1
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
3
|
Willis J, Anders RA, Torigoe T, Hirohashi Y, Bifulco C, Zlobec I, Mlecnik B, Demaria S, Choi WT, Dundr P, Tatangelo F, Di Mauro A, Baldin P, Bindea G, Marliot F, Haicheur N, Fredriksen T, Kirilovsky A, Buttard B, Vasaturo A, Lafontaine L, Maby P, El Sissy C, Hijazi A, Majdi A, Lagorce C, Berger A, Van den Eynde M, Pagès F, Lugli A, Galon J. Multi-Institutional Evaluation of Pathologists' Assessment Compared to Immunoscore. Cancers (Basel) 2023; 15:4045. [PMID: 37627073 PMCID: PMC10452341 DOI: 10.3390/cancers15164045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The Immunoscore (IS) is a quantitative digital pathology assay that evaluates the immune response in cancer patients. This study reports on the reproducibility of pathologists' visual assessment of CD3+- and CD8+-stained colon tumors, compared to IS quantification. METHODS An international group of expert pathologists evaluated 540 images from 270 randomly selected colon cancer (CC) cases. Concordance between pathologists' T-score, corresponding hematoxylin-eosin (H&E) slides, and the digital IS was evaluated for two- and three-category IS. RESULTS Non-concordant T-scores were reported in more than 92% of cases. Disagreement between semi-quantitative visual assessment of T-score and the reference IS was observed in 91% and 96% of cases before and after training, respectively. Statistical analyses showed that the concordance index between pathologists and the digital IS was weak in two- and three-category IS, respectively. After training, 42% of cases had a change in T-score, but no improvement was observed with a Kappa of 0.465 and 0.374. For the 20% of patients around the cut points, no concordance was observed between pathologists and digital pathology analysis in both two- and three-category IS, before or after training (all Kappa < 0.12). CONCLUSIONS The standardized IS assay outperformed expert pathologists' T-score evaluation in the clinical setting. This study demonstrates that digital pathology, in particular digital IS, represents a novel generation of immune pathology tools for reproducible and quantitative assessment of tumor-infiltrated immune cell subtypes.
Collapse
Affiliation(s)
- Joseph Willis
- Department of Pathology, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | | | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Carlo Bifulco
- Department of Pathology and Molecular Genomics, Providence Portland Medical Center, Portland, OR 97213, USA;
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Sandra Demaria
- Department of Pathology, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 12808 Prague, Czech Republic;
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Annabella Di Mauro
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole GAEN), Université Catholique de Louvain, 1348 Brussels, Belgium;
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Nacilla Haicheur
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Tessa Fredriksen
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Bénédicte Buttard
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Angela Vasaturo
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Lucie Lafontaine
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pauline Maby
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Christine Lagorce
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Department of Pathology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Anne Berger
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Digestive Surgery Department, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Marc Van den Eynde
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole MIRO), Université Catholique de Louvain, 1030 Brussels, Belgium;
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
4
|
Goulielmaki M, Stokidis S, Anagnostou T, Voutsas IF, Gritzapis AD, Baxevanis CN, Fortis SP. Frequencies of an Immunogenic HER-2/ neu Epitope of CD8+ T Lymphocytes Predict Favorable Clinical Outcomes in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065954. [PMID: 36983028 PMCID: PMC10058793 DOI: 10.3390/ijms24065954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
HER-2/neu is the human epidermal growth factor receptor 2, which is associated with the progression of prostate cancer (PCa). HER-2/neu-specific T cell immunity has been shown to predict immunologic and clinical responses in PCa patients treated with HER-2/neu peptide vaccines. However, its prognostic role in PCa patients receiving conventional treatment is unknown, and this was addressed in this study. The densities of CD8+ T cells specific for the HER-2/neu(780-788) peptide in the peripheral blood of PCa patients under standard treatments were correlated with TGF-β/IL-8 levels and clinical outcomes. We demonstrated that PCa patients with high frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes had better progression-free survival (PFS) as compared with PCa patients with low frequencies. Increased frequencies of HER-2/neu(780-788)-specific CD8+ T lymphocytes were also associated with lower levels of TGF-β and IL-8. Our data provide the first evidence of the predictive role of HER-2/neu-specific T cell immunity in PCa.
Collapse
Affiliation(s)
- Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | | | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| |
Collapse
|
5
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
6
|
Petrazzuolo A, Maiuri MC, Zitvogel L, Kroemer G, Kepp O. Trial Watch: combination of tyrosine kinase inhibitors (TKIs) and immunotherapy. Oncoimmunology 2022; 11:2077898. [PMID: 35655707 PMCID: PMC9154809 DOI: 10.1080/2162402x.2022.2077898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The past decades witnessed the clinical employment of targeted therapies including but not limited to tyrosine kinase inhibitors (TKIs) that restrain a broad variety of pro-tumorigenic signals. TKIs can be categorized into (i) agents that directly target cancer cells, (ii) normalize angiogenesis or (iii) affect cells of the hematologic lineage. However, a clear distinction of TKIs based on this definition is limited by the fact that many TKIs designed to inhibit cancer cells have also effects on immune cells that are being discovered. Additionally, TKIs originally designed to target hematological cancers exhibit bioactivities on healthy cells of the same hematological lineage. TKIs have been described to improve immune recognition and cancer immunosurveillance, providing the scientific basis to combine TKIs with immunotherapy. Indeed, combination of TKIs with immunotherapy showed synergistic effects in preclinical models and clinical trials and some combinations of TKIs normalizing angiogenesis with immune checkpoint blocking antibodies have already been approved by the FDA for cancer therapy. However, the identification of appropriate drug combinations as well as optimal dosing and scheduling needs to be improved in order to obtain tangible progress in cancer care. This Trial Watch summarizes active clinical trials combining TKIs with various immunotherapeutic strategies to treat cancer patients.
Collapse
Affiliation(s)
- Adriana Petrazzuolo
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - M. Chiara Maiuri
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Faculty of Medicine, University Paris Saclay, Kremlin Bicêtre, France
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) Biotheris 1428, Villejuif, France
| | - Guido Kroemer
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
7
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
8
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
9
|
Galluzzi L, Garg AD. Immunology of Cell Death in Cancer Immunotherapy. Cells 2021; 10:cells10051208. [PMID: 34063358 PMCID: PMC8156735 DOI: 10.3390/cells10051208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Université de Paris, 75006 Paris, France
- Correspondence: (L.G.); (A.D.G.)
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, 3000 Leuven, Belgium
- Correspondence: (L.G.); (A.D.G.)
| |
Collapse
|
10
|
Lin B, Li H, Zhang T, Ye X, Yang H, Shen Y. Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer. Aging (Albany NY) 2021; 13:5718-5747. [PMID: 33592580 PMCID: PMC7950226 DOI: 10.18632/aging.202499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/16/2020] [Indexed: 04/13/2023]
Abstract
Macrophages are among the most abundant cells of the tumor microenvironment in head and neck squamous cancer (HNSC). Although the marker gene sets of macrophages have been found, the mechanism by which they affect macrophages and whether they further predict the clinical outcome is unclear. In this study, a univariate COX analysis and a random forest algorithm were used to construct a prognostic model. Differential expression of the key gene, methylation status, function, and signaling pathways were further analyzed. We cross-analyzed multiple databases to detect the relationship between the most critical gene and the infiltration of multiple immune cells, as well as its impact on the prognosis of pan-cancer. FANCE is recognized as hub gene by different algorithms. It was overexpressed in HNSC, and high expression was predictive of better prognosis. It might promote apoptosis through the Wnt/β-catenin pathway. The expression of FANCE is inversely proportional to the infiltration of CD4 + T cells and their subsets, tumor-associated macrophages (TAMs), M2 macrophages, but positively co-expressed with M1 macrophages. In summary, FANCE was identified as the hub gene from the macrophage marker gene set, and it may improve the prognosis of HNSC patients by inhibiting lymphocytes and tumor-associated macrophages infiltration.
Collapse
Affiliation(s)
- Bo Lin
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Hao Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tianwen Zhang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Xin Ye
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
| | - Hongyu Yang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| | - Yuehong Shen
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Guangdong Provincial High-level Clinical Key Specialty, Shenzhen, Guangdong, China
- Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Karwacka I, Obołończyk Ł, Kaniuka-Jakubowska S, Sworczak K. The Role of Immunotherapy in the Treatment of Adrenocortical Carcinoma. Biomedicines 2021; 9:biomedicines9020098. [PMID: 33498467 PMCID: PMC7909536 DOI: 10.3390/biomedicines9020098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 01/20/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare epithelial neoplasm, with a high tendency for local invasion and distant metastases, with limited treatment options. Surgical treatment is the method of choice. For decades, the mainstay of pharmacological treatment has been the adrenolytic drug mitotane, in combination with chemotherapy. Immunotherapy is the latest revolution in cancer therapy, however preliminary data with single immune checkpoint inhibitors showed a modest activity in ACC patients. The anti-neoplastic activity of immune checkpoint inhibitors such as anti-cytotoxic-T-lymphocyte-associated-antigen 4 (anti-CTLA-4), anti-programmed death-1 (anti-PD-1), and anti-PD-ligand-1 (PD-L1) antibodies in different solid tumors has aroused interest to explore the potential therapeutic effect in ACC as well. Multiple ongoing clinical trials are currently evaluating the role of immune checkpoint inhibitors in ACC (pembrolizumab, combination pembrolizumab and relacorilant, nivolumab, combination nivolumab and ipilimumab). The primary and acquired resistance to immunotherapy continue to counter treatment efficacy. Therefore, attempts are made to combine therapy: anti-PD-1 antibody and anti-CTLA-4 antibody, anti-PD-1 antibody and antagonist of the glucocorticoid receptor. The inhibitors of immune checkpoints would benefit patients with antitumor immunity activated by radiotherapy. Immunotherapy is well tolerated by patients; the most frequently observed side effects are mild. The most common adverse effects of immunotherapy are skin and gastrointestinal disorders. The most common endocrinopathy during anti-CTLA treatment is pituitary inflammation and thyroid disorders.
Collapse
|
12
|
Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 2020; 13:168. [PMID: 33287875 PMCID: PMC7720606 DOI: 10.1186/s13045-020-00998-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are a critical component of the innate immune system. Chimeric antigen receptors (CARs) re-direct NK cells toward tumor cells carrying corresponding antigens, creating major opportunities in the fight against cancer. CAR NK cells have the potential for use as universal CAR cells without the need for human leukocyte antigen matching or prior exposure to tumor-associated antigens. Exciting data from recent clinical trials have renewed interest in the field of cancer immunotherapy due to the potential of CAR NK cells in the production of "off-the-shelf" anti-cancer immunotherapeutic products. Here, we provide an up-to-date comprehensive overview of the recent advancements in key areas of CAR NK cell research and identify under-investigated research areas. We summarize improvements in CAR design and structure, advantages and disadvantages of using CAR NK cells as an alternative to CAR T cell therapy, and list sources to obtain NK cells. In addition, we provide a list of tumor-associated antigens targeted by CAR NK cells and detail challenges in expanding and transducing NK cells for CAR production. We additionally discuss barriers to effective treatment and suggest solutions to improve CAR NK cell function, proliferation, persistence, therapeutic effectiveness, and safety in solid and liquid tumors.
Collapse
Affiliation(s)
- Ahmet Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hanwei Cui
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA.
| |
Collapse
|
13
|
Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11:1013. [PMID: 33243969 PMCID: PMC7691519 DOI: 10.1038/s41419-020-03221-2] [Citation(s) in RCA: 617] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
Collapse
|
14
|
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Influence of antigen density and immunosuppressive factors on tumor-targeted costimulation with antibody-fusion proteins and bispecific antibody-mediated T cell response. Cancer Immunol Immunother 2020; 69:2291-2303. [PMID: 32504247 PMCID: PMC7568714 DOI: 10.1007/s00262-020-02624-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Target expression heterogeneity and the presence of an immunosuppressive microenvironment can hamper severely the efficiency of immunotherapeutic approaches. We have analyzed the potential to encounter and overcome such conditions by a combinatory two-target approach involving a bispecific antibody retargeting T cells to tumor cells and tumor-directed antibody-fusion proteins with costimulatory members of the B7 and TNF superfamily. Targeting the tumor-associated antigens EpCAM and EGFR with the bispecific antibody and costimulatory fusion proteins, respectively, we analyzed the impact of target expression and the influence of the immunosuppressive factors IDO, IL-10, TGF-β, PD-1 and CTLA-4 on the targeting-mediated stimulation of T cells. Here, suboptimal activity of the bispecific antibody at diverse EpCAM expression levels could be effectively enhanced by targeting-mediated costimulation by B7.1, 4-1BBL and OX40L in a broad range of EGFR expression levels. Furthermore, the benefit of combined costimulation by B7.1/4-1BBL and 4-1BBL/OX40L was demonstrated. In addition, the expression of immunosuppressive factors was shown in all co-culture settings, where blocking of prominent factors led to synergistic effects with combined costimulation. Thus, targeting-mediated costimulation showed general promise for a broad application covering diverse target expression levels, with the option for further selective enhancement by the identification and blockade of main immunosuppressive factors of the particular tumor environment.
Collapse
|
16
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
17
|
Jin J, Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnology 2020; 18:75. [PMID: 32408880 PMCID: PMC7227304 DOI: 10.1186/s12951-020-00629-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) have been increasingly studied for radiosensitization. The principle of NPs radio-enhancement is to use high-atomic number NPs (e.g. gold, hafnium, bismuth and gadolinium) or deliver radiosensitizing substances, such as cisplatin and selenium. Nowadays, cancer immunotherapy is emerged as a promising treatment and immune checkpoint regulation has a potential property to improve clinical outcomes in cancer immunotherapy. Furthermore, NPs have been served as an ideal platform for immunomodulator system delivery. Owing to enhanced permeability and retention (EPR) effect, modified-NPs increase the targeting and retention of antibodies in target cells. The purpose of this review is to highlight the latest progress of nanotechnology in radiotherapy (RT) and immunotherapy, as well as combining these three strategies in cancer treatment. Overall, nanomedicine as an effective strategy for RT can significantly enhance the outcome of immunotherapy response and might be beneficial for clinical transformation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Hoffmann PR, Hoffmann FW, Premeaux TA, Fujita T, Soprana E, Panigada M, Chew GM, Richard G, Hindocha P, Menor M, Khadka VS, Deng Y, Moise L, Ndhlovu LC, Siccardi A, Weinberg AD, De Groot AS, Bertino P. Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Front Oncol 2019; 9:720. [PMID: 31428586 PMCID: PMC6688537 DOI: 10.3389/fonc.2019.00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Malignant Mesothelioma (MM) is a rare and highly aggressive cancer that develops from mesothelial cells lining the pleura and other internal cavities, and is often associated with asbestos exposure. To date, no effective treatments have been made available for this pathology. Herein, we propose a novel immunotherapeutic approach based on a unique vaccine targeting a series of antigens that we found expressed in different MM tumors, but largely undetectable in normal tissues. This vaccine, that we term p-Tvax, is comprised of a series of immunogenic peptides presented by both MHC-I and -II to generate robust immune responses. The peptides were designed using in silico algorithms that discriminate between highly immunogenic T cell epitopes and other harmful epitopes, such as suppressive regulatory T cell epitopes and autoimmune epitopes. Vaccination of mice with p-Tvax led to antigen-specific immune responses that involved both CD8+ and CD4+ T cells, which exhibited cytolytic activity against MM cells in vitro. In mice carrying MM tumors, p-Tvax increased tumor infiltration of CD4+ T cells. Moreover, combining p-Tvax with an OX40 agonist led to decreased tumor growth and increased survival. Mice treated with this combination immunotherapy displayed higher numbers of tumor-infiltrating CD8+ and CD4+ T cells and reduced T regulatory cells in tumors. Collectively, these data suggest that the combination of p-Tvax with an OX40 agonist could be an effective strategy for MM treatment.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Fukun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Thomas A Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Elisa Soprana
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Maddalena Panigada
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Glen M Chew
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | | | | | - Mark Menor
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Lenny Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| | - Antonio Siccardi
- Department of Molecular Immunology, San Raffaele University and Research Institute, Milan, Italy
| | - Andrew D Weinberg
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, United States
| |
Collapse
|
20
|
Abstract
Immunotherapy potentiates a patient’s immune response against some forms of cancer, including malignant tumors. In this Special Report, we have summarized the use of nanoparticles that have been designed for use in cancer immunotherapy with particular emphasis on plant viruses. Plant virus-based nanoparticles are an ideal choice for therapeutic applications, as these nanoparticles are not only capable of targeting the desired cells but also of being safely delivered to the body without posing any threat of infection. Plant viruses can be taken up by tumor cells and can be functionalized as drug delivery vehicles. This Special Report describes how the future of cancer immunotherapy could be a success through the merger of computer-based technology using plant-virus nanoparticles. The nonpathogenic nature of plant viral nanoparticles makes them an ideal choice for therapeutic applications such as cancer. Understanding the molecular mechanisms behind the immune response to cancer has facilitated the use of nanotechnology as an effective cancer therapy. Biologically active self-replicating plant virus particles can be introduced to the bloodstream of the human body and used as effective drug delivery vehicles. This Special Report describes how a combination of computer-based technology and plant-virus nanoparticles can assist in cancer immunotherapy.
Collapse
|
21
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Lévesque S, Pol JG, Ferrere G, Galluzzi L, Zitvogel L, Kroemer G. Trial watch: dietary interventions for cancer therapy. Oncoimmunology 2019; 8:1591878. [PMID: 31143510 PMCID: PMC6527263 DOI: 10.1080/2162402x.2019.1591878] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Dietary interventions have a profound impact on whole body metabolism, including oncometabolism (the metabolic features allowing cancer cells to proliferate) and immunometabolism (the catabolic and anabolic reactions that regulate immune responses). Recent preclinical studies demonstrated that multiple dietary changes can improve anticancer immunosurveillance of chemo-, radio- and immunotherapy. These findings have fostered the design of clinical trials evaluating the capacity of dietary interventions to synergize with treatment and hence limit tumor progression. Here, we discuss the scientific rationale for harnessing dietary interventions to improve the efficacy of anticancer therapy and present up-to-date information on clinical trials currently investigating this possibility.
Collapse
Affiliation(s)
- Sarah Lévesque
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Orsay, France.,Fondation pour la Recherche Médicale, Paris, France
| | - Jonathan G Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Gladys Ferrere
- INSERM U1015, Villejuif, France.,CICBT507, Villejuif, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Laurence Zitvogel
- Université Paris-Saclay, Orsay, France.,INSERM U1015, Villejuif, France.,CICBT507, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Orsay, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
24
|
Daßler-Plenker J, Paschen A, Putschli B, Rattay S, Schmitz S, Goldeck M, Bartok E, Hartmann G, Coch C. Direct RIG-I activation in human NK cells induces TRAIL-dependent cytotoxicity toward autologous melanoma cells. Int J Cancer 2019; 144:1645-1656. [PMID: 30230526 DOI: 10.1002/ijc.31874] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5'-triphosphate RNA (3pRNA) triggers anti-tumor immunity, which is dependent on natural killer (NK) cell activation and cytokine induction. However, to date, RIG-I expression and the functional consequences of RIG-I activation in NK cells have not been examined. Here, we show for the first time the expression of RIG-I in human NK cells and their activation upon RIG-I ligand (3pRNA) transfection. 3pRNA-activated NK cells killed melanoma cells more efficiently than NK cells activated by type I interferon. Stimulation of RIG-I in NK cells specifically increased the surface expression of membrane-bound TNF-related apoptosis-inducing ligand (TRAIL) on NK cells, while activated NK cell receptors were not affected. RIG-I-induced membrane-bound TRAIL initiated death-receptor-pathway-mediated apoptosis not only in allogeneic but also in autologous human leukocyte antigen (HLA) class I-positive and HLA class I-negative melanoma cells. These results identify the direct activation of RIG-I in NK cells as a novel mechanism for how RIG-I can trigger enhanced NK cell killing of tumor cells, underscoring the potential of RIG-I activation for tumor immunotherapy.
Collapse
Affiliation(s)
- Juliane Daßler-Plenker
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, 45112, Essen, Germany
| | - Bastian Putschli
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Stephanie Rattay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Saskia Schmitz
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Marion Goldeck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| |
Collapse
|
25
|
Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol 2019; 10:168. [PMID: 30800125 PMCID: PMC6376112 DOI: 10.3389/fimmu.2019.00168] [Citation(s) in RCA: 788] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
Therapeutic monoclonal antibodies targeting immune checkpoints (ICPs) have changed the treatment landscape of many tumors. However, response rate remains relatively low in most cases. A major factor involved in initial resistance to ICP inhibitors is the lack or paucity of tumor T cell infiltration, characterizing the so-called “cold tumors.” In this review, we describe the main mechanisms involved in the absence of T cell infiltration, including lack of tumor antigens, defect in antigen presentation, absence of T cell activation and deficit of homing into the tumor bed. We discuss then the different therapeutic approaches that could turn cold into hot tumors. In this way, specific therapies are proposed according to their mechanism of action. In addition, ‘‘supra-physiological’’ therapies, such as T cell recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, may be active regardless of the mechanism involved, especially in MHC class I negative tumors. The determination of the main factors implicated in the lack of preexisting tumor T cell infiltration is crucial for the development of adapted algorithms of treatments for cold tumors.
Collapse
Affiliation(s)
- Paola Bonaventura
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Tala Shekarian
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Vincent Alcazer
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Sandrine Valsesia-Wittmann
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Christophe Caux
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stéphane Depil
- Centre Léon Bérard, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
26
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
27
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Hobo W, Hutten TJA, Schaap NPM, Dolstra H. Immune checkpoint molecules in acute myeloid leukaemia: managing the double-edged sword. Br J Haematol 2018; 181:38-53. [PMID: 29318591 DOI: 10.1111/bjh.15078] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New immunotherapeutic interventions have revolutionized cancer treatment. The immune responsiveness of acute myeloid leukaemia (AML) was first demonstrated by allogeneic stem cell transplantation. In addition, milder immunotherapeutic approaches are exploited. However, the long-term efficacy of these therapies is hampered by various immune resistance and editing mechanisms. In this regard, co-inhibitory signalling pathways have been shown to play a crucial role. Via up-regulation of inhibitory checkpoints, tumour-reactive T cell and Natural Killer cell responses can be strongly impeded. Accordingly, the introduction of checkpoint inhibitors targeting CTLA-4 (CTLA4) and PD-1 (PDCD1, CD279)/PD-L1 (CD274, PDCD1LG1) accomplished a breakthrough in cancer treatment, with impressive clinical responses. Numerous new co-inhibitory players and novel combination therapies are currently investigated for their potential to boost anti-tumour immunity and improve survival of cancer patients. Although the challenge here remains to avoid severe systemic toxicity. This review addresses the involvement of co-inhibitory signalling in AML immune evasion and discusses the opportunities for checkpoint blockers in AML treatment.
Collapse
Affiliation(s)
- Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim J A Hutten
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Qi X, Jia B, Zhao X, Yu D. Advances in T-cell checkpoint immunotherapy for head and neck squamous cell carcinoma. Onco Targets Ther 2017; 10:5745-5754. [PMID: 29238207 PMCID: PMC5716310 DOI: 10.2147/ott.s148182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has been found to be a complex group of malignancies characterized by their profound immunosuppression and high aggressiveness. In most cases of advanced HNSCC, treatment fails to obtain total cancer cure. Efforts are needed to develop new therapeutic approaches to improve HNSCC outcomes. In this light, T-cells "immune checkpoint" has attracted much attention in cancer immunotherapy. It has been broadly accepted that inhibitory T-cell immune checkpoints contribute to tumor immune escape through negative immune regulatory signals (cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4], programmed cell death 1 [PD-1], B7-H3, and B7-H4, etc). Current data suggest that PD-1 and CTLA-4 receptors can inhibit T-cell receptors and T-cell proliferation. Blockade of PD-1/PD-L1 and/or CTLA-4/CD28 pathways has shown promising tumor outcomes in clinical trials for advanced solid tumors like melanoma, renal cell cancer, and non-small cell lung cancer. The present review attempts to explore what is known about PD-1/PD-L1 and CTLA-4/CD28 pathways with a focus on HNSCC. We further discuss how these pathways can be manipulated with therapeutic intent.
Collapse
Affiliation(s)
- Xinmeng Qi
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Bo Jia
- Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing People’s Republic of China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, Jilin
| |
Collapse
|
31
|
Advances in the Immunobiological Therapies for Advanced Melanoma. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
32
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Sapski S, Beha N, Kontermann R, Müller D. Tumor-targeted costimulation with antibody-fusion proteins improves bispecific antibody-mediated immune response in presence of immunosuppressive factors. Oncoimmunology 2017; 6:e1361594. [PMID: 29209565 DOI: 10.1080/2162402x.2017.1361594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022] Open
Abstract
Therapeutic strategies aiming for the induction of an effective immune response at the tumor site can be severely hampered by the encounter of an immunosuppressive microenvironment. We investigated here the potential of concerted costimulation by tumor-directed antibody-fusion proteins with B7.1, 4-1BBL and OX40L to enforce bispecific antibody-induced T cell stimulation in presence of recognized immunosuppressive factors including IL-10, TGF-β, indoleamine 2,3-dioxygenase (IDO), PD-L1 and regulatory T cells. The expression and activity of these factors was demonstrated in the HT1080-FAP/PBMC co-culture setting, where individual and combined costimulation were still capable to enhance T cell stimulation, even though the general activation level was reduced. Additional blockade of TGF-ß or PD-1 resulted especially effective in further enhancing the degree of T cell activation. Here, best outcome was achieved by combined costimulation of targeted 4-1BBL and B7.1. Furthermore, their individual impact on the proliferation of naïve, memory and effector CD8+ and CD4+ T cell subsets, suggest the coverage of a comprehensive T cell response. Thus, our costimulatory antibody-fusion proteins show great potential to support T cell activation in adverse conditions dictated by the tumor microenvironment.
Collapse
Affiliation(s)
- Sabrina Sapski
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
34
|
Shi Y, Wu WZ, Huo A, Zhou W, Jin XH. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol Lett 2017; 14:2852-2858. [PMID: 28928824 PMCID: PMC5588287 DOI: 10.3892/ol.2017.6517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Isobavachalcone (2′,4′,4-trihydroxy-3′-[3′-methylbut-3′-ethyl] chalcone or IBC) exhibits anticancer activities in a number of types of cancer cell. However, its role in tongue squamous cell carcinoma (TSCC) cells remains unclear. The aim of the present study was to investigate the biological effect of IBC in TSCC Tca8113 cells. The function of IBC on Tca8113 cell apoptosis and apoptosis-associated signaling pathways was determined using an MTT assay, morphological staining, annexin V-propidium iodide (PI) staining and Western blot analysis. The effects of IBC on Tca8113 cell migration, invasion and relative protein expression were confirmed using wound healing analysis, Transwell invasion analysis and Western blot analysis, respectively. The results of the MTT assay and annexin V-PI staining indicated that IBC is able to significantly inhibit proliferation and induce apoptosis of Tca8113 cells in vitro. IBC treatment resulted in typical apoptotic morphology of nuclear fragmentation and apoptotic bodies in Tca8113 cells. Western blot analysis further demonstrated that IBC caused downregulation of the expression of B-cell lymphoma 2 (Bcl-2) protein, upregulation of the expression of Bcl-2-associated X protein (Bax), activation of caspases, and dephosphorylation of protein kinase B (Akt) and extracellular-signal-regulated kinase (ERK) proteins in a concentration- and time-dependent manner. The results of the present study suggest that IBC induces apoptosis in Tca8113 cells and that the induction may be associated with the activation of Bcl-2, Bax and caspase-3, and the inactivation of Akt and ERK. Furthermore, IBC inhibited migration and invasion of Tca8113 cells in vitro by downregulating matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. The results of the present study indicate that IBC may be a potential anticancer drug for the treatment of TSCC.
Collapse
Affiliation(s)
- Yi Shi
- Department of Stomatology, Danyang People's Hospital of Jiangsu, Danyang, Jiangsu 212300, P.R. China
| | - Wei-Zhong Wu
- Department of Stomatology, Danyang People's Hospital of Jiangsu, Danyang, Jiangsu 212300, P.R. China
| | - An Huo
- Department of Stomatology, Danyang People's Hospital of Jiangsu, Danyang, Jiangsu 212300, P.R. China
| | - Wei Zhou
- Department of Stomatology, Danyang People's Hospital of Jiangsu, Danyang, Jiangsu 212300, P.R. China
| | - Xiao-Hong Jin
- Department of Oncology, Yunyang People's Hospital of Danyang, Danyang, Jiangsu 212300, P.R. China
| |
Collapse
|
35
|
Pérez Gago MC, Saavedra Santa Gadea O, de la Cruz-Merino L. Advances in the Immunobiological Therapies for Advanced Melanoma. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:721-728. [PMID: 28388991 DOI: 10.1016/j.ad.2017.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 10/19/2022] Open
Abstract
Metastatic or locally advanced unresectable melanoma carries a high morbidity and mortality. However, notable advances have been made in recent years in the systemic treatment of this disease, with the appearance of targeted therapy using tyrosine kinase inhibitors that block the mitogen activated protein kinase pathway, and of modern immunotherapy with immune-modulating monoclonal antibodies. In this paper, we provide an update of available data on new immune therapies and we review the clinical development that led to their approval for use in routine clinical practice.
Collapse
Affiliation(s)
- M C Pérez Gago
- Servicio de Oncología Médica, Hospital Universitario Virgen Macarena, Sevilla, España
| | | | - L de la Cruz-Merino
- Servicio de Oncología Médica, Hospital Universitario Virgen Macarena, Sevilla, España.
| |
Collapse
|
36
|
Dempke WCM, Fenchel K, Uciechowski P, Dale SP. Second- and third-generation drugs for immuno-oncology treatment-The more the better? Eur J Cancer 2017; 74:55-72. [PMID: 28335888 DOI: 10.1016/j.ejca.2017.01.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 01/20/2023]
Abstract
Recent success in cancer immunotherapy (anti-CTLA-4, anti-PD1/PD-L1) has confirmed the hypothesis that the immune system can control many cancers across various histologies, in some cases producing durable responses in a way not seen with many small-molecule drugs. However, only less than 25% of all patients do respond to immuno-oncology drugs and several resistance mechanisms have been identified (e.g. T-cell exhaustion, overexpression of caspase-8 and β-catenin, PD-1/PD-L1 gene amplification, MHC-I/II mutations). To improve response rates and to overcome resistance, novel second- and third-generation immuno-oncology drugs are currently evaluated in ongoing phase I/II trials (either alone or in combination) including novel inhibitory compounds (e.g. TIM-3, VISTA, LAG-3, IDO, KIR) and newly developed co-stimulatory antibodies (e.g. CD40, GITR, OX40, CD137, ICOS). It is important to note that co-stimulatory agents strikingly differ in their proposed mechanism of action compared with monoclonal antibodies that accomplish immune activation by blocking negative checkpoint molecules such as CTLA-4 or PD-1/PD-1 or others. Indeed, the prospect of combining agonistic with antagonistic agents is enticing and represents a real immunologic opportunity to 'step on the gas' while 'cutting the brakes', although this strategy as a novel cancer therapy has not been universally endorsed so far. Concerns include the prospect of triggering cytokine-release syndromes, autoimmune reactions and hyper immune stimulation leading to activation-induced cell death or tolerance, however, toxicity has not been a major issue in the clinical trials reported so far. Although initial phase I/II clinical trials of agonistic and novel antagonistic drugs have shown highly promising results in the absence of disabling toxicity, both in single-agent studies and in combination with chemotherapy or other immune system targeting drugs; however, numerous questions remain about dose, schedule, route of administration and formulation as well as identifying the appropriate patient populations. In our view, with such a wealth of potential mechanisms of action and with the ability to fine-tune monoclonal antibody structure and function to suit particular requirements, the second and third wave of immuno-oncology drugs are likely to provide rapid advances with new combinations of novel immunotherapy (especially co-stimulatory antibodies). Here, we will review the mechanisms of action and the clinical data of these new antibodies and discuss the major issues facing this rapidly evolving field.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- Kyowa Kirin Pharmaceutical Development, Galashiels, United Kingdom; University of Munich, University Hospital of Grosshadern, Department of Haematology and Oncology, Germany.
| | | | - Peter Uciechowski
- RWTH Aachen University, Medical Faculty, Institute of Immunology, Germany
| | - Stephen P Dale
- Kyowa Kirin Pharmaceutical Development, Galashiels, United Kingdom
| |
Collapse
|
37
|
Abstract
Immuno-oncology (I/O) research has intensified significantly in recent years due to the breakthrough development and the regulatory approval of several immune checkpoint inhibitors, leading to the rapid expansion of the new discovery of novel I/O therapies, new checkpoint inhibitors and beyond. However, many I/O questions remain unanswered, including why only certain subsets of patients respond to these treatments, who the responders would be, and how to expand patient response (the conversion of non-responders or maximizing response in partial responders). All of these require relevant I/O experimental systems, particularly relevant preclinical animal models. Compared to other oncology drug discovery, e.g. cytotoxic and targeted drugs, a lack of relevant animal models is a major obstacle in I/O drug discovery, and an urgent and unmet need. Despite the obvious importance, and the fact that much I/O research has been performed using many different animal models, there are few comprehensive and introductory reviews on this topic. This article attempts to review the efforts in development of a variety of such models, as well as their applications and limitations for readers new to the field, particularly those in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qi-Xiang Li
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Gerold Feuer
- HuMurine Technologies, Inc., 2700 Stockton Blvd, Rm. 1403, Sacramento, CA 95817, USA
| | - Xuesong Ouyang
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA
| | - Xiaoyu An
- Crown Bioscience Inc., 3375 Scott Blvd, Suite 108, Santa Clara, CA 95054, USA; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
38
|
Satgunaseelan L, Gupta R, Madore J, Chia N, Lum T, Palme CE, Boyer M, Scolyer RA, Clark JR. Programmed cell death-ligand 1 expression in oral squamous cell carcinoma is associated with an inflammatory phenotype. Pathology 2016; 48:574-80. [DOI: 10.1016/j.pathol.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023]
|
39
|
Fellermeier S, Beha N, Meyer JE, Ring S, Bader S, Kontermann RE, Müller D. Advancing targeted co-stimulation with antibody-fusion proteins by introducing TNF superfamily members in a single-chain format. Oncoimmunology 2016; 5:e1238540. [PMID: 27999756 DOI: 10.1080/2162402x.2016.1238540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
Co-stimulation via receptors of the tumor necrosis factor superfamily (TNFSF) emerges as promising strategy to support antitumor immune responses. Targeted strategies with antibody-fusion proteins composed of a tumor-directed antibody part and the extracellular domain of a co-stimulatory ligand of the TNFSF constitute an attractive option to focus the co-stimulatory activity to the tumor site. Since TNFSF members intrinsically form functional units of non-covalently linked homotrimers, the protein engineering of suitable antibody-fusion proteins is challenging. Aiming for molecules of simple and stable configuration, we used TNFSF ligands in a single-chain format (scTNFSF), i.e., three units of the ectodomain connected by polypeptide linkers, folding into an intramolecular trimer. By fusing tumor-directed scFv antibody fragments directed against EpCAM or FAP to co-stimulatory scTNFSF molecules (sc4-1BBL, scOX40L, scGITRL or scLIGHT), a set of monomeric scFv-scTNFSF fusion proteins was generated. In comparison to the scFv-TNFSF format, defined by intermolecular homotrimerization via the TNFSF part, scFv-scTNFSF showed equal or enhanced co-stimulatory activity despite reduced avidity in antibody binding. In addition, enhanced serum stability and improved bioavailability in mice were observed. We show that the scFv-scTNFSF format can be applied to various members of the TNFSF, presenting targeting-dependent co-stimulatory activity. Hence, this format exhibits favorable properties that make it a promising choice for further therapeutic fusion protein development.
Collapse
Affiliation(s)
- Sina Fellermeier
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Jan-Erik Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Stefan Bader
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart, Germany
| |
Collapse
|
40
|
Mondragón L, Kroemer G, Galluzzi L. Immunosuppressive γδ T cells foster pancreatic carcinogenesis. Oncoimmunology 2016; 5:e1237328. [PMID: 27999755 DOI: 10.1080/2162402x.2016.1237328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Affiliation(s)
- Laura Mondragón
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
41
|
Abstract
Adoptive cellular therapy represents a robust means of augmenting the tumor-reactive effector population in patients with cancer by adoptive transfer of ex vivo expanded T cells. Three approaches have been developed to achieve this goal: the use of tumor-infiltrating lymphocytes or tumor-infiltrating lymphocytess extracted from patient biopsy material; the redirected engineering of lymphocytes using vectors expressing a chimeric antigen receptor and T-cell receptor; and third, the isolation and expansion of often low-frequency endogenous T cells (ETCs) reactive to tumor antigens from the peripheral blood of patients. This last form of adoptive transfer of T cells, known as ETC therapy, requires specialized methods to isolate and expand from peripheral blood the very low-frequency tumor-reactive T cells, methods that have been developed over the last 2 decades, to the point where such an approach may be broadly applicable not only for the treatment of melanoma but also for that of other solid tumor malignancies. One compelling feature of ETC is the ability to rapidly deploy clinical trials following identification of a tumor-associated target epitope, a feature that may be exploited to develop personalized antigen-specific T-cell therapy for patients with almost any solid tumor. With a well-validated antigen discovery pipeline in place, clinical studies combining ETC with agents that modulate the immune microenvironment can be developed that will transform ETC into a feasible treatment modality.
Collapse
|
42
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
43
|
Buqué A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 2016; 5:e1149674. [PMID: 27471617 PMCID: PMC4938376 DOI: 10.1080/2162402x.2016.1149674] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
Collapse
Affiliation(s)
- Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Centre de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- INSERM, U970, Paris, France
- Paris-Cardiovascular Research Center (PARCC), Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
44
|
Abstract
As the leading cause of cancer death worldwide, lung cancer continues to impose a major burden on healthcare systems and cause significant challenges for clinicians and patients. Most patients present with advanced disease at the time of diagnosis and have a poor prognosis, with the vast majority surviving less than 5 years. Although new therapies have been introduced in recent years that target molecular disease drivers present in a subset of patients, there is a significant need for treatments able to improve response and extend survival while minimizing effects on quality of life. Recent evidence of clinical efficacy for immunotherapeutic approaches for lung cancer suggests that they will become the next major therapeutic advance for this disease. Non-small-cell lung cancer, which accounts for approximately 85% of lung cancer cases, has historically been considered a nonimmunogenic disease; however, as with several other malignancies, recent data show that much of this lack of immune responsiveness is functional rather than structural (i.e., possible to overcome therapeutically). This review explores the key elements of the immune system involved in non-small-cell lung cancer and briefly examines immunotherapeutic strategies in development to shift the balance of immune activity away from a tumor-induced immune-suppressive state toward an active antitumor immune response.
Collapse
|
45
|
Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol 2016; 23:653-665. [PMID: 26433697 PMCID: PMC7127033 DOI: 10.1016/j.tim.2015.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) are increasingly being considered as agents to fight severe viral diseases. So far, they have essentially been selected and used on the basis of their virus-neutralizing activity and/or cell-killing activity to blunt viral propagation via direct mechanisms. There is, however, accumulating evidence that they can also induce long-lasting protective antiviral immunity by recruiting the endogenous immune system of infected individuals during the period of immunotherapy. Exploiting this property may revolutionize antiviral mAb-based immunotherapies, with benefits for both patients and healthcare systems. Antiviral monoclonal antibodies (mAbs) are promising, high-added-value biotherapeutics. During recent years, the number of antiviral mAbs developed against both acute and chronic viruses has grown exponentially, some of them being currently tested in clinical trials. Antiviral mAbs can be used to blunt viral propagation through direct effects. They can also engage the host's immune system, leading to the induction of long-lasting protective vaccine-like effects. The assessment of mechanisms at play in the induction of vaccine-like effects by antiviral mAbs will help in improving antiviral treatments. Exploiting this effect will translate into therapeutic benefit for patients. The benefit will also help healthcare systems through the reduction of treatment costs.
Collapse
Affiliation(s)
- Mireia Pelegrin
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.
| | - Mar Naranjo-Gomez
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
46
|
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, Harfuddin Z, Schwarz H. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 2016; 5:e1113367. [PMID: 27141396 PMCID: PMC4839363 DOI: 10.1080/2162402x.2015.1113367] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases. Upon co-stimulation by CD137, Th1 CD4+ T cells together with Tc1 CD8+ T cells and NK cells inhibit other T cell subsets, thereby promoting antitumor responses and mitigating non-type 1 auto-immune diseases.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Meihui Wu
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Nur Sharalyn Abdullah
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Sakthi Rajendran
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Nur Diana Ishak
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
47
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
48
|
Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, Gismondi A, Santoni A, Nisticò P. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology 2016; 5:e1114203. [PMID: 27467927 PMCID: PMC4910730 DOI: 10.1080/2162402x.2015.1114203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/17/2022] Open
Abstract
The identification of activation pathways linked to antitumor T-cell polyfunctionality in long surviving patients is of great relevance in the new era of immunotherapy. We have recently reported that dacarbazine (DTIC) injected one day before peptide-vaccination plus IFN-α improves the antitumor lytic activity and enlarges the repertoire of Melan-A-specific T-cell clones, as compared with vaccination alone, impacting the overall survival of melanoma patients. To identify the mechanisms responsible for this improvement of the immune response, we have analyzed the endogenous and treatment-induced antigen (Ag)-specific response in a panel of Melan-A-specific CD8+ T-cell clones in terms of differentiation phenotype, inhibitory receptor profile, polyfunctionality and AKT activation. Here, we show that Melan-A-specific CD8+ T cells isolated from patients treated with chemoimmunotherapy possess a late differentiated phenotype as defined by the absence of CD28 and CD27 co-stimulatory molecules and high levels of LAG-3, TIM-3 and PD-1 inhibitory receptors. Nevertheless, they show higher proliferative potential and an improved antitumor polyfunctional effector profile in terms of co-production of TNF-α, IFNγ and Granzyme-B (GrB) compared with cells derived from patients treated with vaccination alone. Polyfunctionality is dependent on an active AKT signaling related to the engagement of the co-stimulatory molecule ICOS. We suggest that this phenotypic and functional signature is dictated by a fine-tuned balance between TCR triggering, AKT activation, co-stimulatory and inhibitory signals induced by chemoimmunotherapy and may be associated with antitumor T cells able to protect patients from tumor recurrence.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Tor Vergata , Rome, Italy
| | - Belinda Palermo
- Department of Molecular Medicine, University of Rome "La Sapienza;" Rome, Italy; Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Cosmo Di Donna
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute , Rome, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, Regina Elena National Cancer Institute , Rome, Italy
| | - Virginia Ferraresi
- Department of Experimental Oncology, Medical Oncology 1, Regina Elena National Cancer Institute , Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, University of Rome "La Sapienza ;" Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, University of Rome "La Sapienza ;" Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, University of Rome "La Sapienza ;" Rome, Italy
| | - Paola Nisticò
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute , Rome, Italy
| |
Collapse
|
49
|
Kroemer G, Galluzzi L, Zitvogel L. STAT3 inhibition for cancer therapy: Cell-autonomous effects only? Oncoimmunology 2016; 5:e1126063. [PMID: 27467938 DOI: 10.1080/2162402x.2015.1126063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023] Open
Abstract
A paper recently published in Science Translational Medicine describes a next-generation antisense oligonucleotide that specifically downregulates the expression of human signal transducer and activator of transcription 3 (STAT3). Such an oligonucleotide, AZD9150, exerts antineoplastic effects on a selected panel of STAT3-dependent human cancer cells growing in vitro and in vivo (as xenografts in immunodeficient mice). Moreover, preliminary data from a Phase I clinical trial indicate that AZD9150 may cause partial tumor regression in patients with chemorefractory lymphoma and non-small cell lung carcinoma. STAT3 not only participates in cell-autonomous processes that are required for the survival and growth of malignant cells, but also limits their ability to elicit anticancer immune responses. Moreover, STAT3 contribute to the establishment of an immunosuppressive tumor microenvironment. Thus, the inhibition of STAT3 may promote immunosurveillance by a dual mechanism: (1) it may increase the immunogenicity of cancer cells via cell-autonomous pathways; and (2) it may favor the reprogramming of the tumor microenvironment toward an immunostimulatory state. It will therefore be important to explore whether immunological biomarkers predict the efficacy of AZD9150 in the clinic. This may ameliorate patient stratification and it may pave the way for rational combination therapies involving classical chemotherapeutics with immunostimulatory effects, AZD9150 and immunotherapeutic agents such as checkpoint blockers.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Metabolomics and Cell Biology Platforms, GustaveRoussy Comprehensive Cancer Center, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Gustave Roussy Comprehensive Cancer Center, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1015, Equipe labellisé e Ligue Nationale Contre le Cancer, Villejuif, France; University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France
| |
Collapse
|
50
|
Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium. J Immunol Res 2016; 2016:4683607. [PMID: 26881264 PMCID: PMC4736366 DOI: 10.1155/2016/4683607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.
Collapse
|