1
|
Luo Y, Guo Q, Liu C, Zheng Y, Wang Y, Wang B. Adipose mesenchymal stem cell-derived extracellular vesicles regulate PINK1/parkin-mediated mitophagy to repair high glucose-induced dermal fibroblast senescence and promote wound healing in rats with diabetic foot ulcer. Acta Diabetol 2024:10.1007/s00592-024-02422-x. [PMID: 39680129 DOI: 10.1007/s00592-024-02422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
AIMS Diabetic foot ulcers (DFUs) cause prominent morbidity and mortality. Adipose mesenchymal stem cell (ASC)-derived extracellular vesicles (EVs) show property in facilitating diabetic wound healing, and we explored their role in DFU rats. METHODS ASCs were cultured in vitro, passaged and then identified by flow cytometry and induction of osteogenic/adipogenic differentiation. ASC-EVs were extracted and identified. DFU rat model was treated with ASC-EVs. High glucose (HG)-induced rat dermal fibroblasts were treated with ASC-EVs or 3-MA and sh-PINK1 plasmid in vitro. Wound healing was observed. Histological changes, inflammatory cytokines (TNF-α, IL-1β), and α-SMA and p21 double-positive cell level were assessed by HE staining, ELISA, and immunofluorescence. Mitochondrial membrane potential (MMP), cell viability and senescence, and ROS production in cells were assessed by fluorescence dye JC-1, CCK-8, SA-β-gal staining, and ROS kit. p21, LC3II/I, p62, PINK1 and parkin protein levels were determined by Western blot. RESULTS DFU rats had slow wound healing and elevated levels of IL-1β, TNF-α, α-SMA and p21 double-positive cells, and SA-β-gal, while HG-induced cells had weakened viability, elevated ROS, SA-β-gal, p21 and p62 protein levels, and decreased LC3II/I, PINK1 and parkin protein levels and MMP, which were reversed by ASC-EVs. HG inhibited mitophagy by suppressing the PINK1/parkin pathway to accelerate dermal fibroblast senescence. The PINK1/parkin pathway inhibition partly mitigated the effect of ASC-EVs. ASC-EVs promoted mitophagy by activating the PINK1/parkin pathway in vivo. CONCLUSIONS ASC-EVs mediated mitophagy by activating the PINK1/parkin pathway, thereby impeding HG-induced rat dermal fibroblast senescence and promoting wound healing in DFU rats.
Collapse
Affiliation(s)
- Yinji Luo
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Qijie Guo
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Chang Liu
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Yuxuan Zheng
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Yichong Wang
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China
| | - Bin Wang
- Department of Bone Surgery, The Second Affiliated Hospital, Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510145, Guangdong Province, China.
| |
Collapse
|
2
|
Chen YC, Chuang EY, Tu YK, Hsu CL, Cheng NC. Human platelet lysate-cultured adipose-derived stem cell sheets promote angiogenesis and accelerate wound healing via CCL5 modulation. Stem Cell Res Ther 2024; 15:163. [PMID: 38853252 PMCID: PMC11163789 DOI: 10.1186/s13287-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND A rising population faces challenges with healing-impaired cutaneous wounds, often leading to physical disabilities. Adipose-derived stem cells (ASCs), specifically in the cell sheet format, have emerged as a promising remedy for impaired wound healing. Human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for culturing clinical-grade ASCs. However, the potential of HPL sheets in promoting wound healing has not been fully investigated. This study aimed to explore the anti-fibrotic and pro-angiogenic capabilities of HPL-cultured ASC sheets and delve into the molecular mechanism. METHODS A rat burn model was utilized to evaluate the efficacy of HPL-cultured ASC sheets in promoting wound healing. ASC sheets were fabricated with HPL, and those with FBS were included for comparison. Various analyses were conducted to assess the impact of HPL sheets on wound healing. Histological examination of wound tissues provided insights into aspects such as wound closure, collagen deposition, and overall tissue regeneration. Immunofluorescence was employed to assess the presence and distribution of transplanted ASCs after treatment. Further in vitro studies were conducted to decipher the specific factors in HPL sheets contributing to angiogenesis. RESULTS HPL-cultured ASC sheets significantly accelerated wound closure, fostering ample and organized collagen deposition in the neo-dermis. Significantly more retained ASCs were observed in wound tissues treated with HPL sheets compared to the FBS counterparts. Moreover, HPL sheets mitigated macrophage recruitment and decreased subsequent wound tissue fibrosis in vivo. Immunohistochemistry also indicated enhanced angiogenesis in the HPL sheet group. The in vitro analyses showed upregulation of C-C motif chemokine ligand 5 (CCL5) and angiogenin in HPL sheets, including both gene expression and protein secretion. Culturing endothelial cells in the conditioned media compared to media supplemented with CCL5 or angiogenin suggested a correlation between CCL5 and the pro-angiogenic effect of HPL sheets. Additionally, through neutralizing antibody experiments, we further validated the crucial role of CCL5 in HPL sheet-mediated angiogenesis in vitro. CONCLUSIONS The present study underscores CCL5 as an essential factor in the pro-angiogenic effect of HPL-cultured ASC sheets during the wound healing process. These findings highlight the potential of HPL-cultured ASC sheets as a promising therapeutic option for healing-impaired cutaneous wounds in clinical settings. Furthermore, the mechanism exploration yields valuable information for optimizing regenerative strategies with ASC products. BRIEF ACKNOWLEDGMENT This research was supported by the National Science and Technology Council, Taiwan (NSTC112-2321-B-002-018), National Taiwan University Hospital (111C-007), and E-Da Hospital-National Taiwan University Hospital Joint Research Program (111-EDN0001, 112-EDN0002).
Collapse
Affiliation(s)
- Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Bortolotto Degregori E, Corbellini Henckes NA, Franco N, Luz H, Maurmann N, Viana AR, Rohden F, Loureiro dos Santos LA, Cirne Lima EO, Terraciano PB, Oliveira FDS, Contesini EA. Interaction between adipoderivated mesenchymal stem cells and PLGA/PI epox scaffold with possible use in tissue engineering: in vitro study. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Emanuelle Bortolotto Degregori
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, University Veterinary Hospital, Bairro Camobi, Av. Roraima, 1000, prédio 97, sala 126, 97105-900 Santa Maria, RS, Brazil
| | - Nicole Andrea Corbellini Henckes
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil
| | - Nathalia Franco
- School of Veterinary Medicine, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Agronomia, 91540-000, Porto Alegre, RS, Brazil
| | - Henrique Luz
- Laboratory of Biomaterials, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Agronomia, 90650-001, Porto Alegre, RS, Brazil
| | - Natasha Maurmann
- Laboratory of Hematology and Stem Cells, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Azenha, 90610-000, Porto Alegre, Brazil
| | - Altevir Rossato Viana
- Bioscience Laboratory, Universidade Franciscana, Andradas, 1614, Centro, 97010-032, Santa Maria, Brazil
| | - Francieli Rohden
- Laboratory of Brain Injury and Neuroprotection, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600, Santa Cecília, 90035-003, Porto Alegre, RS, Brazil
| | - Luis Alberto Loureiro dos Santos
- Laboratory of Biomaterials, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Agronomia, 90650-001, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne Lima
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil
| | - Fernanda dos Santos Oliveira
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Santa Cecília, 90035-903, Porto Alegre, RS, Brazil
| | - Emerson Antonio Contesini
- School of Veterinary Medicine, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Agronomia, 91540-000, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Dung T, Han V, Tien G, Lam H. Autologous Adipose-Derived Stem Cell (Adsc) Transplantation In The Management Of Chronic Wounds. ANNALS OF BURNS AND FIRE DISASTERS 2021; 34:343-350. [PMID: 35035328 PMCID: PMC8717910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 06/14/2023]
Abstract
Our aim is to characterize chronic wound response to autologous adipose-derived stem cell (ADSC) sheet transplantation. A pilot descriptive longitudinal study was conducted at the Wound Healing Center of the Vietnam National Burn Hospital from July 1, 2019 to August 30, 2020. Thirty patients with 38 chronic wounds were enrolled in the study and were grafted with autologous ADSC sheets on the wound bed. Wound edges, wound bed, wound size and structure using H&E staining, ultrastructure changes by transmission electron microscope at the time of transplantation and at the first, second and third week of follow-up were observed. Results indicated that after ADSC sheet transplantation, the structure and ultrastructure of chronic wounds had improved. The extracellular matrix (ECM), neo-vascular, fibroblast and collagen fibers proliferated and arranged side by side at the dermis layer. Fibroblast proliferated and increased secretion of collagen. Keratinocytes proliferated and immigrated in the epidermis layer. After three weeks of autologous ADSC sheet transplantation, epithelial cells covered 90% of the wound surface. Neo-vascular, fibroblast and collagen proliferation increased weekly. The image of lymphocyte infiltration in connective tissues decreased. Wound size reduced significantly compared to before the experiment, wound beds were cleaner and filled with granulation tissue. Re-epithelialization appeared at the wound edge and throughout the wound. Wound measurements were statistically significant at the second and third weeks after starting treatment (week 2: 12.8±11.56 cm2 [range: 1-47.42 cm2], p<0.05; week 3: 7.44 ± 5.68 cm2 [range: 0.45- 20.10 cm2], p<0.001), indicating autologous ADSC treatment enhanced healing of chronic wounds. In conclusion, ADSCs have a beneficial effect on cutaneous regeneration and chronic wound healing.
Collapse
Affiliation(s)
- T.N. Dung
- National Burn Hospital, Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | - V.D. Han
- National Burn Hospital, Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | - G.N.. Tien
- National Burn Hospital, Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| | - H.Q. Lam
- Histology Department, Hanoi, Vietnam
- Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
7
|
Hou Z, Chen J, Yang H, Hu X, Yang F. microRNA-26a shuttled by extracellular vesicles secreted from adipose-derived mesenchymal stem cells reduce neuronal damage through KLF9-mediated regulation of TRAF2/KLF2 axis. Adipocyte 2021; 10:378-393. [PMID: 34311651 PMCID: PMC8320674 DOI: 10.1080/21623945.2021.1938829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted actively by numeorus cells and have fundamental roles in intercellular communication through shuttling functional RNAs. This study sets out to elucidate the role of microRNA-26a (miR-26a) shuttled by EVs derived from adipose-derived mesenchymal stem cells (ASCs) in neuronal damage. After extraction and identification of ASC-derived EVs (ASC-EVs), mouse cortical neuronal cells were selected to establish an in vivo cerebral ischemia/reperfusion mouse model and an in vitro oxygen glucose deprivation/reperfusion (OGD/RP) cell model. The downstream genes of miR-26a were analyzed. The gain- and loss-of function of miR-26a and KLF9 was performed in mouse and cell models. Neuronal cells were subjected to co-culture with ASC-EVs and biological behaviors were detected by flow cytometry, Motic Images Plus, TTC, TUNEL staining, qRT-PCR and western blot analysis. ASC-EVs protected neuronal cells against neuronal damage following cerebral ischemia/reperfusion, which was related to transfer of miR-26a into neuronal cells. In neuronal cells, miR-26a targeted KLF9. KLF9 could suppress the expression of TRAF2 and KLF2 to facilitate neuronal damage. In vitro and in vivo results showed that miR-26a delivered by ASC-EVs inhibited neuronal damage. In summary, ASC-EVs-derived miR-26a can arrest neuronal damage by disrupting the KLF9-meidated suppression on TRAF2/KLF2 axis.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Huan Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, P. R. China
| |
Collapse
|
8
|
Geng Y, Yang J, Li S, Chen M. Chyloid Fat Carried Adipose-Derived Mesenchymal Stem Cells Accelerate Wound Healing Via Promoting Angiogenesis. Ann Plast Surg 2021; 87:472-477. [PMID: 34176892 DOI: 10.1097/sap.0000000000002778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Impaired wound healing is responsible for significant morbidity and mortality worldwide. It is necessary to find a stable, efficient, and safe method to promote soft tissue wound healing. Fat grafting has become increasingly popular in contouring procedures. However, more recently, there has been an emphasis on its regenerative potential. In this study, we established the wound healing model using nude mice. Hematoxylin and eosin and Masson stainings were performed to assess the effect of chyloid fat on the histology of wound healing. A laser Doppler perfusion imager was used to evaluate the blood perfusion of wounds. Immunohistochemistry was carried out to detect the expression of CD31 in wound tissues. The results suggested that after treatment with granule fat or chyloid fat, wound healing was accelerated and blood perfusion was promoted. In addition, granule fat or chyloid fat treatment promoted the angiogenesis of the wound. In addition, we evaluated the amount of adipose-derived mesenchymal stem cells in chyloid fat and granule fat. It was found that chyloid fat contained more adipose-derived mesenchymal stem cells than granule fat did. In conclusion, we proved that chyloid fat could significantly accelerate the wound healing process via promoting angiogenesis. The adipose-derived mesenchymal stem cell plays a critical role in this effect of chyloid fat.
Collapse
Affiliation(s)
| | - Jinxiu Yang
- Department of Burn and Plastic Surgery, The Fourth Medical Centre, Chinese People's Liberation Army of China General Hospital, Beijing, People's Republic of China
| | | | | |
Collapse
|
9
|
Uzun E, Güney A, Gönen ZB, Özkul Y, Kafadar İH, Günay M, Mutlu M. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study. Foot Ankle Surg 2021; 27:636-642. [PMID: 32826167 DOI: 10.1016/j.fas.2020.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Impaired wound healing is a major cause of morbidity in diabetic patients by causing chronic ulcers. This study aimed to investigate the safety and outcomes after intralesional allogeneic adipose-derived mesenchymal stem cells injection in chronic diabetic foot ulcers. METHODS Twenty patients (12 male and eight female) were involved in the study. We randomized the patients into two groups of 10 patients each. The study group was treated with allogeneic adipose-derived mesenchymal stem cells injection with standard diabetic wound care. The control group received only standard diabetic wound care. Patient demographics, wound characteristics, wound closure time, amputation rates and clinical scores were evaluated. RESULTS The mean age was 57.3 ± 6.6 years. The mean follow-up duration was 48.0 (range, 26-50) months. Wound closure was achieved in 17 of 20 lesions (study group, 9 lesions; control group, 8 lesions; respectively). The mean time to wound closure was 31.0 ± 10.7 (range, 22-55) days in the study group, 54.8 + 15.0 (range, 30-78) days in the control group (p = 0.002). In three patients, minor amputations were performed (one patient in study group; two patients in the control group, p = 0.531). There was a significant difference between groups in terms of postoperative Short Form 36- physical functioning (p = 0.017) and Short Form 36-general health (p = 0.010). CONCLUSION Allogeneic adipose-derived mesenchymal stem cells injection was found to be a safe and effective method with a positive contribution to wound-healing time in the treatment of chronic diabetic foot ulcers.
Collapse
Affiliation(s)
- Erdal Uzun
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Ahmet Güney
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Yusuf Özkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - İbrahim Halil Kafadar
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Mahmut Günay
- Department of Orthopedics and Traumatology, Kanuni Training and Research Hospital, Trabzon, Turkey.
| | - Mahmut Mutlu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
10
|
Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021; 8:bioengineering8070093. [PMID: 34356200 PMCID: PMC8301134 DOI: 10.3390/bioengineering8070093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the field of cell therapy, the interest in cell sheet technology is increasing. To determine the cell sheet harvesting time requires experience and practice, and different factors could change the harvesting time (variability among donors and culture media, between cell culture dishes, initial cell seeding density). We have developed a device that can measure the transmittance of the multilayer cell sheets, using a light emitting diode and a light detector, to estimate the harvesting time. The transmittance of the adipose stromal cells cell sheets (ASCCS) was measured every other day as soon as the cells were confluent, up to 12 days. The ASCCS, from three different initial seeding densities, were harvested at 8, 10, and 12 days after seeding. Real-time PCR and immunostaining confirmed the expression of specific cell markers (CD29, CD73, CD90, CD105, HLA-A, HLA-DR), but less than the isolated adipose stromal cells. The number of cells per cell sheets, the average thickness per cell sheet, and the corresponding transmittance showed no correlation. Decrease of the transmittance seems to be correlated with the cell sheet maturation. For the first time, we are reporting the success development of a device to estimate ASCCS harvesting time based on their transmittance.
Collapse
|
11
|
Fan Z, Xie X, Zhu S, Liao X, Yin Z, Zhang Y, Liu F. Novel pre-vascularized tissue-engineered dermis based on stem cell sheet technique used for dermis-defect healing. Regen Biomater 2020; 7:627-638. [PMID: 33365148 PMCID: PMC7748445 DOI: 10.1093/rb/rbaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Insufficient donor dermis and the shortage of three-dimensional vascular networks are the main limitations in the tissue-engineered dermis (TED). To solve these problems, we initially constructed pre-vascularized bone marrow mesenchymal stem cell sheet (PBMCS) and pre-vascularized fibroblasts cell sheet (PFCS) by cell sheet technology, and then superimposed or folded them together to construct a pre-vascularized TED (PTED), aiming to mimic the real dermis structure. The constructed PTED was implanted in nude mice dorsal dermis-defect wound and the wound-healing effect was quantified at Days 1, 7 and 14 via the methods of histochemistry and immunohistochemistry. The results showed that PTED could rapidly promote the wound closure, especially at Day 14, and the wound-healing rate of three-layer PTED could reach 97.2% (P < 0.01), which was faster than the blank control group (89.1%), PBMCS (92.4%), PFCS (93.8%) and six-layer PTED (92.3%). In addition, the vessel density in the PTED group was higher than the other groups on the 14th day. Taken together, it is proved that the PTED, especially three-layer PTED, is more conducive to the full-thickness dermis-defect repair and the construction of the three-dimensional vascular networks, indicating its potential application in dermis-defect repair.
Collapse
Affiliation(s)
- Zengjie Fan
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xuzhuzi Xie
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Shengqian Zhu
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Xiaozhu Liao
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Zhengrong Yin
- School of Stomatology, Lanzhou University, Donggang West Road 199, Gansu 730000, People's Republic of China
| | - Yujue Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
12
|
Ramalho L, Nedjari S, Guarino R, Awaja F, Gugutkov D, Altankov G. Fibronectin/thermo-responsive polymer scaffold as a dynamic ex vivo niche for mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:129. [PMID: 33252710 DOI: 10.1007/s10856-020-06461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we created a dynamic adhesive environment (DAE) for adipose tissue-derived mesenchymal stem cells (ADMSCs) cultured on smart thermo-responsive substrates, i.e., poly (N-isopropyl acrylamide) (PNIPAM), via introducing periodic changes in the culture temperature. We further explored the particular role of adsorbed fibronectin (FN), an important cell adhesive protein that was recently attributed to the recruitment of stem cells in the niche. The engineered FN/PNIPAM DAE system significantly increased the symmetric renewal of ADMSCs, particularly between passages 7 and 9 (p7-p9), before it dropped down to the level of the control (FN-coated TC polystyrene). This decline in the growth curve was consistent with the increased number of senescent cells, the augmented average cell size and the suppressed FN matrix secretion at late passages (p10-p12), all of them characteristic for stem cells ageing, which equivocally tended to slow down at our DAE system. FN supported also the osteogenic response of ADMSCs (apart from the previous observations with plain PNIPAM substrata) indicated by the significant increase of alkaline phosphatase (ALP) activity at days 7 and 14. The minimal changes in the Ca deposition, however, suggest a restricted effect of DAE on the early osteogenic response of ADMSCs only. Thus, the engineering of niche-like DAE involving FN uncovers a new tissue engineering strategy for gaining larger amounts of functionally active stem cells for clinical application.
Collapse
Affiliation(s)
- Laura Ramalho
- ICREA, Barcelona, Spain
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Roberto Guarino
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-5232, Villigen PSI, Switzerland
| | - Firas Awaja
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Engmat Ltd., Clybaun Road, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) and Centre for Research in Medical Devices (CÚRAM) at National University of Ireland, Galway, Ireland
| | | | - George Altankov
- ICREA, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.
- Associate Member Institute for Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
13
|
Álvaro-Afonso FJ, Sanz-Corbalán I, Lázaro-Martínez JL, Kakagia D, Papanas N. Adipose-Derived Mesenchymal Stem Cells in the Treatment of Diabetic Foot Ulcers: A Review of Preclinical and Clinical Studies. Angiology 2020; 71:853-863. [PMID: 32723090 DOI: 10.1177/0003319720939467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review provides an outline of the use of adipose-derived mesenchymal stem cells (AMSCs) in the treatment of diabetic foot ulcers (DFUs). A systematic search of PubMed and the Cochrane database was performed on October 2, 2019. Eighteen studies were identified (14 preclinical and 4 clinical). Studies in animal models have demonstrated that AMSCs enhance diabetic wound healing, accelerate granulation tissue formation, and increase reepithelialization and neovascularization. Only 1 randomized control trial has been published so far. Patients (n = 25) with DFUs were treated using an allogeneic AMSC directly on the wound bed as a primary dressing, and improvements were found in complete wound closure in the treatment group (n = 16). Three clinical studies showed that autologous AMSC might be a safe alternative to achieve therapeutic angiogenesis in patients with diabetes and peripheral arterial disease. Based on the available evidence, AMSCs hold promise in the treatment of DFUs. However, this evidence requires confirmation by well-designed trials. Additional studies are also required to understand some issues regarding this treatment for DFUs. For example, the potential application of autologous or allogeneic AMSCs in different types of DFUs, optimal dose/infusion schedules, safety evaluations, and cost-effectiveness.
Collapse
Affiliation(s)
- Francisco Javier Álvaro-Afonso
- Diabetic Foot Unit, University Podiatric Clinic, Edificio Facultad de Medicina, 16734Complutense University of Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Irene Sanz-Corbalán
- Diabetic Foot Unit, University Podiatric Clinic, Edificio Facultad de Medicina, 16734Complutense University of Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatric Clinic, Edificio Facultad de Medicina, 16734Complutense University of Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Despoina Kakagia
- Department of Plastic Surgery, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| |
Collapse
|
14
|
Kim N, Choi KU, Lee E, Lee S, Oh J, Kim WK, Woo SH, Kim DY, Kim WH, Kweon OK. Therapeutic effects of platelet derived growth factor overexpressed-mesenchymal stromal cells and sheets in canine skin wound healing model. Histol Histopathol 2019; 35:751-767. [PMID: 31876285 DOI: 10.14670/hh-18-196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adipose-derived mesenchymal stromal cells (Ad-MSCs) have excellent potential for skin wound repair. Moreover, platelet-derived growth factor (PDGF) has strong wound healing properties. The purpose of the present study was to compare the healing effects of PDGF-overexpressing canine allogeneic Ad-MSCs (PDGF-MSCs) and their cell sheets (PDGF-CSs) as compared to unexpressed Ad-MSCs (U-MSCs) and their cell sheets (UCSs) in a cutaneous wound healing model induced upon dogs. In in vitro study, the expression of immunomodulatory and growth factors was assessed by qRT-PCR. In in vivo study, cells and sheets were transplanted into a square-shaped full-thickness (1.5×1.5 cm) skin defect model created in 12 dogs. After 5 and 10 days, wounds were harvested and evaluated macroscopically and histopathologically. The qRT-PCR results showed that the PDGF-B gene was significantly upregulated (p<0.05) in PDGF-CS and PDGF-MSCs groups. Upon gross analysis of the wound, all stromal cells and their sheet groups showed accelerated (p<0.05) cutaneous wound healing compared to the negative control groups. As compared to U-MSCs and UCSs, the PDGF-MSCs showed significant epithelization on days 5 and 10 of healing, whereas PDGF-CSs showed improved epithelization only on day 10. In the granulation tissue analysis, PDGF-CSs and UCSs promoted more formation (p<0.05) of upper granulation tissue, collagen, and activated fibroblasts than PDGF-MSCs, and U-MSCs. Especially, the PDGF-CSs presented the highest formation and maturation of granulation tissue among all groups. All considered, PDGF overexpressed stromal cells or cells sheets can improve cutaneous wound healing in a canine model.
Collapse
Affiliation(s)
- Namyul Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyeong Uk Choi
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eunbee Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seoyun Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jiwon Oh
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Woo Keyoung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Ho Woo
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Wan-Hee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Oh-Kyeong Kweon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Kniebs C, Kreimendahl F, Köpf M, Fischer H, Jockenhoevel S, Thiebes AL. Influence of Different Cell Types and Sources on Pre-Vascularisation in Fibrin and Agarose-Collagen Gels. Organogenesis 2019; 16:14-26. [PMID: 31809643 PMCID: PMC7051161 DOI: 10.1080/15476278.2019.1697597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vascularisation is essential for the development of tailored, tissue-engineered organs and tissues due to diffusion limits of nutrients and the lack of the necessary connection to the cardiovascular system. To pre-vascularize, endothelial cells and supporting cells can be embedded in the scaffold to foster an adequate nutrient and oxygen supply after transplantation. This technique is applied for tissue engineering of various tissues, but there have been few studies on the use of different cell types or cells sources. We compare the effect of supporting cells from different sources on vascularisation. Fibrin gels and agarose-collagen hydrogels were used as scaffolds. The supporting cells were primary human dermal fibroblasts (HDFs), human nasal fibroblasts (HNFs), human mesenchymal stem cells from umbilical cord’s Wharton’s jelly (WJ MSCs), adipose-derived MSCs (AD MSCs) and femoral bone marrow-derived MSCs (BM MSCs). The tissue constructs were incubated for 14 days and analyzed by two-photon laser scanning microscopy. Vascularisation was supported by all cell types, forming branched networks of tubular vascular structures in both hydrogels. In general, fibrin gels present a higher angiogenic promoting environment compared to agarose-collagen hydrogels and fibroblasts show a high angiogenic potential in co-culture with endothelial cells. In agarose-collagen hydrogels, vascular structures supported by AD MSCs were comparable to our HDF control in terms of volume, area and length. BM MSCs formed a homogeneous network of smaller structures in both hydrogels. This study provides data toward understanding the pre-vascularisation properties of different supporting cell types and sources for tissue engineering of different organs and tissues.
Collapse
Affiliation(s)
- Caroline Kniebs
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Franziska Kreimendahl
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Marius Köpf
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| |
Collapse
|
16
|
Secretome of Adipose Tissue-Derived Stem Cells (ASCs) as a Novel Trend in Chronic Non-Healing Wounds: An Overview of Experimental In Vitro and In Vivo Studies and Methodological Variables. Int J Mol Sci 2019; 20:ijms20153721. [PMID: 31366040 PMCID: PMC6696601 DOI: 10.3390/ijms20153721] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Wound healing is a complex process with a linear development that involves many actors in a multistep timeline commonly divided into four stages: Hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds fail to progress beyond the inflammatory phase, thus precluding the next steps and, ultimately, wound repair. Many intrinsic or extrinsic factors may contribute to such an occurrence, including patient health conditions, age-related diseases, metabolic deficiencies, advanced age, mechanical pressure, and infections. Great interest is being focused on the adipose tissue-derived stem cell’s (ASC) paracrine activity for its potential therapeutic impact on chronic non-healing wounds. In this review, we summarize the results of in vitro and in vivo experimental studies on the pro-wound healing effects of ASC-secretome and/or extracellular vesicles (EVs). To define an overall picture of the available literature data, experimental conditions and applied methodologies are described as well as the in vitro and in vivo models chosen in the reported studies. Even if a comparative analysis of the results obtained by the different groups is challenging due to the large variability of experimental conditions, the available findings are undoubtedly encouraging and fully support the use of cell-free therapies for the treatment of chronic non-healing wounds.
Collapse
|
17
|
Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, Kim MH. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes 2019; 68:837-846. [PMID: 30679183 DOI: 10.2337/db18-0699] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) may hold great promise for treating diabetic wounds. However, it is difficult for a clinician to use MSCs because they have not been commercialized. Meanwhile, a new commercial drug that contains adipose-derived stem cells (ASCs) has been developed. The purpose of this study was to examine the potential of allogeneic ASC sheets for treating diabetic foot ulcers. Fifty-nine patients with diabetic foot ulcers were randomized to either the ASC treatment group (n = 30) or a control group treated with polyurethane film (n = 29). Either an allogeneic ASC sheet or polyurethane film was applied on diabetic wounds weekly. These wounds were evaluated for a maximum of 12 weeks. Complete wound closure was achieved for 73% in the treatment group and 47% in the control group at week 8. Complete wound closure was achieved for 82% in the treatment group and 53% in the control group at week 12. The Kaplan-Meier median times to complete closure were 28.5 and 63.0 days for the treatment group and the control group, respectively. There were no serious adverse events related to allogeneic ASC treatment. Thus, allogeneic ASCs might be effective and safe to treat diabetic foot ulcers.
Collapse
Affiliation(s)
- Kyung-Chul Moon
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Suk Suh
- Department of Plastic Surgery, Asan Medical Center, Seoul, South Korea
| | - Ki-Bum Kim
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Seung-Kyu Han
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Ki-Won Young
- Department of Foot and Ankle Surgery, Eulji Medical Center, Seoul, South Korea
| | - Jin-Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
18
|
Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration. Biotechnol Lett 2019; 41:305-318. [PMID: 30680496 DOI: 10.1007/s10529-019-02649-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs), a class of adult stem cells, are considered a promising source for bone regeneration. Although combining MSCs with biomaterial scaffolds offers an interesting clinical strategy for bone tissue engineering, the presence of the scaffolds could induce an undesirable effect on cell-cell interactions. Moreover, before the application of scaffold materials in bone tissue reconstruction, cells must be manipulated with proteolytic enzymes, such as trypsin or dispase that degrade extracellular matrix (ECM) molecules and cell surface proteins, which can result in the cell damage and loss of cellular activity. Therefore, the development of alternative strategies for bone regeneration is required to solve these problems. Recently, a novel tissue engineering technology named 'cell sheet' has been efficaciously utilized in the regeneration of bone, corneal, cardiac, tracheal and periodontal ligament-like tissues. The cell sheet is a layer of cells, which contains intact ECM and cell surface proteins such as growth factor receptors, ion channels and cell-to-cell junction proteins. MSC sheets can be easily fabricated by layering the recovered cell sheets without any scaffolds or complicated manipulation. This review summarizes the current state of the literature regarding the use of MSCs to produce cell sheets and assesses their applicability in bone tissue regeneration and repair.
Collapse
|
19
|
Cell sheet technology: a promising strategy in regenerative medicine. Cytotherapy 2019; 21:3-16. [DOI: 10.1016/j.jcyt.2018.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
|
20
|
Pericytes reduce inflammation and collagen deposition in acute wounds. Cytotherapy 2018; 20:1046-1060. [PMID: 30093323 DOI: 10.1016/j.jcyt.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pericytes have been shown to have mesenchymal stromal cell-like properties and play a role in tissue regeneration. The goal of this study was to determine whether the addition of a pericyte sheet to a full-thickness dermal wound would enhance the healing of an acute wound. METHODS Human muscle-derived pericytes and human dermal fibroblasts were formed into cell sheets, then applied to full-thickness excisional wounds on the dorsum of nu/nu mice. Histology was performed to evaluate epidermal and dermal reformation, inflammation and fibrosis. In addition, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine cytokine response. RESULTS Pericytes were detected in the wounds until day 16 but not fibroblasts. Decrease in wound size was noted in pericyte sheet-treated wounds. Enhanced neo-vascularization and healthy granulation tissue formation were noted in the pericyte-treated wounds. Expression of type I collagen messenger RNA (mRNA) was significantly higher in the fibroblast-treated group, whereas Type III collagen mRNA showed significant increase in the pericyte group at days 3, 6 and 9 compared with the fibroblast and no-cell groups. Trichrome staining revealed thick unorganized collagen fibrils in the fibroblast-treated wounds, whereas pericyte-treated wounds contained thinner and more alligned collagen fibrils. Tumor necrosis factor (TNF)-α mRNA levels were increased in the fibroblast-treated wounds compared with pericyte-treated wounds. DISCUSSION The addition of pericytes may confer beneficial effects to wound healing resulting in reduced recruitment of inflammatory cells and collagen I deposition, potential to enhance wound closure and better collagen alignment promoting stronger tissue.
Collapse
|
21
|
Differentiation of adipose derived stem cells to keratinocyte-like cells on an advanced collagen wound matrix. Tissue Cell 2018; 53:68-75. [PMID: 30060829 DOI: 10.1016/j.tice.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
Abstract
Despite advances in tissue engineering and regenerative medicine, skin regeneration and cutaneous wound healing remains a significant medical challenge. A bioengineered skin that stimulates the body's natural regeneration capability is needed to address the current lack of treatment options. To this end, a biocompatible collagen wound matrix was developed using an electrochemical deposition fabrication process. The advanced collagen wound matrix has relatively high tensile strength compared to normal collagen matrix made by the heat gelation process and open porosity, and serves as an excellent platform for cellular growth and differentiation. Human adipose derived stem cells (hADSCs) were cultured on this collagen matrix and a co-culture system with primary keratinocytes and keratinocyte conditioned media was developed for differentiation of the hADSCs to keratinocyte-like cells. After fifteen days, hADSCs in co-culture began to exhibit a "cobblestone-like" morphology, indicating preliminary signs of differentiation to a keratinocyte-like cell. Based on morphological analysis at day 30, the co-culture with keratinocyte conditioned media system shows promising preliminary evidence of hADSC differentiation to a keratinocyte-like cell on an electrochemically aligned collagen wound matrix.
Collapse
|
22
|
Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A Concise Review on the Use of Mesenchymal Stem Cells in Cell Sheet-Based Tissue Engineering with Special Emphasis on Bone Tissue Regeneration. Stem Cells Int 2017; 2017:2374161. [PMID: 29230248 PMCID: PMC5694585 DOI: 10.1155/2017/2374161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
The integration of stem cell technology and cell sheet engineering improved the potential use of cell sheet products in regenerative medicine. This review will discuss the use of mesenchymal stem cells (MSCs) in cell sheet-based tissue engineering. Besides their adhesiveness to plastic surfaces and their extensive differentiation potential in vitro, MSCs are easily accessible, expandable in vitro with acceptable genomic stability, and few ethical issues. With all these advantages, they are extremely well suited for cell sheet-based tissue engineering. This review will focus on the use of MSC sheets in osteogenic tissue engineering. Potential application techniques with or without scaffolds and/or grafts will be discussed. Finally, the importance of osteogenic induction of these MSC sheets in orthopaedic applications will be demonstrated.
Collapse
Affiliation(s)
- A. Cagdas Yorukoglu
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - A. Esat Kiter
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Semih Akkaya
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N. Lale Satiroglu-Tufan
- Department of Forensic Medicine, Forensic Genetics Laboratory, and Department of Pediatric Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - A. Cevik Tufan
- Department of Histology and Embryology, School of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
23
|
Du HC, Jiang L, Geng WX, Li J, Zhang R, Dang JG, Shu MG, Li LW. Evaluation of xenogeneic extracellular matrix fabricated from CuCl2-conditioned mesenchymal stem cell sheets as a bioactive wound dressing material. J Biomater Appl 2017; 32:472-483. [DOI: 10.1177/0885328217731951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hui-Cong Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Lin Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Wen-Xin Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Jing Li
- Department of plastic and Burn Surgery, Tangdu Hospital, Forth Military Medical University, Xi'an, China
| | - Rui Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Jin-Ge Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Li-Wen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, China
| |
Collapse
|
24
|
Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2578017. [PMID: 29018809 PMCID: PMC5605873 DOI: 10.1155/2017/2578017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
Abstract
MSC treatment can promote cutaneous wound repair through multiple mechanisms, and paracrine mediators secreted by MSC are responsible for most of its therapeutic benefits. Recently, MSC sheet composed of live MSCs and their secreted ECMs was reported to promote wound healing; however, whether its ECM alone could accelerate wound closure remained unknown. In this study, Nc-ECM and Cc-ECM were prepared from nonconditioned and CoCl2-conditioned MSC sheets, respectively, and their wound healing properties were evaluated in a mouse model of full-thickness skin defect. Our results showed that Nc-ECM can significantly promote wound repair through early adipocyte recruitment, rapid reepithelialization, enhanced granulation tissue growth, and augmented angiogenesis. Moreover, conditioning of MSC sheet with CoCl2 dramatically enriched its ECM with collagen I, collagen III, TGF-β1, VEGF, and bFGF via activation of HIF-1α and hence remarkably improved its ECM's in vivo wound healing potency. All the Cc-ECM-treated wounds completely healed on day 7, while Nc-ECM-treated wounds healed about 85.0% ± 8.6%, and no-treatment wounds only healed 69.8% ± 9.6% (p < 0.05). Therefore, we believe that such growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet has the potential for clinical translation and will lead to a MSC-derived, cost-effective, bankable biomaterial for wound management.
Collapse
|
25
|
Bianchi MV, Awaja F, Altankov G. Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:467-474. [DOI: 10.1016/j.msec.2017.04.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
|
26
|
Kato Y, Iwata T, Washio K, Yoshida T, Kuroda H, Morikawa S, Hamada M, Ikura K, Kaibuchi N, Yamato M, Okano T, Uchigata Y. Creation and Transplantation of an Adipose-derived Stem Cell (ASC) Sheet in a Diabetic Wound-healing Model. J Vis Exp 2017. [PMID: 28809824 DOI: 10.3791/54539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Artificial skin has achieved considerable therapeutic results in clinical practice. However, artificial skin treatments for wounds in diabetic patients with impeded blood flow or with large wounds might be prolonged. Cell-based therapies have appeared as a new technique for the treatment of diabetic ulcers, and cell-sheet engineering has improved the efficacy of cell transplantation. A number of reports have suggested that adipose-derived stem cells (ASCs), a type of mesenchymal stromal cell (MSC), exhibit therapeutic potential due to their relative abundance in adipose tissue and their accessibility for collection when compared to MSCs from other tissues. Therefore, ASCs appear to be a good source of stem cells for therapeutic use. In this study, ASC sheets from the epididymal adipose fat of normal Lewis rats were successfully created using temperature-responsive culture dishes and normal culture medium containing ascorbic acid. The ASC sheets were transplanted into Zucker diabetic fatty (ZDF) rats, a rat model of type 2 diabetes and obesity, that exhibit diminished wound healing. A wound was created on the posterior cranial surface, ASC sheets were transplanted into the wound, and a bilayer artificial skin was used to cover the sheets. ZDF rats that received ASC sheets had better wound healing than ZDF rats without the transplantation of ASC sheets. This approach was limited because ASC sheets are sensitive to dry conditions, requiring the maintenance of a moist wound environment. Therefore, artificial skin was used to cover the ASC sheet to prevent drying. The allogenic transplantation of ASC sheets in combination with artificial skin might also be applicable to other intractable ulcers or burns, such as those observed with peripheral arterial disease and collagen disease, and might be administered to patients who are undernourished or are using steroids. Thus, this treatment might be the first step towards improving the therapeutic options for diabetic wound healing.
Collapse
Affiliation(s)
- Yuka Kato
- Diabetic Center, Tokyo Women's Medical University School of Medicine;
| | - Takanori Iwata
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University;
| | - Kaoru Washio
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Toshiyuki Yoshida
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Hozue Kuroda
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Shunichi Morikawa
- The Department of Anatomy and Developmental Biology, Tokyo Women's Medical University School of Medicine
| | - Mariko Hamada
- Diabetic Center, Tokyo Women's Medical University School of Medicine
| | - Kazuki Ikura
- Diabetic Center, Tokyo Women's Medical University School of Medicine
| | - Nobuyuki Kaibuchi
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Masayuki Yamato
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Teruo Okano
- The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University;
| | - Yasuko Uchigata
- Diabetic Center, Tokyo Women's Medical University School of Medicine
| |
Collapse
|
27
|
Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration. Acta Biomater 2017; 55:249-261. [PMID: 28377306 DOI: 10.1016/j.actbio.2017.03.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Accepted: 03/31/2017] [Indexed: 01/20/2023]
Abstract
Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. STATEMENT OF SIGNIFICANCE Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration.
Collapse
|
28
|
Galbraith T, Clafshenkel WP, Kawecki F, Blanckaert C, Labbé B, Fortin M, Auger FA, Fradette J. A Cell-Based Self-Assembly Approach for the Production of Human Osseous Tissues from Adipose-Derived Stromal/Stem Cells. Adv Healthc Mater 2017; 6. [PMID: 28004524 DOI: 10.1002/adhm.201600889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/14/2016] [Indexed: 01/22/2023]
Abstract
Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P < 0.0001) and osteocalcin (P < 0.0001) levels compared to non-induced tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation.
Collapse
Affiliation(s)
- Todd Galbraith
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - William P Clafshenkel
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Fabien Kawecki
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Camille Blanckaert
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Benoit Labbé
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Michel Fortin
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University Laval, Québec, QC G1V 0A6, Canada
| | - François A Auger
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
29
|
Neo PY, Teh TKH, Tay ASR, Asuncion MCT, Png SN, Toh SL, Goh JCH. Stem cell-derived cell-sheets for connective tissue engineering. Connect Tissue Res 2016; 57:428-442. [PMID: 27050427 DOI: 10.3109/03008207.2016.1173035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-sheet technology involves the recovery of cells with its secreted ECM and cell-cell junctions intact, and thereby harvesting them in a single contiguous layer. Temperature changes coupled with a thermoresponsive polymer grafted culture plate surface are typically used to induce detachment of this cell-matrix layer by controlling the hydrophobicity and hydrophilicity properties of the culture surface. This review article details the genesis and development of this technique as a critical tissue-engineering tool, with a comprehensive discussion on connective tissue applications. This includes applications in the myocardial, vascular, cartilage, bone, tendon/ligament, and periodontal areas among others discussed. In particular, further focus will be given to the use of stem cells-derived cell-sheets, such as those involving bone marrow-derived and adipose tissue-derived mesenchymal stem cells. In addition, some of the associated challenges faced by approaches using stem cells-derived cell-sheets will also be discussed. Finally, recent advances pertaining to technologies forming, detaching, and manipulating cell-sheets will be covered in view of the potential impact they will have on shaping the way cell-sheet technology will be utilized in the future as a tissue-engineering technique.
Collapse
Affiliation(s)
- Puay Yong Neo
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Thomas Kok Hiong Teh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Alex Sheng Ru Tay
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore
| | | | - Si Ning Png
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore
| | - Siew Lok Toh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,c Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , Singapore
| | - James Cho-Hong Goh
- a Department of Biomedical Engineering, Faculty of Engineering , National University of Singapore , Singapore.,b NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore , Singapore.,d Department of Orthopaedic Surgery , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
30
|
Valerio IL, Sabino JM, Dearth CL. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine. Adv Wound Care (New Rochelle) 2016; 5:412-419. [PMID: 27679752 DOI: 10.1089/wound.2015.0655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/03/2015] [Indexed: 02/02/2023] Open
Abstract
Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report on clinical outcomes that substantiate current treatment paradigms and concepts within regenerative medicine, reconstructive, and rehabilitation care. These results are applicable to not only combat casualty care but also to nonmilitary patients.
Collapse
Affiliation(s)
- Ian L. Valerio
- Division of Burn, Wound, and Trauma, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio
- Department of Plastic and Reconstructive Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jennifer M. Sabino
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Christopher L. Dearth
- DoD–VA Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
31
|
Nakada A, Shigeno K, Sato T, Hatayama T, Wakatsuki M, Nakamura T. Optimal dehydrothermal processing conditions to improve biocompatibility and durability of a weakly denatured collagen scaffold. J Biomed Mater Res B Appl Biomater 2016; 105:2301-2307. [DOI: 10.1002/jbm.b.33766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/14/2016] [Accepted: 07/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Akira Nakada
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Keiji Shigeno
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Toshihiko Sato
- Department of Thoracic Surgery; Kyoto University; Kyoto Japan
| | - Takahide Hatayama
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Mariko Wakatsuki
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs; Institute for Frontier Medical Sciences, Kyoto University; Kyoto Japan
| |
Collapse
|
32
|
Yu H, Peng J, Xu Y, Chang J, Li H. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:703-715. [PMID: 26684719 DOI: 10.1021/acsami.5b09853] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.
Collapse
Affiliation(s)
- Hongfei Yu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University , 1954 Huashan Road, Shanghai 200030, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Jiang Chang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University , 1954 Huashan Road, Shanghai 200030, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University , 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
33
|
Kato Y, Iwata T, Morikawa S, Yamato M, Okano T, Uchigata Y. Allogeneic Transplantation of an Adipose-Derived Stem Cell Sheet Combined With Artificial Skin Accelerates Wound Healing in a Rat Wound Model of Type 2 Diabetes and Obesity. Diabetes 2015; 64:2723-34. [PMID: 25795216 DOI: 10.2337/db14-1133] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022]
Abstract
One of the most common complications of diabetes is diabetic foot ulcer. Diabetic ulcers do not heal easily due to diabetic neuropathy and reduced blood flow, and nonhealing ulcers may progress to gangrene, which necessitates amputation of the patient's foot. This study attempted to develop a new cell-based therapy for nonhealing diabetic ulcers using a full-thickness skin defect in a rat model of type 2 diabetes and obesity. Allogeneic adipose-derived stem cells (ASCs) were harvested from the inguinal fat of normal rats, and ASC sheets were created using cell sheet technology and transplanted into full-thickness skin defects in Zucker diabetic fatty rats. The results indicate that the transplantation of ASC sheets combined with artificial skin accelerated wound healing and vascularization, with significant differences observed 2 weeks after treatment. The ASC sheets secreted large amounts of several angiogenic growth factors in vitro, and transplanted ASCs were observed in perivascular regions and incorporated into the newly constructed vessel structures in vivo. These results suggest that ASC sheets accelerate wound healing both directly and indirectly in this diabetic wound-healing model. In conclusion, allogeneic ASC sheets exhibit potential as a new therapeutic strategy for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Yuka Kato
- Diabetic Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunichi Morikawa
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuko Uchigata
- Diabetic Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, Maccario R, Dominici M, De Silvestri A, Andreatta E, Costanzo F, Mantelli M, Ingo D, Piccinno S, Calcaterra V. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 2015; 13:219. [PMID: 26152232 PMCID: PMC4495634 DOI: 10.1186/s12967-015-0580-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
Objective Mesenchymal stromal cells
(MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). Methods Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 106 and BM-MSCs 3 × 106, because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. Results Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. Conclusion The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonia Icaro Cornaglia
- Histology and Embryology Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy.
| | - Monica Osti
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Piero Romano
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Luigi Avolio
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Rita Maccario
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Annalisa De Silvestri
- Biometry and Clinical Epidemiology Unit, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Erika Andreatta
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Federico Costanzo
- Pediatric Surgery Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100, Pavia, Italy.
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Daniela Ingo
- Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Serena Piccinno
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio, Emilia, Italy.
| | - Valeria Calcaterra
- Pediatric Unit, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| |
Collapse
|
35
|
Beardslee LA, Stolwijk J, Khaladj DA, Trebak M, Halman J, Torrejon KY, Niamsiri N, Bergkvist M. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness. J Biomed Mater Res B Appl Biomater 2015; 104:1192-201. [PMID: 26079689 DOI: 10.1002/jbm.b.33464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 04/18/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022]
Abstract
A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016.
Collapse
Affiliation(s)
- Luke A Beardslee
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Judith Stolwijk
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Dimitrius A Khaladj
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Mohamed Trebak
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Justin Halman
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Karen Y Torrejon
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| | - Nuttawee Niamsiri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Magnus Bergkvist
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
| |
Collapse
|
36
|
Conradi L, Schmidt S, Neofytou E, Deuse T, Peters L, Eder A, Hua X, Hansen A, Robbins RC, Beygui RE, Reichenspurner H, Eschenhagen T, Schrepfer S. Immunobiology of fibrin-based engineered heart tissue. Stem Cells Transl Med 2015; 4:625-31. [PMID: 25947338 DOI: 10.5966/sctm.2013-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Different tissue-engineering approaches have been developed to induce and promote cardiac regeneration; however, the impact of the immune system and its responses to the various scaffold components of the engineered grafts remains unclear. Fibrin-based engineered heart tissue (EHT) was generated from neonatal Lewis (Lew) rat heart cells and transplanted onto the left ventricular surface of three different rat strains: syngeneic Lew, allogeneic Brown Norway, and immunodeficient Rowett Nude rats. Interferon spot frequency assay results showed similar degrees of systemic immune activation in the syngeneic and allogeneic groups, whereas no systemic immune response was detectable in the immunodeficient group (p < .001 vs. syngeneic and allogeneic). Histological analysis revealed much higher local infiltration of CD3- and CD68-positive cells in syngeneic and allogeneic rats than in immunodeficient animals. Enzyme-linked immunospot and immunofluorescence experiments revealed matrix-directed TH1-based rejection in syngeneic recipients without collateral impairment of heart cell survival. Bioluminescence imaging was used for in vivo longitudinal monitoring of transplanted luciferase-positive EHT constructs. Survival was documented in syngeneic and immunodeficient recipients for a period of up to 110 days after transplant, whereas in the allogeneic setting, graft survival was limited to only 14 ± 1 days. EHT strategies using autologous cells are promising approaches for cardiac repair applications. Although fibrin-based scaffold components elicited an immune response in our studies, syngeneic cells carried in the EHT were relatively unaffected. SIGNIFICANCE An initial insight into immunological consequences after transplantation of engineered heart tissue was gained through this study. Most important, this study was able to demonstrate cell survival despite rejection of matrix components. Generation of syngeneic human engineered heart tissue, possibly using human induced pluripotent stem cell technology with subsequent directed rejection of matrix components, may be a potential future approach to replace diseased myocardium.
Collapse
Affiliation(s)
- Lenard Conradi
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Stephanie Schmidt
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Evgenios Neofytou
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Tobias Deuse
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Laura Peters
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Alexandra Eder
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Xiaoqin Hua
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Arne Hansen
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Robert C Robbins
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Ramin E Beygui
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Hermann Reichenspurner
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Thomas Eschenhagen
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| | - Sonja Schrepfer
- University Heart Center Hamburg, Transplant and Stem Cell Immunobiology Laboratory, Hamburg, Germany; Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, and Cardiovascular Research Center and Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center, Stanford, California, USA
| |
Collapse
|
37
|
Xiao HT, Wang L, Yu B. Superparamagnetic iron oxide promotes osteogenic differentiation of rat adipose-derived stem cells. Int J Clin Exp Med 2015; 8:698-705. [PMID: 25785046 PMCID: PMC4358501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Adult adipose tissue-derived stem cells (ADSCs) were found to hold great promise for use in bone tissue repair and regeneration. The present study aims to improve the osteogenesis of ADSCs by Superparamagnetic Iron Oxide (SPIO), which is widely used in tissue imaging. In this study, adipose-derived stem cells were harvested from 4-week-old male Sprague-Dawley (SD) rats. The proliferation rates of ADSCs labeling with or without SPIO were assessed by using trypan blue assay. The osteogenic capability was examined by employing the ALP activity detection kit. The mineralization of cells was determined by staining with Alizarin red S. Flow cytometry analysis was used to examine the cell apoptosis treated with or without SPIO. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis was utilized to detect the Runx2, Opn, Ocn and ALP genes in the cells. The results indicated that SPIO could promote rat ADSCs proliferation and reduce rat ADSCs apoptosis. Also, SPIO could significantly enhance the ALP and alizarin red staining of ADSCs in -SPIO group and +SPIO group (P < 0.01). Furthermore, we also found that the expression of Runx2, Opn, Ocn and ALP was significantly increased after SPIO treatment compared to the un-treated cells (P < 0.01). In conclusion, SPIO could promote the osteogenic differentiation of rat adipose-derived stem cells, which would also become a great potential therapeutic tool in bone tissue engineering.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University1838 Guangzhou Avenue North, Guangzhou 510515, People’s Republic of China
- Department of Traumatic Orthopaedics, Hainan Provincial People’s HospitalHaikou 570311, Hainan, People’s Republic of China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University1838 Guangzhou Avenue North, Guangzhou 510515, People’s Republic of China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University1838 Guangzhou Avenue North, Guangzhou 510515, People’s Republic of China
| |
Collapse
|
38
|
King A, Balaji S, Keswani SG, Crombleholme TM. The Role of Stem Cells in Wound Angiogenesis. Adv Wound Care (New Rochelle) 2014; 3:614-625. [PMID: 25300298 DOI: 10.1089/wound.2013.0497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds.
Collapse
Affiliation(s)
- Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Children's Surgery, Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital Colorado, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
39
|
Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomater 2014; 10:3145-55. [PMID: 24650971 DOI: 10.1016/j.actbio.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/12/2014] [Accepted: 03/09/2014] [Indexed: 11/21/2022]
Abstract
Skin regeneration remains a challenge, requiring a well-orchestrated interplay of cell-cell and cell-matrix signalling. Cell sheet (CS) engineering, which has the major advantage of allowing the retrieval of the intact cell layers along with their naturally organized extracellular matrix (ECM), has been poorly explored for the purpose of creating skin substitutes and skin regeneration. This work proposes the use of CS technology to engineer cellular constructs based on human keratinocytes (hKC), key players in wound re-epithelialization, dermal fibroblasts (hDFb), responsible for ECM remodelling, and dermal microvascular endothelial cells (hDMEC), part of the dermal vascular network and modulators of angiogenesis. Homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed simultaneously to target wound re-vascularization and re-epithelialization. After implantation of the constructs in murine full-thickness wounds, human cells were engrafted into the host wound bed and were present in the neotissue formed up to 14 days post-implantation. Different outcomes were obtained by varying the composition and organization of the 3-D constructs. Both hKC and hDMEC significantly contributed to re-epithelialization by promoting rapid wound closure and early epithelial coverage. Moreover, a significant increase in the density of vessels at day 7 and the incorporation of hDMEC in the neoformed vasculature confirmed its role over neotissue vacularization. As a whole, the obtained results confirmed that the proposed 3-D CS-based constructs provided the necessary cell machinery, when in a specific microenvironment, guiding both re-vascularization and re-epithelialization. Although dependent on the nature of the constructs, the results obtained sustain the hypothesis that different CS-based constructs lead to improved skin healing.
Collapse
|
40
|
Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 2014; 12:26. [PMID: 24725987 PMCID: PMC4022079 DOI: 10.1186/1478-811x-12-26] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several studies demonstrate the role of adipose mesenchymal stem cells (ASCs) in angiogenesis. The angiogenic mechanism has been ascribed to paracrine factors since these cells secrete a plenty of signal molecules and growth factors. Recently it has been suggested that besides soluble factors, extracellular vesicles (EVs) that include exosomes and microvesicles may play a major role in cell-to-cell communication. It has been shown that EVs are implicated in the angiogenic process. RESULTS Herein we studied whether EVs released by ASCs may mediate the angiogenic activity of these cells. Our results demonstrated that ASC-derived EVs induced in vitro vessel-like structure formation by human microvascular endothelial cells (HMEC). EV-stimulated HMEC when injected subcutaneously within Matrigel in SCID mice formed vessels. Treatment of ASCs with platelet-derived growth factor (PDGF) stimulated the secretion of EVs, changed their protein composition and enhanced the angiogenic potential. At variance of EVs released in basal conditions, PDGF-EVs carried c-kit and SCF that played a role in angiogenesis as specific blocking antibodies inhibited in vitro vessel-like structure formation. The enhanced content of matrix metalloproteinases in PDGF-EVs may also account for their angiogenic activity. CONCLUSIONS Our findings indicate that EVs released by ASCs may contribute to the ASC-induced angiogenesis and suggest that PDGF may trigger the release of EVs with an enhanced angiogenic potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Corso Dogliotti 14, 10126, Torino, Italy.
| |
Collapse
|