1
|
Abstract
Obesity is a severe health problem worldwide due to its association with various adverse health consequences. The present study aims to evaluate the anti-obesity effects of resveratrol, as a natural polyphenol, on the 3T3-L1 adipocytes. PubMed, Scopus, ScienceDirect, Web of Sciences, and Google Scholar databases were searched up to March 2022 using relevant keywords. All original articles, written in English, evaluating the anti-obesity effects of resveratrol on the 3T3-L1 adipocytes were eligible for this review. Initially, 4361 records were found in the electronic search databases. After removing duplicates and irrelevant studies according to the title and abstract, the full text of the 51 articles was critically screened and 38 in vitro studies were included in this review. Except for one case, all of these studies reported that different doses (ranged 1-200 μM) of resveratrol treatment have anti-obesity effects on 3T3L1 adipocytes through various mechanisms such as induction of apoptosis, a decrease of fat accumulation and adipogenesis, promotion of white adipocytes browning, inhibition of preadipocyte proliferation and consequent differentiation, and up-regulation of miRNA that involved in the antiadipogenic and triacylglycerol metabolism in white adipose tissue. The findings indicate that resveratrol has anti-obesity effects. Therefore, resveratrol treatment could be used to prevent and treat obesity and its related disorders. Well-designed randomized clinical trials with different doses of resveratrol are recommended to be performed on obese subjects.
Collapse
Affiliation(s)
- Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
3
|
Pelczyńska M, Moszak M, Wesołek A, Bogdański P. The Preventive Mechanisms of Bioactive Food Compounds against Obesity-Induced Inflammation. Antioxidants (Basel) 2023; 12:1232. [PMID: 37371961 DOI: 10.3390/antiox12061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary patterns are promising strategies for preventing and treating obesity and its coexisting inflammatory processes. Bioactive food compounds have received considerable attention due to their actions against obesity-induced inflammation, with limited harmful side effects. They are perceived as food ingredients or dietary supplements other than those necessary to meet basic human nutritional needs and are responsible for positive changes in the state of health. These include polyphenols, unsaturated fatty acids, and probiotics. Although the exact mechanisms of bioactive food compounds' action are still poorly understood, studies have indicated that they involve the modulation of the secretion of proinflammatory cytokines, adipokines, and hormones; regulate gene expression in adipose tissue; and modify the signaling pathways responsible for the inflammatory response. Targeting the consumption and/or supplementation of foods with anti-inflammatory potential may represent a new approach to obesity-induced inflammation treatment. Nevertheless, more studies are needed to evaluate strategies for bioactive food compound intake, especially times and doses. Moreover, worldwide education about the advantages of bioactive food compound consumption is warranted to limit the consequences of unhealthy dietary patterns. This work presents a review and synthesis of recent data on the preventive mechanisms of bioactive food compounds in the context of obesity-induced inflammation.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Małgorzata Moszak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Agnieszka Wesołek
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 10 Fredry Street, 61-701 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland
| |
Collapse
|
4
|
Abdollahi S, Vajdi M, Meshkini F, Vasmehjani AA, Sangsefidi ZS, Clark CC, Soltani S. Resveratrol may mildly improve renal function in the general adult population: A systematic review and meta-analysis of randomized controlled clinical trials. Nutr Res 2023; 113:1-13. [PMID: 36996691 DOI: 10.1016/j.nutres.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Whether renal health biomarkers can benefit from resveratrol supplements is unknown. Thus, we conducted a systematic review and meta-analysis to summarize evidence from randomized controlled trials investigating the effect of resveratrol supplementation on renal health biomarkers. We hypothesized that resveratrol supplementation is associated with improved renal health biomarkers. Four electronic databases, including PubMed, Scopus, and Institute for Scientific Information Web of Science, and Cochrane Central, were searched for relevant articles up to February 2023. The pooled effect sizes were estimated using a random effects model and expressed as weighted mean difference (WMD) and 95% CI. In total, 32 articles were eligible for inclusion in the current meta-analysis. The pooled results indicated that resveratrol significantly decreased blood urea nitrogen (weighted mean difference [WMD]= -0.84 mg/dL; 95% CI, -1.48 to -0.20; P = .01; I2 = 64.4%) and creatinine levels (WMD = -1.90 µmol/L; 95% CI, -3.59 to -0.21; P = .03; I2= 52.1%), and increased glomerular filtration rate (WMD = 7.58 mL/min/1.73 m2; 95% CI, 5.25-9.91; P < .001; I2 = 0%). The favorable change of blood urea nitrogen was significant in studies with short follow-up duration (12 weeks or less), with lower doses of resveratrol (less than 500 mg/d), and those conducted in patients with diabetes. However, higher doses of resveratrol are needed to observe significant reductions in creatinine. No significant change was observed in albumin, total protein, and uric acid concentrations. This meta-analysis provides a low certainty of evidence indicating a mild renal protective effect of resveratrol in adults. Further high-quality evidence in patients with impaired renal function and estimates of mortality risk in these patients is required before resveratrol can be advocated as an adjuvant therapy.
Collapse
|
5
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
6
|
Nam YK, Park SJ, Kim MH, Choi LY, Yang WM. Pharmacopuncture of Taraxacum platycarpum extract reduces localized fat by regulating the lipolytic pathway. Biomed Pharmacother 2021; 141:111905. [PMID: 34328114 DOI: 10.1016/j.biopha.2021.111905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Localized fat deposits are associated with health and aesthetic problems that mainly affect a large proportion of individuals. Recently, bioactive constituents of TP have been reported to affect lipid metabolism. In this study, we performed a network pharmacological analysis to assume potential lipolytic effects of TP and investigated the actual lipolytic effects of TP extract injection on local body fat and its underlying mechanism. Using the genes related to active compounds of TP, the network was constructed. Through the Functional Enrichment Analysis, Lipid Metabolism and Fatty Acid Metabolism were expected to be affiliated with the network, which implied possible lipolytic effects of TP. On the comparison between TP network and Obesity-related Gene Sets, about three-fourths of elements were in common with the gene sets, which indicated a high relevance between TP and obesity. Based on the genes in lipolysis-related pathways, Perilipin, CGI-58, ATGL, HSL and MGL were selected to identify the actual lipolytic effects of TP. TP injection reduced the inguinal fat weight. Also, the diameter of the adipocytes was decreased by the TP treatment in HFD-induced obese mice. In addition, TP suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. Moreover, because the expression of Perilipin was increased, CGI-58, ATGL, HSL and MGL were markedly decreased. Furthermore, glycerol release was down-regulated by the TP treatment. TP exerted its lipolytic effects by regulating the lipolysis machinery through stimulation of lipases. Based on the present findings, TP is expected to be a potent component of injection lipolysis for removing localized body fat.
Collapse
Affiliation(s)
- Yeon Kyung Nam
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sang Jun Park
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
The dose-dependent pteryxin-mediated molecular mechanisms in suppressing adipogenesis in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Vine-Shoots as Enological Additives. A Study of Acute Toxicity and Cytotoxicity. Foods 2021; 10:foods10061267. [PMID: 34199530 PMCID: PMC8226571 DOI: 10.3390/foods10061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Toasted vine-shoots have been recently proposed as enological additives that can be used to improve the sensorial profile of wines. However, the possible toxicity of this new winery practice has not been studied so far. The aim of this study was to evaluate the toxicity of Tempranillo, Cencibel, and Cabernet Sauvignon toasted vine-shoots when used in winemaking. First, vine-shoots were characterized in terms of minerals and phenolic and furan compounds, and then their acute toxicity and cytotoxicity were studied using Microtox® and the metabolic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. High EC50 values were obtained when the Microtox® assay was applied to vine-shoot aqueous extracts, similar to the case of herbal infusions. When the MTT assay was used, a cell viability above 70% was observed in all the wines made with those vine-shoots, and an even greater viability was observed in the case of Cabernet Sauvignon. Therefore, it was concluded that those vine-shoots have no cytotoxic potential.
Collapse
|
10
|
Benbouguerra N, Hornedo-Ortega R, Garcia F, El Khawand T, Saucier C, Richard T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
12
|
Kuppusamy P, Ilavenil S, Hwang IH, Kim D, Choi KC. Ferulic Acid Stimulates Adipocyte-Specific Secretory Proteins to Regulate Adipose Homeostasis in 3T3-L1 Adipocytes. Molecules 2021; 26:molecules26071984. [PMID: 33915783 PMCID: PMC8037266 DOI: 10.3390/molecules26071984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023] Open
Abstract
Obesity has recently emerged as a public health issue facing developing countries in the world. It is caused by the accumulation of fat in adipose, characterized by insulin resistance, excessive lipid accumulation, inflammation, and oxidative stress, leading to an increase in adipokine levels. Herein, we investigated the capacity of a bioactive polyphenolic compound (ferulic acid (FA)) to control adipocyte dysfunction in 3T3-L1 adipocytes (in vitro). Key adipocyte differentiation markers, glycerol content, lipolysis-associated mRNA, and proteins were measured in experimental adipocytes. FA-treated adipocytes exhibited downregulated key adipocyte differentiation factors peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAT enhancer binding-proteins-α (C/EBP-α) and its downstream targets in a time-dependent manner. The FA-treated 3T3-L1 adipocytes showed an increased release of glycerol content compared with non-treated adipocytes. Also, FA treatment significantly up-regulated the lipolysis-related factors, including p-HSL, and p-perilipin, and down-regulated ApoD, Sema3C, Cxcl12, Sfrp2, p-stearoyl-CoA desaturase 1 (SCD1), adiponectin, and Grk5. Also, the FA treatment showed significantly down-regulated adipokines leptin, chemerin, and irisin than the non-treated cells. The present findings indicated that FA showed significant anti-adipogenic and lipogenic activities by regulating key adipocyte factors and enzyme, enhanced lipolysis by HSL/perilipin cascade. FA is considered a potent molecule to prevent obesity and its associated metabolic changes in the future.
Collapse
Affiliation(s)
- Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
| | - In Ho Hwang
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 54896, Korea;
| | - Dahye Kim
- Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeonju 63294, Korea
- Correspondence: (D.K.); (K.C.C.); Tel.: +82-64-754-3317 (D.K.); +82-41-580-6752 (K.C.C.); Fax: +82-64-756-3348 (D.K.); +82-41-580-6779 (K.C.C.)
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea; (P.K.); (S.I.)
- Correspondence: (D.K.); (K.C.C.); Tel.: +82-64-754-3317 (D.K.); +82-41-580-6752 (K.C.C.); Fax: +82-64-756-3348 (D.K.); +82-41-580-6779 (K.C.C.)
| |
Collapse
|
13
|
Liu L, Fu C, Liu Y, Li F. Acetate stimulates lipogenesis via AMPKα signaling in rabbit adipose-derived stem cells. Gen Comp Endocrinol 2021; 303:113715. [PMID: 33444628 DOI: 10.1016/j.ygcen.2021.113715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Acetate plays an important role in host lipid metabolism. However, the regulatory network underlying acetate-regulated lipometabolism remains unclear. The aim of this study was to determine whether any cross talk occurs among adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs) and acetate in regulating lipid metabolism. The compound C (an AMPK inhibitor), and SB203580 (a p38 MAPK inhibitor) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. It indicated that acetate (6 mM) for 6 h increased the lipid deposition in rabbit ADSCs. Besides, acetate treatment (6 mM) increased significantly phosphorylated protein level of AMPKα and p38 MAPK, but not altered significantly the phosphorylated protein level of extracellular signaling-regulated kinase (ERK) and c-Jun aminoterminal kinase (JNK). The blocking of AMPKα signaling attenuated acetate-induced lipid accumulation, but not that of p38 MAPK signaling. In conclusion, our findings suggest that AMPKα signaling pathway is associated with acetate-induced lipogenesis.
Collapse
Affiliation(s)
- Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyan Fu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Poultry Institute, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Yongxu Liu
- Qingdao Kangda Food Co., LTD., Qingdao 266555, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
14
|
Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition 2020; 84:111119. [PMID: 33476999 DOI: 10.1016/j.nut.2020.111119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Obesity is an important cause of morbidity and mortality due to its close association with metabolic disorders including diabetes, cardiovascular diseases, and certain types of cancer. According to the Developmental Origins of Adult Health and Disease hypothesis, obesity is likely caused by epigenetic changes. Recent studies have shown an association between epigenetic dysregulation of certain genes and obesity. Due to their reversible characteristic, epigenetic dysregulations can be restored. Restoration of epigenetic dysregulation in obesity-related genes by epigenetic modifiers may be a new treatment option for obesity. Certain phytochemicals such as tea polyphenols, curcumin, genistein, isothiocyanates, and citrus isoflavonoids were shown to prevent weight gain. These phytochemicals are known for their antioxidant effects but they also modify epigenetic mechanisms. These phytochemicals may have a therapeutic potential in the management of obesity. The aim of this study was to review the epigenetic effects of certain phytochemicals on the expression of obesity-related genes.
Collapse
|
15
|
Stefania DS, Clodoveo ML, Cariello M, D'Amato G, Franchini C, Faienza MF, Corbo F. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Crit Rev Food Sci Nutr 2020; 61:1804-1826. [PMID: 32436425 DOI: 10.1080/10408398.2020.1765736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity represents one of the most important public health challenges of the 21st century and is characterized by a multifactorial etiology in which environmental, behavioral, metabolic, and genetic factors work together. Despite the rapid increase in prevalence of obesity in the last decades, especially in children, it remains a preventable disease. To battle obesity a multisector approach promoting healthier lifestyle in terms of physical activity and nutrition is needed. Specifically, biologically active dietary compounds, as polyphenols, are able to modulate the expression of genes involved in the development and progression of obesity and its comorbidities as demonstrated by multiple studies using different obesity models. However, human studies focusing on the transcriptomic modulation by polyphenols in obese patients are still limited and do not often recapitulate the results obtained in preclinical setting likely due to the underestimation of some variables such as bioavailability, dose and form (native vs. metabolized) of polyphenols used. The aim of this review is to summarize the state-of-art of nutrigenomic in vitro, in vivo and ex vivo studies as well as clinical trials based on dietary polyphenols to fight obesity. We also critical discuss the variables to be considered to fill the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- De Santis Stefania
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M L Clodoveo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - M Cariello
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - G D'Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, Bari, Italy
| | - C Franchini
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - M F Faienza
- Pediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - F Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
16
|
Kuryłowicz A, Cąkała-Jakimowicz M, Puzianowska-Kuźnicka M. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens. Nutrients 2020; 12:nu12020582. [PMID: 32102233 PMCID: PMC7071386 DOI: 10.3390/nu12020582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the assessment of the health risk of an obese individual, both the amount of adipose tissue and its distribution and metabolic activity are essential. In adults, the distribution of adipose tissue differs in a gender-dependent manner and is regulated by sex steroids, especially estrogens. Estrogens affect adipocyte differentiation but are also involved in the regulation of the lipid metabolism, insulin resistance, and inflammatory activity of the adipose tissue. Their deficiency results in unfavorable changes in body composition and increases the risk of metabolic complications, which can be partially reversed by hormone replacement therapy. Therefore, the idea of the supplementation of estrogen-like compounds to counteract obesity and related complications is compelling. Phytoestrogens are natural plant-derived dietary compounds that resemble human estrogens in their chemical structure and biological activity. Supplementation with phytoestrogens may confer a range of beneficial effects. However, results of studies on the influence of phytoestrogens on body composition and prevalence of obesity are inconsistent. In this review, we present data from in vitro, animal, and human studies regarding the role of phytoestrogens in adipose tissue development and function in the context of their potential application in the prevention of visceral obesity and related complications.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Correspondence: ; Tel.: +48226086591; Fax: +48226086410
| | - Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826, Warsaw, Poland
| |
Collapse
|
17
|
Trindade PL, Soares EDR, Monteiro EB, Resende ÂC, Moura-Nunes N, Souza-Mello V, Ferraz DC, Daleprane JB. Antiadipogenic effects of açai seed extract on high fat diet-fed mice and 3T3-L1 adipocytes: A potential mechanism of action. Life Sci 2019; 228:316-322. [DOI: 10.1016/j.lfs.2019.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
J B, Das A. An edible fungi Pleurotus ostreatus inhibits adipogenesis via suppressing expression of PPAR γ and C/EBP α in 3T3-L1 cells: In vitro validation of gene knock out of RNAs in PPAR γ using CRISPR spcas9. Biomed Pharmacother 2019; 116:109030. [PMID: 31152927 DOI: 10.1016/j.biopha.2019.109030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Obesity is now well recognized as a disorder, one that is essentially preventable through changes in lifestyle. Obesity is also a main concern associated with expanded morbidity and mortality from many noncommunicable illnesses (NCDs). The study aimed to determine the antiobesity effect of Pleurotus ostreatus (PO) and its bioactive anthraquinone (AQ). The overall promoter genes CEBPα (CCAAT enhancer binding protein α) and PPARγ (Peroxisome proliferator activated receptor γ) in controlling the homeostasis of glucose was analysed using 3T3-L1 cell line. Finally, an insilico study was carried out using CRISPR software to identify the RNA's involved in adipogenesis especially of the control gene PPARγ. MATERIALS AND METHODS Preliminary screening of the edible fungi and their bio actives led to the marvellous discovery of side effect free agonists for treating obesity (adipogenesis). An edible fungi Pleurotus ostreatus (PO) were analysed in a screening platform with different series of tests for adipocyte differentiation, triglyceride analysis, lipolysis determination, glucose uptake assay, cytotoxicity assay and lipase activity followed by specific gene expression analysis. The gene knockout mechanism was also elucidated by CRISPR spcas 9 tool. RESULTS The antiadipogenic (antiobesity) activity of DMSO extract of PO were found to stimulate the insulin dependent uptake of glucose. The extract also decreased the levels of triglycerides and glycerol accumulation in differentiated adipocyte cells. The binding FABP4 (Fatty acid binding protein) and transport protein FATP1 (Fatty acid transport protein) along with the fat breaking LPL (lipoprotein lipase) was found to be inhibited after the PO treatment at varying concentration (0-300 μg/ml). CRISPR spcas9 genome editing software was used as an insilico approach in validating the efficiency of mouse embryonic and human adipogenic cell line (3T3-L1). These tool analysed and found 4 RNAs gene knock out possibilities in PPARγ and their efficiency for further treating obesity. CONCLUSION These novel finding contribute to the confirmation that edible fungi PO and it's bioactive AQ is an adequate supplement for constraining the lipid and triglycerides in differentiated mature adipocytes by reversing the fat deposition. Thereby, forbidding the enzymes linked with fat absorption. Besides, the CRISPR tool identified gene knock out possibilities of control gene PPARγ, will pave a way in further research for treating obesity.
Collapse
Affiliation(s)
- Bindhu J
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India
| | - Arunava Das
- Molecular Diagnostics and Bacterial Pathogenomics Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, India.
| |
Collapse
|
19
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
20
|
Hall JM, Powell HR, Rajic L, Korach KS. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37007. [PMID: 30920877 PMCID: PMC6768326 DOI: 10.1289/ehp3444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Phytoestrogens, naturally occurring plant chemicals, have long been thought to confer beneficial effects on human cardiovascular and metabolic health. However, recent epidemiological studies, have yielded conflicting outcomes, in which phytoestrogen consumption was both positively and negatively correlated with adiposity. Interestingly, several dietary phytoestrogens are known to stimulate or inhibit the activity of the peroxisome proliferator-activated receptor gamma (PPARγ), a key physiological regulator of adipogenesis. OBJECTIVE The objective of this study was to test the hypothesis that the pro- or anti-adipogenic activity of phytoestrogen chemicals is related to the ability to activate PPARγ in adipocytes. METHODS The effects of resveratrol and the soy isoflavones genistein and daidzein on adipogenesis were examined in cell-based assays using the 3T3-L1 cell model. In parallel, ligand-mediated alterations in PPARγ target gene expression were measured by quantitative polymerase chain reaction. The agonist/antagonist activities of phytoestrogens on PPARγ were further assessed by quantifying their ability to affect recruitment of transcriptional cofactors to the receptor. RESULTS Resveratrol displayed significant anti-adipogenic activities as exhibited by the ability to antagonize PPARγ-dependent adipocyte differentiation, down-regulate genes involved in lipid metabolism, block cofactor recruitment to PPARγ, and antagonize the effects of the PPARγ agonist rosiglitazone. In contrast, genistein and daidzein functioned as PPARγ agonists while also displaying pro-adipogenic activities. CONCLUSIONS These data provide biological evidence that the pro- or anti-obesity effects of phytoestrogens are related to their relative agonist/antagonist activity on PPARγ. Thus, PPARγ-activation assays may enable the screening of dietary components and identification of agents with adipogenic activities. https://doi.org/10.1289/EHP3444.
Collapse
Affiliation(s)
- Julie M. Hall
- Department of Medical Sciences, Frank H. Netter MD School of Medicine NH-MED, Quinnipiac University, North Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Heather R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Lara Rajic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Yue Y, Shen P, Chang AL, Qi W, Kim KH, Kim D, Park Y. trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans. Food Funct 2019; 10:4966-4974. [DOI: 10.1039/c9fo00778d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
trans-Trismethoxy resveratrol reduced fat accumulation via the regulation of FAT-6 and FAT-7, stearoyl-CoA desaturases homologs, in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Yiren Yue
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Peiyi Shen
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Amanda L. Chang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Weipeng Qi
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Kee-Hong Kim
- Department of Food Science
- Purdue University
- West Lafayette
- USA
- Purdue University Center for Cancer Research
| | - Daeyoung Kim
- Department of Mathematics and Statistics
- University of Massachusetts
- Amherst
- USA
| | - Yeonhwa Park
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
23
|
Rodríguez-Pérez C, Segura-Carretero A, Del Mar Contreras M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr 2017; 59:1212-1229. [PMID: 29156939 DOI: 10.1080/10408398.2017.1399859] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevalence of obesity worldwide has reached pandemic proportions. Despite the increasing evidence in the implication of phenolic compounds in obesity management, the real effect is not completely understood. The available in vitro and in vivo studies have demonstrated the implication of phenolic compounds in: lowering food intake, decreasing lipogenesis, increasing lipolysis, stimulating fatty acids β-oxidation, inhibiting adipocyte differentiation and growth, attenuating inflammatory responses and suppress oxidative stress. This review encompasses the most recent evidence in the anti-obesity effect of phenolic compounds from plants to different nutraceuticals and functional foods based on the in vitro, in vivo and clinical studies. For that, this review has been focused on popular plant-based products highly consumed today such as cocoa, cinnamon, and olive oil, beverages such as red wine, tea (green, white and black tea) and Hibiscus sabdariffa L. tea, among others.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - Antonio Segura-Carretero
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - María Del Mar Contreras
- b Department of Analytical Chemistry , Annex C-3 Building, Campus of Rabanales, University of Córdoba , Córdoba , Spain
| |
Collapse
|
24
|
Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Front Microbiol 2017; 8:2146. [PMID: 29167659 PMCID: PMC5682319 DOI: 10.3389/fmicb.2017.02146] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment of CMDs through modulating gut microbiota.
Collapse
Affiliation(s)
- Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Guan-Wei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Ying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
25
|
Imamura H, Nagayama D, Ishihara N, Tanaka S, Watanabe R, Watanabe Y, Sato Y, Yamaguchi T, Ban N, Kawana H, Ohira M, Endo K, Saiki A, Shirai K, Tatsuno I. Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes. Mol Genet Metab Rep 2017; 12:44-50. [PMID: 28580300 PMCID: PMC5448575 DOI: 10.1016/j.ymgmr.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/03/2022] Open
Abstract
AIM We aimed to investigate the effect of resveratrol (Rsv) on expression of genes regulating triglyceride (TG) accumulation and consumption in differentiated 3T3-L1 preadipocytes. METHODS 3T3-L1 preadipocytes were cultured in DMEM supplemented with 10% fetal calf serum. Upon reaching confluence, cells were induced to differentiate for 4 days, cultured for 10 days for TG accumulation, and then incubated with Rsv (0, 25 or 50 μM) for 3 days. TG accumulation was analyzed by Oil Red-O staining. To understand how Rsv regulates TG accumulation and consumption, changes in gene and protein expressions of several factors associated with free fatty acid (FFA) uptake and β-oxidation were investigated by real-time RT-PCR and Western blot. For further elucidation of underlying mechanisms, we also investigated gene expressions using Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) siRNA. RESULTS Rsv dose dependently enhanced Sirt1 expression and reduced TG accumulation. Rsv-induced reduction of TG accumulation was abolished by inhibition of Sirt1 and PGC1α. Rsv also enhanced expressions of genes involved in FFA uptake [peroxisome proliferator-activated receptor-gamma (PPARγ) and lipoprotein lipase] and in β-oxidation regulation [PGC1-α and carnitine palmitoyl-transferase 1a (CPT1a)]. All these effects were abolished by Sirt1 inhibition. CONCLUSION The present results suggest that Rsv may augment synthesis and oxidation of fatty acid, and possibly increases energy utilization efficiency in adipocytes through activation of Sirt1. The present study may provide meaningful evidence supporting the efficacy of Rsv in the treatment of obesity.
Collapse
Affiliation(s)
- Haruki Imamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Daiji Nagayama
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan.,Center of Endocrinology and Metabolism, Shin-Oyama City Hospital, Tochigi, Japan
| | - Noriko Ishihara
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Syo Tanaka
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Rena Watanabe
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Yasuhiro Watanabe
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Yuta Sato
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Noriko Ban
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Hidetoshi Kawana
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Masahiro Ohira
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kei Endo
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | | | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| |
Collapse
|
26
|
Casasampere M, Ordóñez YF, Casas J, Fabrias G. Dihydroceramide desaturase inhibitors induce autophagy via dihydroceramide-dependent and independent mechanisms. Biochim Biophys Acta Gen Subj 2016; 1861:264-275. [PMID: 27894925 DOI: 10.1016/j.bbagen.2016.11.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autophagy consists on the delivery of cytoplasmic material and organelles to lysosomes for degradation. Research on autophagy is a growing field because deciphering the basic mechanisms of autophagy is key to understanding its role in health and disease, and to paving the way to discovering novel therapeutic strategies. Studies with chemotherapeutic drugs and pharmacological tools support a role for dihydroceramides as mediators of autophagy. However, their effect on the autophagy outcome (cell survival or death) is more controversial. METHODS We have examined the capacity of structurally varied Des1 inhibitors to stimulate autophagy (LC3-II analysis), to increase dihydroceramides (mass spectrometry) and to reduce cell viability (SRB) in T98G and U87MG glioblastoma cells under different experimental conditions. RESULTS The compounds activity on autophagy induction took place concomitantly with accumulation of dihydroceramides, which occurred by both stimulation of ceramide synthesis de novo and reduction of Des1 activity. However, autophagy was also induced by the test compounds after preincubation with myriocin and in cells with a reduced capacity to produce dihydroceramides (U87DND). Autophagy inhibition with 3-methyladenine in the de novo dihydroceramide synthesis competent U87MG cells increased cytotoxicity, while genetic inhibition of autophagy in U87DND cells, poorly efficient at synthesizing dihydroceramides, augmented resistance to the test compounds. CONCLUSION Dihydroceramide desaturase 1 inhibitors activate autophagy via both dihydroceramide-dependent and independent pathways and the balance between the two pathways influences the final cell fate. GENERAL SIGNIFICANCE The cells capacity to biosynthesize dihydroceramides must be taken into account in proautophagic Des1 inhibitors-including therapies.
Collapse
Affiliation(s)
- Mireia Casasampere
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yadira F Ordóñez
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josefina Casas
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gemma Fabrias
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Departament de Química Biomèdica, Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain..
| |
Collapse
|
27
|
Park MJ, Song JH, Shon MS, Kim HO, Kwon OJ, Roh SS, Kim CY, Kim GN. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells. Prev Nutr Food Sci 2016; 21:227-235. [PMID: 27752499 PMCID: PMC5063208 DOI: 10.3746/pnf.2016.21.3.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major risk factor for various metabolic diseases such as cardiovascular disease, hypertension, and type 2 diabetes mellitus. In this study, we prepared ethanol extracts from Agastache rugosa (ARE), Chrysanthemum zawadskii (CZE), Mentha arvensis (MAE), Perilla frutescens (PFE), Leonurus sibiricus (LSE), Gardenia jasminoides (GJE), and Lycopus coreanus (LCE). The anti-oxidant and anti-adipogenic effects were evaluated. The IC50 values for ascorbic acid and LCE against 2,2-diphenyl-1-picrylhydrazyl radicals were 246.2 μg/mL and 166.2 μg/mL, respectively, followed by ARE (186.6 μg/mL), CZE (198.6 μg/mL), MAE (337.1 μg/mL), PFE (415.3 μg/mL), LSE (548.2 μg/mL), and GJE (626.3 μg/mL). In non-toxic concentration ranges, CZE had a strong inhibitory effect against 3T3-L1 adipogenes (84.5%) than those of the other extracts. Furthermore, the anti-adipogenic effect of CZE is largely limited in the early stage of adipogenesis, and we revealed that the inhibitory role of CZE in adipogenesis is required for the activation of Wnt signaling. Our results provide scientific evidence that the anti-adipogenic effect of CZE can be applied as an ingredient for the development of functional foods and nutri-cosmetics for obesity prevention.
Collapse
Affiliation(s)
- Min-Jun Park
- Department of Food, Nutrition and Biotechnology, Kyungnam University, Gyeongnam 51767, Korea
| | - Ji-Hye Song
- Traditional and Biomedical Research Center, Daejeon 34520, Korea
| | - Myung-Soo Shon
- Department of Food, Nutrition and Biotechnology, Kyungnam University, Gyeongnam 51767, Korea
| | - Hae Ok Kim
- Department of Nursing, Kyungnam University, Gyeongnam 51767, Korea
| | - O Jun Kwon
- Gyeongbuk Regional Industry Evaluation, Daegyeong Institute for Regional Program Evaluation, Daegu 38542, Korea
| | - Seong-Soo Roh
- Department of Herbology, Daegu Haany University, Daegu 42158, Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongbuk 38541, Korea
| | - Gyo-Nam Kim
- Department of Food, Nutrition and Biotechnology, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
28
|
Antioxidant and anti-adipogenic activities of chestnut ( Castanea crenata) byproducts. Food Sci Biotechnol 2016; 25:1169-1174. [PMID: 30263390 DOI: 10.1007/s10068-016-0186-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022] Open
Abstract
The antioxidant and anti-adipogenic activities of chestnut byproducts were evaluated. At 100 μg/mL, the methanol extract (ME) scavenged 34.2% of DPPH and 78.8% of ABTS radicals. The DPPH and ABTS radical scavenging activity of the water extract (WE) was found to be low (13.7 and 33.1%, respectively) compared with controls. WE and ME dose-dependently inhibited lipid accumulation of 3T3-L1 adipocytes. WE and ME at 100 μg/mL suppressed 3T3-L1 adipogenesis by 71.0 and 96.5%, respectively, when compared with mature adipocytes. The results indicated that WE and ME inhibited adipocyte differentiation by down-regulating the mRNA expression levels of CCAAT/enhancer binding protein (C/EBP)-β, C/EBPα, and peroxisome proliferator-activated receptor (PPAR)-γ in 3T3-L1 cells. Our study also revealed that WE and ME inhibited pre- and early stage adipogenesis in 3T3-L1 cells. The results suggest that chestnut byproducts are a promising source of antioxidant and antiobesity molecules.
Collapse
|
29
|
Song J, Jun M, Ahn MR, Kim OY. Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage. Nutr Res Pract 2016; 10:377-84. [PMID: 27478543 PMCID: PMC4958639 DOI: 10.4162/nrp.2016.10.4.377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/25/2016] [Accepted: 04/14/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS Pre-treatment with resveratrol (25-200 µM) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis factor-α and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University, Gyeonggi 10326, Korea.; Department of Biology, York University, Toronto, Ontario, Canada
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| |
Collapse
|
30
|
Campbell CL, Foegeding EA, Harris GK. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety. J Med Food 2016; 19:219-27. [DOI: 10.1089/jmf.2015.0044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Caroline L. Campbell
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - E. Allen Foegeding
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - G. Keith Harris
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
31
|
Zaki A, Ashour A, Mira A, Kishikawa A, Nakagawa T, Zhu Q, Shimizu K. Biological Activities of Oleanolic Acid Derivatives fromCalendula officinalisSeeds. Phytother Res 2016; 30:835-41. [DOI: 10.1002/ptr.5589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed Zaki
- Department of Pharmacognosy; Faculty of Pharmacy, Mansoura University; Mansoura Egypt
- National Center for Natural Product Research; University of Mississippi, University; MS 38677 USA
| | - Ahmed Ashour
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
- Department of Pharmacognosy; Faculty of Pharmacy, Mansoura University; Mansoura Egypt
| | - Amira Mira
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
- Department of Pharmacognosy; Faculty of Pharmacy, Mansoura University; Mansoura Egypt
| | - Asuka Kishikawa
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
| | - Toshinori Nakagawa
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
| | - Qinchang Zhu
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences; Faculty of Agriculture, Kyushu University; Fukuoka Japan
| |
Collapse
|
32
|
Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:340520. [PMID: 26180583 PMCID: PMC4477219 DOI: 10.1155/2015/340520] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.
Collapse
|
33
|
Lee YH, Kim YS, Song M, Lee M, Park J, Kim H. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats. Molecules 2015; 20:9656-70. [PMID: 26016552 PMCID: PMC6272291 DOI: 10.3390/molecules20069656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 01/22/2023] Open
Abstract
HT048 is a combination composed of Crataegus pinnatifida leaf and Citrus unshiu peel extracts. This study aimed to investigate potential anti-obesity effect of the combination. The 3T3-L1 adipocytes were treated with different doses of HT048 and triglyceride accumulation, glycerol release and adipogenesis-related genes were analyzed. For in vivo study, male Sprague Dawley rats were divided according to experimental diets: the chow diet group, the high-fat diet (HFD) group, the HFD supplemented with orlistat group, the HFD supplemented with HT048 group (0.2% or 0.4%) for 12 weeks. We measured the body weight, serum lipid levels and the expression of genes involved lipid metabolism. HT048 treatment dose-dependently suppressed adipocyte differentiation and stimulated glycerol release. The expressions of PPARγ and C/EBPα mRNA were decreased by HT048 treatment in adipocytes. HT048 supplementation significantly reduced the body and fat weights in vivo. Serum lipid levels were significantly lower in the HT048 supplemented groups than those of the HFD group. Expression of the hepatic lipogenesis-related genes were decreased and expression of the β-oxidation-related genes were increased in rats fed HT048 compared to that of animals fed HFD. These results suggest that HT048 has a potential benefit in preventing obesity through the inhibition of lipogenesis and adipogenesis.
Collapse
Affiliation(s)
- Yoon Hee Lee
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), NeuMed Inc., Seoul 130-701, Korea.
| | - Young-Sik Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Mikyung Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Minsu Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Juyeon Park
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), NeuMed Inc., Seoul 130-701, Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
34
|
Ha AW, Kang NE, Kim WK. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet. J Med Food 2015; 18:850-5. [PMID: 25946626 DOI: 10.1089/jmf.2014.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothesis of this study was that peanut sprout extracts (PSE) could reduce fat accumulation through activating the transcription of SREBP-1c genes. Sprague-Dawley (SD) were randomly assigned into two groups and fed the following diet for 4 weeks; 10 normal fat (NF, 7 g of fat/100 g diet) and 30 high fat (HF, 20 g of fat/100 g diet). After 4 weeks, the HF group was divided into three groups; HF, HF with 15 mg of PSE/kg diet (HF+low PSE, 0.025% resveratrol), and HF with 30 mg of PSE/kg diet (HF+high PSE, 0.05% resveratrol) and fed for an additional 5 weeks. The HF+high PSE group had significantly lower weight gain than the HF group. Plasma triglyceride (TG) level and the hepatic total lipid level were significantly lower in the HF+high PSE group compared to the HF group. Fecal excretions of total lipids, cholesterol, and TG in the HF+high PSE group tended to be higher than in the HF group, but these differences were not significant. The mRNA expressions of fatty acid synthase, glucose-6-phosphate dehydrogenase, and sterol regulatory element binding protein-c (SREBP-1c) were significantly lower in the HF+high PSE group than in the HF group. The mRNA expressions of hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA cholesterol acyltransferase were significantly lower in the HF+high PSE groups compared to the HF group. The mRNA expression of cholesterol 7α-hydroxylase1 was significantly higher than the HF group in both the HF+low PSE and HF+high PSE groups, with much greater increase observed in the HF+high PSE group. In conclusion, consumption of PSE was effective for improving blood lipid levels, possibly by suppressing the expression of SREBP-1c, in rats fed a high-fat diet.
Collapse
Affiliation(s)
- Ae Wha Ha
- 1 Department of Food Science and Nutrition, Dankook University , Gyeonggi, Korea
| | - Nam E Kang
- 2 Department of Food and Nutrition, Eulji University , Gyeonggi, Korea
| | - Woo Kyoung Kim
- 1 Department of Food Science and Nutrition, Dankook University , Gyeonggi, Korea
| |
Collapse
|
35
|
POUDEL BARUN, NEPALI SARMILA, XIN MINGJIE, KI HYEONHUI, KIM YOUNGHO, KIM DAEKI, LEE YOUNGMI. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway. Mol Med Rep 2015; 12:3139-45. [DOI: 10.3892/mmr.2015.3700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
|
36
|
Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes (Lond) 2015; 39:967-76. [PMID: 25761413 PMCID: PMC4575949 DOI: 10.1038/ijo.2015.23] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022]
Abstract
Objective Development of brown-like/beige adipocytes in white adipose tissue (WAT) helps to reduce obesity. Thus, we investigated the effects of resveratrol, a dietary polyphenol capable of preventing obesity and related complications in humans and animal models, on brown-like adipocyte formation in inguinal WAT (iWAT). Methods CD1 female mice (5-month-old) were fed a high-fat diet with/without 0.1% resveratrol. In addition, primary stromal vascular cells separated from iWAT were subjected to resveratrol treatment. Markers of brown-like (beige) adipogenesis were measured and the involvement of AMP-activated protein kinase (AMPK) α1 was assessed using conditional knockout. Results Resveratrol significantly increased mRNA and/or protein expression of brown adipocyte markers including uncoupling protein 1 (UCP1), PR domain-containing 16 (PRDM16), Cell death-inducing DFFA-like effector A (Cidea), elongation of very long chain fatty acids protein 3 (Elovl3), peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), cytochrome C and pyruvate dehydrogenase (PDH) in differentiated iWAT stromal vascular cells (SVC), suggesting that resveratrol induced brown-like adipocyte formation in vitro. Concomitantly, resveratrol markedly enhanced AMPKα1 phosphorylation and differentiated SVC oxygen consumption. Such changes were absent in cells lacking AMPKα1, showing that AMPKα1 is a critical mediator of resveratrol action. Resveratrol also induced beige adipogenesis in vivo along with the appearance of multiocular adipocytes, increased UCP1 expression and enhanced fatty acid oxidation. Conclusion Resveratrol induces brown-like adipocyte formation in iWAT via AMPKα1 activation and suggest that its beneficial anti-obesity effects may be partly due to the browning of WAT and as a consequence, increased oxygen consumption.
Collapse
|
37
|
Zhu Q, Nakagawa T, Kishikawa A, Ohnuki K, Shimizu K. In vitro bioactivities and phytochemical profile of various parts of the strawberry (Fragaria × ananassa var. Amaou). J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Scapagnini G, Davinelli S, Kaneko T, Koverech G, Koverech A, Calabrese EJ, Calabrese V. Dose response biology of resveratrol in obesity. J Cell Commun Signal 2014; 8:385-91. [PMID: 25387453 DOI: 10.1007/s12079-014-0257-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
Obesity is a major health problem throughout the world, and it is increasing both in prevalence and severity. Pharmaceutical approaches developed for the treatment of obesity, despite short-term benefits, often are associated with rebound weight gain after the cessation of drug use and serious side effects deriving from the medication can occur. Resveratrol has been well recognized as an anti-obesity substance for its lipid-lowering function as well as calorie-restriction effect. This polyphenol induces hormetic dose responses in a wide range of biological models, affecting numerous endpoints of biomedical and therapeutic significance. From an hormetic standpoint, we will discuss the potential relevance of resveratrol in the management of obesity and related comorbid conditions, emphasizing its ability to control simultaneously various pathological mechanisms associated with obesity.
Collapse
Affiliation(s)
- Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Effects of yerba maté, a plant extract formulation ("YGD") and resveratrol in 3T3-L1 adipogenesis. Molecules 2014; 19:16909-24. [PMID: 25338179 PMCID: PMC6271528 DOI: 10.3390/molecules191016909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022] Open
Abstract
We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana), and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.
Collapse
|
41
|
Nugara RN, Inafuku M, Takara K, Iwasaki H, Oku H. Pteryxin: A coumarin in Peucedanum japonicum Thunb leaves exerts antiobesity activity through modulation of adipogenic gene network. Nutrition 2014; 30:1177-84. [DOI: 10.1016/j.nut.2014.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/27/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
42
|
Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int J Mol Med 2014; 34:1401-8. [PMID: 25189808 DOI: 10.3892/ijmm.2014.1921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Dioscin (DS) is a steroidal saponin present in a number of medicinal plants and has been shown to exert anticancer, antifungal and antiviral effects. The present study aimed to deternube the effects DS on the regulation of adipogenesis and to elucidate the underlying mechanisms. In vitro experiments were performed using differentiating 3T3-L1 cells treated with various concentrations (0-4 µM) of DS for 6 days. A cell viability assay was performed on differentiating cells following exposure to DS. Oil Red O staining and triglyceride content assay were performed to evaluate the lipid accumulation in the cells. We also carried out the following experiments: i) flow cytometry for cell cycle analysis, ii) quantitative reverse transcription polymerase chain reaction for measuring adipogenesis-related gene expression, and iii) western blot analysis to measure the expression of adipogenesis transcription factors and AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase (MAPK) phosphorylation. In vivo experiements were performed using mice with obesity induced by a high-fat diet (HFD) that were treated with or without DS for 7 weeks. DS suppressed lipid accumulation in the 3T3-L1 cells without affecting viability at a dose of up to 4 µM. It also delayed cell cycle progression 48 h after the initiation of adipogenesis. DS inhibited adipocyte differentiation by the downregulation of adipogenic transcription factors and attenuated the expression of adipogenesis-associated genes. In addition, it enhanced the phosphorylation of AMPK and its target molecule, ACC, during the differentiation of the cells. Moreover, the inhibition of adipogenesis by DS was mediated through the suppression of the phosphorylation of MAPKs, such as extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK). DS significantly reduced weight gain in the mice with HFD-induced obesity; this was evident by the suppression of fat accumulation in the abdomen. the present study reveals an anti-adipogenic effect of DS in vitro and in vivo and highlights AMPK/MAPK signaling as targets for DS during adipogenesis.
Collapse
Affiliation(s)
- Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Seong-Won Lim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
43
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
44
|
Colitti M, Grasso S. Nutraceuticals and regulation of adipocyte life: premises or promises. Biofactors 2014; 40:398-418. [PMID: 24692086 DOI: 10.1002/biof.1164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Accepted: 03/16/2014] [Indexed: 01/18/2023]
Abstract
Obesity is the actual worldwide health threat, that is associated with an increased number of metabolic disorders and diseases. Following the traditional hypothesis stating that in obesity hypertrophic adipocytes trigger the adipose tissue hyperplasia, strategies to treat obesity have increased fat researches of the molecular processes that achieve adipocyte enlargement and formation that finally increase body fat mass. Moreover, a new cell type was recently identified, the "brite" adipocyte that presents a unique gene expression profile of compared to both brown and white adipocytes. Therapies against obesity, targeting these cells and their pathways, would include the induction of lipolysis and apoptosis or the inhibition of differentiation and adipogenesis. However, it should be noted that both the increase of adipocyte size and number take place in association with positive energy balance. According to the adipose tissue expansion hypothesis, adipogenesis could be related with improved metabolic health of obese people, taking back the adipose mass to a traditionally site of lipid storage. Furthermore, new perspectives in fat biology suggest that the conversion of white-to-brown adipocytes and their metabolism could be exploited for the development of therapeutic approaches against obesity-associated diseases and for the regulation of energy balance. Drugs currently available to treat obesity generally have unpleasant side effects. A novel promising approach is the usage of dietary supplements and plant products that could interfere on the life cycle of adipocyte. Here, various dietary bioactive compounds that target different stages of adipocyte life cycle and molecular and metabolic pathways are reviewed.
Collapse
Affiliation(s)
- Monica Colitti
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | | |
Collapse
|
45
|
Nugara RN, Inafuku M, Iwasaki H, Oku H. Partially purified Peucedanum japonicum Thunb extracts exert anti-obesity effects in vitro. Nutrition 2014; 30:575-83. [DOI: 10.1016/j.nut.2013.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/14/2013] [Accepted: 09/29/2013] [Indexed: 12/29/2022]
|
46
|
Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 2014; 5:1241-9. [PMID: 24722352 DOI: 10.1039/c3fo60630a] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies have investigated the anti-obesity effect of resveratrol, but the pathways through which resveratrol resists obesity are not clear. In the present study, we hypothesize that resveratrol exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes, and in turn, improving fat storage and metabolism. Gut microbes, glucose and lipid metabolism in high-fat diet (HF) mice in vivo are investigated after resveratrol treatment. Several biochemical markers are measured. Fluorescence in situ hybridization and flow cytometry are used to monitor and quantify the changes in gut microbiota. The key genes related to fat storage and metabolism in the liver and visceral adipose tissues are measured by real-time PCR. The results show that resveratrol (200 mg per kg per day) significantly lowers both body and visceral adipose weights, and reduces blood glucose and lipid levels in HF mice. Resveratrol improves the gut microbiota dysbiosis induced by the HF diet, including increasing the Bacteroidetes-to-Firmicutes ratios, significantly inhibiting the growth of Enterococcus faecalis, and increasing the growth of Lactobacillus and Bifidobacterium. Furthermore, resveratrol significantly increases the fasting-induced adipose factor (Fiaf, a key gene negatively regulated by intestinal microbes) expression in the intestine. Resveratrol significantly decreases mRNA expression of Lpl, Scd1, Ppar-γ, Acc1, and Fas related to fatty acids synthesis, adipogenesis and lipogenesis, which may be driven by increased Fiaf expression. The Pearson's correlation coefficient shows that there is a negative correlation between the body weight and the ratios of Bacteroidetes-to-Firmicutes. Therefore, resveratrol mediates the composition of gut microbes, and in turn, through the Fiaf signaling pathway, accelerates the development of obesity.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
| | | | | | | | | | | |
Collapse
|
47
|
Kim HS, Han SY, Sung HY, Park SH, Kang MK, Han SJ, Kang YH. Blockade of visfatin induction by oleanolic acid via disturbing IL-6-TRAF6-NF-κB signaling of adipocytes. Exp Biol Med (Maywood) 2014; 239:284-92. [PMID: 24459190 DOI: 10.1177/1535370213514511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oleanolic acid is a pentacyclic triterpenoid naturally present in foods and medicinal plants with anticancer, antioxidant, and antiaging properties. The current study elucidated that oleanolic acid inhibited the production of insulin-mimetic and inflammatory adipokine of visfatin during adipogenic differentiation of 3T3-L1 adipocytes. Adipocytes were cultured in an adipogenic media with and without 1-25 µM oleanolic acid up to 8 days for differentiation. The cellular expression and secretion of visfatin was markedly enhanced in differentiating adipocytes, which was dose-dependently attenuated by 1-25 µM oleanolic acid. Secretion of interleukin (IL)-6 and macrophage inflammatory protein (MIP)-2 was highly elevated during differentiation, which was much earlier than visfatin production of adipocytes. The visfatin production was secondary to inflammatory IL-6 and MIP-2. This study further elucidated that nuclear factor-κB (NF-κB) signaling was responsible for cellular production of visfatin. NF-κB was activated by translocating into the nucleus with increased phosphorylation of inhibitory κB (IκB), which was disturbed by oleanolic acid. Cellular expression of tumor necrosis factor receptor associated factor 6 (TRAF6), a NF-κB upstream, was upregulated in parallel with transactivation with NF-κB. The TRAF6 induction required the auto-stimulation of inflammatory IL-6 and MIP-2. These results demonstrate that oleanolic acid inhibited visfatin and its inflammatory response during adipocyte differentiation through blocking IL-6-TRAF6-NF-κB signaling. Therefore, oleanolic acid may be a potent therapeutic agent targeting against adipogenesis and visfatin-linked inflammation.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Barger JL. An adipocentric perspective of resveratrol as a calorie restriction mimetic. Ann N Y Acad Sci 2013; 1290:122-9. [DOI: 10.1111/nyas.12212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Kim WK, Kang NE, Kim MH, Ha AW. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract 2013; 7:160-5. [PMID: 23766875 PMCID: PMC3679323 DOI: 10.4162/nrp.2013.7.3.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 11/04/2022] Open
Abstract
3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.
Collapse
Affiliation(s)
- Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701, Korea
| | | | | | | |
Collapse
|
50
|
Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 2013; 18:4689-702. [PMID: 23603951 PMCID: PMC6270062 DOI: 10.3390/molecules18044689] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/21/2023] Open
Abstract
Resveratrol (RES) is a well-known phytocompound and food component which has antioxidative and multifunctional bioactivities. However, there is limited evidence for the effects of RES on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of trans-RES on fatigue and ergogenic functions following physiological challenge. Male ICR mice from four groups (n = 8 per group) were orally administered RES for 21 days at 0, 25, 50, and 125 mg/kg/day, which were respectively designated the vehicle, RES-25, RES-50, and RES-125 groups. The anti-fatigue activity and exercise performance were evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise. The exhaustive swimming time of the RES-25 group (24.72 ± 7.35 min) was significantly (p = 0.0179) longer than that of vehicle group (10.83 ± 1.15 min). A trend analysis revealed that RES treatments increased the grip strength. RES supplementation also produced dose-dependent decreases in serum lactate and ammonia levels and CK activity and also an increase in glucose levels in dose-dependent manners after the 15-min swimming test. The mechanism was related to the increased energy utilization (as blood glucose), and decreased serum levels of lactate, ammonia, and CK. Therefore, RES could be a potential agent with an anti-fatigue pharmacological effect.
Collapse
Affiliation(s)
- Ruei-Er Wu
- Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Wen-Ching Huang
- Graduate Institute of Athletics and Coaching Science, College of Sports and Athletics, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yu-Kai Chang
- Graduate Institute of Athletics and Coaching Science, College of Sports and Athletics, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Nai-Wen Kan
- Center for Liberal Arts, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan 33301, Taiwan
| |
Collapse
|