1
|
Chen P, Zou F, Liu W. Recent advancement in prevention against hepatotoxicity, molecular mechanisms, and bioavailability of gallic acid, a natural phenolic compound: challenges and perspectives. Front Pharmacol 2025; 16:1549526. [PMID: 40191418 PMCID: PMC11968354 DOI: 10.3389/fphar.2025.1549526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Drug-induced liver injury (DILI) results from the liver toxicity caused by drugs or their metabolites. Gallic acid (GA) is a naturally occurring secondary metabolite found in many fruits, plants, and nuts. Recently, GA has drawn increasing attention due to its potent pharmacological properties, particularly its anti-inflammatory and antioxidant capabilities. To the best of our knowledge, this is the first review to focus on the pharmacological properties of GA and related molecular activation mechanisms regarding protection against hepatotoxicity. We also provide a thorough explanation of the physicochemical properties, fruit sources, toxicity, and pharmacokinetics of GA after reviewing a substantial number of studies. Pharmacokinetic studies have shown that GA is quickly absorbed and eliminated when taken orally, which restricts its use in development. However, the bioavailability of GA can be increased by optimizing its structure or changing its form of administration. Notably, according to toxicology studies conducted on a range of animals and clinical trials, GA rarely exhibits toxicity or side effects. The antioxidation mechanisms mainly involved Nrf2, while anti-inflammatory mechanisms involved MAPKs and NF-κB signaling pathways. Owing to its marked pharmacological properties, GA is a prospective candidate for the management of diverse xenobiotic-induced hepatotoxicity. We also discuss the applications of cutting-edge technologies (nano-delivery systems, network pharmacology, and liver organoids) in DILI. In addition to guiding future research and development of GA as a medicine, this study offers a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fanzhao Zou
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Hussein MH, Alameen AA, Ansari MA, AlSharari SD, Ahmad SF, Attia MSM, Sarawi WS, Nadeem A, Bakheet SA, Attia SM. Semaglutide ameliorated autism-like behaviors and DNA repair efficiency in male BTBR mice by recovering DNA repair gene expression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111091. [PMID: 39032854 DOI: 10.1016/j.pnpbp.2024.111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.
Collapse
Affiliation(s)
- Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Shinohara S, Uchijima S, Hirosawa K, Nagaoka M, Nakano M, Nakajima M, Fukami T. Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis. Arch Toxicol 2024; 98:4059-4075. [PMID: 39367970 DOI: 10.1007/s00204-024-03873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Arylacetamide deacetylase (AADAC) catalyzes the hydrolysis of small molecules containing ester and amide bonds. Recently, it has been reported that AADAC can suppress reactive oxygen species production in cancer cells. This study aimed to elucidate the possibility that AADAC protects against drug-induced liver injury accompanied by oxidative stress and to explore its molecular mechanisms. Intraperitoneal administration of carbon tetrachloride induced significantly more severe liver injury in Aadac knockout (KO) mice (plasma alanine aminotransferase level: 19,381 ± 10,578 U/L) than in wild-type (WT) mice (7219 ± 4729 U/L). More severe liver injury in Aadac KO mice was accompanied by higher hepatic malondialdehyde and antioxidant gene mRNA levels than those in WT mice. The increase in plasma alanine aminotransferase levels in Aadac KO mice was substantially suppressed by pretreatment with the ferroptosis inhibitors deferoxamine or ferrostatin-1, suggesting that Aadac deficiency increases susceptibility to ferroptosis. Immunoprecipitation followed by proteomic analysis revealed that AADAC interacts with ceruloplasmin (CP), which oxidizes ferrous iron to ferric iron. Hepatic CP activity was significantly lower in Aadac KO mice than that in WT mice, resulting in elevated hepatic ferrous iron levels in Aadac KO mice. Overexpression of human AADAC in Huh-7 cells significantly attenuated carbon tetrachloride-induced cytotoxicity by suppressing ferrous iron accumulation, suggesting that AADAC interacts with CP to suppress hepatic ferrous iron accumulation. The hepatoprotective role of Aadac in ferroptosis was also observed in mice with acetaminophen-induced liver injury. This study demonstrates a novel function of AADAC in protecting against ferroptosis induced by hepatotoxicants, carbon tetrachloride and acetaminophen.
Collapse
Affiliation(s)
- Soshi Shinohara
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Seijo Uchijima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Westra S, Goldberg MS, Labrèche F, Baumgartner J, Ho V. A structured review of the associations between breast cancer and exposures to selected organic solvents. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0051. [PMID: 39566889 DOI: 10.1515/reveh-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Our objective was to identify published, peer-reviewed, epidemiological studies that estimated associations between the risk of developing or dying from malignant breast cancer and past exposure to selected organic solvents with reactive metabolites, to delineate the methods used and to synthesize the results. CONTENT We undertook a structured review of case-control and cohort studies used to investigate breast cancer risk and exposure to selected organic solvents that produce reactive metabolites in the body. We used SCOPUS, MEDLINE (Ovid) and Web of Science databases from 1966 to December 31, 2023 to identify epidemiological studies that estimated associations between the risk of developing or dying from malignant breast cancer and past exposure to selected organic solvents with reactive metabolites and organic solvents combined as a group. SUMMARY We described essential methodological characteristics of the 35 studies and presented quantitative results by individual solvent and other characteristics. We did not find compelling evidence that any of the selected organic solvents are implicated in the etiology of breast cancer. OUTLOOK As millions of workers are exposed to organic solvents, this topic necessitates further investigation. Future research should focus on elucidating organic solvents that may contribute to the burden of breast cancer.
Collapse
Affiliation(s)
- Sydney Westra
- Health Innovation and Evaluation Hub Université de Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - France Labrèche
- Department of Environmental and Occupational Health, School of Public Health and Centre de recherche en santé publique (CReSP), University of Montréal and CIUSSS Centre-Sud, Montréal, QC, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, QC, Canada
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Ethics, Equity and Policy, McGill University, Montréal, QC, Canada
| | - Vikki Ho
- Health Innovation and Evaluation Hub Université de Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada
- Department of Social and Preventive Medicine, Université de Montréal School of Public Health (ESPUM), Montréal, QC, Canada
| |
Collapse
|
5
|
Alhusain AF, Mahmoud MA, Alhamami HN, Ebrahim Alobid S, Ansari MA, Ahmad SF, Nadeem A, Bakheet SA, Harisa GI, Attia SM. Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism. Saudi Pharm J 2024; 32:102187. [PMID: 39493830 PMCID: PMC11530837 DOI: 10.1016/j.jsps.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Autism is a neurodevelopmental disorder distinguished by impaired social interaction and repetitive behaviors. Global estimates indicate that autism affects approximately 1.6% of children, with the condition progressively becoming more prevalent over time. Despite noteworthy progress in autism research, the condition remains untreatable. This serves as a driving force for scientists to explore new approaches to disease management. Autism is linked to elevated levels of oxidative stress and disturbances in the DNA repair mechanism, which may potentially play a role in its comorbidities development. The current investigation aimed to evaluate the beneficial effect of the naturally occurring flavonoid proanthocyanidins on the behavioral characteristics and repair efficacy of autistic BTBR mice. Moreover, the mechanisms responsible for these effects were clarified. The present findings indicate that repeated administration of proanthocyanidins effectively reduces altered behavior in BTBR animals without altering motor function. Proanthocyanidins decreased oxidative DNA strand breaks and accelerated the rate of DNA repair in autistic animals, as evaluated by the modified comet test. In addition, proanthocyanidins reduced the elevated oxidative stress and recovered the disrupted DNA repair mechanism in the autistic animals by decreasing the expressions of Gadd45a and Parp1 levels and enhancing the expressions of Ogg1, P53, and Xrcc1 genes. This indicates that proanthocyanidins have significant potential as a new therapeutic strategy for alleviating autistic features.
Collapse
Affiliation(s)
- Abdulelah F. Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed A. Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saad Ebrahim Alobid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Seal S, Williams D, Hosseini-Gerami L, Mahale M, Carpenter AE, Spjuth O, Bender A. Improved Detection of Drug-Induced Liver Injury by Integrating Predicted In Vivo and In Vitro Data. Chem Res Toxicol 2024; 37:1290-1305. [PMID: 38981058 PMCID: PMC11337212 DOI: 10.1021/acs.chemrestox.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Drug-induced liver injury (DILI) has been a significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. Over the last decade, the existing suite of in vitro proxy-DILI assays has generally improved at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing the in silico prediction of DILI because it allows for evaluating large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI prediction that first predict nine proxy-DILI labels and then use them as features in addition to chemical structural features to predict DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical parameters. We trained DILI-prediction models on 888 compounds from the DILI data set (composed of DILIst and DILIrank) and tested them on a held-out external test set of 223 compounds from the DILI data set. The best model, DILIPredictor, attained an AUC-PR of 0.79. This model enabled the detection of the top 25 toxic compounds (2.68 LR+, positive likelihood ratio) compared to models using only structural features (1.65 LR+ score). Using feature interpretation from DILIPredictor, we identified the chemical substructures causing DILI and differentiated cases of DILI caused by compounds in animals but not in humans. For example, DILIPredictor correctly recognized 2-butoxyethanol as nontoxic in humans despite its hepatotoxicity in mice models. Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between animal and human sensitivity and the potential for mechanism evaluation. DILIPredictor required only chemical structures as input for prediction and is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for download.
Collapse
Affiliation(s)
- Srijit Seal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
| | - Dominic Williams
- Safety
Innovation, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge CB4 0FZ, United Kingdom
- Quantitative
Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0FZ, United Kingdom
| | - Layla Hosseini-Gerami
- Ignota
Laboratories, County Hall, Westminster Bridge Rd, London SE1 7PB, United Kingdom
| | - Manas Mahale
- Bombay
College
of Pharmacy Kalina Santacruz (E), Mumbai 400 098, India
| | - Anne E. Carpenter
- Imaging
Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
| | - Ola Spjuth
- Department
of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, Uppsala SE-75124, Sweden
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Alqahtani F, Bakheet SA, Harisa GI. Dulaglutide rescues the elevated testicular dysfunction in a mouse model of high-fat diet-induced obesity. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503805. [PMID: 39147447 DOI: 10.1016/j.mrgentox.2024.503805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Obesity is a well-known risk factor for testicular function; however, dulaglutide's effect on the testis in obesity has received little attention. Currently, clinicians prescribe the antidiabetic drug dulaglutide only off-label for weight management in non-diabetics. Investigating the impact of this novel compound on obesity is critical for determining whether it has any disruptive effects on testicular cells. We used a well-known animal model of high-fat diet-induced obesity in this investigation, and testicular dysfunction was determined by sperm DNA damage, spermatocyte chromosomal abnormalities, and spermiogram analysis. Following a 12-week high-fat diet challenge, mice were randomly assigned to dulaglutide (0.6 mg/kg/day) or saline treatments for five weeks. Testes and sperm cells were collected 24 h after the last dulaglutide injection. Untreated obese mice had a lower testes/body weight ratio, more sperm DNA damage, diakinesis-metaphase I chromosomal abnormalities, a lower sperm count/motility, more cell morphological defects, and an altered testicular redox balance. In obese mice, dulaglutide injection efficiently restored all disturbed parameters to their control levels. Dulaglutide injection into healthy mice exhibited no significant harmful effects at the applied regimen. As a result, we infer that dulaglutide therapy might bring obese men additional benefits by recovering testicular dysfunction induced by obesity.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Knox J, Burns AR, Cooke B, Cammalleri SR, Kitner M, Ching J, Castelli JMP, Puumala E, Snider J, Koury E, Collins JB, Geissah S, Dowling JJ, Andersen EC, Stagljar I, Cowen LE, Lautens M, Zasada I, Roy PJ. Cyprocide selectively kills nematodes via cytochrome P450 bioactivation. Nat Commun 2024; 15:5529. [PMID: 38956039 PMCID: PMC11219838 DOI: 10.1038/s41467-024-49738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Andrew R Burns
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Savina R Cammalleri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Megan Kitner
- United States Department of Agriculture - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| | - Justin Ching
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jack M P Castelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jamie Snider
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Emily Koury
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - J B Collins
- Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Salma Geissah
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Igor Stagljar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000, Split, Croatia
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Inga Zasada
- United States Department of Agriculture - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Almutairi F, Bakheet SA. Dulaglutide reduces oxidative DNA damage and hypermethylation in the somatic cells of mice fed a high-energy diet by restoring redox balance, inflammatory responses, and DNA repair gene expressions. J Biochem Mol Toxicol 2024; 38:e23764. [PMID: 38963172 DOI: 10.1002/jbt.23764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Marvin CC, Hobson AD, McPherson MJ, Hayes ME, Patel MV, Schmidt DL, Li T, Randolph JT, Bischoff AK, Fitzgibbons J, Wang L, Wang L, Hernandez A, Jia Y, Goess CA, Bryant SH, Mathieu SL, Xu J. Anti-TNF Thioester Glucocorticoid Antibody-Drug Conjugate Fully Inhibits Inflammation with Minimal Effect on Systemic Corticosterone Levels in a Mouse Arthritis Model. J Med Chem 2024; 67:9495-9515. [PMID: 38780432 DOI: 10.1021/acs.jmedchem.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We describe the discovery of a thioester-containing glucocorticoid receptor modulator (GRM) payload and the corresponding antibody-drug conjugate (ADC). Payload 6 was designed for rapid hepatic inactivation to minimize systemic exposure of nonconjugated GRM. Mouse PK indicated that 6 is cleared 10-fold more rapidly than a first-generation GRM payload, resulting in 10-fold lower exposure and 3-fold decrease in Cmax. The anti-mTNF conjugate ADC5 fully inhibited inflammation in mouse contact hypersensitivity with minimal effects on corticosterone, a biomarker for systemic GRM effects, at doses up to and including 100 mg/kg. Concomitant inhibition of P1NP suggests potential delivery to cells involved in the remodeling of bone, which may be a consequence of TNF-targeting or bystander payload effects. Furthermore, ADC5 fully suppressed inflammation in collagen-induced arthritis mouse model after one 10 mg/kg dose for 21 days. The properties of the anti-hTNF conjugate were suitable for liquid formulation and may enable subcutaneous dosing.
Collapse
Affiliation(s)
- Christopher C Marvin
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Michael J McPherson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Martin E Hayes
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Meena V Patel
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Diana L Schmidt
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tongmei Li
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - John T Randolph
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Agnieszka K Bischoff
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Axel Hernandez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ying Jia
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Christian A Goess
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Shaughn H Bryant
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Suzanne L Mathieu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Jianwen Xu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
11
|
Seal S, Williams DP, Hosseini-Gerami L, Mahale M, Carpenter AE, Spjuth O, Bender A. Improved Detection of Drug-Induced Liver Injury by Integrating Predicted in vivo and in vitro Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575128. [PMID: 38895462 PMCID: PMC11185581 DOI: 10.1101/2024.01.10.575128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drug-induced liver injury (DILI) has been significant challenge in drug discovery, often leading to clinical trial failures and necessitating drug withdrawals. The existing suite of in vitro proxy-DILI assays is generally effective at identifying compounds with hepatotoxicity. However, there is considerable interest in enhancing in silico prediction of DILI because it allows for the evaluation of large sets of compounds more quickly and cost-effectively, particularly in the early stages of projects. In this study, we aim to study ML models for DILI prediction that first predicts nine proxy-DILI labels and then uses them as features in addition to chemical structural features to predict DILI. The features include in vitro (e.g., mitochondrial toxicity, bile salt export pump inhibition) data, in vivo (e.g., preclinical rat hepatotoxicity studies) data, pharmacokinetic parameters of maximum concentration, structural fingerprints, and physicochemical parameters. We trained DILI-prediction models on 888 compounds from the DILIst dataset and tested on a held-out external test set of 223 compounds from DILIst dataset. The best model, DILIPredictor, attained an AUC-ROC of 0.79. This model enabled the detection of top 25 toxic compounds compared to models using only structural features (2.68 LR+ score). Using feature interpretation from DILIPredictor, we were able to identify the chemical substructures causing DILI as well as differentiate cases DILI is caused by compounds in animals but not in humans. For example, DILIPredictor correctly recognized 2-butoxyethanol as non-toxic in humans despite its hepatotoxicity in mice models. Overall, the DILIPredictor model improves the detection of compounds causing DILI with an improved differentiation between animal and human sensitivity as well as the potential for mechanism evaluation. DILIPredictor is publicly available at https://broad.io/DILIPredictor for use via web interface and with all code available for download and local implementation via https://pypi.org/project/dilipred/.
Collapse
Affiliation(s)
- Srijit Seal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW, Cambridge, United Kingdom
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | - Dominic P. Williams
- Safety Innovation, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge CB4 0FZ, United Kingdom
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0FZ, United Kingdom
| | | | - Manas Mahale
- Bombay College of Pharmacy Kalina Santacruz (E), Mumbai 400 098, India
| | | | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
12
|
Alsibaee AM, Aljohar HI, Attwa MW, Abdelhameed AS, Kadi AA. Ion Trap LC/MS reveals the generation of reactive intermediates in acalabrutinib metabolism: phase I metabolic profiling and bioactivation pathways elucidation. RSC Adv 2024; 14:16170-16193. [PMID: 38769961 PMCID: PMC11103460 DOI: 10.1039/d4ra01201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Acalabrutinib (CALQUENCE; ACB) is a Bruton tyrosine kinase inhibitor (BTKI) used to treat mantle cell lymphoma, small lymphocytic lymphoma (SLL), and chronic lymphocytic leukemia (CLL). On 21 November 2019, ACB was approved by the U.S. FDA for the use as a single therapy for the treatment of CLL/SLL. In silico studies were first done to propose vulnerable sites of metabolism and reactivity pathways by StarDrop software and Xenosite online software; respectively. ACB metabolites and stable adducts were characterized in vitro from rat liver microsomes (RLMs) using Ion Trap LC/MS. Generation of reactive intermediates (RIs) in the in vitro metabolism of ACB was investigated using glutathione, potassium cyanide, and methoxylamine as trapping nucleophiles for the RIs including iminopyridinone, iminium, and aldehyde, respectively, to form stable adducts that can be identified and characterized by Ion Trap LC/MS. Five phase I metabolites, seven 6-iminopyridin-3(6H)-one and five aldehyde RIs of ACB were identified. Based on literature reviews, the generation of RIs of ACB, and the subsequent drug-induced organ toxicity (DIOT) reactions may provide an explanation of ACB ADRs. Additional drug discovery investigations can be performed to facilitate the creation of novel medications with improved safety characteristics.
Collapse
Affiliation(s)
- Aishah M Alsibaee
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Haya I Aljohar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| |
Collapse
|
13
|
Chaganti S, Kushwah BS, Velip L, Tiwari SS, Chilvery S, Godugu C, Samanthula G. In vivo and in vitro metabolite profiling of nirmatrelvir using LC-Q-ToF-MS/MS along with the in silico approaches for prediction of metabolites and their toxicity. Biomed Chromatogr 2024; 38:e5849. [PMID: 38403275 DOI: 10.1002/bmc.5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Nirmatrelvir (NRV), a 3C-like protease or Mpro inhibitor of SARS-CoV-2, is used for the treatment of COVID-19 in adult and paediatric patients. The present study was accomplished to investigate the comprehensive metabolic fate of NRV using in vitro and in vivo models. The in vitro models used for the study were microsomes (human liver microsomes, rat liver microsomes, mouse liver microsomes) and S9 fractions (human liver S9 fractions and rat liver S9 fractions) with the appropriate cofactors, whereas Sprague-Dawley rats were used as the in vivo models. Nirmatrelvir was administered orally to Sprague-Dawley rats, which was followed by the collection of urine, faeces and blood at pre-determined time intervals. Protein precipitation was used as the sample preparation method for all the samples. The samples were then analysed by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-ToF-MS/MS) using an Acquity BEH C18 column with 0.1% formic acid and acetonitrile as the mobile phase. Four metabolites were found to be novel, which were formed via amide hydrolysis, oxidation and hydroxylation. Furthermore, an in silico analysis was performed using Meteor Nexus software to predict the probable metabolic changes of NRV. The toxicity and mutagenicity of NRV and its metabolites were also determined using DEREK Nexus and SARAH Nexus.
Collapse
Affiliation(s)
- Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Bhoopendra Singh Kushwah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Laximan Velip
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shristy S Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shrilekha Chilvery
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Nguyen R, Seguin RP, Ross DH, Chen P, Richardson S, Liem J, Lin YS, Xu L. Development and Application of a Multidimensional Database for the Detection of Quaternary Ammonium Compounds and Their Phase I Hepatic Metabolites in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6236-6249. [PMID: 38534032 PMCID: PMC11008582 DOI: 10.1021/acs.est.3c10845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.
Collapse
Affiliation(s)
- Ryan Nguyen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan P. Seguin
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dylan H. Ross
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Pengyu Chen
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sean Richardson
- Department
of Mathematics, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer Liem
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Yvonne S. Lin
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Sun C, Zhang M, Guan C, Li W, Peng Y, Zheng J. In vitro and in vivo metabolic activation and hepatotoxicity of chlorzoxazone mediated by CYP3A. Arch Toxicol 2024; 98:1095-1110. [PMID: 38369618 DOI: 10.1007/s00204-023-03674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 μM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 μM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.
Collapse
Affiliation(s)
- Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chunjing Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| |
Collapse
|
16
|
Khalil SM, MacKenzie KR, Maletic-Savatic M, Li F. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Drug Metab Rev 2024; 56:97-126. [PMID: 38311829 PMCID: PMC11118075 DOI: 10.1080/03602532.2024.2313967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Pan S, Li Y, Zhang J. 6-Shogaol prevents benzo (A) pyrene-exposed lung carcinogenesis via modulating PRDX1-associated oxidative stress, inflammation, and proliferation in mouse models. ENVIRONMENTAL TOXICOLOGY 2024; 39:75-84. [PMID: 37638803 DOI: 10.1002/tox.23946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
In this study, we have investigated the chemopreventive role of 6-shogaol (6-SGL) on benzopyrene (BaP) exposed lung carcinogenesis by modulating PRDX1-associated oxidative stress, inflammation, and proliferation in Swiss albino mouse models. Mice were exposed to BaP (50 mg/kg b.wt) orally twice a week for four consecutive weeks and maintained for 16 weeks, respectively. 6-SGL (30 mg/kg b.wt) were orally administered to mouse 1 h before BaP exposure for 16 weeks. After the experiment's termination, 6-SGL (30 mg/kg b.wt) prevented the loss in body weight, increased lung weight, and the total number of tumors in the mice. Moreover, we observed that 6-SGL treatment reverted the activity of BaP-induced lipid peroxidation and antioxidants in mice. Also, 6-SGL impeded the phosphorylation of MAPK family proteins such as Erk1, p38, and Jnk1 in BaP-exposed mice. PRDX1 is an essential antioxidant protein that scavenges toxic radicals and enhances several antioxidant proteins. Overexpression of PRDX1 substantially inhibits MAPKs, proliferation, and inflammation signaling axis. Hence, PRDX1 is thought to be a novel targeting protein for preventing BaP-induced lung cancer. In this study, we have obtained the 6-SGL treatment in a mouse model that reverted BaP-induced depletion of PRDX1 expression. Moreover, pretreatment of 6-SGL (30 mg/kg b.wt) significantly inhibited enhanced proinflammatory cytokines (TNF-α, IL-6, IL-β1, IL-10) and proliferative markers (Cyclin-D1, Cyclin-D2, and PCNA) in BaP-exposed mice. The histopathological studies also confirmed that 6-SGL effectively protected the cells with less damage. Thus, the study demonstrated that 6-SGL could be a potential phytochemical and act as a chemopreventive agent in BaP-induced lung cancer by enhancing PRDX1 expression.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yaming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jinzhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
18
|
Sandhu H, Garg P. Machine Learning Enables Accurate Prediction of Quinone Formation during Drug Metabolism. Chem Res Toxicol 2023; 36:1876-1890. [PMID: 37885227 DOI: 10.1021/acs.chemrestox.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Metabolism helps in the elimination of drugs from the human body by making them more hydrophilic. Sometimes, drugs can be bioactivated to highly reactive metabolites or intermediates during metabolism. These reactive metabolites are often responsible for the toxicities associated with the drugs. Identification of reactive metabolites of drug candidates can be very helpful in the initial stages of drug discovery. Quinones are soft electrophiles that are generated as reactive intermediates during metabolism. Quinones make up more than 40% of the reactive metabolites. In this work, a reliable data set of 510 molecules was used to develop machine learning and deep learning-based predictive models to predict the formation of quinone-type metabolites. For representing molecules, two-dimensional (2D) descriptors, PubChem fingerprints, electro-topological state (E-state) fingerprints, and metabolic reactivity-based descriptors were used. Developed models were compared to the existing Xenosite web server using the untouched test set of 102 molecules. The best model achieved an accuracy of 86.27%, while the Xenosite server could achieve an accuracy of only 52.94% on the test set. Descriptor analysis revealed that the presence of greater numbers of polar moieties in a molecule can prevent the formation of quinone-type metabolites. In addition, the presence of a nitrogen atom in an aromatic ring and the presence of metabolophores V51, V52, and V53 (SMARTCyp descriptors) decrease the probability of quinone formation. Finally, a tool based on the best machine learning models was developed, which is accessible at http://14.139.57.41/quinonepred/.
Collapse
Affiliation(s)
- Hardeep Sandhu
- Department of pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
19
|
Westra S, Goldberg MS, Labrèche F, Baumgartner J, Ho V. The association between the incidence of postmenopausal breast cancer and occupational exposure to selected organic solvents, Montreal, Canada, 2008-2011. Am J Ind Med 2023; 66:911-927. [PMID: 37565624 DOI: 10.1002/ajim.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Breast cancer is the most diagnosed cancer among women and recognized risk factors explain 25%-47% of cases. Organic solvents are used widely in the workplace and exposure may increase the risk of developing breast cancer, yet there are insufficient data to confirm this hypothesis. We sought to determine whether past occupational exposures to selected organic solvents were associated with the incidence of invasive breast cancer in postmenopausal women in Montréal, Canada. METHODS From a population-based case-control study (2008-2011), using in-depth interviews we elicited information on risk factors and lifetime occupational histories. Industrial hygienists and chemists translated job descriptions into specific chemical and physical exposures. We assessed 11 individual solvents and four solvent groups. Unconditional logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for metrics of past exposures to selected solvents. Exposure metrics included any previous exposure, average frequency in hours per week, duration in years, and average cumulative concentration weighted by hours per workweek exposed. RESULTS We enrolled 695 cases and 608 controls. We found increased ORs for average cumulative concentration of exposure to mononuclear aromatic hydrocarbons (OR: 1.52, 95% CI: 1.04, 2.28), chlorinated alkanes (OR: 2.42, 95% CI: 1.23, 5.68), toluene (OR: 1.59, 95% CI: 1.02, 2.59), and a group of organic solvents with reactive metabolites (OR: 1.53, 95% CI: 1.08, 2.24). Positive associations were found across all exposure metrics and were higher among women with estrogen-positive/progesterone-negative tumors. CONCLUSION Our findings suggest occupational exposure to certain organic solvents may increase the risk of incident postmenopausal breast cancer.
Collapse
Affiliation(s)
- Sydney Westra
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
| | - Mark S Goldberg
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - France Labrèche
- Department of Environmental and Occupational Health, School of Public Health and Centre de recherche en santé publique (CReSP), University of Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Ethics, Equity and Policy, McGill University, Montréal, Québec, Canada
| | - Vikki Ho
- Health Innovation and Evaluation Hub Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
- Department of Social and Preventive Medicine, Université de Montréal School of Public Health (ESPUM), Montréal, Québec, Canada
| |
Collapse
|
20
|
Potęga A, Göldner V, Niehaves E, Paluszkiewicz E, Karst U. Electrochemistry/mass spectrometry (EC/MS) for fast generation and identification of novel reactive metabolites of two unsymmetrical bisacridines with anticancer activity. J Pharm Biomed Anal 2023; 235:115607. [PMID: 37523868 DOI: 10.1016/j.jpba.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The development of a new drug requires knowledge about its metabolic fate in a living organism, regarding the comprehensive assessment of both drug therapeutic activity and toxicity profiles. Electrochemistry (EC) coupled with mass spectrometry (MS) is an efficient tool for predicting the phase I metabolism of redox-sensitive drugs. In particular, EC/MS represents a clear advantage for the generation of reactive drug transformation products and their direct identification compared to biological matrices. In this work, we focused on the characterization of novel electrochemical products of two representative unsymmetrical bisacridines (C-2028 and C-2045) with demonstrated high anticancer activity. The electrochemical thin-layer flow-through cell μ-PrepCell 2.0 (Antec Scientific) was used here for the effective metabolite electrosynthesis. The electrochemical simulation of C-2028 reductive and C-2045 oxidative metabolism resulted in the generation of new products that were not observed before. The formation of nitroso [M-O+H]+ and azoxy [2M-3O+H]+ species from C-2028, as well as a series of hydroxylated and/or dehydrogenated products, including possible quinones [M-2H+H]+ and [M+O-2H+H]+ from C-2045, was demonstrated. For the latter, a glutathione S-conjugate (m/z 935.3130) was also obtained in measurements supplemented with the excess of reduced glutathione. For the identification of the products of interest, structural confirmation based on MS/MS fragmentation experiments was performed. Novel products of electrochemical conversions of unsymmetrical bisacridines were discussed in the context of their possible biological effect on the human organism.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Erik Niehaves
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
21
|
Chhatrapati Bisen A, Nashik Sanap S, Agrawal S, Biswas A, Sankar Bhatta R. Chemical metabolite synthesis and profiling: Mimicking in vivo biotransformation reactions. Bioorg Chem 2023; 139:106722. [PMID: 37453238 DOI: 10.1016/j.bioorg.2023.106722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Biotransformation was previously viewed as merely the structural characterization of drug metabolites, and it was performed only when drug candidates entered clinical development. The synthesis of drug metabolites is crucial to the drug development process because it generates either pharmacologically active, inactive, or reactive molecules and hence their characterization and comprehensive pharmacological evaluation is necessary. The chemical metabolite synthesis is very challenging due to the complex structures of many drug molecules, presence of multiple stereocenters, poor reaction yields, and the formation of unwanted by-products. Drug metabolites and their chemical synthesis have immense significance in the drug discovery process. The chemical synthesis of metabolites facilitates on- or off-target pharmacological and toxicological evaluations at the easiest. In a broader view metabolite could be a target lead molecule for drug design, toxic reactive metabolites, pharmaceutical standards for bioanalytical methods, etc. Collectively these metabolite information dossiers will aid regulatory agencies such as the EMA and FDA in maintaining strict vigilance over drug manufacturers with regard to the safety of NCE's and their hidden metabolites. Herein, we are presenting a systematic compilation of chemical and biocatalytic strategies reported to date for pharmaceutical drug metabolite synthesis. This review report is very useful for the laboratory synthesis of new drug metabolites, and their preclinical biological evaluation could aid in the detection of early threats (alerts) in drug discovery, eliminate the toxicity profile, explore newer pharmacology, and delivering a promising and safe drug candidate to humankind.
Collapse
Affiliation(s)
- Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Arpon Biswas
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
22
|
Zita L, Kurhan S, Krunt O, Chmelíková E, Kraus A, Čítek J, Klouček P, Stupka R. The Effect of Carbamazepine on Performance, Carcass Value, Hematological and Biochemical Blood Parameters, and Detection of Carbamazepine and Its Metabolites in Tissues, Internal Organs, and Body Fluids in Growing Rabbits. Animals (Basel) 2023; 13:2041. [PMID: 37370551 DOI: 10.3390/ani13122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Antiepileptic drugs (e.g., carbamazepine; CBZ) are widely prescribed for various conditions beyond epilepsy, including neurologic and psychiatric disorders. These medications can have both favorable and unfavorable impacts on mood, anxiety, depression, and psychosis. CBZ has been found at low concentrations (in the unit of nanograms per liter) in rivers, surface water, and even drinking water. As a result, when reclaimed wastewater is used for irrigation in agricultural ecosystems, CBZ can be reintroduced into the environment. That is why we tested different doses of CBZ in rabbits' feed as the meat is consumed in every community, has no religious barriers, and the potential risk of consuming meat which has been exposed to CBZ treatment is not known. Also, the evidence of the effect of CBZ on rabbits is missing. Mainly, the CBZ doses affected the count of leukocytes and other blood traits, meaning the higher the dose, the higher the reduction. Moreover, there were only low amounts of CBZ in rabbits' meat or tissues when they were exposed to the treatment.
Collapse
Affiliation(s)
- Lukáš Zita
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Ondřej Krunt
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eva Chmelíková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Adam Kraus
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Roman Stupka
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
23
|
Attia SM, Al-Hamamah MA, Alotaibi MR, Alasmari AF, Attia MS, Ahmad SF, Mahmoud MA, Nadeem A, Ansari MA, Bakheet SA. Aneugenic and clastogenic alterations in the DBA/IJ mouse model of rheumatoid arthritis treated with rituximab, an anti-CD20 antibody. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503635. [PMID: 37188433 DOI: 10.1016/j.mrgentox.2023.503635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune disorder in which the immune system attacks healthy cells, is associated with elevated risk of lymphoma. Rituximab, a treatment for non-Hodgkin's lymphoma, has been approved as a treatment for RA. We studied the effects of rituximab on chromosomal stability in collagen-induced arthritis DBA/1J animal models. Micronucleus levels were increased in the mouse models, mainly due to chromosome loss, as detected by fluorescence in situ hybridization; rituximab-treated arthritic mice had significantly less micronucleus formation. Serum 8-hydroxydeoxyguanosine, a DNA oxidative stress marker, was increased in the mice models but reduced following rituximab administration.
Collapse
|
24
|
Sahu N, Rakshit S, Nirala SK, Bhadauria M. Naringenin protects hepato-renal tissues against antituberculosis drugs induced toxic manifestations by modulating interleukin-6, insulin like growth factor-1, biochemical and ultra-structural integrity. Mol Biol Rep 2023; 50:1019-1031. [PMID: 36383336 DOI: 10.1007/s11033-022-07799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The antituberculosis drugs (ATDs), isoniazid, rifampicin, pyrazinamide and ethambutol prompt extreme hepatic and renal damage during treatment of tuberculosis. The present study aimed to investigate protective potential of naringenin against ATDs induced hepato-renal injury. METHODS Rats were administered with ATDs (pyrazinamide; 210, ethambutol; 170, isoniazid; 85, rifampicin; 65 mg/kg b.wt) orally for 8 weeks (3 days/week) followed by naringenin at three different doses (10, 20 and 40 mg/kg b.wt) conjointly for 8 weeks (3 days/week alternately to ATDs administration) and silymarin (50 mg/kg b.wt) as positive control. RESULTS Exposure to ATDs caused significant increase in interleukin-6 (IL-6), triglycerides, cholesterol, bilirubin whereas depletion in insulin like growth factor-1 (IGF-1), albumin and glucose in serum. Endogenous antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate-dehydrogenase (G-6-PDH) were diminished in liver and kidney tissues with parallel increase in triglycerides, cholesterol, microsomal LPO and aniline hydroxylase (CYP2E1 enzyme). Ultra-structural observations of liver and kidney showed marked deviation in plasma membranes of various cellular and sub-cellular organelles after 8 weeks of exposure to ATDs. CONCLUSIONS Conjoint treatment of naringenin counteracted ATDs induced toxic manifestations by regulating IL-6, IGF-1, CYP2E1, biochemical and ultra-structural integrity in a dose dependent manner. Naringenin has excellent potential to protect ATDs induced hepato-renal injury by altering oxidative stress, modulation of antioxidant enzymes, serum cytokines and ultra-structural changes.
Collapse
Affiliation(s)
- Nisha Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India.
| |
Collapse
|
25
|
Crosstalk of TNF-α, IFN-γ, NF-kB, STAT1 and redox signaling in lipopolysaccharide/D-galactosamine/dimethylsulfoxide-induced fulminant hepatic failure in mice. Saudi Pharm J 2023; 31:370-381. [PMID: 37026046 PMCID: PMC10071328 DOI: 10.1016/j.jsps.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 μl/kg dimethyl sulfoxide co-administration. Co-administration of 200 μl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 μl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.
Collapse
|
26
|
Huang Q, Chen Y, Zhang Z, Xue Z, Hua Z, Luo X, Li Y, Lu C, Lu A, Liu Y. The endoplasmic reticulum participated in drug metabolic toxicity. Cell Biol Toxicol 2022; 38:945-961. [PMID: 35040016 DOI: 10.1007/s10565-021-09689-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023]
Abstract
Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.
Collapse
Affiliation(s)
- Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
27
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
28
|
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022; 27:molecules27165252. [PMID: 36014491 PMCID: PMC9412641 DOI: 10.3390/molecules27165252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of many anticancer drugs depends on the creation of specific metabolites that may alter their therapeutic or toxic properties. One significant route of biotransformation is a conjugation of electrophilic compounds with reduced glutathione, which can be non-enzymatic and/or catalyzed by glutathione-dependent enzymes. Glutathione usually combines with anticancer drugs and/or their metabolites to form more polar and water-soluble glutathione S-conjugates, readily excreted outside the body. In this regard, glutathione plays a role in detoxification, decreasing the likelihood that a xenobiotic will react with cellular targets. However, some drugs once transformed into thioethers are more active or toxic than the parent compound. Thus, glutathione conjugation may also lead to pharmacological or toxicological effects through bioactivation reactions. My purpose here is to provide a broad overview of the mechanisms of glutathione-mediated conjugation of anticancer drugs. Additionally, I discuss the biological importance of glutathione conjugation to anticancer drug detoxification and bioactivation pathways. I also consider the potential role of glutathione in the metabolism of unsymmetrical bisacridines, a novel prosperous class of anticancer compounds developed in our laboratory. The knowledge on glutathione-mediated conjugation of anticancer drugs presented in this review may be noteworthy for improving cancer therapy and preventing drug resistance in cancers.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
29
|
Watanabe K, Fujikawa Y, Murakami-Tonami Y, Mori M, Sakata M, Inoue H. Design and synthesis of versatile GSTP1-specific fluorogenic substrates for the highly sensitive detection of GSTP1 activity in living cells. Talanta 2022; 251:123796. [DOI: 10.1016/j.talanta.2022.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
|
30
|
Deng C, Liu J, Zhang W. Structural Modification in Anesthetic Drug Development for Prodrugs and Soft Drugs. Front Pharmacol 2022; 13:923353. [PMID: 35847008 PMCID: PMC9283706 DOI: 10.3389/fphar.2022.923353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Among the advancements in drug structural modifications, the increased focus on drug metabolic and pharmacokinetic properties in the anesthetic drug design process has led to significant developments. Drug metabolism also plays a key role in optimizing the pharmacokinetics, pharmacodynamics, and safety of drug molecules. Thus, in the field of anesthesiology, the applications of pharmacokinetic strategies are discussed in the context of sedatives, analgesics, and muscle relaxants. In this review, we summarize two approaches for structural optimization to develop anesthetic drugs, by designing prodrugs and soft drugs. Drugs that both failed and succeeded during the developmental stage are highlighted to illustrate how drug metabolism and pharmacokinetic optimization strategies may help improve their physical and chemical properties.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wensheng Zhang,
| |
Collapse
|
31
|
Chong LH, Ching T, Farm HJ, Grenci G, Chiam KH, Toh YC. Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions. LAB ON A CHIP 2022; 22:1890-1904. [PMID: 35348137 DOI: 10.1039/d1lc01140e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adverse cutaneous reactions are potentially life-threatening skin side effects caused by drugs administered into the human body. The availability of a human-specific in vitro platform that can prospectively screen drugs and predict this risk is therefore of great importance to drug safety. However, since adverse cutaneous drug reactions are mediated by at least 2 distinct mechanisms, both involving systemic interactions between liver, immune and dermal tissues, existing in vitro skin models have not been able to comprehensively recapitulate these complex, multi-cellular interactions to predict the skin-sensitization potential of drugs. Here, we report a novel in vitro drug screening platform, which comprises a microfluidic multicellular coculture array (MCA) to model different mechanisms-of-action using a collection of simplistic cellular assays. The resultant readouts are then integrated with a machine-learning algorithm to predict the skin sensitizing potential of systemic drugs. The MCA consists of 4 cell culture compartments connected by diffusion microchannels to enable crosstalk between hepatocytes that generate drug metabolites, antigen-presenting cells (APCs) that detect the immunogenicity of the drug metabolites, and keratinocytes and dermal fibroblasts, which collectively determine drug metabolite-induced FasL-mediated apoptosis. A single drug screen using the MCA can simultaneously generate 5 readouts, which are integrated using support vector machine (SVM) and principal component analysis (PCA) to classify and visualize the drugs as skin sensitizers or non-skin sensitizers. The predictive performance of the MCA and SVM classification algorithm is then validated through a pilot screen of 11 drugs labelled by the US Food and Drug Administration (FDA), including 7 skin-sensitizing and 4 non-skin sensitizing drugs, using stratified 4-fold cross-validation (CV) on SVM. The predictive performance of our in vitro model achieves an average of 87.5% accuracy (correct prediction rate), 75% specificity (prediction rate of true negative drugs), and 100% sensitivity (prediction rate of true positive drugs). We then employ the MCA and the SVM training algorithm to prospectively identify the skin-sensitizing likelihood and mechanism-of-action for obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist which has undergone clinical trials for non-alcoholic steatohepatitis (NASH) with well-documented cutaneous side effects.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Terry Ching
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Hui Jia Farm
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Gianluca Grenci
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
32
|
Canchola A, Sabbir Ahmed C, Chen K, Chen JY, Lin YH. Formation of Redox-Active Duroquinone from Vaping of Vitamin E Acetate Contributes to Oxidative Lung Injury. Chem Res Toxicol 2022; 35:254-264. [PMID: 35077135 PMCID: PMC8860880 DOI: 10.1021/acs.chemrestox.1c00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In late 2019, the outbreak of e-cigarette or vaping-associated lung injuries (EVALIs) in the United States demonstrated to the public the potential health risks of vaping. While studies since the outbreak have identified vitamin E acetate (VEA), a diluent of tetrahydrocannabinol (THC) in vape cartridges, as a potential contributor to lung injuries, the molecular mechanisms through which VEA may cause damage are still unclear. Recent studies have found that the thermal degradation of e-liquids during vaping can result in the formation of products that are more toxic than the parent compounds. In this study, we assessed the role of duroquinone (DQ) in VEA vaping emissions that may act as a mechanism through which VEA vaping causes lung damage. VEA vaping emissions were collected and analyzed for their potential to generate reactive oxygen species (ROS) and induce oxidative stress-associated gene expression in human bronchial epithelial cells (BEAS-2B). Significant ROS generation by VEA vaping emissions was observed in both acellular and cellular systems. Furthermore, exposure to vaping emissions resulted in significant upregulation of NQO1 and HMOX-1 genes in BEAS-2B cells, indicating a strong potential for vaped VEA to cause oxidative damage and acute lung injury; the effects are more profound than exposure to equivalent concentrations of DQ alone. Our findings suggest that there may be synergistic interactions between thermal decomposition products of VEA, highlighting the multifaceted nature of vaping toxicity.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - C.M. Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jin Y. Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA,Department of Environmental Sciences, University of California, Riverside, CA, USA,Corresponding Author Ying-Hsuan Lin - Department of Environmental Sciences, University of California, Riverside, California 92521, United States; Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States; Phone: +1-951-827-3785,
| |
Collapse
|
33
|
Qin X, Hakenjos JM, MacKenzie KR, Barzi M, Chavan H, Nyshadham P, Wang J, Jung SY, Guner JZ, Chen S, Guo L, Krishnamurthy P, Bissig KD, Palmer S, Matzuk MM, Li F. Metabolism of a Selective Serotonin and Norepinephrine Reuptake Inhibitor Duloxetine in Liver Microsomes and Mice. Drug Metab Dispos 2022; 50:128-139. [PMID: 34785568 PMCID: PMC8969139 DOI: 10.1124/dmd.121.000633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Duloxetine (DLX) is a dual serotonin and norepinephrine reuptake inhibitor, widely used for the treatment of major depressive disorder. Although DLX has shown good efficacy and safety, serious adverse effects (e.g., liver injury) have been reported. The mechanisms associated with DLX-induced toxicity remain elusive. Drug metabolism plays critical roles in drug safety and efficacy. However, the metabolic profile of DLX in mice is not available, although mice serve as commonly used animal models for mechanistic studies of drug-induced adverse effects. Our study revealed 39 DLX metabolites in human/mouse liver microsomes and mice. Of note, 13 metabolites are novel, including five N-acetyl cysteine adducts and one reduced glutathione (GSH) adduct associated with DLX. Additionally, the species differences of certain metabolites were observed between human and mouse liver microsomes. CYP1A2 and CYP2D6 are primary enzymes responsible for the formation of DLX metabolites in liver microsomes, including DLX-GSH adducts. In summary, a total of 39 DLX metabolites were identified, and species differences were noticed in vitro. The roles of CYP450s in DLX metabolite formation were also verified using human recombinant cytochrome P450 (P450) enzymes and corresponding chemical inhibitors. Further studies are warranted to address the exact role of DLX metabolism in its adverse effects in vitro (e.g., human primary hepatocytes) and in vivo (e.g., Cyp1a2-null mice). SIGNIFICANCE STATEMENT: This current study systematically investigated Duloxetine (DLX) metabolism and bioactivation in liver microsomes and mice. This study provided a global view of DLX metabolism and bioactivation in liver microsomes and mice, which are very valuable to further elucidate the mechanistic study of DLX-related adverse effects and drug-drug interaction from metabolic aspects.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Mercedes Barzi
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Hemantkumar Chavan
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Jin Wang
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Sung Yun Jung
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Joie Z Guner
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Si Chen
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Lei Guo
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Partha Krishnamurthy
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Karl-Dimiter Bissig
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Stephen Palmer
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| |
Collapse
|
34
|
da Silva JF, Corrêa DS, Campos ÉL, Leite GZ, de Oliveira JDM, Fachini J, da Silva J, Obach ES, Campo LF, Grivicich I, de Amorim HLN, Picada JN. Evaluation of toxicological aspects of three new benzoxazole compounds with sunscreen photophysical properties using in silico and in vitro methods. Toxicol In Vitro 2021; 79:105300. [PMID: 34933087 DOI: 10.1016/j.tiv.2021.105300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Sunscreening chemicals protect against damage caused by sunlight most absorbing UVA or UVB radiations. In this sense, 2-(2'-hydroxyphenyl)benzoxazole derivatives with amino substituents in the 4' and 5' positions have an outstandingly high Sun Protection Factor and adequate photostability, but their toxicity is not yet known. This study aimed to evaluate the toxicity of three synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives for their possible application as sunscreens. In silico tools were used in order to assess potential risks regarding mutagenic, carcinogenic, and skin sensitizing potential. Bioassays were performed in L929 cells to assess cytotoxicity in MTT assay and genotoxic activities in the Comet assay and micronucleus test. Also, the Salmonella/microsome assay was performed to evaluate gene mutations. The in silico predictions indicate a low risk of mutagenicity and carcinogenicity of the compounds while the skin sensitizing potential was low or inconclusive. The 2-(4'-amino-2'-hydroxyphenyl)benzoxazol compound was the most cytotoxic and genotoxic among the compounds evaluated in L929 cells, but none induced mutations in the Salmonella/microsome assay. The amino substituted at the 4' position of the phenyl ring appears to have greater toxicological risks than substituents at the 5' position of 2-(phenyl)benzoxazole. The findings warrant further studies of these compounds in cosmetic formulations.
Collapse
Affiliation(s)
- Jâmeson Ferreira da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Dione Silva Corrêa
- Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Érico Leite Campos
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Giovana Zamprônio Leite
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Centro de Pesquisa em Produto e Desenvolvimento (CEPPED), Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - João Denis Medeiros de Oliveira
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Jean Fachini
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Laboratório de Genetica Toxicológica, Universidade La Salle, Av. Victor Barreto, 2288, CEP: 92010-000 Canoas, RS, Brazil
| | - Eliane Sempé Obach
- Laboratório de Tecnologia Farmacêutica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil
| | - Leandra Franciscato Campo
- Laboratório de Novos Materiais Orgânicos e Quimica Forense, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 90650-001 Porto Alegre, RS, Brazil
| | - Ivana Grivicich
- Laboratório de Biologia do Câncer, Universidade Luterana do Brasil (ULBRA), Farroupilha Avenue 8001, CEP: 92425-900 Canoas, RS, Brazil
| | | | - Jaqueline Nascimento Picada
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha, 8001, CEP: 92425-900 Canoas, RS, Brazil; Laboratório de Novos Materiais Orgânicos e Quimica Forense, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP: 90650-001 Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Alvarado AT, Muñoz AM, Bartra MS, Valderrama-Wong M, González D, Quiñones LA, Varela N, Bendezú MR, García JA, Loja-Herrera B. Frequency of CYP1A1*2A polymorphisms and deletion of the GSMT1 gene in a Peruvian mestizo population. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The polymorphic variants of CYP1A1 and the deletion of GSTM1 are present in the Peruvian mestizo population. Wild type and mutated genotypes (WT/*2A and *2A/ *2A) were identified, whose allele frequencies are 0.31 (T allele) and 0.69 (C allele), respectively; 53% with wild type GSTM1 (+) and 47% with null GSTM1. The frequency in Iquiteño emigrants was 0.72 CYP1A1*2A and 25% GSTM1 (-); from Lima 0.67 CYP1A1*2A and 33% of GSTM1 (-). The Hardy-Weinberg equilibrium test for the studied population showed that both frequencies are out of balance, p > .05.
The presence of the risk allele of the CYP1A1*2A polymorphism and the deletion in the GSTM1 gene are high, which could be indicative of a phase I and II metabolic imbalance in this group of Peruvian populations, with potential risks of activating agents procarcinogens thus affecting the incidence of tumor pathologies with an environmental component.
Collapse
|
36
|
Huo ZP, Feng XC, Wang Y, Tian YT, Qiu F. Sulfite as the substrate of C-sulfonate metabolism of α, β-unsaturated carbonyl containing andrographolide: analysis of sulfite in rats' intestinal tract and the reaction kinetics of andrographolide with sulfite. Chin J Nat Med 2021; 19:706-712. [PMID: 34561083 DOI: 10.1016/s1875-5364(21)60094-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/29/2022]
Abstract
One-sixth of the currently known natural products contain α, β-unsaturated carbonyl groups. Our previous studies reported a rare C-sulfonate metabolic pathway. Sulfonate groups were linked to the β-carbon of α, β-unsaturated carbonyl-based natural compounds through this pathway. However, the mechanism of this type of metabolism is still not fully understood, especially whether it is formed through enzyme-mediated biotransformation or direct sulfite addition. In this work, the enzyme-mediated and non-enzymatic pathways were studied. First, the sulfite content in rat intestine was determined by LC-MS/MS. The results showed that the amount of sulfite in rat intestinal contents was from 41.5 to 383 μg·g-1, whereas the amount of sulfite in rat feed was lower than the lower limit of quantitation (20 μg·g-1). Second, the reaction kinetics of sulfite-andrographolide reactions in phosphate buffer solutions (pH 6-8) was studied. The half-lives of andrographolide ranged from minutes to hours. This was suggested that the C-sulfonate reaction of andrographolide was very fast. Third, the C-sulfonate metabolites of andrographolide were both detected when andrographolide and L-cysteine-S-conjugate andrographolide were incubated with the rat small intestine contents or sulfite, indicating that the sulfite amount in rat intestine contents was high enough to react with andrographolide, which assisted a significant portion of andrographolide metabolism. Finally, the comparison of andrographolide metabolite profiles among liver homogenate (with NADPH), liver S9 (with NADPH), small intestine contents homogenate (with no NADPH), and sulfite solution incubations showed that the C-sulfonate metabolites were predominantly generated in the intestinal tract by non-enzymatic pathway. In summary, sulfite can serve as a substrate for C-sulfonate metabolism, and these results identified non-enzymatically nucleophilic addition as the potential mechanism for C-sulfonate metabolism of compounds containing α, β-unsaturated carbonyl moiety.
Collapse
Affiliation(s)
- Zhi-Peng Huo
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; TCM Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300402, China; State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Co., Ltd., Tianjin 300402, China.
| | - Xin-Chi Feng
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- TCM Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300402, China; State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Co., Ltd., Tianjin 300402, China; Institute of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yu-Ting Tian
- TCM Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300402, China; State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Co., Ltd., Tianjin 300402, China; Institute of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
37
|
Li Y, Sun Y, Wei S, Zhang L, Zong S. Development and evaluation of tofacitinib transdermal system for the treatment of rheumatoid arthritis in rats. Drug Dev Ind Pharm 2021; 47:878-886. [PMID: 33886401 DOI: 10.1080/03639045.2021.1916521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Tofacitinib tablet is approved for the treatment of rheumatoid arthritis (RA). However, tofacitinib (Tfc) faces extensive first-pass metabolism following oral administration. AIM To develop transdermal systems of Tfc and evaluate their efficacies against RA using Freund's Complete Adjuvant immunized arthritis rat model. METHODS These systems were prepared by solvent casting method and evaluated for texture, needle strength, skin penetrability, in vitro drug release, skin permeation, stability, and in vivo anti-arthritic activity. RESULTS AND DISCUSSION Transdermal patch (TS) showed smooth texture, good mechanical strength, slow-release, and slow permeation through the skin. Microneedle array (MNS) showed good needle strength, with required skin penetrability. MNS and TS showed 95% and 24% drug release, and 82% and 12% drug permeation, respectively in 4 h. The developed systems were found to be stable for 90 days at very stressful conditions, that is, 40 ± 2 °C and 75 ± 5% RH. MNS and TS both reduced arthritic scores (at p < 0.01 and p < 0.001 level, respectively) and the level of inflammatory cytokines (at p < 0.05 and p < 0.01 level, respectively) significantly as compared to that of the drug solution (DS). MNS and TS were found to be effective in restoring histological alterations (annum, synovial hyperplasia, synovial constriction, and cartilage and articular erosions) toward normal. CONCLUSION TS and MNS were found to be stable and effective for the treatment of arthritis and hence considered a good alternative for the treatment of RA with better clinical pertinence.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Yonghua Sun
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Shitong Wei
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Luyang Zhang
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Shihua Zong
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
38
|
Datta A, Flynn NR, Barnette DA, Woeltje KF, Miller GP, Swamidass SJ. Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort. PLoS Comput Biol 2021; 17:e1009053. [PMID: 34228716 PMCID: PMC8284671 DOI: 10.1371/journal.pcbi.1009053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/16/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizations' data to study drug interactions with non-steroidal anti-inflammatory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic regression based machine learning algorithm that unearths several known interactions from an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is successful in detecting 87.5% of the positive controls, which are defined by drugs known to interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is particularly successful in inferring associations of drug-drug interactions from relatively small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic interaction that might occur during concomitant use of meloxicam and esomeprazole, which are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding. Empirically, we validate our approach against prior methods for signal detection on EHR datasets, in which our proposed approach outperforms all the compared methods across most metrics, such as area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).
Collapse
Affiliation(s)
- Arghya Datta
- Department of Computer Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Noah R. Flynn
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dustyn A. Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Keith F. Woeltje
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Center for Clinical Excellence at BJC HealthCare, Saint Louis, Missouri, United States of America
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
40
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
41
|
Rahman AFMM, Yin W, Kadi AA, Jahng Y. Galeon: A Biologically Active Molecule with In Silico Metabolite Prediction, In Vitro Metabolic Profiling in Rat Liver Microsomes, and In Silico Binding Mechanisms with CYP450 Isoforms. Molecules 2020; 25:E5903. [PMID: 33322201 PMCID: PMC7763192 DOI: 10.3390/molecules25245903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/04/2022] Open
Abstract
Galeon, a natural cyclic-diarylheptanoid (CDH), which was first isolated from Myrica gale L., is known to have potent cytotoxicity against A549 cell lines, anti-tubercular activity against Mycobacterium tuberculosis H37Rv, chemo-preventive potential, and moderate topoisomerase inhibitory activity. Here, in silico metabolism and toxicity prediction of galeon by CYP450, in vitro metabolic profiling study in rat liver microsomes (RLMs), and molecular interactions of galeon-CYP450 isoforms were performed. An in silico metabolic prediction study showed demethyl and mono-hydroxy galeon were the metabolites with the highest predictability. Among the predicted metabolites, mono-hydroxy galeon was found to have plausible toxicities such as skin sensitization, thyroid toxicity, chromosome damage, and carcinogenicity. An in vitro metabolism study of galeon, incubated in RLMs, revealed eighteen Phase-I metabolites, nine methoxylamine, and three glutathione conjugates. Identification of possible metabolites and confirmation of their structures were carried out using ion-trap tandem mass spectrometry. In silico docking analysis of galeon demonstrated significant interactions with active site residues of almost all CYP450 isoforms.
Collapse
Affiliation(s)
- A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Wencui Yin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
42
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Harisa GI, Al-Hamamah MA, Mahmoud MA, Bakheet SA. The MAP kinase inhibitor PD98059 reduces chromosomal instability in the autoimmune encephalomyelitis SJL/J-mouse model of multiple sclerosis. Mutat Res 2020; 861-862:503278. [PMID: 33551096 DOI: 10.1016/j.mrgentox.2020.503278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS), a disease in which the immune system attacks nerve cells, has been associated with both genetic and environmental risk factors. We observed increased micronucleus (MN) formation in SJL/J mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Most of these MN were due to chromosomal loss. Increased activation of MAP kinases, which leads to disruption of the mitotic spindle and improper segregation of chromosomes, is associated with MS. MAP kinase inhibitors, such as PD98059, may therefore be beneficial for MS. In the EAE model, PD98059 treatment reduced adverse effects, including MN formation, lipid peroxidation, and GSH oxidation. Interventions that mitigate chromosomal instability may have therapeutic value in MS.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, Saudi Arabia.
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, Saudi Arabia
| | | | | | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
43
|
Hughes TB, Dang NL, Kumar A, Flynn NR, Swamidass SJ. Metabolic Forest: Predicting the Diverse Structures of Drug Metabolites. J Chem Inf Model 2020; 60:4702-4716. [PMID: 32881497 PMCID: PMC8716321 DOI: 10.1021/acs.jcim.0c00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adverse drug metabolism often severely impacts patient morbidity and mortality. Unfortunately, drug metabolism experimental assays are costly, inefficient, and slow. Instead, computational modeling could rapidly flag potentially toxic molecules across thousands of candidates in the early stages of drug development. Most metabolism models focus on predicting sites of metabolism (SOMs): the specific substrate atoms targeted by metabolic enzymes. However, SOMs are merely a proxy for metabolic structures: knowledge of an SOM does not explicitly provide the actual metabolite structure. Without an explicit metabolite structure, computational systems cannot evaluate the new molecule's properties. For example, the metabolite's reactivity cannot be automatically predicted, a crucial limitation because reactive drug metabolites are a key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study constructs a well-defined system-termed the metabolic forest-for generating exact metabolite structures. We validate the metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736 records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge, this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising new directions such as joint metabolism and reactivity modeling.
Collapse
Affiliation(s)
- Tyler B Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Na Le Dang
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ayush Kumar
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Noah R Flynn
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
44
|
Craveiro NS, Lopes BS, Tomás L, Almeida SF. Drug Withdrawal Due to Safety: A Review of the Data Supporting Withdrawal Decision. Curr Drug Saf 2020; 15:4-12. [PMID: 31584381 DOI: 10.2174/1574886314666191004092520] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Several drugs were withdrawn from the market due to safety. OBJECTIVE The aim of this study was to describe data supporting drug withdrawal from the market due to safety reasons in countries belonging to the World Health Organization. METHODS We analyzed drugs withdrawn from the market between 1990 and 2010. All medicine agencies of the countries belonging to the Program for International Drug Monitoring of the World Health Organization were contacted. To complete data, Medline, reference books and available drug databases were also searched. Information sources on which authorities based their withdrawal were categorized and the average time between the first date of exposure and withdrawal was calculated and stratified. RESULTS A total of 133 drugs that met the inclusion/exclusion criteria were withdrawn from the market due to safety reasons in the period reviewed (1990 - 2010). Hepatotoxicity (n=36, 27.1%), cardiac disorders (n=25, 18.8%), hypersensitivity (n=17, 12.8%) and nephrotoxicity (n=14, 9.8%) were the major reasons responsible for 69.2% of all drugs withdrawn. In most cases, Information Sources for drug withdrawal were spontaneous reports and/or case reports (n=86, 64.7%), followed by clinical trials (n=24, 18.0%). The average time between the introduction of a drug and its withdrawal due to safety reasons was 20.3 years (SD±13.8). CONCLUSION According to available and published evidence, there is no gold standard to identify risks associated with drug exposure. These findings strengthen the role of different information sources within the drug safety review process.
Collapse
Affiliation(s)
- Nuno Sales Craveiro
- Faculty of Health Sciences, University of Beira Interior, Viseu, Portugal.,Lusitana Family Health Unit, Viseu, Portugal
| | | | - Lara Tomás
- Lusitana Family Health Unit, Viseu, Portugal
| | | |
Collapse
|
45
|
Sarullo K, Matlock MK, Swamidass SJ. Site-Level Bioactivity of Small-Molecules from Deep-Learned Representations of Quantum Chemistry. J Phys Chem A 2020; 124:9194-9202. [PMID: 33084331 DOI: 10.1021/acs.jpca.0c06231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom- or bond-level chemical properties of interest in medicinal chemistry, such as drug metabolism and electrophilic reactivity, are important to understand and predict across arbitrary new molecules. Deep learning can be used to map molecular structures to their chemical properties, but the data sets for these tasks are relatively small, which can limit accuracy and generalizability. To overcome this limitation, it would be preferable to model these properties on the basis of the underlying quantum chemical characteristics of small molecules. However, it is difficult to learn higher level chemical properties from lower level quantum calculations. To overcome this challenge, we pretrained deep learning models to compute quantum chemical properties and then reused the intermediate representations constructed by the pretrained network. Transfer learning, in this way, substantially outperformed models based on chemical graphs alone or quantum chemical properties alone. This result was robust, observable in five prediction tasks: identifying sites of epoxidation by metabolic enzymes and identifying sites of covalent reactivity with cyanide, glutathione, DNA and protein. We see that this approach may substantially improve the accuracy of deep learning models for specific chemical structures, such as aromatic systems.
Collapse
Affiliation(s)
- Kathryn Sarullo
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, United States
| | - Matthew K Matlock
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, United States
| |
Collapse
|
46
|
Rahman H, Haque SM, Siddiqui MR. A Comprehensive Review on Importance and Quantitation of Atypical Antipsychotic Drugs and their Active Metabolites in Commercial Dosage Forms. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190328214323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Schizophrenia is a severe mental illness that affects more than twenty-one
million people throughout the world. Schizophrenia also causes early death. Schizophrenia and other
related psychotic ailments are controlled by the prescription of antipsychotic drugs, which act by blocking
certain chemical receptors in the brain and thus relieves the symptoms of psychotic disorder. These
drugs are present in the different dosage forms in the market and provided in a certain amount as per the
need of the patients.
Objective:
Since such medications treat mental disorders, it is very important to have a perfect and accurate
dose so that the risk factor is not affected by a higher or lower dose, which is not sufficient for
the treatment. For accurate assay of these kinds of drugs, different analytical methods were developed
ranging from older spectrophotometric techniques to latest hyphenated methods.
Results:
The current review highlights the role of different analytical techniques that were employed in
the determination and identification of antipsychotic drugs and their metabolites. Techniques such as
spectrophotometry, fluorimetry, liquid chromatography, liquid chromatography-mass spectrometry, gas
chromatography, and gas chromatography-mass spectrometry employed in the method development of
such antipsychotic drugs were reported in the review. Different metabolites, identified using the hyphenated
techniques, were also mentioned in the review. The synthesis pathways of few of the metabolites
were mentioned.
Conclusion:
The review summarizes the analyses of different antipsychotic drugs and their metabolites.
A brief introduction of illnesses and their symptoms and possible medications were highlighted. Synthesis
pathways of the associated metabolites were also mentioned.
Collapse
Affiliation(s)
- Habibur Rahman
- Department of General Studies, Jubail Industrial College, P.O. Box No. 10099, Zip Code–31961, Jubail, Saudi Arabia
| | - S.K. Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P.O. Box No 10099, Zip Code- 31961, Jubail, Saudi Arabia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Kirsch V, Bakuradze T, Richling E. Toxicological testing of syringaresinol and enterolignans. Curr Res Toxicol 2020; 1:104-110. [PMID: 34345839 PMCID: PMC8320611 DOI: 10.1016/j.crtox.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023] Open
Abstract
Lignans are secondary plant constituents with dibenzylbutane skeletons found in cereals, oilseeds, and nuts. Two members of this class, syringaresinol (Syr) and secoisolariciresinol (Seco), occur at relatively high levels in cereals and processed food products as well as in coniferous trees. In vitro studies have shown that Seco and its metabolites enterodiol (END) and enterolactone (ENL), which are formed by intestinal microbes, exhibit strong antioxidant activity because of their phenolic character. The biological activity and discussion of dietary supplementation with these substances led to questions about the potential adverse health effects of these compounds, which are explored here. Syr and the metabolites END and ENL were investigated by combining structural information generated in silico with practical testing in vitro. An in silico structure-activity analysis was performed using ToxTree and NexusPrediction to suggest plausible mechanisms of toxicity and estimate toxicological endpoints of these compounds. Structural alerts were generated based on the presence of phenolic units with coordinating substituents that could potentially form quinoid structures, promote reactive oxygen species (ROS) formation, bind to cellular structures, or damage chromosomes. To assess the in silico results, the cytotoxicity and genotoxic potential of the studied compounds were tested in vitro using the resazurin reduction and comet assays, respectively. Incubating HepG2 and HT29 cells for 1 h or 24 h with 0–100 μM Syr, END, or ENL induced no cytotoxic effects. Additionally, even the highest tested concentrations of END and ENL showed no modulation of background and total DNA damage. The initial in silico screen thus generated structural alerts linked to toxicological endpoints, but experimental assessments of the studied compounds revealed no detectable toxicity, demonstrating the need for individual mechanistic experimental verification of in silico predictions. This approach makes it possible to connect known biological activity, such as reported antioxidative effects, to underlying mechanisms such as proton abstraction or donation. This in turn can yield insights – for example, that a compound's tendency to act as a pro- or anti-oxidant (and hence to exert adverse or beneficial health effects) may depend on its concentration and the cellular state. Potential of toxicologic mechanisms: cellular stress and chromosomal damage were identified in silico for syringaresinol, enterdiol and enterlactone. However, in confirmatory in vitro assays (cytotoxicity, DNA damage and DNA strand breaks) in HepG2 and HT29 cells no such toxicities were induced by physiological and higher concentrations of syringaresinol and enterolignans. This study serves as a cautionary tale of using in silico prediction of toxicity mechanisms. Experimental verification of in silico predictions is needed as these methodologies are still under development.
Collapse
Affiliation(s)
- Verena Kirsch
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
48
|
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Jaladanki CK, Gahlawat A, Rathod G, Sandhu H, Jahan K, Bharatam PV. Mechanistic studies on the drug metabolism and toxicity originating from cytochromes P450. Drug Metab Rev 2020; 52:366-394. [DOI: 10.1080/03602532.2020.1765792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chaitanya K. Jaladanki
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Anuj Gahlawat
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Hardeep Sandhu
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Kousar Jahan
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| |
Collapse
|
50
|
An interim internal Threshold of Toxicologic Concern (iTTC) for chemicals in consumer products, with support from an automated assessment of ToxCast™ dose response data. Regul Toxicol Pharmacol 2020; 114:104656. [DOI: 10.1016/j.yrtph.2020.104656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022]
|