1
|
Yang J, Wang J, Yang D, Xia W, Wang L, Wang S, Zhao H, Chen L, Hu H. Genome-Wide Analysis of CSL Family Genes Involved in Petiole Elongation, Floral Petalization, and Response to Salinity Stress in Nelumbo nucifera. Int J Mol Sci 2024; 25:12531. [PMID: 39684243 DOI: 10.3390/ijms252312531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Lotus (Nelumbo nucifera), a perennial aquatic plant, endures various environmental stresses. Its diverse ornamental traits make it an ideal model for studying multigene family functional differentiation and abiotic stress responses. The cellulose synthase-like (CSL) gene family includes multiple subfamilies and holds potentially pivotal roles in plant growth, development, and stress responses. Thus, understanding this family is essential for uncovering the attributes of ancient dicotyledonous lotus species and offering new genetic resources for targeted genetic improvement. Herein, we conducted a genome-wide NnCSL gene identification study, integrating tissue-specific expression analysis, RNA-seq, and qRT-PCR validation. We identified candidate NnCSL genes linked to petiole elongation, floral petalization, salinity stress responses, and potential co-expressed TFs. 22 NnCSL genes were categorized into six subfamilies: NnCSLA, NnCSLB, NnCSLC, NnCSLD, NnCSLE, and NnCSLG. Promoter regions contain numerous cis-acting elements related to growth, development, stress responses, and hormone regulation. Nineteen NnCSL genes showed specific differential expression in LPA (large plant architecture) versus SPA (small plant architecture): petioles, petalized carpels (CP) and normal carpels (C), and petalized stamens (SP) and normal stamens (S). Notably, most NnCSLC, NnCSLA, and NnCSLB subfamily genes play diverse roles in various aspects of lotus growth and development, while NnCSLE and NnCSLG are specifically involved in carpel petalization and petiole elongation, respectively. Additionally, 11 candidate NnCSL genes responsive to salinity stress were identified, generally exhibiting antagonistic effects on growth and developmental processes. These findings provide an important theoretical foundation and novel insights for the functional study of NnCSL genes in growth, development, and stress resistance in lotus.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Juan Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Wennian Xia
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Tu M, Li Z, Zhu Y, Wang P, Jia H, Wang G, Zhou Q, Hua Y, Yang L, Xiao J, Song G, Li Y. Potential Roles of the GRF Transcription Factors in Sorghum Internodes during Post-Reproductive Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2352. [PMID: 39273836 PMCID: PMC11396856 DOI: 10.3390/plants13172352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Growth-regulating factor (GRF) is a plant-specific family of transcription factors crucial for meristem development and plant growth. Sorghum (Sorghum bicolor L. Moench) is a cereal species widely used for food, feed and fuel. While sorghum stems are important biomass components, the regulation of stem development and the carbohydrate composition of the stem tissues remain largely unknown. Here, we identified 11 SbGRF-encoding genes and found the SbGRF expansion driven by whole-genome duplication events. By comparative analyses of GRFs between rice and sorghum, we demonstrated the divergence of whole-genome duplication (WGD)-derived OsGRFs and SbGRFs. A comparison of SbGRFs' expression profiles supports that the WGD-duplicated OsGRFs and SbGRFs experienced distinct evolutionary trajectories, possibly leading to diverged functions. RNA-seq analysis of the internode tissues identified several SbGRFs involved in internode elongation, maturation and cell wall metabolism. We constructed co-expression networks with the RNA-seq data of sorghum internodes. Network analysis discovered that SbGRF1, 5 and 7 could be involved in the down-regulation of the biosynthesis of cell wall components, while SbGRF4, 6, 8 and 9 could be associated with the regulation of cell wall loosening, reassembly and/or starch biosynthesis. In summary, our genome-wide analysis of SbGRFs reveals the distinct evolutionary trajectories of WGD-derived SbGRF pairs. Importantly, expression analyses highlight previously unknown functions of several SbGRFs in internode elongation, maturation and the potential involvement in the metabolism of the cell wall and starch during post-anthesis stages.
Collapse
Affiliation(s)
- Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhuang Li
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanlin Zhu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Wang
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbin Jia
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Zhou
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqing Hua
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Yang
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangrong Xiao
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guangsen Song
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Zhang S, Hu H, Cui S, Yan L, Wu B, Wei S. Genome-wide identification and functional analysis of the cellulose synthase-like gene superfamily in common oat (Avena sativa L.). PHYTOCHEMISTRY 2024; 218:113940. [PMID: 38056517 DOI: 10.1016/j.phytochem.2023.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Hemicelluloses constitute approximately one-third of the plant cell wall and can be used as a dietary fiber and food additive, and as raw materials for biofuels. Although genes involved in hemicelluloses synthesis have been investigated in some model plants, no comprehensive analysis has been conducted in common oat at present. In this study, we identified and systematically analyzed the cellulose synthase-like gene (Csl) family members in common oat and investigated them using various bioinformatics tools. The results showed that there are 76 members of the oat Csl gene family distributed on 17 chromosomes, and phylogenetic analysis indicated that the 76 Csl genes belong to the CslA, CslC, CslD, CslE, CslF, CslH, and CslJ subfamilies. A total of 14 classes of cis-acting elements were identified in the promoter regions, including hormone response, light response, cell development, and defense stress elements. The collinearity analysis identified 28 pairs of segmentally duplicated genes, most of which were found on chromosomes 2D and 6A. Expression pattern analysis showed that oat Csl genes display strong tissue-specific expression; of the 76 Csl genes, 33 were significantly up-regulated in stems and 30 were up-regulated in immature seeds. The expression of most members of the AsCsl gene family is repressed by abiotic stress, while the expression of some members is up-regulated by light. Immunoelectron microscopy shows that the product of AsCsl61, a member of CslF subfamily, mediates (1,3; 1,4)-β-D-glucan synthesis in transgenic Arabidopsis. These findings provide a fundamental understanding of the structural, functional, and evolutionary features of the oat Csl genes and may contribute to our general understanding of hemicellulose biosynthesis. Moreover, this information will be helpful in designing experiments for genetic manipulation of mixed-linkage glucan (MLG) synthesis with the goal of quality improvement in oat.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Cui
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shanjun Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
4
|
Huang H, Zhao S, Chen J, Li T, Guo G, Xu M, Liao S, Wang R, Lan J, Su Y, Liao X. Genome-wide identification and functional analysis of Cellulose synthase gene superfamily in Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2022; 13:1044029. [PMID: 36407613 PMCID: PMC9669642 DOI: 10.3389/fpls.2022.1044029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
The Cellulose synthase (CesA) and Cellulose synthase-like (Csl) gene superfamilies encode key enzymes involved in the synthesis of cellulose and hemicellulose, which are major components of plant cell walls, and play important roles in the regulation of fruit ripening. However, genome-wide identification and functional analysis of the CesA and Csl gene families in strawberry remain limited. In this study, eight CesA genes and 25 Csl genes were identified in the genome of diploid woodland strawberry (Fragaria vesca). The protein structures, evolutionary relationships, and cis-acting elements of the promoter for each gene were investigated. Transcriptome analysis and quantitative real-time PCR (qRT-PCR) results showed that the transcript levels of many FveCesA and FveCsl genes were significantly decreased during fruit ripening. Moreover, based on the transcriptome analysis, we found that the expression levels of many FveCesA/Csl genes were changed after nordihydroguaiaretic acid (NDGA) treatment. Transient overexpression of FveCesA4 in immature strawberry fruit increased fruit firmness and reduced fresh fruit weight, thereby delaying ripening. In contrast, transient expression of FveCesA4-RNAi resulted in the opposite phenotypes. These findings provide fundamental information on strawberry CesA and Csl genes and may contribute to the elucidation of the molecular mechanism by which FveCesA/Csl-mediated cell wall synthesis regulates fruit ripening. In addition, these results may be useful in strawberry breeding programs focused on the development of new cultivars with increased fruit shelf-life.
Collapse
Affiliation(s)
- Hexin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junli Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ganggang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming Xu
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufeng Liao
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayi Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangxin Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
6
|
Wang J, Li J, Lin W, Deng B, Lin L, Lv X, Hu Q, Liu K, Fatima M, He B, Qiu D, Ma X. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:994679. [PMID: 36247544 PMCID: PMC9559377 DOI: 10.3389/fpls.2022.994679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Orchidaceae, with more than 25,000 species, is one of the largest flowering plant families that can successfully colonize wide ecological niches, such as land, trees, or rocks, and its members are divided into epiphytic, terrestrial, and saprophytic types according to their life forms. Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are key regulators in the synthesis of plant cell wall polysaccharides, which play an important role in the adaptation of orchids to resist abiotic stresses, such as drought and cold. In this study, nine whole-genome sequenced orchid species with three types of life forms were selected; the CesA/Csl gene family was identified; the evolutionary roles and expression patterns of CesA/Csl genes adapted to different life forms and abiotic stresses were investigated. The CesA/Csl genes of nine orchid species were divided into eight subfamilies: CesA and CslA/B/C/D/E/G/H, among which the CslD subfamily had the highest number of genes, followed by CesA, whereas CslB subfamily had the least number of genes. Expansion of the CesA/Csl gene family in orchids mainly occurred in the CslD and CslF subfamilies. Conserved domain analysis revealed that eight subfamilies were conserved with variations in orchids. In total, 17 pairs of CesA/Csl homologous genes underwent positive selection, of which 86%, 14%, and none belonged to the epiphytic, terrestrial, and saprophytic orchids, respectively. The inter-species collinearity analysis showed that the CslD genes expanded in epiphytic orchids. Compared with terrestrial and saprophytic orchids, epiphytic orchids experienced greater strength of positive selection, with expansion events mostly related to the CslD subfamily, which might have resulted in strong adaptability to stress in epiphytes. Experiments on stem expression changes under abiotic stress showed that the CslA might be a key subfamily in response to drought stress for orchids with different life forms, whereas the CslD might be a key subfamily in epiphytic and saprophytic orchids to adapt to freezing stress. This study provides the basic knowledge for the further systematic study of the adaptive evolution of the CesA/Csl superfamily in angiosperms with different life forms, and research on orchid-specific functional genes related to life-history trait evolution.
Collapse
Affiliation(s)
- Jingjing Wang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ban Deng
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bizhu He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
8
|
Wang Y, Zhao K, Chen Y, Wei Q, Chen X, Wan H, Sun C. Species-Specific Gene Expansion of the Cellulose synthase Gene Superfamily in the Orchidaceae Family and Functional Divergence of Mannan Synthesis-Related Genes in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:777332. [PMID: 35720557 PMCID: PMC9204230 DOI: 10.3389/fpls.2022.777332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plant Cellulose synthase genes constitute a supergene family that includes the Cellulose synthase (CesA) family and nine Cellulose synthase-like (Csl) families, the members of which are widely involved in the biosynthesis of cellulose and hemicellulose. However, little is known about the Cellulose synthase superfamily in the family Orchidaceae, one of the largest families of angiosperms. In the present study, we identified and systematically analyzed the CesA/Csl family members in three fully sequenced Orchidaceae species, i.e., Dendrobium officinale, Phalaenopsis equestris, and Apostasia shenzhenica. A total of 125 Cellulose synthase superfamily genes were identified in the three orchid species and classified into one CesA family and six Csl families: CslA, CslC, CslD, CslE, CslG, and CslH according to phylogenetic analysis involving nine representative plant species. We found species-specific expansion of certain gene families, such as the CslAs in D. officinale (19 members). The CesA/Csl families exhibited sequence divergence and conservation in terms of gene structure, phylogeny, and deduced protein sequence, indicating multiple origins via different evolutionary processes. The distribution of the DofCesA/DofCsl genes was investigated, and 14 tandemly duplicated genes were detected, implying that the expansion of DofCesA/DofCsl genes may have originated via gene duplication. Furthermore, the expression profiles of the DofCesA/DofCsl genes were investigated using transcriptome sequencing and quantitative Real-time PCR (qRT-PCR) analysis, which revealed functional divergence in different tissues and during different developmental stages of D. officinale. Three DofCesAs were highly expressed in the flower, whereas DofCslD and DofCslC family genes exhibited low expression levels in all tissues and at all developmental stages. The 19 DofCslAs were differentially expressed in the D. officinale stems at different developmental stages, among which six DofCslAs were expressed at low levels or not at all. Notably, two DofCslAs (DofCslA14 and DofCslA15) showed significantly high expression in the stems of D. officinale, indicating a vital role in mannan synthesis. These results indicate the functional redundancy and specialization of DofCslAs with respect to polysaccharide accumulation. In conclusion, our results provide insights into the evolution, structure, and expression patterns of CesA/Csl genes and provide a foundation for further gene functional analysis in Orchidaceae and other plant species.
Collapse
Affiliation(s)
- Yunzhu Wang
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kunkun Zhao
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Chen
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyang Chen
- Seed Management Terminal of Zhejiang, Hangzhou, China
| | - Hongjian Wan
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chongbo Sun
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Lou H, Tucker MR, Shirley NJ, Lahnstein J, Yang X, Ma C, Schwerdt J, Fusi R, Burton RA, Band LR, Bennett MJ, Bulone V. The cellulose synthase-like F3 (CslF3) gene mediates cell wall polysaccharide synthesis and affects root growth and differentiation in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1681-1699. [PMID: 35395116 PMCID: PMC9324092 DOI: 10.1111/tpj.15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.
Collapse
Affiliation(s)
- Haoyu Lou
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Matthew R. Tucker
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Neil J. Shirley
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Xiujuan Yang
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Chao Ma
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Julian Schwerdt
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Riccardo Fusi
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Rachel A. Burton
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Leah R. Band
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
- School of Mathematical SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Malcolm J. Bennett
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Vincent Bulone
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and HealthRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSweden
| |
Collapse
|
10
|
Pancaldi F, van Loo EN, Schranz ME, Trindade LM. Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:870818. [PMID: 35519813 PMCID: PMC9062648 DOI: 10.3389/fpls.2022.870818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The Cellulose synthase superfamily synthesizes cellulose and different hemicellulosic polysaccharides in plant cell walls. While much has been discovered about the evolution and function of these genes, their genomic architecture and relationship with gene (sub-)functionalization and evolution remains unclear. By using 242 genomes covering plant evolution from green algae to eudicots, we performed a large-scale analysis of synteny, phylogenetic, and functional data of the CesA superfamily. Results revealed considerable gene copy number variation across species and gene families, and also two patterns - singletons vs. tandem arrays - in chromosomic gene arrangement. Synteny analysis revealed exceptional conservation of gene architecture across species, but also lineage-specific patterns across gene (sub-)families. Synteny patterns correlated with gene sub-functionalization into primary and secondary CesAs and distinct CslD functional isoforms. Furthermore, a genomic context shift of a group of cotton secondary CesAs was associated with peculiar properties of cotton fiber synthesis. Finally, phylogenetics suggested that primary CesA sequences appeared before the secondary CesAs, while phylogenomic analyses unveiled the genomic trace of the CslD duplication that initiated the CslF family. Our results describe in detail the genomic architecture of the CesA superfamily in plants, highlighting its crucial relevance for gene diversification and sub-functionalization, and for understanding their evolution.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics group, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Liu X, Zhang H, Zhang W, Xu W, Li S, Chen X, Chen H. Genome-wide bioinformatics analysis of Cellulose Synthase gene family in common bean (Phaseolus vulgaris L.) and the expression in the pod development. BMC Genom Data 2022; 23:9. [PMID: 35093018 PMCID: PMC8801070 DOI: 10.1186/s12863-022-01026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background CesA and Csl gene families, which belong to the cellulose synthase gene superfamily, plays an important role in the biosynthesis of the plant cell wall. Although researchers have investigated this gene superfamily in several model plants, to date, no comprehensive analysis has been conducted in the common bean. Results In this study, we identified 39 putative cellulose synthase genes from the common bean genome sequence. Then, we performed a bioinformatics analysis of this gene family involving sequence alignment, phylogenetic analysis, gene structure, collinearity analysis and chromosome location. We found all members possess a cellulose_synt domain. Phylogenetic analysis revealed that these cellulose synthase genes may be classified into five subfamilies, and that members in the same subfamily share conserved exon-intron distribution and motif compositions. Abundant and distinct cis-acting elements in the 2 k basepairs upstream regulatory regions indicate that the cellulose synthase gene family may plays a vital role in the growth and development of common bean. Moreover, the 39 cellulose synthase genes are distributed on 10 of the 11 chromosomes. Additionally expression analysis shows that all CesA/Csl genes selected are constitutively expressed in the pod development. Conclusions This research reveals both the putative biochemical and physiological functions of cellulose synthase genes in common bean and implies the importance of studying non-model plants to understand the breadth and diversity of cellulose synthase genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01026-0.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Hongmei Zhang
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Wei Zhang
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Wenjing Xu
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Songsong Li
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Xin Chen
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China.
| | - Huatao Chen
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China.
| |
Collapse
|
12
|
Kim SJ, Brandizzi F. Advances in Cell Wall Matrix Research with a Focus on Mixed-Linkage Glucan. PLANT & CELL PHYSIOLOGY 2021; 62:1839-1846. [PMID: 34245308 DOI: 10.1093/pcp/pcab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed β(1,3;1,4)-linkage glucan (MLG) is commonly found in the monocot lineage, at particularly high levels in the Poaceae family, but also in the evolutionally distant genus, Equisetum. MLG has several properties that make it unique from other plant cell wall polysaccharides. It consists of β1,4-linked polymers of glucose interspersed with β1,3-linkages, but the presence of β1,3-linkages provides quite different physical properties compared to its closest form of the cell wall component, cellulose. The mechanisms of MLG biosynthesis have been investigated to understand whether single or multiple enzymes are required to build mixed linkages in the glucan chain. Currently, MLG synthesis by a single enzyme is supported by mutagenesis analyses of cellulose synthase-like F6, the major MLG synthase, but further investigation is needed to gather mechanistic insights. Because of transient accumulation of MLG in elongating cells and vegetative tissues, several hypotheses have been proposed to explain the role of MLG in the plant cell wall. Studies have been carried out to identify gene expression regulators during development and light cycles as well as enzymes involved in MLG organization in the cell wall. A role of MLG as a storage molecule in grains is evident, but the role of MLG in vegetative tissues is still not well understood. Characterization of a cell wall component is difficult due to the complex heterogeneity of the plant cell wall. However, as detailed in this review, recent exciting research has made significant impacts in the understanding of MLG biology in plants.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Gupta K, Gupta S, Faigenboim-Doron A, Patil AS, Levy Y, Carrus SC, Hovav R. Deep transcriptomic study reveals the role of cell wall biosynthesis and organization networks in the developing shell of peanut pod. BMC PLANT BIOLOGY 2021; 21:509. [PMID: 34732143 PMCID: PMC8565004 DOI: 10.1186/s12870-021-03290-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) belongs to an exceptional group of legume plants, wherein the flowers are produced aerially, but the pods develop under the ground. In such a unique environment, the pod's outer shell plays a vital role as a barrier against mechanical damage and soilborne pathogens. Recent studies have reported the uniqueness and importance of gene expression patterns that accompany peanut pods' biogenesis. These studies focused on biogenesis and pod development during the early stages, but the late developmental stages and disease resistance aspects still have gaps. To extend this information, we analyzed the transcriptome generated from four pod developmental stages of two genotypes, Hanoch (Virginia-type) and IGC53 (Peruvian-type), which differs significantly in their pod shell characteristics and pathogen resistance. RESULTS The transcriptome study revealed a significant reprogramming of the number and nature of differentially expressed (DE) genes during shell development. Generally, the numbers of DE genes were higher in IGC53 than in Hanoch, and the R5-R6 transition was the most dynamic in terms of transcriptomic changes. Genes related to cell wall biosynthesis, modification and transcription factors (TFs) dominated these changes therefore, we focused on their differential, temporal and spatial expression patterns. Analysis of the cellulose synthase superfamily identified specific Cellulose synthase (CesAs) and Cellulose synthase-like (Csl) genes and their coordinated interplay with other cell wall-related genes during the peanut shell development was demonstrated. TFs were also identified as being involved in the shell development process, and their pattern of expression differed in the two peanut genotypes. The shell component analysis showed that overall crude fiber, cellulose, lignin, hemicelluloses and dry matter increased with shell development, whereas K, N, protein, and ash content decreased. Genotype IGC53 contained a higher level of crude fiber, cellulose, NDF, ADF, K, ash, and dry matter percentage, while Hanoch had higher protein and nitrogen content. CONCLUSIONS The comparative transcriptome analysis identified differentially expressed genes, enriched processes, and molecular processes like cell wall biosynthesis/modifications, carbohydrate metabolic process, signaling, transcription factors, transport, stress, and lignin biosynthesis during the peanut shell development between two contrasting genotypes. TFs and other genes like chitinases were also enriched in peanut shells known for pathogen resistance against soilborne major pathogens causing pod wart disease and pod damages. This study will shed new light on the biological processes involved with underground pod development in an important legume crop.
Collapse
Affiliation(s)
- Kapil Gupta
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel.
- Department of Biotechnology, Siddharth University, Kapilvastu, Siddharth Nagar, UP, India.
| | - Shubhra Gupta
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | | | | | - Yael Levy
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | - Scott Cohen Carrus
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | - Ran Hovav
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel.
| |
Collapse
|
14
|
Luo L, Zhu Y, Gui J, Yin T, Luo W, Liu J, Li L. A Comparative Analysis of Transcription Networks Active in Juvenile and Mature Wood in Populus. FRONTIERS IN PLANT SCIENCE 2021; 12:675075. [PMID: 34122491 PMCID: PMC8193101 DOI: 10.3389/fpls.2021.675075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Juvenile wood (JW) and mature wood (MW) have distinct physical and chemical characters, resulting from wood formation at different development phases over tree lifespan. However, the regulatory mechanisms that distinguish or modulate the characteristics of JW and MW in relation to each other have not been mapped. In this study, by employing the Populus trees with an identical genetic background, we carried out RNA sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS) in JW and MW forming tissue and analyzed the transcriptional programs in association with the wood formation in different phrases. JW and MW of Populus displayed different wood properties, including higher content of cellulose and hemicelluloses, less lignin, and longer and larger fiber cells and vessel elements in MW as compared with JW. Significant differences in transcriptional programs and patterns of DNA methylation were detected between JW and MW. The differences were concentrated in gene networks involved in regulating hormonal signaling pathways responsible for auxin distribution and brassinosteroids biosynthesis as well as genes active in regulating cell expansion and secondary cell wall biosynthesis. An observed correlation between gene expression profiling and DNA methylation indicated that DNA methylation affected expression of the genes related to auxin distribution and brassinosteroids signal transduction, cell expansion in JW, and MW formation. The results suggest that auxin distribution, brassinosteroids biosynthesis, and signaling be the critical molecular modules in formation of JW and MW. DNA methylation plays a role in formatting the molecular modules which contribute to the transcriptional programs of wood formation in different development phases. The study sheds light into better understanding of the molecular networks underlying regulation of wood properties which would be informative for genetic manipulation for improvement of wood formation.
Collapse
Affiliation(s)
- Laifu Luo
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tongmin Yin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Wenchun Luo
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Yuan W, Liu J, Takáč T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars. PLANTS 2021; 10:plants10010122. [PMID: 33435621 PMCID: PMC7827608 DOI: 10.3390/plants10010122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023]
Abstract
The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.
Collapse
Affiliation(s)
- Weina Yuan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Jing Liu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 783 75 Olomouc, Czech Republic;
| | - Houbin Chen
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Meng
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Yehuan Tan
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Tong Ning
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Zhenting He
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.Y.); (C.X.)
| | - Chunxiang Xu
- Department of Pomology, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (J.L.); (H.C.); (J.M.); (Y.T.); (T.N.); (Z.H.)
- Correspondence: (G.Y.); (C.X.)
| |
Collapse
|
16
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
17
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
18
|
Jin P, Liang Z, Li H, Chen C, Xue Y, Du Q. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168. Carbohydr Polym 2021; 251:117115. [PMID: 33142650 DOI: 10.1016/j.carbpol.2020.117115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Mannans are functional polysaccharides with unique biological activities that have been employed widely in food, medicine and pharmaceutics. Recent breakthroughs in plant polysaccharide metabolism identified numerous genes involved in the biosynthesis of mannans. However, constructing highly efficient low-cost microbial cell factories to produce low-molecular-weight (LMW) mannans remains challenging. In this work, we designed a de novo mannan synthetic pathway in food-grade Bacillus subtilis, resulting in mannan accumulation of 0.97 g/L. By co-expressing the identified committed genes (manC, manB, manA and pgi), mannan production was significantly increased to 2.5 g/L. Furthermore, by redirecting the carbon flux using a glucose-repressed promoter to control pfkA expression, mannan production was substantially increased to 4.1 g/L. Production was further enhanced to 12.6 g/L (average MW 6370 Da) in 3-L fed-batch fermentation. This work provides alternative synthetic pathways for metabolic engineering of LMW mannans in B. subtilis, and a useful, optimisable approach to enhance mannans production.
Collapse
Affiliation(s)
- Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Zhengang Liang
- Technology Center of Haikou Customs District China, Haikou 570311, China
| | - Hua Li
- Institute of Microbial Engineering, Henan University, Kaifeng, China
| | - Chunxiao Chen
- College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yang Xue
- College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qizhen Du
- College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
19
|
Xi H, Liu J, Li Q, Chen X, Liu C, Zhao Y, Yao J, Chen D, Si J, Liu C, Zhang L. Genome-wide identification of Cellulose-like synthase D gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Qing Li
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| |
Collapse
|
20
|
Mao T, Zhu H, Liu Y, Bao M, Zhang J, Fu Q, Xiong C, Zhang J. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an F1 population of Prunus mume. PHYSIOLOGIA PLANTARUM 2020; 170:318-334. [PMID: 32754906 PMCID: PMC7693177 DOI: 10.1111/ppl.13179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 05/15/2023]
Abstract
Weeping is a specific plant architecture with high ornamental value. Despite the considerable importance of the weeping habit to landscaping applications and knowledge of plant architecture biology, little is known regarding the underlying molecular mechanisms. In this study, growth and phytohormone content were analyzed among the progeny of different branch types in an F1 mapping population of Prunus mume with varying plant architecture. Bulked segregant RNA sequencing was conducted to compare differences among progeny at a transcriptional level. The weeping habit appears to be a complex process regulated by a series of metabolic pathways, with photosynthesis and flavonoid biosynthesis highly enriched in differentially expressed genes between weeping and upright progeny. Based on functional annotation and homologous analyses, we identified 30 candidate genes related to weeping that merit further analysis, including 10 genes related to IAA and GA3 biosynthesis, together with 6 genes related to secondary branch growth. The results of this study will facilitate further studies of the molecular mechanisms underlying the weeping habit in P. mume.
Collapse
Affiliation(s)
- Tian‐Yu Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Huan‐Huan Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Yao‐Yao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Man‐Zhu Bao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Jun‐Wei Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Cai‐Feng Xiong
- Moshan Administrative OfficeWuhan East Lake Eco‐tourism Scenic SpotWuhanChina
| | - Jie Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
21
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
22
|
Yang J, Bak G, Burgin T, Barnes WJ, Mayes HB, Peña MJ, Urbanowicz BR, Nielsen E. Biochemical and Genetic Analysis Identify CSLD3 as a beta-1,4-Glucan Synthase That Functions during Plant Cell Wall Synthesis. THE PLANT CELL 2020; 32:1749-1767. [PMID: 32169960 PMCID: PMC7203914 DOI: 10.1105/tpc.19.00637] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 05/24/2023]
Abstract
In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Tucker Burgin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - William J Barnes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Heather B Mayes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Dal Santo S, Tucker MR, Tan HT, Burbidge CA, Fasoli M, Böttcher C, Boss PK, Pezzotti M, Davies C. Auxin treatment of grapevine (Vitis vinifera L.) berries delays ripening onset by inhibiting cell expansion. PLANT MOLECULAR BIOLOGY 2020; 103:91-111. [PMID: 32043226 DOI: 10.1007/s11103-020-00977-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/04/2020] [Indexed: 05/08/2023]
Abstract
Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.
Collapse
Affiliation(s)
- Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Level 4, Main WIC Building, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Hwei-Ting Tan
- School of Agriculture, Food and Wine, Level 4, Main WIC Building, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Crista A Burbidge
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Marianna Fasoli
- E. & J. Gallo Winery, 600 Yosemite Blvd, Modesto, CA, 95354, USA
| | - Christine Böttcher
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Paul K Boss
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Christopher Davies
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
24
|
Hu H, Zhang R, Tang Y, Peng C, Wu L, Feng S, Chen P, Wang Y, Du X, Peng L. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. PLANT MOLECULAR BIOLOGY 2019; 101:389-401. [PMID: 31432304 DOI: 10.1007/s11103-019-00910-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production. Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.
Collapse
Affiliation(s)
- Huizhen Hu
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Tang
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Chenglang Peng
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis & Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Liu M, He X, Feng T, Zhuo R, Qiu W, Han X, Qiao G, Zhang D. cDNA Library for Mining Functional Genes in Sedum alfredii Hance Related to Cadmium Tolerance and Characterization of the Roles of a Novel SaCTP2 Gene in Enhancing Cadmium Hyperaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10926-10940. [PMID: 31449747 DOI: 10.1021/acs.est.9b03237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
- School of Basic Medical Sciences , Zhejiang Chinese Medical University , Hangzhou 310053 , People's Republic of China
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Tongyu Feng
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
26
|
Little A, Lahnstein J, Jeffery DW, Khor SF, Schwerdt JG, Shirley NJ, Hooi M, Xing X, Burton RA, Bulone V. A Novel (1,4)-β-Linked Glucoxylan Is Synthesized by Members of the Cellulose Synthase-Like F Gene Family in Land Plants. ACS CENTRAL SCIENCE 2019; 5:73-84. [PMID: 30693327 PMCID: PMC6346400 DOI: 10.1021/acscentsci.8b00568] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 05/24/2023]
Abstract
As a significant component of monocot cell walls, (1,3;1,4)-β-glucan has conclusively been shown to be synthesized by the cellulose synthase-like F6 protein. In this study, we investigated the synthetic activity of other members of the barley (Hordeum vulgare) CslF gene family using heterologous expression. As expected, the majority of the genes encode proteins that are capable of synthesizing detectable levels of (1,3;1,4)-β-glucan. However, overexpression of HvCslF3 and HvCslF10 genes resulted in the synthesis of a novel linear glucoxylan that consists of (1,4)-β-linked glucose and xylose residues. To demonstrate that this product was not an aberration of the heterologous system, the characteristic (1,4)-β-linkage between glucose and xylose was confirmed to be present in wild type barley tissues known to contain HvCslF3 and HvCslF10 transcripts. This polysaccharide linkage has also been reported in species of Ulva, a marine green alga, and has significant implications for defining the specificity of the cell wall content of many crop species. This finding supports previous observations that members of a single CSL family may not possess the same carbohydrate synthetic activity, with the CSLF family now associated with the formation of not only (1,3)- and (1,4)-β-glucosidic linkages, but also (1,4)-β-glucosidic and (1,4)-β-xylosidic linkages.
Collapse
Affiliation(s)
- Alan Little
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Jelle Lahnstein
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
- Adelaide
Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - David W. Jeffery
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen
Osmond, South Australia 5064, Australia
| | - Shi F. Khor
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Julian G. Schwerdt
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Neil J. Shirley
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Michelle Hooi
- Adelaide
Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Xiaohui Xing
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
- Adelaide
Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rachel A. Burton
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen
Osmond, South Australia 5064, Australia
| | - Vincent Bulone
- ARC
Centre of Excellence in Plant Cell Walls, School of Agriculture, Food
and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
- Adelaide
Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen
Osmond, South Australia 5064, Australia
| |
Collapse
|
27
|
Voiniciuc C, Dama M, Gawenda N, Stritt F, Pauly M. Mechanistic insights from plant heteromannan synthesis in yeast. Proc Natl Acad Sci U S A 2019; 116:522-527. [PMID: 30584101 PMCID: PMC6329948 DOI: 10.1073/pnas.1814003116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heteromannan (HM) is one of the most ancient cell wall polymers in the plant kingdom, consisting of β-(1-4)-linked backbones of glucose (Glc) and mannose (Man) units. Despite the widespread distribution of HM polysaccharides, their biosynthesis remains mechanistically unclear. HM is elongated by glycosyltransferases (GTs) from the cellulose synthase-like A (CSLA) family. MANNAN-SYNTHESIS RELATED (MSR) putative GTs have also been implicated in (gluco)mannan synthesis, but their roles have been difficult to decipher in planta and in vitro. To further characterize the products of the HM synthases and accessory proteins, we chose a synthetic biology approach to synthesize plant HM in yeast. The expression of a CSLA protein in Pichia pastoris led to the abundant production of plant HM: up to 30% of glycans in the yeast cell wall. Based on sequential chemical and enzymatic extractions, followed by detailed structural analyses, the newly produced HM polymers were unbranched and could be larger than 270 kDa. Using CSLAs from different species, we programmed yeast cells to produce an HM backbone composed exclusively of Man or also incorporating Glc. We demonstrate that specific MSR cofactors were indispensable for mannan synthase activity of a coffee CSLA or modulated a functional CSLA enzyme to produce glucomannan instead of mannan. Therefore, this powerful platform yields functional insight into the molecular machinery required for HM biosynthesis in plants.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Fitzek E, Orton L, Entwistle S, Grayburn WS, Ausland C, Duvall MR, Yin Y. Cell Wall Enzymes in Zygnema circumcarinatum UTEX 1559 Respond to Osmotic Stress in a Plant-Like Fashion. FRONTIERS IN PLANT SCIENCE 2019; 10:732. [PMID: 31231410 PMCID: PMC6566377 DOI: 10.3389/fpls.2019.00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Previous analysis of charophyte green algal (CGA) genomes and transcriptomes for specific protein families revealed that numerous land plant characteristics had already evolved in CGA. In this study, we have sequenced and assembled the transcriptome of Zygnema circumcarinatum UTEX 1559, and combined its predicted protein sequences with those of 13 additional species [five embryophytes (Emb), eight charophytes (Cha), and two chlorophytes (Chl) as the outgroup] for a comprehensive comparative genomics analysis. In total 25,485 orthologous gene clusters (OGCs, equivalent to protein families) of the 14 species were classified into nine OGC groups. For example, the Cha+Emb group contains 4,174 OGCs found in both Cha and Emb but not Chl species, representing protein families that have evolved in the common ancestor of Cha and Emb. Different OGC groups were subjected to a Gene Ontology (GO) enrichment analysis with the Chl+Cha+Emb group (including 5,031 OGCs found in Chl and Cha and Emb) as the control. Interestingly, nine of the 20 top enriched GO terms in the Cha+Emb group are cell wall-related, such as biological processes involving celluloses, pectins, lignins, and xyloglucans. Furthermore, three glycosyltransferase families (GT2, 8, 43) were selected for in-depth phylogenetic analyses, which confirmed their presence in UTEX 1559. More importantly, of different CGA groups, only Zygnematophyceae has land plant cellulose synthase (CesA) orthologs, while other charophyte CesAs form a CGA-specific CesA-like (Csl) subfamily (likely also carries cellulose synthesis activity). Quantitative real-time-PCR experiments were performed on selected GT family genes in UTEX 1559. After osmotic stress treatment, significantly elevated expression was found for GT2 family genes ZcCesA, ZcCslC and ZcCslA-like (possibly mannan and xyloglucan synthases, respectively), as well as for GT8 family genes (possibly pectin synthases). All these suggest that the UTEX 1559 cell wall polysaccharide synthesis-related genes respond to osmotic stress in a manner that is similar to land plants.
Collapse
Affiliation(s)
- Elisabeth Fitzek
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
- Department of Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld, Germany
| | - Lauren Orton
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Sarah Entwistle
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - W. Scott Grayburn
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Catherine Ausland
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Melvin R. Duvall
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
| | - Yanbin Yin
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, United States
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska – Lincoln, Lincoln, NE, United States
- *Correspondence: Yanbin Yin, ;
| |
Collapse
|
29
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
30
|
Yu Z, He C, Teixeira da Silva JA, Luo J, Yang Z, Duan J. The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:43-54. [PMID: 30466600 DOI: 10.1016/j.plantsci.2018.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 05/10/2023]
Abstract
Dendrobium officinale is a precious traditional Chinese medicinal herb because it is abundant in mannose-containing polysaccharides (MCPs). GDP-mannose transporter (GMT), which translocates GDP-mannose into the Golgi lumen, is indispensable for the biosynthesis of MCPs. In this study, we found that the dominant polysaccharides in D. officinale were MCPs in a range of varieties and different physiological phases. After a positive correlation between the accumulation of mannose and the transcript levels of candidate GMT genes was found, three GMT genes (DoGMT1-3) were identified in D. officinale. DoGMT1, DoGMT2 and DoGMT3 exhibited the highest transcript level in stem that an organ for MCPs storage. All three DoGMT proteins were targeted to Golgi apparatus, and had a GDP binding domain (GXL/VNK) that was homologous to a specially characterized GMT protein GONST1 in Arabidopsis thaliana. Moreover, DoGMT1, DoGMT2 and DoGMT3 complemented a GDP-mannose transport-defective yeast mutant (vrg4-2), meanwhile they also demonstrated a higher GDP-mannose uptake activity. Therefore, we conclude that DoGMT1, DoGMT2 and DoGMT3 are able to transport GDP-mannose while the expression patterns of these genes correspond to the accumulation of MCPs in D. officinale. These findings support the importance of GMT genes from D. officinale in the biosynthesis of MCPs.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Jianping Luo
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
31
|
Song X, Xu L, Yu J, Tian P, Hu X, Wang Q, Pan Y. Genome-wide characterization of the cellulose synthase gene superfamily in Solanum lycopersicum. Gene 2018; 688:71-83. [PMID: 30453073 DOI: 10.1016/j.gene.2018.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The cellulose synthase gene superfamily, which includes the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, plays a vital role in the biosynthesis of cellulose and hemicellulose in plants. However, these genes have not been extensively studied in tomato (Solanum lycopersicum), a model for Solanaceae plants and for fleshy fruit development. Here, we identified and systematically analyzed 38 CesA/Csl family members that contained cellulose synthase domain regions, and categorized their encoded proteins into 6 subfamilies (CesA, CslA, CslB, CslD, CslE, and CslG) based on phylogenetic analysis. Most CesA/Csl genes from tomato are closely related to those from Arabidopsis, but the families have distinct features regarding gene structure, chromosome distribution and localization, phylogeny, and deduced protein sequence, indicating that they arose via different evolutionary process. Furthermore, expression analysis of CesA/Csl genes in different tissues at various developmental stages showed that most CesAs were constitutively expressed with differential expression levels in various organs; three CslD genes were expressed specifically in flowers, and four CesA and five Csl putative genes were preferentially expressed in fruits. Our results provide insight into the general characteristics of the CesA/Csl genes in tomato, and lay the foundation for further functional studies of CesA/Csl genes in tomato and other Solanaceae species.
Collapse
Affiliation(s)
- Xiaomei Song
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jingwen Yu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ping Tian
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qijun Wang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Li W, Yang Z, Yao J, Li J, Song W, Yang X. Cellulose synthase-like D1 controls organ size in maize. BMC PLANT BIOLOGY 2018; 18:239. [PMID: 30326832 PMCID: PMC6192064 DOI: 10.1186/s12870-018-1453-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 09/27/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant architecture is a critical factor that affects planting density and, consequently, grain yield in maize. The genes or loci that determine organ size are the key regulators of plant architecture. Thus, understanding the genetic and molecular mechanisms of organ size will inform the use of a molecular manipulation approach to improve maize plant architecture and grain yield. RESULTS A total of 18 unique quantitative trait loci (QTLs) were identified for 11 agronomic traits in the F2 and F2:3 segregating populations derived from a cross between a double haploid line with a small plant architecture (MT03-1) and an inbred line with a large plant architecture (LEE-12). Subsequently, we showed that one QTL, qLW10, for multiple agronomic traits that relate to plant organ size reflects allelic variation in ZmCSLD1, which encodes a cellulose synthase-like D protein. ZmCSLD1 was localized to the trans-Golgi and was highly expressed in the rapidly growing regions. The loss of ZmCSLD1 function decreased cell division, which resulted in smaller organs with fewer cell numbers and, in turn, pleiotropic effects on multiple agronomic traits. In addition, intragenic complementation was investigated for two Zmcsld1 alleles with nonsynonymous SNPs in different functional domains, and the mechanism of this complementation was determined to be through homodimeric interactions. CONCLUSIONS Through positional cloning by using two populations and allelism tests, qLW10 for organ size was resolved to be a cellulose synthase-like D family gene, ZmCSLD1. ZmCSLD1 has pleiotropic effects on multiple agronomic traits that alter plant organ size by changing the process of cell division. These findings provide new insight into the regulatory mechanism that underlies plant organ development.
Collapse
Affiliation(s)
- Weiya Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhixing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jieyuan Yao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Weibin Song
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193 China
- National Maize Improvement Center of China, MOA Key Lab of Maize Biology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
33
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
34
|
Hu H, Zhang R, Dong S, Li Y, Fan C, Wang Y, Xia T, Chen P, Wang L, Feng S, Persson S, Peng L. AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1065-1080. [PMID: 29253184 PMCID: PMC6018909 DOI: 10.1093/jxb/erx470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/04/2017] [Indexed: 05/12/2023]
Abstract
CSLD3, a gene of the cellulose synthase-like D family, affects root hair elongation, but its interactions with ethylene signaling and phosphate-starvation are poorly understood. Here, we aim to understand the role of CSLD3 in the context of the ethylene signaling and phosphate starvation pathways in Arabidopsis plant growth. Therefore, we performed a comparative analysis of the csld3-1 mutant, CSLD3-overexpressing lines, and ethylene-response mutants, such as the constitutive ethylene-response mutant i-ctr1. We found that CSLD3 overexpression enhanced root and hypocotyl growth by increasing cell elongation, and that the root growth was highly sensitive to ethylene treatment (1 µM ACC), in particular under phosphate starvation. However, the CSLD3-mediated hypocotyl elongation occurred independently of the ethylene signaling pathway. Notably, the typical induction of root hair and root elongation by ethylene and phosphate-starvation was completely abolished in the csld3-1 mutant. Furthermore, i-ctr1 csld3-1 double-mutants were hairless like the csld3-1 parent, confirming that CSLD3 acts downstream of the ethylene signaling pathway during root growth. Moreover, the CSLD3 levels positively correlated with cellulose levels, indicating a role of CSLD3 in cellulose synthesis, which may explain the observed growth effects. Our results establish how CSLD3 works in the context of the ethylene signaling and phosphate-starvation pathways during root hair growth, cell elongation, and cell wall biosynthesis.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Ran Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Shuchao Dong
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Life Science and Technology, Huazhong Agricultural University, China
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Shengqiu Feng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Staffan Persson
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
- School of Biosciences, University of Melbourne, Australia
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
- Correspondence:
| |
Collapse
|
35
|
Nawaz MA, Rehman HM, Baloch FS, Ijaz B, Ali MA, Khan IA, Lee JD, Chung G, Yang SH. Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:163-175. [PMID: 28704793 DOI: 10.1016/j.jplph.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 05/28/2023]
Abstract
The plant cellulose synthase gene superfamily belongs to the category of type-2 glycosyltransferases, and is involved in cellulose and hemicellulose biosynthesis. These enzymes are vital for maintaining cell-wall structural integrity throughout plant life. Here, we identified 78 putative cellulose synthases (CS) in the soybean genome. Phylogenetic analysis against 40 reference Arabidopsis CS genes clustered soybean CSs into seven major groups (CESA, CSL A, B, C, D, E and G), located on 19 chromosomes (except chromosome 18). Soybean CS expansion occurred in 66 duplication events. Additionally, we identified 95 simple sequence repeat makers related to 44 CSs. We next performed digital expression analysis using publically available datasets to understand potential CS functions in soybean. We found that CSs were highly expressed during soybean seed development, a pattern confirmed with an Affymatrix soybean IVT array and validated with RNA-seq profiles. Within CS groups, CESAs had higher relative expression than CSLs. Soybean CS models were designed based on maximum average RPKM values. Gene co-expression networks were developed to explore which CSs could work together in soybean. Finally, RT-PCR analysis confirmed the expression of 15 selected CSs during all four seed developmental stages.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | | | - Babar Ijaz
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jeong Dong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
36
|
MacMillan CP, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, Dennis ES, Llewellyn D, Pettolino FA. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genomics 2017; 18:539. [PMID: 28720072 PMCID: PMC5516393 DOI: 10.1186/s12864-017-3902-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. RESULTS Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. CONCLUSIONS Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a 'typical' primary or secondary cell wall might not be applicable to all cell types in all plant species.
Collapse
Affiliation(s)
| | - Hannah Birke
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia.,Present address: Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Aaron Chuah
- John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Elizabeth Brill
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Yukiko Tsuji
- Department of Biochemistry and the Department of Energy's Great Lakes BioEnergy Research Center, The Wisconsin Energy Institute, 1552 University Avenue, Madison, WI, 53726-4084, USA
| | - John Ralph
- Department of Biochemistry and the Department of Energy's Great Lakes BioEnergy Research Center, The Wisconsin Energy Institute, 1552 University Avenue, Madison, WI, 53726-4084, USA
| | | | - Danny Llewellyn
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | | |
Collapse
|
37
|
Moro CF, Gaspar M, da Silva FR, Pattathil S, Hahn MG, Salgado I, Braga MR. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:1771-1786. [PMID: 27880005 DOI: 10.1111/nph.14309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/26/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana.
Collapse
Affiliation(s)
- Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, 13083-865, Brazil
| | - Marilia Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
| | | | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Ione Salgado
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP, 13083-970, Brazil
| | - Marcia Regina Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
| |
Collapse
|
38
|
McKinley B, Rooney W, Wilkerson C, Mullet J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:662-680. [PMID: 27411301 DOI: 10.1111/tpj.13269] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products.
Collapse
Affiliation(s)
- Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| | - William Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Curtis Wilkerson
- MSU-DOE laboratory, Michigan State University, East Lansing, MI, 48823, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
39
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
40
|
Gu F, Bringmann M, Combs JR, Yang J, Bergmann DC, Nielsen E. Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner. THE PLANT CELL 2016; 28:1722-37. [PMID: 27354558 PMCID: PMC4981133 DOI: 10.1105/tpc.16.00203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/25/2016] [Indexed: 05/13/2023]
Abstract
In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.
Collapse
Affiliation(s)
- Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Martin Bringmann
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Jonathon R Combs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, California 94305-5020 HHMI, Stanford University, Stanford, California 94305-5020
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
41
|
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 2016; 6:19029. [PMID: 26754549 PMCID: PMC4709516 DOI: 10.1038/srep19029] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.
Collapse
Affiliation(s)
- Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Qing Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, State Key Laboratory of Agricultural Genomics, Shenzhen 518083, China
| | - Wen-Chieh Tsai
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chuan-Ming Yeh
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ke-Wei Liu
- The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Kouki Yoshida
- Technology Center, Taisei Corporation, Kanagawa 245-0051, Japan
| | - Liang-Sheng Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song-Bin Chang
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Fei Chen
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Shi
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Yong-Yu Su
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Yong-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Li-Jun Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Yayi Yin
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Min Lin
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Huixia Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Hua Deng
- Chinese Academy of Forestry, Beijing, 100093, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Shi-Lin Zhu
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Cao Deng
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Shan-Ce Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jie Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Guo-Hui Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Hai-Jun Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Xin-Ju Xiao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Yu-Yun Hsiao
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Lin Wu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - You-Yi Chen
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics. Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent B-9000, Belgium
- Department of Genetics, Genomics Research Institute, Pretoria, South Africa
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
42
|
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 2016. [PMID: 26754549 DOI: 10.1038/srep19029/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.
Collapse
Affiliation(s)
- Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Qing Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, State Key Laboratory of Agricultural Genomics, Shenzhen 518083, China
| | - Wen-Chieh Tsai
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chuan-Ming Yeh
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ke-Wei Liu
- The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Kouki Yoshida
- Technology Center, Taisei Corporation, Kanagawa 245-0051, Japan
| | - Liang-Sheng Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song-Bin Chang
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Fei Chen
- Fruit Crop Systems Biology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Shi
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Yong-Yu Su
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Yong-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Li-Jun Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Yayi Yin
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Min Lin
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Huixia Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Hua Deng
- Chinese Academy of Forestry, Beijing, 100093, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Shi-Lin Zhu
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Cao Deng
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Shan-Ce Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jie Huang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Meina Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Guo-Hui Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Hai-Jun Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| | - Xin-Ju Xiao
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
| | - Yu-Yun Hsiao
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Lin Wu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - You-Yi Chen
- Dapartment of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics. Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent B-9000, Belgium
- Department of Genetics, Genomics Research Institute, Pretoria, South Africa
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China
- The Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- College of Forestry, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
43
|
Tavares EQP, Buckeridge MS. Do plant cell walls have a code? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:286-94. [PMID: 26706079 DOI: 10.1016/j.plantsci.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 05/09/2023]
Abstract
A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?
Collapse
Affiliation(s)
- Eveline Q P Tavares
- Institute of Biosciences, Department of Botany, University of São Paulo, Brazil
| | - Marcos S Buckeridge
- Institute of Biosciences, Department of Botany, University of São Paulo, Brazil.
| |
Collapse
|
44
|
Hernandez-Gomez MC, Runavot JL, Guo X, Bourot S, Benians TAS, Willats WGT, Meulewaeter F, Knox JP. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. PLANT & CELL PHYSIOLOGY 2015; 56:1786-97. [PMID: 26187898 PMCID: PMC4562070 DOI: 10.1093/pcp/pcv101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/27/2015] [Indexed: 05/18/2023]
Abstract
The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing.
Collapse
Affiliation(s)
- Mercedes C Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK These authors contributed equally to this work
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium These authors contributed equally to this work
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Stéphane Bourot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Thomas A S Benians
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
45
|
Chateigner-Boutin AL, Suliman M, Bouchet B, Alvarado C, Lollier V, Rogniaux H, Guillon F, Larré C. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2649-58. [PMID: 25769308 PMCID: PMC4986875 DOI: 10.1093/jxb/erv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).
Collapse
Affiliation(s)
| | - Muhtadi Suliman
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Virginie Lollier
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Fabienne Guillon
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| | - Colette Larré
- INRA, UR1268 Biopolymères, Interactions Assemblages, F-44316 Nantes, France
| |
Collapse
|
46
|
Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics 2014; 15:260. [PMID: 24708035 PMCID: PMC4023592 DOI: 10.1186/1471-2164-15-260] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the occurrences and phylogenies of CesA/Csl families in diverse plants and algae by comprehensive data mining of 82 genomes and transcriptomes. Results We found that 1) charophytic green algae (CGA) have orthologous genes in CesA, CslC and CslD families; 2) liverwort genes are found in the CesA, CslA, CslC and CslD families; 3) The fern Pteridium aquilinum not only has orthologs in these conserved families but also in the CslB, CslH and CslE families; 4) basal angiosperms, e.g. Aristolochia fimbriata, have orthologs in these families too; 5) gymnosperms have genes forming clusters ancestral to CslB/H and to CslE/J/G respectively; 6) CslG is found in switchgrass and basal angiosperms; 7) CslJ is widely present in dicots and monocots; 8) CesA subfamilies have already diversified in ferns. Conclusions We speculate that: (i) ferns and horsetails might both have CslH enzymes, responsible for the synthesis of mixed-linkage glucans and (ii) CslD and similar genes might be responsible for the synthesis of mannans in CGA. Our findings led to a more detailed model of cell wall evolution and suggested that gene loss played an important role in the evolution of Csl families. We also demonstrated the usefulness of transcriptome data in the study of plant cell wall evolution and diversity.
Collapse
Affiliation(s)
- Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, Montgomery Hall 325A, DeKalb, IL 60115-2857, USA.
| | | | | | | |
Collapse
|
47
|
Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR. The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels. Bioscience 2014. [DOI: 10.1093/biosci/bit037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. Hemicellulose biosynthesis. PLANTA 2013; 238:627-42. [PMID: 23801299 DOI: 10.1007/s00425-013-1921-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/14/2013] [Indexed: 05/17/2023]
Abstract
One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA,
| | | | | | | | | | | | | |
Collapse
|
49
|
Identification of glycosyltransferases involved in cell wall synthesis of wheat endosperm. J Proteomics 2013; 78:508-21. [DOI: 10.1016/j.jprot.2012.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 01/05/2023]
|
50
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|