppressive T cells. Eventually, the infiltration of cytotoxic T cells was increased, thereby acting with immune checkpoint blockade (ICB) therapy for immunologically "cold" pancreatic tumors. In the present study, we propose a promising paradigm to improve the immunotherapy outcome of PDAC using nanodrugs that synchronously inhibit PSC activation and regulatory T-cell infiltration. STATEMENT OF SIGNIFICANCE: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) that impedes the tumor infiltration of therapeutic agents and cytotoxic T lymphocytes, resulting in a poor clinical response to immunotherapy. In the present study, we proposed a promising approach for enhanced immunotherapy of pancreatic cancer. Specifically, a nanodrug incorporating calcipotriol and anti-CXCL12 siRNA was synthesized to synchronously inactivate matrix-producing pancreatic stellate cells and suppress the infiltration of regulatory T cells. The reduced ECM removed the pathological barrier, preventing nanodrug penetration and effector T-cell infiltration, leading to a conversion of the immunosuppressive "cold" microenvironment to a "hot" microenvironment, which eventually boosted the immunotherapy of anti-PD-1 antibodies in pancreatic cancer.
Collapse
Affiliation(s)
- Rongze Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Keze Hong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jianrong Cao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Tao Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zecong Xiao
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
9
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Rohila D, Park IH, Pham TV, Weitz J, Hurtado de Mendoza T, Madheswaran S, Ishfaq M, Beaman C, Tapia E, Sun S, Patel J, Tamayo P, Lowy AM, Joshi S. Syk Inhibition Reprograms Tumor-Associated Macrophages and Overcomes Gemcitabine-Induced Immunosuppression in Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:2675-2689. [PMID: 37306759 PMCID: PMC10416758 DOI: 10.1158/0008-5472.can-22-3645] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an insidious disease with a low 5-year survival rate. PDAC is characterized by infiltration of abundant tumor-associated macrophages (TAM), which promote immune tolerance and immunotherapeutic resistance. Here we report that macrophage spleen tyrosine kinase (Syk) promotes PDAC growth and metastasis. In orthotopic PDAC mouse models, genetic deletion of myeloid Syk reprogrammed macrophages into immunostimulatory phenotype, increased the infiltration, proliferation, and cytotoxicity of CD8+ T cells, and repressed PDAC growth and metastasis. Furthermore, gemcitabine (Gem) treatment induced an immunosuppressive microenvironment in PDAC by promoting protumorigenic polarization of macrophages. In contrast, treatment with the FDA-approved Syk inhibitor R788 (fostamatinib) remodeled the tumor immune microenvironment, "re-educated" protumorigenic macrophages towards an immunostimulatory phenotype and boosted CD8+ T-cell responses in Gem-treated PDAC in orthotopic mouse models and an ex vivo human pancreatic slice culture model. These findings illustrate the potential of Syk inhibition for enhancing the antitumor immune responses in PDAC and support the clinical evaluation of R788 either alone or together with Gem as a potential treatment strategy for PDAC. SIGNIFICANCE Syk blockade induces macrophage polarization to an immunostimulatory phenotype, which enhances CD8+ T-cell responses and improves gemcitabine efficacy in pancreatic ductal adenocarcinoma, a clinically challenging malignancy.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Timothy V. Pham
- Office of Cancer Genomics, Moores Cancer Center, University of California, San Diego, California
| | - Jonathan Weitz
- Department of Surgery, University of California, San Diego, California
| | | | - Suresh Madheswaran
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Mehreen Ishfaq
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Cooper Beaman
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Siming Sun
- Department of Surgery, University of California, San Diego, California
| | - Jay Patel
- Department of Surgery, University of California, San Diego, California
| | - Pablo Tamayo
- Office of Cancer Genomics, Moores Cancer Center, University of California, San Diego, California
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, California
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| |
Collapse
|
11
|
Mortaezaee K, Majidpoor J. Mechanisms of CD8 + T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1. Biomed Pharmacother 2023; 163:114824. [PMID: 37141735 DOI: 10.1016/j.biopha.2023.114824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
CD8+ T cells are the front-line defensive cells against cancer. Reduced infiltration and effector function of CD8+ T cells occurs in cancer and is contributed to defective immunity and immunotherapy resistance. Exclusion and exhaustion of CD8+ T cells are the two key factors associated with reduced durability of immune checkpoint inhibitor (ICI) therapy. Initially activated T cells upon exposure to chronic antigen stimulation or immunosuppressive tumor microenvironment (TME) acquire a hyporesponsive state that progressively lose their effector function. Thus, a key strategy in cancer immunotherapy is to look for factors contributed to defective CD8+ T cell infiltration and function. Targeting such factors can define a promising supplementary approach in patients receiving anti-programmed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) therapy. Recently, bispecific antibodies are developed against PD-(L)1 and a dominant factor within TME, representing higher safety profile and exerting more desired outcomes. The focus of this review is to discuss about promoters of deficient infiltration and effector function of CD8+ T cells and their addressing in cancer ICI therapy.
Collapse
Affiliation(s)
- Keywan Mortaezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
12
|
Wan Z, Huang H, West RE, Zhang M, Zhang B, Cai X, Zhang Z, Luo Z, Chen Y, Zhang Y, Xie W, Yang D, Nolin TD, Wang J, Li S, Sun J. Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:33-50. [PMID: 38239407 PMCID: PMC10795849 DOI: 10.1016/j.mattod.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
STING agonist has recently gained much attention for cancer treatment, but the therapeutic potential of STING agonist is hampered by STING-associated tumor immune resistance. In this work, guided by both bioinformatics and computer modeling, we rationally designed a "one stone hits two birds" nanoparticle-based strategy to simultaneously activate STING innate immune response while eliminating STING-associated immune resistance for the treatment of pancreatic ductal adenocarcinoma (PDAC). We discovered that the ultra-small sized micellar system based on gemcitabine-conjugated polymer (PGEM), which showed superior capacity of penetration in pancreatic tumor spheroid model and orthotopic tumor model, could serve as a novel "STING agonist". The activation of STING signaling in dendritic cells (DCs) by PGEM increased both innate nature killer (NK) and adaptive anti-tumor T cell response. However, activation of STING signaling by PGEM in tumor cells also drove the induction of chemokines CCL2 and CCL7, resulting in immune resistance by recruiting tumor associated macrophage (TAM) and myeloid-derived suppressor cells (MDSCs). Through the combination of computer modeling and experimental screening, we developed a dual delivery modality by incorporating a CCR2 (the receptor shared by both CCL2 and CCL7) antagonist PF-6309 (PF) into PGEM micellar system. Our studies demonstrated that PGEM/PF formulation significantly reduced pancreatic tumor burden and induced potent anti-tumor immunity through reversing the CCL2/CCL7-mediated immunosuppression. Moreover, PGEM/PF sensitized PDAC tumors to anti-PD-1 therapy, leading to complete suppression/eradication of the tumors. Our work has shed light to the multi-faceted role of STING activation and provided a novel immunotherapy regimen to maximize the benefit of STING activation for PDAC treatment. In addition, this work paved a new way for bioinformatics and computer modeling-guided rational design of nanomedicine.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raymond E West
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yue Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Geyer M, Gaul LM, D`Agosto SL, Corbo V, Queiroz K. The tumor stroma influences immune cell distribution and recruitment in a PDAC-on-a-chip model. Front Immunol 2023; 14:1155085. [PMID: 37205118 PMCID: PMC10185841 DOI: 10.3389/fimmu.2023.1155085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The dense tumor stroma of pancreatic ductal adenocarcinoma (PDAC) and its secreted immune active molecules provide a barrier for chemotherapy treatment as well as for immune cell infiltration to the tumor core, providing a challenge for immunotherapeutic strategies. Consequently, the investigation of processes underlying the interaction between the tumor stroma, particularly activated pancreatic stellate cells (PSCs), and immune cells may offer new therapeutic approaches for PDAC treatment. In this study, we established a 3D PDAC model cultured under flow, consisting of an endothelial tube, PSCs and PDAC organoids. This was applied to study the role of the tumor microenvironment (TME) on immune cell recruitment and its effect on partly preventing their interaction with pancreatic cancer cells. We observed that stromal cells form a physical barrier, partly shielding the cancer cells from migrating immune cells, as well as a biochemical microenvironment, that seems to attract and influence immune cell distribution. In addition, stromal targeting by Halofuginone led to an increase in immune cell infiltration. We propose that the here developed model setups will support the understanding of the cellular interplay influencing the recruitment and distribution of immune cells, and contribute to the identification of key players in the PDAC immunosuppressive TME as well as support the discovery of new strategies to treat this immune unresponsive tumor.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Corbo
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Karla Queiroz
- Mimetas B.V., Oegstgeest, Netherlands
- *Correspondence: Karla Queiroz,
| |
Collapse
|
14
|
Ravindranathan S, Passang T, Li JM, Wang S, Dhamsania R, Ware MB, Zaidi MY, Zhu J, Cardenas M, Liu Y, Gumber S, Robinson B, Sen-Majumdar A, Zhang H, Chandrakasan S, Kissick H, Frey AB, Thomas SN, El-Rayes BF, Lesinski GB, Waller EK. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun 2022; 13:6418. [PMID: 36302761 PMCID: PMC9613684 DOI: 10.1038/s41467-022-34242-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.
Collapse
Affiliation(s)
- Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rohan Dhamsania
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael Brandon Ware
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mohammad Y Zaidi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jingru Zhu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Haydn Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Centre, Emory University, Atlanta, GA, USA
| | | | - Susan N Thomas
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
15
|
A Case Report on Longitudinal Collection of Tumour Biopsies for Gene Expression-Based Tumour Microenvironment Analysis from Pancreatic Cancer Patients Treated with Endoscopic Ultrasound Guided Radiofrequency Ablation. Curr Oncol 2022; 29:6754-6763. [PMID: 36290808 PMCID: PMC9600136 DOI: 10.3390/curroncol29100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most patients with pancreatic ductal adenocarcinoma (PDAC) are metastatic at presentation with dismal prognosis warranting improved systemic therapy options. Longitudinal sampling for the assessment of treatment response poses a challenge for validating novel therapies. In this case study, we evaluate the feasibility of collecting endoscopic ultrasound (EUS)-guided longitudinal fine-needle aspiration biopsies (FNABs) from two PDAC patients and conduct gene expression studies associated with tumour microenvironment changes associated with radiofrequency ablation (RFA). METHODS EUS-guided serial/longitudinal FNABs of tumour were collected before and after treatment from two stage III inoperable gemcitabine-treated PDAC patients treated with targeted RFA three times. Biopsies were analysed using a custom NanoString panel (144 genes) consisting of cancer and cancer-associated fibroblast (CAFs) subtypes and immune changes. CAF culture was established from one FNAB and characterised by immunofluorescence and immunoblotting. RESULTS Two-course RFA led to the upregulation of the CD1E gene (involved in antigen presentation) in both patients 1 and 2 (4.5 and 3.9-fold changes) compared to baseline. Patient 1 showed increased T cell genes (CD4-8.7-fold change, CD8-35.7-fold change), cytolytic function (6.4-fold change) and inflammatory response (8-fold change). A greater than 2-fold upregulation of immune checkpoint genes was observed post-second RFA in both patients. Further, two-course RFA led to increased PDGFRα (4.5-fold change) and CAF subtypes B and C genes in patient 1 and subtypes A, B and D genes in patient 2. Patient 2-derived CAFs post-first RFA showed expression of PDGFRα, POSTN and MYH11 proteins. Finally, RFA led to the downregulation of classical PDAC subtype-specific genes in both patients. CONCLUSIONS This case study suggests longitudinal EUS-FNAB as a potential resource to study tumour and microenvironmental changes associated with RFA treatment. A large sample size is required in the future to assess the efficacy and safety of the treatment and perform comprehensive statistical analysis of EUS-RFA-based molecular changes in PDAC.
Collapse
|
16
|
Raglow Z, McKenna MK, Bonifant CL, Wang W, Pasca di Magliano M, Stadlmann J, Penninger JM, Cummings RD, Brenner MK, Markovitz DM. Targeting glycans for CAR therapy: The advent of sweet CARs. Mol Ther 2022; 30:2881-2890. [PMID: 35821636 PMCID: PMC9481985 DOI: 10.1016/j.ymthe.2022.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer. Abnormally glycosylated glycoproteins expressed on cancer cells offer unique targets for CAR T therapy as they are specific to tumor cells. Tumor stromal cells also express abnormal glycoproteins and thus also have the potential to be targeted by glycan-binding CAR T cells. This review will discuss the state of CAR T cells in the therapy of solid tumors, the cancer glycoproteome and its potential for use as a therapeutic target, and the landscape and future of glycan-binding CAR T cell therapy.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Challice L Bonifant
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Stadlmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA.
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Programs in Cancer Biology, Cellular and Molecular Biology, and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Skorupan N, Palestino Dominguez M, Ricci SL, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:4209. [PMID: 36077755 PMCID: PMC9454553 DOI: 10.3390/cancers14174209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.
Collapse
Affiliation(s)
- Nebojsa Skorupan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Medical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayrel Palestino Dominguez
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L. Ricci
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Alewine
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Monteiro MV, Ferreira LP, Rocha M, Gaspar VM, Mano JF. Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials 2022; 287:121653. [PMID: 35803021 DOI: 10.1016/j.biomaterials.2022.121653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís P Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Modi S, Giri B, Gupta VK, Lavania S, Sethi V, Sharma NS, Pandey S, Vickers S, Dudeja V, Saluja AK. Minnelide synergizes with conventional chemotherapy by targeting both cancer and associated stroma components in pancreatic cancer. Cancer Lett 2022; 537:215591. [PMID: 35398530 DOI: 10.1016/j.canlet.2022.215591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
Addition of nab-paclitaxel to gemcitabine offers a survival benefit of only 6 weeks over gemcitabine alone at a cost of increased toxicity in PDAC. The goal of the present study is to evaluate the efficacy of Minnelide, a water-soluble prodrug of triptolide, in combination with the standard of care regimen for chemotherapy with the added advantage of reducing the doses of these drugs to minimize toxicity. Pancreatic cancer cell lines were implanted subcutaneously or orthotopically in athymic nude or C57BL/6J mice. Subsequently, animals were randomized and received saline or minnelide or full dose chemotherapy or low dose chemotherapy or minnelide in combination with low dose chemotherapy. Our results show that a combination of low doses of Minnelide with Gemcitabine + nab-paclitaxel significantly inhibited tumor progression and increased the survival of tumor-bearing mice in comparison with conventional chemotherapy alone. Moreover, combination therapy significantly reduced cancer-related morbidity by decreasing ascites and metastasis and effectively targeted both cancer and the associated stroma. In vitro studies with a combination of low doses of triptolide and paclitaxel significantly decreased the cell viability, increased apoptosis and led to significantly increased M-phase cell cycle arrest in various pancreatic cancer cell lines as compared to either drug alone. Our results show that Minnelide synergizes with conventional chemotherapy leading to a significant reduction in the doses of these toxic drugs, all the while achieving better efficacy in the treatment of PDAC. This combination effectively targeted both the cancer and the associated stromal components of pancreatic cancer.
Collapse
Affiliation(s)
- Shrey Modi
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bhuwan Giri
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vineet K Gupta
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shweta Lavania
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vrishketan Sethi
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nikita S Sharma
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Somnath Pandey
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Selwyn Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok K Saluja
- Department of Surgery and, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
20
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
21
|
Vance K, Alitinok A, Winfree S, Jensen-Smith H, Swanson BJ, Grandgenet PM, Klute KA, Crichton DJ, Hollingsworth MA. Machine learning analyses of highly-multiplexed immunofluorescence identifies distinct tumor and stromal cell populations in primary pancreatic tumors. Cancer Biomark 2022; 33:219-235. [PMID: 35213363 PMCID: PMC9278645 DOI: 10.3233/cbm-210308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a formidable challenge for patients and clinicians. OBJECTIVE To analyze the distribution of 31 different markers in tumor and stromal portions of the tumor microenvironment (TME) and identify immune cell populations to better understand how neoplastic, non-malignant structural, and immune cells, diversify the TME and influence PDAC progression. METHODS Whole slide imaging (WSI) and cyclic multiplexed-immunofluorescence (MxIF) was used to collect 31 different markers over the course of nine distinctive imaging series of human PDAC samples. Image registration and machine learning algorithms were developed to largely automate an imaging analysis pipeline identifying distinct cell types in the TME. RESULTS A random forest algorithm accurately predicted tumor and stromal-rich areas with 87% accuracy using 31 markers and 77% accuracy using only five markers. Top tumor-predictive markers guided downstream analyses to identify immune populations effectively invading into the tumor, including dendritic cells, CD4+ T cells, and multiple immunoregulatory subtypes. CONCLUSIONS Immunoprofiling of PDAC to identify differential distribution of immune cells in the TME is critical for understanding disease progression, response and/or resistance to treatment, and the development of new treatment strategies.
Collapse
Affiliation(s)
- Krysten Vance
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alphan Alitinok
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Seth Winfree
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Jensen-Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin J. Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M. Grandgenet
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelsey A. Klute
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel J. Crichton
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Malik S, Westcott JM, Brekken RA, Burrows FJ. CXCL12 in Pancreatic Cancer: Its Function and Potential as a Therapeutic Drug Target. Cancers (Basel) 2021; 14:cancers14010086. [PMID: 35008248 PMCID: PMC8750050 DOI: 10.3390/cancers14010086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a challenging disease to treat effectively. Fibroblasts associated with pancreatic cancer contribute to disease progression by secreting factors that enhance tumor cell survival and help tumor cells avoid detection by the immune system. This overview focuses on a chemokine, CXCL12, produced by cancer-associated fibroblasts and how CXCL12 signaling enhances pancreatic cancer progression by contributing to various hallmarks of cancer including, but not limited to, tumor growth and evasion of immune response. These pro-oncogenic functions of CXCL12 make it an attractive target in pancreatic cancer. We discuss the different approaches in development to therapeutically target CXCL12 and finally propose a novel approach, the use of the farnesyl transferase inhibitor tipifarnib to inhibit CXCL12 expression in pancreatic fibroblasts. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease with limited therapeutic options and dismal long-term survival. The unique tumor environment of PDAC, consisting of desmoplastic stroma, immune suppressive cells, and activated fibroblasts, contributes to its resistance to therapy. Activated fibroblasts (cancer-associated fibroblasts and pancreatic stellate cells) secrete chemokines and growth factors that support PDAC growth, spread, chemoresistance, and immune evasion. In this review, we focus on one such chemokine, CXCL12, secreted by the cancer-associated fibroblasts and discuss its contribution to several of the classical hallmarks of PDAC and other tumors. We review the various therapeutic approaches in development to target CXCL12 signaling in PDAC. Finally, we propose an unconventional use of tipifarnib, a farnesyl transferase inhibitor, to inhibit CXCL12 production in PDAC.
Collapse
Affiliation(s)
| | - Jill M. Westcott
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| | - Francis J. Burrows
- Kura Oncology, Inc., San Diego, CA 92130, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| |
Collapse
|
23
|
Multiplex Quantitative Analysis of Tumor-Infiltrating Lymphocytes, Cancer-Associated Fibroblasts, and CD200 in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13215501. [PMID: 34771664 PMCID: PMC8583434 DOI: 10.3390/cancers13215501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is marked by a desmoplastic tumor microenvironment and low tumor immunogenicity, making it difficult for immunotherapy drugs to improve outcomes for patients. Tumor-infiltrating lymphocytes (TILs) and cancer-associated fibroblasts (CAFs) are seen in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma (PDAC). In this work, we sought to characterize the expression levels and potential prognostic value of TILs (CD4, CD8, and CD20) and CAFs (Thy-1, FAP, and SMA) in a large retrospective cohort of PDAC patients. Additionally, we investigated the expression levels and prognostic significance of CD200, an immunoinhibitory protein that has shown interest as a potential target for immune checkpoint blockade. We measured the expression levels of these seven proteins with multiplexed immunofluorescence staining and quantitative immunofluorescence (QIF). We found CD8 and FAP to be independent predictors of progression-free survival and overall survival. CD200 was found to be heterogeneously expressed in both the tumor and stromal compartments of PDAC, with the majority of patients having positive stromal expression and negative tumor expression. This work demonstrates the potential clinical utility of CD8 and FAP in PDAC patients, and it sheds light on the expression patterns of CD200 in pancreatic cancer as the protein is being tested as a target for immune checkpoint blockade.
Collapse
|
24
|
Prognostic Implications of Intratumoral and Peritumoral Infiltrating Lymphocytes in Pancreatic Ductal Adenocarcinoma. Curr Oncol 2021; 28:4367-4376. [PMID: 34898543 PMCID: PMC8628731 DOI: 10.3390/curroncol28060371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to elucidate the prognostic implications of intratumoral and peritumoral infiltrating T-lymphocytes in pancreatic ductal adenocarcinoma (PDAC) through a meta-analysis. A total of 18 eligible studies and 2453 PDAC patients were included in the present study. Intratumoral and peritumoral infiltrating lymphocytes were evaluated using various markers, such as CD3, CD4, CD8, FOXP3, and immune cell score. The correlations between these parameters and overall and disease-free survival were investigated and used in the meta-analysis. High intratumoral infiltration of CD3-, CD4-, and CD8-expressing lymphocytes was significantly correlated with better overall survival (hazard ratio (HR) 0.747, 95% confidence interval (CI) 0.620-0.900, HR 0.755, 95% CI 0.632-0.902, and HR 0.754, 95% CI 0.611-0.930, respectively). However, there was no significant correlation between PDAC prognosis and intratumoral FOXP3 or immune cell score (HR 1.358, 95% CI 1.115-1.655 and HR 0.776, 95% CI 0.566-1.065, respectively). Moreover, there was no significant correlation between the prognosis and peritumoral infiltrating T-lymphocytes. In evaluations of disease-free survival, only high intratumoral CD4 infiltration was correlated with a better prognosis (HR 0.525, 95% CI 0.341-0.810). Our results showed that high intratumoral infiltrating lymphocytes were significantly correlated with a better PDAC prognosis. However, among the tumor-infiltrating lymphocytes, CD3, CD4, and CD8 had prognostic implications, but not FOXP3 and immune cell score.
Collapse
|
25
|
Li ZB, Li HZ, Guo CH, Cui HL. Role of exosomes in diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1186-1190. [DOI: 10.11569/wcjd.v29.i20.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system, which is insidious in origin and rapid in progression, and has a very poor prognosis. The incidence of pancreatic cancer is on the rise in recent years. Exosomes, an important vesicle in the human body, can reflect the physiological and pathological state of the source cells and play an important role in intercellular signal transduction. In recent years, the application of exosomes in tumor treatment has gained increasing attention from scholars. This article reviews the application of exosomes in the diagnosis and treatment of pancreatic cancer, to provide some reference for clinicians in the early diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Zong-Bei Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hua-Zhi Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Chun-Hai Guo
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hong-Li Cui
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| |
Collapse
|
26
|
Ostios-Garcia L, Villamayor J, Garcia-Lorenzo E, Vinal D, Feliu J. Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World J Gastroenterol 2021; 27:6775-6793. [PMID: 34790007 PMCID: PMC8567475 DOI: 10.3748/wjg.v27.i40.6775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with high lethality. Even with surgery, radiotherapy, chemotherapy, and other locoregional or systemic therapies, the survival rates for PDAC are low and have not significantly changed in the past decades. The special characteristics of the PDAC's microenvironment and its complex immune escape mechanism need to be considered when designing novel therapeutic approaches in this disease. PDAC is characterized by chronic inflammation with a high rate of tumor-associated macrophages and myeloid-derived suppressor cells and a low rate of natural killer and effector T cells. The pancreatic microenvironment is a fibrotic, microvascularized stroma that isolates the tumor from systemic vascularization. Immunotherapy, a novel approach that has demonstrated effectiveness in certain solid tumors, has failed to show any practice-changing results in pancreatic cancer, with the exception of PDACs with mismatch repair deficiency and high tumor mutational burden, which show prolonged survival rates with immunotherapy. Currently, numerous clinical trials are attempting to assess the efficacy of immunotherapeutic strategies in PDAC, including immune checkpoint inhibitors, cancer vaccines, and adoptive cell transfer, alone or in combination with other immunotherapeutic agents, chemoradiotherapy, and other targeted therapies. A deep understanding of the immune response will help in the development of new therapeutic strategies leading to improved clinical outcomes for patients with PDAC.
Collapse
Affiliation(s)
- Lorena Ostios-Garcia
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Julia Villamayor
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Esther Garcia-Lorenzo
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - David Vinal
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| | - Jaime Feliu
- Department of Oncology, La Paz University Hospital, IDIPAZ, CIBERONC, Cátedra UAM-AMGEN, Madrid 28046, Spain
| |
Collapse
|
27
|
Hellevik T, Berzaghi R, Lode K, Islam A, Martinez-Zubiaurre I. Immunobiology of cancer-associated fibroblasts in the context of radiotherapy. J Transl Med 2021; 19:437. [PMID: 34663337 PMCID: PMC8524905 DOI: 10.1186/s12967-021-03112-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) still represents a mainstay of treatment in clinical oncology. Traditionally, the effectiveness of radiotherapy has been attributed to the killing potential of ionizing radiation (IR) over malignant cells, however, it has become clear that therapeutic efficacy of RT also involves activation of innate and adaptive anti-tumor immune responses. Therapeutic irradiation of the tumor microenvironment (TME) provokes profound cellular and biological reconfigurations which ultimately may influence immune recognition. As one of the major constituents of the TME, cancer-associated fibroblasts (CAFs) play central roles in cancer development at all stages and are recognized contributors of tumor immune evasion. While some studies argue that RT affects CAFs negatively through growth arrest and impaired motility, others claim that exposure of fibroblasts to RT promotes their conversion into a more activated phenotype. Nevertheless, despite the well-described immunoregulatory functions assigned to CAFs, little is known about the interplay between CAFs and immune cells in the context of RT. In this review, we go over current literature on the effects of radiation on CAFs and the influence that CAFs have on radiotherapy outcomes, and we summarize present knowledge on the transformed cellular crosstalk between CAFs and immune cells after radiation.
Collapse
Affiliation(s)
- Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Kristin Lode
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Ashraful Islam
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
28
|
Pandiar D, Ramani P, Krishnan RP, Sushanthi CL, Ramasubramanian A. Is cellularity alone sufficient to sub-grade malignant melanoma histologically as spindle cell/desmoplastic variant? Oral Oncol 2021; 121:105497. [PMID: 34418697 DOI: 10.1016/j.oraloncology.2021.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India.
| | - Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Casilda L Sushanthi
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Abilasha Ramasubramanian
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| |
Collapse
|
29
|
Kasperska A, Borowczak J, Szczerbowski K, Stec E, Ahmadi N, Szylber Ł. Current challenges in targeting tumor desmoplasia to improve the efficacy of immunotherapy. Curr Cancer Drug Targets 2021; 21:919-931. [PMID: 34525931 DOI: 10.2174/1568009621666210825101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Desmoplasia is crucial for the development, progression and treatment of immune-resistant malignancies. and treatment of immune-resistant malignancies. Targeting desmoplasia-related metabolic pathways appears to be an interesting approach to expand our stock of disposable anti-tumor agents.CXCL12/CXCR4 axis inhibition reduces fibrosis, alleviates immunosuppression and significantly enhances the efficacy of PD-1 immunotherapy. CD40L substitute therapy may increase the activity of T-cells, downregulate CD40+, prolong patients' survival and prevent cancer progression. Although FAPα antagonists used in preclinical models did not lead to permanent cure, an alleviation of immune-resistance, modification of desmoplasia and a decrease in angiogenesis were observed. Targeting DDR2 may enhance the effect of anti-PD-1 treatment in multiple neoplasm cell lines and has the ability to overcome the adaptation to BRAF-targeted therapy in melanoma. Reprogramming desmoplasia could potentially cooperate not only with present treatment, but also other potential therapeutic targets. We present the most promising metabolic pathways related to desmoplasia and discuss the emerging strategies to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Ewa Stec
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge. United Kingdom
| | - Łukasz Szylber
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| |
Collapse
|
30
|
Goulart MR, Watt J, Siddiqui I, Lawlor RT, Imrali A, Hughes C, Saad A, ChinAleong J, Hurt C, Cox C, Salvia R, Mantovani A, Crnogorac-Jurcevic T, Mukherjee S, Scarpa A, Allavena P, Kocher HM. Pentraxin 3 is a stromally-derived biomarker for detection of pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2021; 5:61. [PMID: 34188166 PMCID: PMC8242009 DOI: 10.1038/s41698-021-00192-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by dense desmoplastic stroma laid down by pancreatic stellate cells (PSC), has no reliable diagnostic biomarkers for timely detection. A multi-center cohort of PDAC patients and controls (chronic pancreatitis, intra-ductal papillary neoplasms, gallstones and otherwise healthy) donated serum in an ethically approved manner. Serum PTX3 above 4.34 ng/mL has a higher sensitivity (86%, 95% confidence interval (CI): 65-97%) and specificity (86%, 95% CI: 79-91%), positive predictive value (97%) and likelihood ratio (6.05), and is superior when compared to serum CA19-9 and CEA for detection of PDAC. In vitro and ex vivo analyses of PTX3, in human PDAC samples, PSCs, cell lines and transgenic mouse model for PDAC, suggest that PTX3 originates from stromal cells, mainly PSC. In activated PSC, PTX3 secretion could be downregulated by rendering PSC quiescent using all-trans-retinoic acid (ATRA). PTX3 organizes hyaluronan in conjunction with tumor necrosis factor-stimulated gene 6 (TSG-6) and facilitates stellate and cancer cell invasion. In SCALOP clinical trial (ISRCTN96169987) testing chemo-radiotherapy without stromal targeting, PTX3 had no prognostic or predictive role. However, in STARPAC clinical trial (NCT03307148), stromal modulation by ATRA even at first dose is accompanied with serum PTX3 response in patients who later go on to demonstrate disease control but not those in whom the disease progresses. PTX3 is a putative stromally-derived biomarker for PDAC which warrants further testing in prospective, larger, multi-center cohorts and within clinical trials targeting stroma.
Collapse
Affiliation(s)
- Michelle R Goulart
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Jennifer Watt
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Imran Siddiqui
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Italy
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Rita T Lawlor
- ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Ahmet Imrali
- Barts Pancreas Tissue Bank, Barts Cancer Institute- a CRUK Centre of Excellence, Queen Mary University London, London, UK
| | - Christine Hughes
- Barts Pancreas Tissue Bank, Barts Cancer Institute- a CRUK Centre of Excellence, Queen Mary University London, London, UK
| | - Amina Saad
- Barts Pancreas Tissue Bank, Barts Cancer Institute- a CRUK Centre of Excellence, Queen Mary University London, London, UK
| | - Joanne ChinAleong
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Chris Hurt
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Catrin Cox
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Roberto Salvia
- The Pancreas Institute and Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Italy
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Somnath Mukherjee
- Oxford Institute for Radiation Oncology, Churchill Hospital - Oxford Cancer Centre, University of Oxford, Oxford, UK
| | - Aldo Scarpa
- ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Paola Allavena
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Italy
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK.
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK.
- Barts Pancreas Tissue Bank, Barts Cancer Institute- a CRUK Centre of Excellence, Queen Mary University London, London, UK.
| |
Collapse
|
31
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
32
|
Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels. Biosci Rep 2021; 40:225827. [PMID: 32677676 PMCID: PMC7396420 DOI: 10.1042/bsr20200401] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide, and the mortality of patients with PDAC has not significantly decreased over the last few decades. Novel strategies exhibiting promising effects in preclinical or phase I/II clinical trials are often situated in an embarrassing condition owing to the disappointing results in phase III trials. The efficacy of the current therapeutic regimens is consistently compromised by the mechanisms of drug resistance at different levels, distinctly more intractable than several other solid tumours. In this review, the main mechanisms of drug resistance clinicians and investigators are dealing with during the exploitation and exploration of the anti-tumour effects of drugs in PDAC treatment are summarized. Corresponding measures to overcome these limitations are also discussed.
Collapse
|
33
|
Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells 2021; 10:cells10040847. [PMID: 33918004 PMCID: PMC8068358 DOI: 10.3390/cells10040847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.
Collapse
|
34
|
Renin-Angiotensin System in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:105-114. [PMID: 33119868 DOI: 10.1007/978-3-030-50224-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For enhancing the antitumor effects of current immunotherapies including immune-checkpoint blockade, it is important to reverse cancer-induced immunosuppression. The renin-angiotensin system (RAS) controls systemic body fluid circulation; however, the presence of a local RAS in tumors has been reported. Furthermore, the local RAS in tumors influences various immune and interstitial cells and affects tumor immune response. RAS stimulation through the angiotensin II type 1 receptor has been reported to inhibit tumor immune response. Therefore, RAS inhibitors and combined treatment with immunotherapy are expected in the future. In this chapter, we provide a background on the RAS and describe the tumor environment with regard to the RAS and tumor immune response.
Collapse
|
35
|
Ferretti E, Carlomagno S, Pesce S, Muccio L, Obino V, Greppi M, Solari A, Setti C, Marcenaro E, Della Chiesa M, Sivori S. Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers (Basel) 2020; 12:E3705. [PMID: 33321719 PMCID: PMC7763095 DOI: 10.3390/cancers12123705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Ferretti
- Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Letizia Muccio
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Agnese Solari
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Chiara Setti
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
36
|
Seifert AM, List J, Heiduk M, Decker R, von Renesse J, Meinecke AC, Aust DE, Welsch T, Weitz J, Seifert L. Gamma-delta T cells stimulate IL-6 production by pancreatic stellate cells in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2020; 146:3233-3240. [PMID: 32865617 PMCID: PMC7679341 DOI: 10.1007/s00432-020-03367-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The immunosuppressive tumor microenvironment promotes progression of pancreatic ductal adenocarcinoma (PDAC). γδ T cells infiltrate the pancreatic tumor stroma and support tumorigenesis through αβ T cell inhibition. Pancreatic stellate cell (PSC) activation contributes to pancreatic fibrosis in PDAC, limiting the delivery and efficacy of therapeutic agents. Whether γδ T cells have direct effects on PSC activation is unknown. METHODS In this study, we analyzed tumor tissue from 68 patients with PDAC and determined the frequency and location of γδ T cells using immunohistochemistry and immunofluorescence. PDAC samples from the TCGA database with low and high TRGC2 expression were correlated with the expression of extracellular matrix genes. Further, PSCs were isolated from pancreatic tumor tissue and co-cultured with γδ T cells for 48 hours and cytokine production was measured using a cytometric bead array. RESULTS γδ T cells infiltrated the pancreatic tumor stroma and were located in proximity to PSCs. A high infiltration of γδ T cells was associated with increased expression of several extracellular matrix genes in human PDAC. In vitro, γδ T cells stimulated IL-6 production by PDAC-derived PSCs. CONCLUSION γδ T cells activated PSCs and modulation of this interaction may enhance the efficacy of combinational therapies in human PDAC.
Collapse
Affiliation(s)
- Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Julian List
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rahel Decker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Janusz von Renesse
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ann-Christin Meinecke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela E Aust
- Department of Pathology, Medical Faculty, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
- NCT Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany.
| |
Collapse
|
37
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
38
|
Okuyama T, Sameshima S, Takeshita E, Mitsui T, Noro T, Ono Y, Noie T, Ban S, Oya M. Myxoid stroma is associated with postoperative relapse in patients with stage II colon cancer. BMC Cancer 2020; 20:842. [PMID: 32883261 PMCID: PMC7469362 DOI: 10.1186/s12885-020-07335-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fibrosis surrounding cancer cells has been shown to affect cancer cell metastatic behavior. The present study aimed to explore the utility of myxoid stroma as a predictive factor for postoperative relapse in patients with stage II colon cancer. METHODS The present study retrospectively investigated 169 patients who underwent curative surgical resection of stage II colon cancer. The fibrotic stroma was classified according to Ueno's criteria, and the patients were divided into the myxoid (MY) group and the non-MY (NMY) group. We also recorded tumor budding (TB) and investigated the combination of MY and TB for postoperative relapse. Postoperative survival was also explored. RESULTS Thirty-two (18.9%) patients had MY. MY was significantly associated with tumor budding (TB) and postoperative relapse (p < 0.001 and p < 0.001, respectively). The 5-year RFS rates in MY group and NMY group were 52.1 and 94.6% (p < 0.0001), and the 5-year OS rates in MY group and NMY group were 74.6 and 93.3% (p = 0.001). Multivariate analysis showed that both MY and TB were significant risk factors for postoperative relapse (p < 0.001 and p = 0.02, respectively), and that only TB was a significant risk factor for OS (p = 0.043). Furthermore, compared with patients with either one of MY or TB, patients with both MY and TB had postoperative relapse more frequently (11.4% vs. 53.8%). CONCLUSIONS The present study suggests that MY is a predictive marker for postoperative relapse in patients with stage II colon cancer.
Collapse
Affiliation(s)
- Takashi Okuyama
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Shinichi Sameshima
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Emiko Takeshita
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Takashi Mitsui
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Takuji Noro
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Yuko Ono
- Department of Pathology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | - Tamaki Noie
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| | - Shinichi Ban
- Department of Pathology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | - Masatoshi Oya
- Department of Surgery, Saitama Medical Center, Dokkyo Medical University, 〒 343-8555 2-1-50 Minami-Koshigaya, Koshigaya, Saitama Japan
| |
Collapse
|
39
|
Xu C, Sui S, Shang Y, Yu Z, Han J, Zhang G, Ntim M, Hu M, Gong P, Chen H, Zhang X. The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma. J Adv Res 2020; 24:139-148. [PMID: 32322419 PMCID: PMC7171261 DOI: 10.1016/j.jare.2020.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The details of the immunological microenvironment and its clinical implications for pancreatic cancer are still unclear. In this study, we obtained data from public databases, such as the Gene Expression Omnibus, the Cancer Genome Atlas Program, the International Cancer Genome Consortium Data Portal, the ArrayExpress Data Warehouse, and the cBioPortal for Cancer Genomics. We used these data to evaluate the pattern of immune cells infiltration in pancreatic ductal adenocarcinoma (PDAC) tissues. We observed that the levels of M0 macrophages and activated dendritic cells in tumor tissues were significantly higher than that in para-tumor tissues. M0 macrophages, gamma delta T cells and naive CD4 T cells were independent predictive factors of a poor outcome for PDAC patients. An immune score determined by M0 macrophages, gamma delta T cells and naive CD4 T cells could predict the survival of patients. The results of this study suggest that the infiltration of immune cells, such as M0 macrophages, may be a possible target for the treatment of PDAC. However, these findings need to be confirmed by additional studies.
Collapse
Affiliation(s)
- Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yuru Shang
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, 250117 Jinan, PR China
| | - Zhiyong Yu
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, 250117 Jinan, PR China
| | - Jian Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Michael Ntim
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, 250117 Jinan, PR China
| | - Peng Gong
- Department of General Surgery, Shenzhen University General Hospital & Carson International Cancer Research Centre, Xueyuan Road 1098, 14 518055 Shenzhen, PR China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xianbin Zhang
- Department of General Surgery, Shenzhen University General Hospital & Carson International Cancer Research Centre, Xueyuan Road 1098, 14 518055 Shenzhen, PR China
| |
Collapse
|
40
|
Delayre T, Guilbaud T, Resseguier N, Mamessier E, Rubis M, Moutardier V, Fara R, Berdah SV, Garcia S, Birnbaum DJ. Prognostic impact of tumour-infiltrating lymphocytes and cancer-associated fibroblasts in patients with pancreatic adenocarcinoma of the body and tail undergoing resection. Br J Surg 2020; 107:720-733. [PMID: 31960955 DOI: 10.1002/bjs.11434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prognosis of patients with pancreatic cancer remains poor and novel therapeutic targets are required urgently. Treatment resistance could be due to the tumour microenvironment, a desmoplastic stroma consisting of cancer-associated fibroblasts and tumour-infiltrating lymphocytes (TILs). The aim of the study was to evaluate the prognostic value of TILs and cancer-associated fibroblasts (CAFs) in pancreatic cancer of the body and tail. METHODS Using tissue microarray from resected left-sided pancreatic cancer specimens, the immunohistochemistry of TILs (cluster of differentiation (CD) 45, CD3, CD4, FoxP3 and CD8), CAFs (vimentin and α-smooth muscle actin (αSMA)) and functional markers (PD-L1 and Ki-67) was examined, and the association with disease-free (DFS) and overall (OS) survival investigated using a computer-assisted quantitative analysis. Patients were classified into two groups, with low or high levels or ratios, using the 75th percentile value as the cut-off. RESULTS Forty-three patients were included in the study. Their median DFS and OS were 9 and 27 months respectively. A high CD4/CD3 lymphocyte ratio was associated with poorer DFS (8 months versus 11 months for a low ratio) (hazard ratio (HR) 2·23, 95 per cent c.i. 1·04 to 4·61; P = 0·041) and OS (13 versus 27 months respectively) (HR 2·62, 1·11 to 5·88; P = 0·028). A low αSMA/vimentin ratio together with a high CD4/CD3 ratio was correlated with poorer outcomes. No significant association was found between Ki-67, PD-L1 and survival. CONCLUSION In patients with resected left-sided pancreatic cancer, a tumour microenvironment characterized by a high CD4/CD3 lymphocyte ratio along with a low αSMA/vimentin ratio is correlated with poorer survival.
Collapse
Affiliation(s)
- T Delayre
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - T Guilbaud
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - N Resseguier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - E Mamessier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - M Rubis
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - V Moutardier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - R Fara
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S V Berdah
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S Garcia
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - D J Birnbaum
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| |
Collapse
|
41
|
Qu Y, Lin Z, Qi Y, Qi Y, Chen Y, Zhou Q, Zeng H, Liu Z, Wang Z, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Zhu Y, Xu L, Chen L, Zhang P, Zhang W, Dai B, Liu L, Xu J, Guo J. PAK1 expression determines poor prognosis and immune evasion in metastatic renal cell carcinoma patients. Urol Oncol 2019; 38:293-304. [PMID: 31889617 DOI: 10.1016/j.urolonc.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previous studies have shown the prognostic value of PAK1 expression in different tumor patients, including nonmetastatic renal cell carcinoma. In this study, we explored the prognostic and drug predictive value of PAK1 expression in metastatic renal cell carcinoma (mRCC) patients treated with tyrosine kinase inhibitors (TKIs). MATERIALS AND METHODS We retrospectively enrolled 138 mRCC patients treated with TKIs from a single institution from 2005 to 2014. Analyses were based on 111 patients who met our inclusion criteria. The validation set enrolled 538 RCC patients from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma cohort (TCGA KIRC) between 1998 and 2013 in North America. PAK1 expression was assessed by immunohistochemistry (IHC) on tissue microarrays. RESULTS High PAK1 expression was associated with short overall survival (OS) (P < 0.001) and progression-free survival (PFS) (P = 0.008). Multivariate analyses further indicated that PAK1 expression was an independent prognostic factor for OS (hazard ratio 3.301 [95% confidence interval 2.579-10.899], P < 0.001) and PFS (hazard ratio 3.108 [95% confidence interval 1.795-5.381], P < 0.001). Subgroup analyses suggested that PAK1 was more significant in patients with the intermediate risk group of Heng risk criteria (OS, P = 0.004). Of note, patients treated with Sunitinib showed improved outcome in the low PAK1 subgroup (OS, P = 0.002; PFS, P = 0.013). Finally, relationship was found between PAK1 expression and natural killer cell-mediated cytotoxicity according to gene profile investigation. CONCLUSIONS High PAK1 expression predicted dismal prognosis in mRCC patients treated with TKIs. Besides, PAK1 was a potential predictor for TKIs treatments.
Collapse
Affiliation(s)
- Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Lin Y, Li B, Yang X, Cai Q, Liu W, Tian M, Luo H, Yin W, Song Y, Shi Y, He R. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 2019; 21:1133-1142. [PMID: 31759251 PMCID: PMC6880109 DOI: 10.1016/j.neo.2019.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Desmoplasia is a hallmark of intrahepatic cholangiocarcinoma (ICC), which constitutes a barrier to infiltration of lymphocyte, but not myeloid cells. Given that dense desmoplastic stroma has been reported to be a barrier to infiltration of lymphocyte, but not myeloid cells. We here investigated whether fibroblastic FAP influenced ICC progression via non-T cell-related immune mechanisms. We demonstrated fibroblastic FAP expression was critical for STAT3 activation and CCL2 production, and ICC-CAFs were the primary source of CCL2 in human ICC microenvironment by using ICC-Fbs from six ICC patients. Fibroblastic knockdown of FAP significantly impaired the ability of ICC-CAFs to promote ICC growth, MDSCs infiltration and angiogenesis, which was restored by adding exogenous CCL2. Furthermore, interestingly, the tumor-promoting effect of fibroblastic FAP is dependent on MDSCs via secretion of CCL2, as depletion of Gr-1+ cells reversed the restoring effects of exogenous CCL2 on tumor growth and angiogenesis. In vitro migration assay confirmed that exogenous CCL2 could rescue the impaired ability of ICC-Fbs to attract Gr-1+ cells caused by fibroblastic FAP knockdown. In contrast, fibroblastic FAP knockdown had no effect on ICC cell proliferation and apoptotic resistance. Depletion MDSCs by anti-Gr-1 monoclonal antibody in subcutaneous transplanted tumor model abrogated tumor promotion by ICC-CAFs suggested that the pro-tumor function of Fibroblastic FAP relied on MDSCs. Mechanical, flow cytometry and chamber migration assay were conducted to find Fibroblastic FAP was required by the ability of ICC-CAFs to promote MDSC migration directly. Moreover, fibroblastic FAP knockdown had no effect on cell proliferation and apoptotic resistance. Here, we revealed the T-cell independent mechanisms underlying the ICC-promoting effect of fibroblastic FAP by attracting MDSCs via CCL2, which was mainly attributed to the ability of FAP to attract MDSCs and suggests that specific targeting fibroblastic FAP may represent a promising therapeutic strategy against ICC.
Collapse
Affiliation(s)
- Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Integrative Medicine, Fudan University, China
| | - Bingji Li
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuguang Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Cai
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weiren Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Mengxin Tian
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China
| | - Haoyang Luo
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Yin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Song
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yinghong Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, 20032, China.
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11101597. [PMID: 31635070 PMCID: PMC6826654 DOI: 10.3390/cancers11101597] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
Collapse
|
44
|
Mota Reyes C, Teller S, Muckenhuber A, Konukiewitz B, Safak O, Weichert W, Friess H, Ceyhan GO, Demir IE. Neoadjuvant Therapy Remodels the Pancreatic Cancer Microenvironment via Depletion of Protumorigenic Immune Cells. Clin Cancer Res 2019; 26:220-231. [PMID: 31585935 DOI: 10.1158/1078-0432.ccr-19-1864] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/03/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Neoadjuvant therapy (neoTx) has dramatically improved the prognosis of patients with locally advanced and borderline resectable pancreatic ductal adenocarcinoma, yet its mechanisms of action on tumor cells and the tumor microenvironment are still unknown. Here, we aimed to characterize the multiple facets of neoTx-induced alterations in the pancreatic cancer microenvironment. EXPERIMENTAL DESIGN We performed the currently most comprehensive histopathologic analysis of desmoplasia, angiogenesis, neural invasion, and immune cell infiltration at the tumor-host interface of pancreatic cancer after neoTx (n = 37) versus after primary resection (n = 37) through quantitative IHC and double immunofluorescence using automated and software-based quantification algorithms. RESULTS We demonstrate that, independently of the applied pretreatment, neoadjuvant regimes are able to reverse the immunosuppressive behavior of malignant cells on pancreatic cancer microenvironment. Here, neoTx-driven selective depletion of regulatory T cells and myeloid-derived suppressor cells was associated with enrichment of antitumor immune cells in the peritumoral niche, decreased stromal activation, and less neural invasion. Importantly, the degree of this antitumor immune remodeling correlates to the degree of histopathologic response to neoTx. Survival analysis revealed that the tumor proliferation rate together with the activation of the stroma and the intratumoral infiltration with CD4+ T cells and natural killer cells constitute as independent prognostic factors for neoadjuvantly treated pancreatic cancer. CONCLUSIONS NeoTx is not only cytotoxic but has pleiotropic, beneficial effects on all cellular and noncellular components of pancreatic cancer. Combinational approaches including immunotherapy may unleash long-term and more effective antitumor responses and improve prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander Muckenhuber
- Institute of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Björn Konukiewitz
- Institute of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Okan Safak
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| |
Collapse
|
45
|
Banerjee S, Dudeja V, Saluja A. Unconventional T Cells in the Pancreatic Tumor Microenvironment: Thinking Outside the Box. Cancer Discov 2019; 9:1164-1166. [PMID: 31481406 DOI: 10.1158/2159-8290.cd-19-0722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unlike conventional MHC-reactive T cells, unconventional T cells have emerged as an abundant component of the human immune system because of their role in tumor immunology. In this issue of Cancer Discovery, Hundeyin and colleagues have identified a population of unconventional T cells in pancreatic tumors that can reprogram the immune evasive components of the tumor to promote immunogenicity and thus are critical for the development of novel cell-based therapy in pancreatic cancer.See related article by Hundeyin et al., p. 1288.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashok Saluja
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
46
|
Kruger D, Yako YY, Devar J, Lahoud N, Smith M. Inflammatory cytokines and combined biomarker panels in pancreatic ductal adenocarcinoma: Enhancing diagnostic accuracy. PLoS One 2019; 14:e0221169. [PMID: 31415645 PMCID: PMC6695103 DOI: 10.1371/journal.pone.0221169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenged by the absence of accurate early diagnostic and prognostic biomarkers. CA19-9 is the established, diagnostic tumour marker in PDAC, despite its limitations. Effective primary screening using circulating biomarker panels have only been considered in a handful of studies and we investigated whether combinations of inflammatory cytokines and angiogenic factors in multivariate logistic models could facilitate earlier diagnosis in our South African setting. Methods Plasma levels of 38 cytokines and angiogenic factors were measured in 131 Black South African patients, 85 with PDAC, 25 with benign biliary pathology (BBP) and 21 benign non-HPB controls (BC), by use of human magnetic multiplex screening assays. Multivariate biomarker panels were developed by identifying the top performing biomolecules from univariate logistic regression. Receiver-operator characteristic (ROC) curves and area under the ROC curve (AUC) are reported. Results Classification modelling to distinguish PDAC patients from BC showed that a panel of CA19-9 and CXCL10 (IP-10) demonstrated improved diagnostic power over CA19-9 alone (AUC = 0.977 vs. AUC = 0.807, p-value = 0.001). A combined panel including age, BMI and IL-15 showed significant diagnostic power in discriminating PDAC from BBP (AUC = 0.952, p < 0.0001). Finally, a combined panel of IL-8, IL-15 and gender demonstrated diagnostic accuracy (AUC = 0.830, p < 0.0001) in distinguishing PDAC in the presence of jaundice from benign controls with either jaundice, choledocholithiasis or common bile duct injury. Conclusions Combined biomarker panels improve diagnostic accuracy in PDAC. In addition to CA19-9, cytokines CXCL10, IL-8 and IL-15 are strong additions to diagnostic biomarker panels in PDAC in Black South Africans.
Collapse
Affiliation(s)
- Deirdré Kruger
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Yandiswa Y. Yako
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Hepato-Pancreatico-Biliary Unit, Department of General Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Nicola Lahoud
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Martin Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Hepato-Pancreatico-Biliary Unit, Department of General Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
47
|
Mahajan UM, Langhoff E, Goni E, Costello E, Greenhalf W, Halloran C, Ormanns S, Kruger S, Boeck S, Ribback S, Beyer G, Dombroswki F, Weiss FU, Neoptolemos JP, Werner J, D'Haese JG, Bazhin A, Peterhansl J, Pichlmeier S, Büchler MW, Kleeff J, Ganeh P, Sendler M, Palmer DH, Kohlmann T, Rad R, Regel I, Lerch MM, Mayerle J. Immune Cell and Stromal Signature Associated With Progression-Free Survival of Patients With Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology 2018; 155:1625-1639.e2. [PMID: 30092175 DOI: 10.1053/j.gastro.2018.08.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Changes to the microenvironment of pancreatic ductal adenocarcinomas (PDACs) have been associated with poor outcomes of patients. We studied the associations between composition of the pancreatic stroma (fibrogenic, inert, dormant, or fibrolytic stroma) and infiltration by inflammatory cells and times of progression-free survival (PFS) of patients with PDACs after resection. METHODS We obtained 1824 tissue microarray specimens from 385 patients included in the European Study Group for Pancreatic Cancer trial 1 and 3 and performed immunohistochemistry to detect alpha smooth muscle actin, type 1 collagen, CD3, CD4, CD8, CD68, CD206, and neutrophils. Tumors that expressed high and low levels of these markers were compared with patient outcomes using Kaplan-Meier curves and multivariable recursive partitioning for discrete-time survival tree analysis. Prognostic index was delineated by a multivariable Cox proportional hazards model of immune cell and stromal markers and PFS. Findings were validated using 279 tissue microarray specimens from 93 patients in a separate cohort. RESULTS Levels of CD3, CD4, CD8, CD68, and CD206 were independently associated with tumor recurrence. Recursive partitioning for discrete-time survival tree analysis identified a high level of CD3 as the strongest independent predictor for longer PFS. Tumors with levels of CD3 and high levels of CD206 associated with a median PFS time of 16.6 months and a median prognostic index of -0.32 (95% confidence interval [CI] -0.35 to -0.31), whereas tumors with low level of CD3 cell and low level of CD8 and high level of CD68 associated with a median PFS time of 7.9 months and a prognostic index of 0.32 (95% CI 0.050-0.32); we called these patterns histologic signatures. Stroma composition, when unassociated with inflammatory cell markers, did not associate significantly with PFS. In the validation cohort, the histologic signature resulted in an error matrix accuracy of predicted response of 0.75 (95% CI 0.64-0.83; accuracy P < .001). CONCLUSIONS In an analysis of PDAC tissue microarray specimens, we identified and validated a histologic signature, based on leukocyte and stromal factors, that associates with PFS times of patients with resected PDACs. Immune cells might affect the composition of the pancreatic stroma to affect progression of PDAC. These findings provide new insights into the immune response to PDAC.
Collapse
Affiliation(s)
- Ujjwal Mukund Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Germany; Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eno Langhoff
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elisabetta Goni
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Eithne Costello
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - William Greenhalf
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stephan Kruger
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Stefan Boeck
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Silvia Ribback
- Department of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Germany; Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank Dombroswki
- Department of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - John P Neoptolemos
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexandr Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Paula Ganeh
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Daniel H Palmer
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, UK
| | - Thomas Kohlmann
- Department of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, Munich, Germany
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany; Department of Medicine A, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
48
|
Vallejo-Ardila DL, Fifis T, Burrell LM, Walsh K, Christophi C. Renin-angiotensin inhibitors reprogram tumor immune microenvironment: A comprehensive view of the influences on anti-tumor immunity. Oncotarget 2018; 9:35500-35511. [PMID: 30464806 PMCID: PMC6231452 DOI: 10.18632/oncotarget.26174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Renin-angiotensin system inhibitors (RASi) have shown potential anti-tumor effects that may have a significant impact in cancer therapy. The components of the renin-angiotensin system (RAS) including both, conventional and alternative axis, appear to have contradictory effects on tumor biology. The mechanisms by which RASi impair tumor growth extend beyond their function of modulating tumor vasculature. The major focus of this review is to analyze other mechanisms by which RASi reprogram the tumor immune microenvironment. These involve impairing hypoxia and acidosis within the tumor stroma, regulating inflammatory signaling pathways and oxidative stress, modulating the function of the non-cellular components and immune cells, and regulating the cross-talk between kalli krein kinin system and RAS.
Collapse
Affiliation(s)
- Dora L Vallejo-Ardila
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Theodora Fifis
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.,Department of Cardiology, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Katrina Walsh
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, University of Melbourne, Melbourne,VIC 3084, Australia
| |
Collapse
|
49
|
Henry KE, Dacek MM, Dilling TR, Caen JD, Fox IL, Evans MJ, Lewis JS. A PET Imaging Strategy for Interrogating Target Engagement and Oncogene Status in Pancreatic Cancer. Clin Cancer Res 2018; 25:166-176. [PMID: 30228208 DOI: 10.1158/1078-0432.ccr-18-1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/17/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers, with a 5-year survival rate of less than 10%. Physicians often rely on biopsy or CT to guide treatment decisions, but these techniques fail to reliably measure the actions of therapeutic agents in PDAC. KRAS mutations are present in >90% of PDAC and are connected to many signaling pathways through its oncogenic cascade, including extracellular regulated kinase (ERK) and MYC. A key downstream event of MYC is transferrin receptor (TfR), which has been identified as a biomarker for cancer therapeutics and imaging. EXPERIMENTAL DESIGN In this study, we aimed to test whether zirconium-89 transferrin ([89Zr]Zr-Tf) could measure changes in MYC depending on KRAS status of PDAC, and assess target engagement of anti-MYC and anti-ERK-targeted therapies. RESULTS Mice bearing iKras*p53* tumors showed significantly higher (P < 0.05) uptake of [89Zr]Zr-Tf in mice withdrawn from inducible oncogenic KRAS. A therapy study with JQ1 showed a statistically significant decrease (P < 0.05) of [89Zr]Zr-Tf uptake in drug versus vehicle-treated mice bearing Capan-2 and Suit-2 xenografts. IHC analysis of resected PDAC tumors reflects the data observed via PET imaging and radiotracer biodistribution. CONCLUSIONS Our study demonstrates that [89Zr]Zr-Tf is a valuable tool to noninvasively assess oncogene status and target engagement of small-molecule inhibitors downstream of oncogenic KRAS, allowing a quantitative assessment of drug delivery.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan M Dacek
- Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan D Caen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian L Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Evans
- Departments of Radiology and Biomedical Imaging, and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Program of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
50
|
Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031849. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent breakthroughs in immunotherapy as curative treatments in certain tumor types, there has been renewed interest in the relationship between immunity and tumor growth. Although we are gaining a greater understanding of the complex interplay of immune modulating components in the tumor microenvironment, the specific role that tumor cells play in shaping the immune milieu is still not well characterized. In this review, we focus on how mutant Kras tumor cells contribute to tumor immunity, with a specific focus on processes induced directly or indirectly by the oncogene.
Collapse
Affiliation(s)
- Jane Cullis
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Shipra Das
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|