1
|
Tajik Z, Mehrafarid H, Bayani M, Almasi-Hashiani A. Comparison of visfatin levels before and after non-surgical periodontal therapy: A systematic review and meta-analysis. PLoS One 2025; 20:e0315035. [PMID: 39970162 PMCID: PMC11838901 DOI: 10.1371/journal.pone.0315035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/19/2024] [Indexed: 02/21/2025] Open
Abstract
Periodontitis is an inflammatory disease and involves a severe inflammation of the periodontium. On the other hand, visfatin is known as one of the inflammatory markers and can probably preserve inflammation in immune cells. Therefore, the purpose of this systematic review and meta-analysis is to compare the mean visfatin level before and after non-surgical periodontal treatment (NSPT). In this systematic review and meta-analysis, to find relevant studies, PubMed, Web of Science and Scopus were searched. Google Scholar was used to review gray literature. Standardized mean difference (SMD) along with 95% confidence interval (95%CI) was calculated. To perform the meta-analysis, in cases where there was significant heterogeneity between the studies, the random-effects model was used, otherwise the fixed-effects model was used. Sixteen studies were included in the meta-analysis. The results show that one month after the NSPT, there was no significant difference in the mean visfatin level of GCF (SMD: -3.91, 95%CI: -9.83, 2.01, p = 0.195, I-square, 96.6%, random effect model, n = 2) and serum (SMD: -0.33, 95%CI: -0.98, 0.33, p = 0.332, fixed effect model, n = 1), but 2, 3 and 6 months after NSPT, the mean visfatin level of GCF and serum decreased significantly. There is no significant difference one month after NSPT in diabetic patients (SMD: -5.83, 95%CI: -15.5, 3.83, p = 0.237, I-square, 97.4%, random effects model, n = 2), but three (SMD: -2.44, 95%CI: -3.37, -1.15, p = 0.001, I-square, 75.9%, random effects model, n = 3) and six months (SMD: -2.41, 95%CI: -3.81, -1.01, p = 0.001, I-square, 78.7%, random effects model, n = 2) after the treatment, a significant decrease is observed in the mean GCF visfatin level. Following the NSPT, the mean visfatin level of GCF, serum and saliva decreases, and in longer follow up time, the level of visfatin decreases significantly. Also, the mean GCF level of diabetic patients decreased after NSPT. Therefore, visfatin level may be used as a diagnostic and therapeutic noninvasive biomarker in patients with periodontitis, which requires further studies.
Collapse
Affiliation(s)
- Zahra Tajik
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Mehrafarid
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
3
|
Cherubini M, Erickson S, Padmanaban P, Haberkant P, Stein F, Beltran-Sastre V, Haase K. Flow in fetoplacental-like microvessels in vitro enhances perfusion, barrier function, and matrix stability. SCIENCE ADVANCES 2023; 9:eadj8540. [PMID: 38134282 PMCID: PMC10745711 DOI: 10.1126/sciadv.adj8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Proper placental vascularization is vital for pregnancy outcomes, but assessing it with animal models and human explants has limitations. We introduce a 3D in vitro model of human placenta terminal villi including fetal mesenchyme and vascular endothelium. By coculturing HUVEC, placental fibroblasts, and pericytes in a macrofluidic chip with a flow reservoir, we generate fully perfusable fetal microvessels. Pressure-driven flow facilitates microvessel growth and remodeling, resulting in early formation of interconnected and lasting placental-like vascular networks. Computational fluid dynamics simulations predict shear forces, which increase microtissue stiffness, decrease diffusivity, and enhance barrier function as shear stress rises. Mass spectrometry analysis reveals enhanced protein expression with flow, including matrix stability regulators, proteins associated with actin dynamics, and cytoskeleton organization. Our model provides a powerful tool for deducing complex in vivo parameters, such as shear stress on developing vascularized placental tissue, and holds promise for unraveling gestational disorders related to the vasculature.
Collapse
Affiliation(s)
- Marta Cherubini
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Scott Erickson
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | | | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Kristina Haase
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| |
Collapse
|
4
|
Troci A, Rausch P, Waschina S, Lieb W, Franke A, Bang C. Long-Term Dietary Effects on Human Gut Microbiota Composition Employing Shotgun Metagenomics Data Analysis. Mol Nutr Food Res 2023; 67:e2101098. [PMID: 35760036 DOI: 10.1002/mnfr.202101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Indexed: 11/11/2022]
Abstract
SCOPE The gut microbiome regulates various metabolic pathways in the host and its dysbiosis is involved in the pathogenesis of diverse diseases. One of the major factors triggering gut microbiome establishment is diet. This study aims to unravel interactions and changes between diet and gut microbiome over a period of 3 years. METHODS AND RESULTS This study investigates the relation between diet and the microbiome of 75 individuals over a 3-year time period. Shotgun metagenomic sequencing is performed to profile gut microbial composition and function. This study shows that there are significant changes in gut microbiome taxonomy and functional composition between two time points. Whereas microbial taxonomy is found to be highly individualized, overall microbial functions stay relatively stable. Moreover, in silico metabolic modeling of microbial communities indicates that changes in dietary intake of medium-chain saturated fatty acids is accompanied by an altered utilization of amino acids by the gut microbiome. CONCLUSION The study design allows us to validate functional stability within the gut microbiome of healthy subjects over a 3-year period. However, enduring changes in nutrition such as increased alcohol consumption or decreased intake of vegetables come along with enhanced microbial functions that are associated with disease etiology.
Collapse
Affiliation(s)
- Alba Troci
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| |
Collapse
|
5
|
Bayani M, Heidari M, Almasi-Hashiani A. Periodontal disease and visfatin level: A systematic review and meta-analysis. PLoS One 2023; 18:e0293368. [PMID: 37934738 PMCID: PMC10629655 DOI: 10.1371/journal.pone.0293368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Visfatin is considered an inflammatory biomarker in periodontal disease (PD). In this meta-analysis, we aimed to evaluate the relationship between Visfatin biomarker level with PD. In this study, Medline, Scopus, Web of Science, and Google Scholar were searched. We included studies that examined visfatin levels in samples from healthy people and periodontal disease until March 2023. The quality of the selected articles was evaluated using the Newcastle-Ottawa assessment scale. Depending on heterogeneity of studies, random-effects or fixed-effect models were used to pool results and report the standardized mean difference (SMD). After screening the retrieved papers, the related data were extracted. A total of 159 studies were identified, and 16 studies were included in the meta-analysis. In 9 studies, the SMD of visfatin level of gingival crevicular fluid (GCF) in patients with chronic periodontitis (CP) and healthy individuals was 4.32 (p<0.001). In 6 studies, the SMD of salivary visfatin level in patients with CP and healthy individuals was 2.95 (p = 0.004). In addition, in five studies, the SMD of serum visfatin level in patients with CP and healthy individuals was 7.87 (p<0.001). Therefore, Visfatin levels in serum, saliva, and GCF of patients with CP were increased in comparison to healthy individuals. Comparison of visfatin levels in saliva of gingivitis patients and healthy individuals showed a significant increase of visfatin in gingivitis patients (SMD:0.57, P = 0.018), but no significant difference was observed in the mean GCF visfatin level of gingivitis patients and healthy individuals (SMD:2.60, P = 0.090). In addition, the results suggested that there is no difference between gingivitis cases compared to CP patients (SMD:3.59, P = 0.217). Visfatin levels in GCF, serum, and saliva have the potential to be used as a diagnostic biomarker of periodontitis.
Collapse
Affiliation(s)
- Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | | | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
7
|
Marzano P, Balin S, Terzoli S, Della Bella S, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Calcaterra F, Di Vito C, Cancellara A, Calvi M, Carletti A, Franzese S, Frigo A, Darwish A, Voza A, Mikulak J, Mavilio D. Transcriptomic profile of TNFhigh MAIT cells is linked to B cell response following SARS-CoV-2 vaccination. Front Immunol 2023; 14:1208662. [PMID: 37564651 PMCID: PMC10410451 DOI: 10.3389/fimmu.2023.1208662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Higher frequencies of mucosal-associated invariant T (MAIT) cells were associated with an increased adaptive response to mRNA BNT162b2 SARS-CoV-2 vaccine, however, the mechanistic insights into this relationship are unknown. In the present study, we hypothesized that the TNF response of MAIT cells supports B cell activation following SARS-CoV-2 immunization. Methods To investigate the effects of repeated SARS-CoV-2 vaccinations on the peripheral blood mononuclear cells (PBMCs), we performed a longitudinal single cell (sc)RNA-seq and scTCR-seq analysis of SARS-CoV-2 vaccinated healthy adults with two doses of the Pfizer-BioNTech BNT162b2 mRNA vaccine. Collection of PBMCs was performed 1 day before, 3 and 17 days after prime vaccination, and 3 days and 3 months following vaccine boost. Based on scRNA/TCR-seq data related to regulatory signals induced by the vaccine, we used computational approaches for the functional pathway enrichment analysis (Reactome), dynamics of the effector cell-polarization (RNA Velocity and CellRank), and cell-cell communication (NicheNet). Results We identified MAIT cells as an important source of TNF across circulating lymphocytes in response to repeated SARS-CoV-2 BNT162b2 vaccination. The TNFhigh signature of MAIT cells was induced by the second administration of the vaccine. Notably, the increased TNF expression was associated with MAIT cell proliferation and efficient anti-SARS-CoV-2 antibody production. Finally, by decoding the ligand-receptor interactions and incorporating intracellular signaling, we predicted TNFhigh MAIT cell interplay with different B cell subsets. In specific, predicted TNF-mediated activation was selectively directed to conventional switched memory B cells, which are deputed to high-affinity long-term memory. Discussion Overall, our results indicate that SARS-CoV-2 BNT162b2 vaccination influences MAIT cell frequencies and their transcriptional effector profile with the potential to promote B cell activation. This research also provides a blueprint for the promising use of MAIT cells as cellular adjuvants in mRNA-based vaccines.
Collapse
Affiliation(s)
- Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina Cazzetta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Assunta Cancellara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Darwish
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Choi JM, Vuppala S, Park MJ, Kim J, Jegal ME, Han YS, Kim YJ, Jang J, Jeong MH, Joo BS. Computer simulation approach to the identification of visfatin-derived angiogenic peptides. PLoS One 2023; 18:e0287577. [PMID: 37384629 PMCID: PMC10309634 DOI: 10.1371/journal.pone.0287577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Angiogenesis plays an essential role in various normal physiological processes, such as embryogenesis, tissue repair, and skin regeneration. Visfatin is a 52 kDa adipokine secreted by various tissues including adipocytes. It stimulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis. However, there are several issues in developing full-length visfatin as a therapeutic drug due to its high molecular weight. Therefore, the purpose of this study was to develop peptides, based on the active site of visfatin, with similar or superior angiogenic activity using computer simulation techniques.Initially, the active site domain (residues 181∼390) of visfatin was first truncated into small peptides using the overlapping technique. Subsequently, the 114 truncated small peptides were then subjected to molecular docking analysis using two docking programs (HADDOCK and GalaxyPepDock) to generate small peptides with the highest affinity for visfatin. Furthermore, molecular dynamics simulations (MD) were conducted to investigate the stability of the protein-ligand complexes by computing root mean square deviation (RSMD) and root mean square fluctuation(RMSF) plots for the visfatin-peptide complexes. Finally, peptides with the highest affinity were examined for angiogenic activities, such as cell migration, invasion, and tubule formation in human umbilical vein endothelial cells (HUVECs). Through the docking analysis of the 114 truncated peptides, we screened nine peptides with a high affinity for visfatin. Of these, we discovered two peptides (peptide-1: LEYKLHDFGY and peptide-2: EYKLHDFGYRGV) with the highest affinity for visfatin. In an in vitrostudy, these two peptides showed superior angiogenic activity compared to visfatin itself and stimulated mRNA expressions of visfatin and VEGF-A. These results show that the peptides generated by the protein-peptide docking simulation have a more efficient angiogenic activity than the original visfatin.
Collapse
Affiliation(s)
- Ji Myung Choi
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Srimai Vuppala
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min Jung Park
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jaeyoung Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Myeong-Eun Jegal
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yu-Seon Han
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yung-Jin Kim
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Bo Sun Joo
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| |
Collapse
|
9
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
10
|
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol 2022; 13:1034050. [PMID: 36466887 PMCID: PMC9716075 DOI: 10.3389/fimmu.2022.1034050] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA), which affects nearly 1% of the world's population, is a debilitating autoimmune disease. Bone erosion caused by periarticular osteopenia and synovial pannus formation is the most destructive pathological changes of RA, also leads to joint deformity and loss of function,and ultimately affects the quality of life of patients. Osteoclasts (OCs) are the only known bone resorption cells and their abnormal differentiation and production play an important role in the occurrence and development of RA bone destruction; this remains the main culprit behind RA. METHOD Based on the latest published literature and research progress at home and abroad, this paper reviews the abnormal regulation mechanism of OC generation and differentiation in RA and the possible targeted therapy. RESULT OC-mediated bone destruction is achieved through the regulation of a variety of cytokines and cell-to-cell interactions, including gene transcription, epigenetics and environmental factors. At present, most methods for the treatment of RA are based on the regulation of inflammation, the inhibition of bone injury and joint deformities remains unexplored. DISCUSSION This article will review the mechanism of abnormal differentiation of OC in RA, and summarise the current treatment oftargeting cytokines in the process of OC generation and differentiation to reduce bone destruction in patients with RA, which isexpected to become a valuable treatment choice to inhibit bone destruction in RA.
Collapse
Affiliation(s)
- Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Articular cartilage function depends on the temporal and zonal distribution of coordinated metabolic regulation in chondrocytes. Emerging evidence shows the importance of cellular metabolism in the molecular control of the cartilage and its dysregulation in degenerative diseases like osteoarthritis (OA). Compared to most other tissues, chondrocytes are sparsely located in the extracellular matrix, lacking the typical proximity of neural, vascular, and lymphatic tissue. Making up under 5% of the total tissue weight of cartilage, chondrocytes have a relative deficiency of access to nutrients and oxygen, as well as limited pathways for metabolite removal. This makes cartilage a unique tissue with hypocellularity, prolonged metabolic rate, and tissue turnover. Studies in the past decade have shown that several pathways of central carbon metabolism are essential for cartilage homeostasis. Here, we summarised the literature findings on the role of cellular metabolism in determining the chondrocyte function and how this metabolic dysregulation led to cartilage aging in OA and provided an outlook on how the field may evolve in the coming years. Although the various energy metabolism pathways are inextricably linked with one another, for the purpose of this review, we initially endeavoured to examine them individually and in relative isolation. Subsequently, we comment on what is known regarding the integration and linked signalling pathways between these systems and the therapeutic opportunities for targeting OA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Tsoyi K, Rosas IO. Targeting Danger Signals to Rescue Fibrosis. Am J Respir Cell Mol Biol 2022; 66:468-470. [PMID: 35271415 PMCID: PMC9116361 DOI: 10.1165/rcmb.2022-0022ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Konstantin Tsoyi
- Department of Medicine Baylor College of Medicine Houston, Texas
| | - Ivan O Rosas
- Department of Medicine Baylor College of Medicine Houston, Texas
| |
Collapse
|
14
|
Häussler S, Sadri H, Ghaffari MH, Sauerwein H. Symposium review: Adipose tissue endocrinology in the periparturient period of dairy cows. J Dairy Sci 2022; 105:3648-3669. [PMID: 35181138 DOI: 10.3168/jds.2021-21220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
The involvement of adipose tissue (AT) in metabolism is not limited to energy storage but turned out to be much more complex. We now know that in addition to lipid metabolism, AT is important in glucose homeostasis and AA metabolism and also has a role in inflammatory processes. With the discovery of leptin in 1994, the concept of AT being able to secrete messenger molecules collectively termed as adipokines, and acting in an endo-, para-, and autocrine manner emerged. Moreover, based on its asset of receptors, many stimuli from other tissues reaching AT via the bloodstream can also elicit distinct responses and thus integrate AT as a control element in the regulatory circuits of the whole body's functions. The protein secretome of human differentiated adipocytes was described to comprise more than 400 different proteins. However, in dairy cows, the characterization of the physiological time course of adipokines in AT during the transition from pregnancy to lactation is largely limited to the mRNA level; for the protein level, the analytical methods are limited and available assays often lack sound validation. In addition to proteinaceous adipokines, small compounds such as steroids can also be secreted from AT. Due to the lipophilic nature of steroids, they are stored in AT, but during the past years, AT became also known as being able to metabolize and even to generate steroid hormones de novo. In high-yielding dairy cows, AT is substantially mobilized due to increased energy requirements related to lactation. As to whether the steroidogenic system in AT is affected and may change during the common loss of body fat is largely unknown. Moreover, most research about AT in transition dairy cows is based on subcutaneous AT, whereas other depots have scarcely been investigated. This contribution aims to review the changes in adipokine mRNA and-where available-protein expression with time relative to calving in high-yielding dairy cows at different conditions, including parity, body condition, diet, specific feed supplements, and health disorders. In addition, the review provides insights into steroidogenic pathways in dairy cows AT, and addresses differences between fat depots where possible.
Collapse
Affiliation(s)
- Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
15
|
Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol 2022; 198:114946. [DOI: 10.1016/j.bcp.2022.114946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
16
|
Huffaker TB, Ekiz HA, Barba C, Lee SH, Runtsch MC, Nelson MC, Bauer KM, Tang WW, Mosbruger TL, Cox JE, Round JL, Voth WP, O'Connell RM. A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat Commun 2021; 12:2620. [PMID: 33976173 PMCID: PMC8113251 DOI: 10.1038/s41467-021-22923-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.
Collapse
Affiliation(s)
- Thomas B Huffaker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Atakan Ekiz
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Cindy Barba
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Soh-Hyun Lee
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Marah C Runtsch
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Morgan C Nelson
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kaylyn M Bauer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - William W Tang
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - June L Round
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Warren P Voth
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Filifactor alocis and Tumor Necrosis Factor-Alpha Stimulate Synthesis of Visfatin by Human Macrophages. Int J Mol Sci 2021; 22:ijms22031235. [PMID: 33513808 PMCID: PMC7865436 DOI: 10.3390/ijms22031235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
There is little known about the effect of the periodontopathogen Filifactor alocis on macrophages as key cells of the innate immune defense in the periodontium. Therefore, the aim of the present study was to investigate the effect of F. alocis and additionally of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) on visfatin and other pro-inflammatory and proteolytic molecules associated with periodontitis in human macrophages. The presence of macrophage markers CD14, CD86, CD68, and CD163 was examined in gingival biopsies from healthy individuals and periodontitis patients. Human macrophages were incubated with F. alocis and TNFα for up to 2 d. The effects of both stimulants on macrophages were determined by real-time PCR, ELISA, immunocytochemistry, and immunofluorescence. F. alocis was able to significantly stimulate the synthesis of visfatin by human macrophages using TLR2 and MAPK pathways. In addition to visfatin, F. alocis was also able to increase the synthesis of cyclooxygenase 2, TNFα, and matrix metalloproteinase 1. Like F. alocis, TNFα was also able to stimulate the production of these proinflammatory and proteolytic molecules. Our results highlight the pathogenetic role of F. alocis in periodontal diseases and also underline the involvement of visfatin in the aetiopathogenesis of periodontitis.
Collapse
|
18
|
Ziaei N, Golmohammadi S, Ataee M, Ardalani F, Mesgari Abbasi M. Effect of non-surgical periodontal treatment on three salivary adipokines in diabetic patients with periodontitis. J Dent Res Dent Clin Dent Prospects 2021; 14:199-205. [PMID: 33408827 PMCID: PMC7770404 DOI: 10.34172/joddd.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background. This study investigated the effect of non-surgical periodontal treatment on clinical indices and salivary levels of visfatin, chemerin, and progranulin in diabetic patients with periodontitis. Methods. This interventional clinical trial was performed on 20 patients with type II diabetes mellitus (T2DM) with moderate to severe chronic periodontitis (periodontitis stages II or III according to the new classification of periodontal diseases). Clinical indices, including gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL) and plaque index (PI), were recorded and visfatin, chemerin, and progranulin adipokines levels were also measured in unstimulated saliva by ELISA technique at baseline and twelve weeks after non-surgical periodontal treatment. Results. GI dropped from 1.92±0.27 to 0.71±0.14 after the intervention (P<0.001). Also, there were significant changes in the PPD and PI (P<0.001). However, no significant changes were observed in the CAL (P<0.05). The concentrations of all three salivary adipokines decreased after treatment, but this change was statistically significant only for progranulin (P<0.05). Conclusion. Non-surgical periodontal therapy resulted in improvements in the clinical indices of GI, PPD, and PI in T2DM patients with periodontitis. Moreover, the significant reduction in the salivary level of progranulin after treatment suggests that it might be considered a target inflammatory marker in periodontal diseases.
Collapse
Affiliation(s)
- Narges Ziaei
- Department of Periodontics, Dental School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Golmohammadi
- Department of Periodontics, Dental School, Islamic Azad University of Borujerd, Borujerd, Iran
| | - Mari Ataee
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mehran Mesgari Abbasi
- Researcher, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Xu W, Chao Y, Liang M, Huang K, Wang C. CTRP13 Mitigates Abdominal Aortic Aneurysm Formation via NAMPT1. Mol Ther 2021; 29:324-337. [PMID: 32966772 DOI: 10.1016/j.ymthe.2020.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease characterized by localized dilation of the abdominal aorta. C1q/tumor necrosis factor (TNF)-related protein-13 (CTRP13) is a secreted adipokine that plays important roles in the cardiovascular system. However, the functional role of CTRP13 in the formation and development of AAA has yet to be explored. In this study, we determined that serum CTRP13 levels were significantly downregulated in blood samples from patients with AAA and in rodent AAA models induced by Angiotensin II (Ang II) in ApoE-/- mice or by CaCl2 in C57BL/6J mice. Using two distinct murine models of AAA, CTRP13 was shown to effectively reduce the incidence and severity of AAA in conjunction with reduced aortic macrophage infiltration, expression of proinflammatory cytokines (interleukin-6 [IL-6], TNF-α, and monocyte chemoattractant protein 1 [MCP-1]), and vascular smooth muscle cell (SMC) apoptosis. Mechanistically, nicotinamide phosphoribosyl-transferase 1 (NAMPT1) was identified as a new target of CTRP13. The decreased in vivo and in vitro expression of NAMPT1 was markedly reversed by CTRP13 supplementation in a ubiquitination-proteasome-dependent manner. NAMPT1 knockdown further blocked the beneficial effects of CTRP13 on vascular inflammation and SMC apoptosis. Overall, our study reveals that CTRP13 management may be an effective treatment for preventing AAA formation.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Bossardi Ramos R, Adam AP. Molecular Mechanisms of Vascular Damage During Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:95-107. [PMID: 34019265 DOI: 10.1007/978-3-030-68748-9_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of pulmonary and systemic insults promote an inflammatory response causing increased vascular permeability, leading to the development of acute lung injury (ALI), a condition necessitating hospitalization and intensive care, or the more severe acute respiratory distress syndrome (ARDS), a disease with a high mortality rate. Further, COVID-19 pandemic-associated ARDS is now a major cause of mortality worldwide. The pathogenesis of ALI is explained by injury to both the vascular endothelium and the alveolar epithelium. The disruption of the lung endothelial and epithelial barriers occurs in response to both systemic and local production of pro-inflammatory cytokines. Studies that evaluate the association of genetic polymorphisms with disease risk did not yield many potential therapeutic targets to treat and revert lung injury. This failure is probably due in part to the phenotypic complexity of ALI/ARDS, and genetic predisposition may be obscured by the multiple environmental and behavioral risk factors. In the last decade, new research has uncovered novel epigenetic mechanisms that control ALI/ARDS pathogenesis, including histone modifications and DNA methylation. Enzyme inhibitors such as DNMTi and HDACi may offer new alternative strategies to prevent or reverse the vascular damage that occurs during lung injury. This review will focus on the latest findings on the molecular mechanisms of vascular damage in ALI/ARDS, the genetic factors that might contribute to the susceptibility for developing this disease, and the epigenetic changes observed in humans, as well as in experimental models of ALI/ADRS.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA. .,Department of Ophthalmology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
21
|
Li HZ, Xu FL, Ansari AR, Yang WJ, Zhang ZW, Dong L, Niu XY, Song H. Optimization and bioactivity verification of porcine recombinant visfatin with high expression and low endotoxin content using pig liver as template. Protein Expr Purif 2020; 178:105776. [PMID: 33065262 DOI: 10.1016/j.pep.2020.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
In order to obtain the porcine recombinant visfatin protein with high expression and low endotoxin content, the current study aims to express and verify the biological activity of the purified porcine recombinant visfatin protein. Firstly, four different expression strains were successfully constructed. Then they were simultaneously induced at 37 °C for 4 h and 16 °C for 16 h. The results showed that Visfatin-pET28a-Transetta was the best strain with high protein expression and purity at 16 °C induction for 16 h. After that, endotoxin was reduced from the recombinant visfatin until the residual endotoxin was less than one endotoxin units per milliliter (EU/mL). Finally, the purified porcine recombinant visfatin protein was incubated with RAW264.7 cells. The results of cell counting kit-8 (CCK-8) showed the survival rate of the cells first increased and then decreased with the increase in visfatin concentration. When the concentration of visfatin was 700 ng/mL, the survival rate of the cells was the highest. Thereafter, control (PBS), Visfatin and Visfatin + PolymyxinB (Ploy.B) groups were incubated with the RAW264.7 cells for 6 h. Real-time quantitative polymerase chain reaction (RT-qPCR) and Enzyme Linked Immuno-Sorbent Assay (ELISA) results showed that, as compared to the control group, the expressions of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in Visfatin group were significantly increased (P < 0.05). However, there was no significant difference between the Visfatin and Visfatin + Poly.B groups, indicating that porcine recombinant visfatin protein promoted the inflammatory activity of RAW264.7 cells while the residual endotoxin did not play a role, suggesting biological activity of porcine recombinant visfatin protein.
Collapse
Affiliation(s)
- Hui Zhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen Liang Xu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan; University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Wen Jie Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Wei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Dong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Yu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Tanuma SI, Katsuragi K, Oyama T, Yoshimori A, Shibasaki Y, Asawa Y, Yamazaki H, Makino K, Okazawa M, Ogino Y, Sakamoto Y, Nomura M, Sato A, Abe H, Nakamura H, Takahashi H, Tanuma N, Uchiumi F. Structural Basis of Beneficial Design for Effective Nicotinamide Phosphoribosyltransferase Inhibitors. Molecules 2020; 25:molecules25163633. [PMID: 32785052 PMCID: PMC7464552 DOI: 10.3390/molecules25163633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.
Collapse
Affiliation(s)
- Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Correspondence:
| | - Kiyotaka Katsuragi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., Fujisawa, Kanagawa 251-0012, Japan;
| | - Yuri Shibasaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Yasunobu Asawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hiroaki Yamazaki
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoko Ogino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| | - Yoshimi Sakamoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.K.); (Y.S.); (Y.O.); (A.S.)
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.Y.); (H.A.)
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (Y.A.); (H.N.)
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.M.); (H.T.)
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi 981-1293, Japan; (Y.S.); (M.N.); (N.T.)
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan;
| |
Collapse
|
23
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
24
|
Tran A, He W, Jiang N, Chen JTC, Belsham DD. NAMPT and BMAL1 Are Independently Involved in the Palmitate-Mediated Induction of Neuroinflammation in Hypothalamic Neurons. Front Endocrinol (Lausanne) 2020; 11:351. [PMID: 32595600 PMCID: PMC7303266 DOI: 10.3389/fendo.2020.00351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a prominent metabolic disease that predisposes individuals to multiple comorbidities, including type 2 diabetes mellitus, cardiovascular diseases, and cancer. Elevated circulating levels of fatty acids contribute to the development of obesity, in part, by targeting the hypothalamus. Palmitate, the most abundant circulating saturated fatty acid, has been demonstrated to dysregulate NAMPT and circadian clock proteins, as well as induce neuroinflammation. These effects ultimately result in hypothalamic dysregulation of feeding behavior and energy homeostasis. NAMPT is the rate-limiting enzyme of the NAD+ salvage pathway and its expression is under the control of the circadian clock. NAD+ produced from NAMPT can modulate the circadian clock, demonstrating bidirectional interactions between circadian and metabolic pathways. Using NPY/AgRP-expressing mHypoE-46 neurons as well as the novel mHypoA-BMAL1-WT/F and mHypoA-BMAL1-KO/F cell lines, we studied whether there were any interactions between NAMPT and the core circadian clock protein BMAL1 in the palmitate-mediated induction of neuroinflammation. We report that palmitate altered Nampt, Bmal1, Per2 and the inflammatory genes Nf-κb, IκBα, Il-6, and Tlr4. Contrary to studies performed with peripheral tissues, the palmitate-mediated induction in Nampt was independent of BMAL1, and basal Nampt levels did not appear to exhibit rhythmic expression. Palmitate-induced downregulation of Bmal1 and Per2 was independent of NAMPT. However, NAMPT and BMAL1 were both involved in the regulation of Nf-κb, IκBα, Il-6, and Tlr4, as NAMPT inhibition resulted in the repression of basal Nf-κb and IκBα and normalized palmitate-mediated increases in Il-6, and Tlr4. On the other hand, BMAL1 deletion repressed basal Nf-κb, but increased basal Il-6. We conclude that NAMPT and BMAL1 do not interact at the transcriptional level in hypothalamic neurons, but are independently involved in the expression of inflammatory genes.
Collapse
Affiliation(s)
- Andy Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Nan Jiang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jim T. C. Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Abstract
IMPACT STATEMENT NAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD's biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.
Collapse
Affiliation(s)
- John Wr Kincaid
- Department of Nutrition, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nathan A Berger
- 151230Case Comprehensive Cancer Center, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biochemistry, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Medicine, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Science, Health and Society, 12304Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Estienne A, Brossaud A, Reverchon M, Ramé C, Froment P, Dupont J. Adipokines Expression and Effects in Oocyte Maturation, Fertilization and Early Embryo Development: Lessons from Mammals and Birds. Int J Mol Sci 2020; 21:E3581. [PMID: 32438614 PMCID: PMC7279299 DOI: 10.3390/ijms21103581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022] Open
Abstract
Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRAE Val de Loire, F-37380 Nouzilly, France;
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; (A.E.); (A.B.); (C.R.); (P.F.)
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Institut Français du Cheval et de l’Equitation, Centre INRAE Val de Loire, F-37380 Nouzilly, France
| |
Collapse
|
27
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, 3 Kanellopoulou, 11525, Athens, Greece
| | - Jona Kadillari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Sotiria Psallida
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
29
|
Negrão F, Giorgio S, Eberlin MN, Yates JR. Comparative Proteomic Analysis of Murine Cutaneous Lesions Induced by Leishmania amazonensis or Leishmania major. ACS Infect Dis 2019; 5:1295-1305. [PMID: 31094195 DOI: 10.1021/acsinfecdis.8b00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cutaneous leishmaniasisis is the most common clinical form of leishmaniasis and one of the most relevant neglected diseases. It is known that the progress of the disease is species specific and the host's immune response plays an important role in its outcome. However, the pathways that lead to parasite clearance or survival remain unknown. In this work, skin tissue from mice experimentally infected with L. amazonensis, one of the causative agents of cutaneous leishmaniasis in the Amazon region, L. major, another causative agent of cutaneous leishmaniasis in Africa, the Middle East, China, and India, or lipopolysaccharides from Escherichia coli as an inflammation model were investigated using label-free proteomics to unveil Leishmania-specific protein alterations. Proteomics is a powerful tool to investigate host-pathogen relationships to address biological questions. In this work, proteins from mice skin biopsies were identified and quantified using nano-LC coupled with tandem mass spectrometry analyses. Integrated Proteomics Pipeline was used for peptide/protein identification and quantification. Western blot was used for validation of protein quantification by mass spectrometry, and protein pathways were predicted using Ingenuity Pathway Analysis. In this proteomics study, several proteins were pointed out as hypothetical targets to guide future studies on Leishmania-specific modulation of proteins in the host. We identified hundreds of exclusively modulated proteins after Leishmania spp. infection and 17 proteins that were differentially modulated in the host after L. amazonensis or L. major infection.
Collapse
Affiliation(s)
- Fernanda Negrão
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, Rua Monteiro Lobato, 255, Campinas, Sao Paulo 13083-862, Brazil
| | - Marcos Nogueira Eberlin
- Department of Organic Chemistry, Institute of Chemistry, UNICAMP, Rua Josué de Castro SN, Room A111, Campinas, Sao Paulo 13083-862, Brazil
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR302, La Jolla, California 92037, United States
| |
Collapse
|
30
|
Li X, Islam S, Xiong M, Nsumu NN, Lee MW, Zhang LQ, Ueki Y, Heruth DP, Lei G, Ye SQ. Epigenetic regulation of NfatC1 transcription and osteoclastogenesis by nicotinamide phosphoribosyl transferase in the pathogenesis of arthritis. Cell Death Discov 2019; 5:62. [PMID: 30774990 PMCID: PMC6365567 DOI: 10.1038/s41420-018-0134-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) functions in NAD synthesis, apoptosis, and inflammation. Dysregulation of NAMPT has been associated with several inflammatory diseases, including rheumatoid arthritis (RA). The purpose of this study was to investigate NAMPT’s role in arthritis using mouse and cellular models. Collagen-induced arthritis (CIA) in DBA/1J Nampt+/− mice was evaluated by ELISA, micro-CT, and RNA-sequencing (RNA-seq). In vitro Nampt loss-of-function and gain-of-function studies on osteoclastogenesis were examined by TRAP staining, nascent RNA capture, luciferase reporter assays, and ChIP-PCR. Nampt-deficient mice presented with suppressed inflammatory bone destruction and disease progression in a CIA mouse model. Nampt expression was required for the epigenetic regulation of the Nfatc1 promoter and osteoclastogenesis. Finally, RNA-seq identified 690 differentially expressed genes in whole ankle joints which associated (P < 0.05) with Nampt expression and CIA. Selected target was validated by RT-PCR or functional characterization. We have provided evidence that NAMPT functions as a genetic risk factor and a potential therapeutic target to RA.
Collapse
Affiliation(s)
- Xuanan Li
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA.,3Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410005 China
| | - Shamima Islam
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Min Xiong
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Ndona N Nsumu
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Mark W Lee
- 4Department of Chemistry, University of Missouri, Columbia, MO 65211 USA
| | - Li Qin Zhang
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA
| | - Yasuyoshi Ueki
- 5Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108 USA
| | - Daniel P Heruth
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Guanghua Lei
- 3Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410005 China
| | - Shui Qing Ye
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA
| |
Collapse
|
31
|
Liederer BM, Cheong J, Chou KJ, Dragovich PS, Le H, Liang X, Ly J, Mukadam S, Oeh J, Sampath D, Wang L, Wong S. Preclinical assessment of the ADME, efficacy and drug-drug interaction potential of a novel NAMPT inhibitor. Xenobiotica 2019; 49:1063-1077. [PMID: 30257601 DOI: 10.1080/00498254.2018.1528407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GNE-617 (N-(4-((3,5-difluorophenyl)sulfonyl)benzyl)imidazo[1,2-a]pyridine-6-carboxamide) is a potent, selective nicotinamide phosphoribosyltransferase (NAMPT) inhibitor being explored as a potential treatment for human cancers. Plasma clearance was low in monkeys and dogs (9.14 mL min-1 kg-1 and 4.62 mL min-1 kg-1, respectively) and moderate in mice and rats (36.4 mL min-1 kg-1 and 19.3 mL min-1 kg-1, respectively). Oral bioavailability in mice, rats, monkeys and dogs was 29.7, 33.9, 29.4 and 65.2%, respectively. Allometric scaling predicted a low clearance of 3.3 mL min-1 kg-1 and a volume of distribution of 1.3 L kg-1 in human. Efficacy (57% tumor growth inhibition) in Colo-205 CRC tumor xenograft mice was observed at an oral dose of 15 mg/kg BID (AUC = 10.4 µM h). Plasma protein binding was moderately high. GNE-617 was stable to moderately stable in vitro. Main human metabolites identified in human hepatocytes were formed primarily by CYP3A4/5. Transporter studies suggested that GNE-617 is likely a substrate for MDR1 but not for BCRP. Simcyp® simulations suggested a low (CYP2C9 and CYP2C8) or moderate (CYP3A4/5) potential for drug-drug interactions. The potential for autoinhibition was low. Overall, GNE-617 exhibited acceptable preclinical properties and projected human PK and dose estimates.
Collapse
Affiliation(s)
- Bianca M Liederer
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Jonathan Cheong
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Kang-Jye Chou
- b Genentech, Inc., Pharmaceutical Sciences , South San Francisco , CA , USA
| | - Peter S Dragovich
- c Genentech, Inc., Medicinal Chemistry , South San Francisco , CA , USA
| | - Hoa Le
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Xiaorong Liang
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Justin Ly
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Sophie Mukadam
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Jason Oeh
- d Genentech, Inc., Translational Oncology , South San Francisco , CA , USA
| | - Deepak Sampath
- d Genentech, Inc., Translational Oncology , South San Francisco , CA , USA
| | - Leslie Wang
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| | - Susan Wong
- a Genentech, Inc., Drug Metabolism and Pharmacokinetics , South San Francisco , CA , USA
| |
Collapse
|
32
|
Neubauer K, Bednarz-Misa I, Walecka-Zacharska E, Wierzbicki J, Agrawal A, Gamian A, Krzystek-Korpacka M. Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. Int J Mol Sci 2019; 20:E166. [PMID: 30621173 PMCID: PMC6337260 DOI: 10.3390/ijms20010166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase's (Nampt) association with inflammatory bowel disease (IBD) is unclear. The study was aimed at unraveling Nampt's clinical and diagnostic relevance. The serum concentration (Luminex-xMAP® technology) was measured in 113 patients with Crohn's disease (CD), 127 with ulcerative colitis (UC) and 60 non-IBD controls: 40 healthy individuals and 20 with irritable bowel syndrome (IBS). The leukocyte (44 CD/37 UC/19 IBS) and bowel expression (186 samples) was also evaluated (RT-qPCR). All were referred to IBD phenotype, activity, treatment, and inflammatory/nutritional/angiogenic/hypoxia indices. Serum-Nampt and leukocyte-Nampt were positively correlated and were more elevated in active-IBD than in IBS, with leukocyte-Nampt being a fair differential marker. Serum-Nampt in UC positively correlated with its clinical and endoscopic activity as well as with pro-inflammatory cytokines. Serum-Nampt ≤1.54 ng/mL was a good indicator of mucosal healing. The expression of Nampt was up-regulated both in inflamed and quiescent colon and reflected, similarly to leukocyte-Nampt, the clinical activity of IBD. Bowel-Nampt was independently associated with IL1B and hypoxia-inducible factor 1α (HIF1A) expression in inflamed bowel but with FGF2 expression in quiescent bowel. In summary, Nampt's elevation in IBD at local and systemic levels, and protein and mRNA levels, reflects IBD activity and is associated with inflammation, hypoxia (active) and tissue repair (inactive disease).
Collapse
Affiliation(s)
- Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Ewa Walecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Jaroslaw Wierzbicki
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Anil Agrawal
- The 2nd Department of General and Oncological Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | | |
Collapse
|
33
|
Spyrou N, Avgerinos KI, Mantzoros CS, Dalamaga M. Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 2018; 7:260-275. [PMID: 30145771 DOI: 10.1007/s13679-018-0318-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development. RECENT FINDINGS Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in cancers and are considered protective against carcinogenesis. Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the development of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered therapeutic interventions may pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Nikolaos Spyrou
- 251 Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Section of Endocrinology, VA Boston Healthcare System, Boston, MA, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
34
|
IDH2 inhibition enhances proteasome inhibitor responsiveness in hematological malignancies. Blood 2018; 133:156-167. [PMID: 30455381 DOI: 10.1182/blood-2018-05-850826] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Proteasome inhibitors (PI) are extensively used for the therapy of multiple myeloma (MM) and mantle cell lymphoma. However, patients continuously relapse or are intrinsically resistant to this class of drugs. Here, to identify targets that synergize with PI, we carried out a functional screening in MM cell lines using a short hairpin RNA library against cancer driver genes. Isocitrate dehydrogenase 2 (IDH2) was identified as a top candidate, showing a synthetic lethal activity with the PI carfilzomib (CFZ). Combinations of US Food and Drug Administration-approved PI with a pharmacological IDH2 inhibitor (AGI-6780) triggered synergistic cytotoxicity in MM, mantle cell lymphoma, and Burkitt lymphoma cell lines. CFZ/AGI-6780 treatment increased death of primary CD138+ cells from MM patients and exhibited a favorable cytotoxicity profile toward peripheral blood mononuclear cells and bone marrow-derived stromal cells. Mechanistically, the CFZ/AGI-6780 combination significantly decreased tricarboxylic acid cycle activity and adenosine triphosphate levels as a consequence of enhanced IDH2 enzymatic inhibition. Specifically, CFZ treatment reduced the expression of nicotinamide phosphoribosyltransferase (NAMPT), thus limiting IDH2 activation through the NAD+-dependent deacetylase SIRT3. Consistently, combination of CFZ with either NAMPT or SIRT3 inhibitors impaired IDH2 activity and increased MM cell death. Finally, inducible IDH2 knockdown enhanced the therapeutic efficacy of CFZ in a subcutaneous xenograft model of MM, resulting in inhibition of tumor progression and extended survival. Taken together, these findings indicate that NAMPT/SIRT3/IDH2 pathway inhibition enhances the therapeutic efficacy of PI, thus providing compelling evidence for treatments with lower and less toxic doses and broadening the application of PI to other malignancies.
Collapse
|
35
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
36
|
Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res 2018; 135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.
Collapse
Affiliation(s)
- Cristina Travelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Chiara Porta
- Department of Pharmacological Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
37
|
Bi G, Wu L, Huang P, Islam S, Heruth DP, Zhang LQ, Li DY, Sampath V, Huang W, Simon BA, Easley RB, Ye SQ. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown. FASEB J 2018; 32:3583-3596. [PMID: 29452569 PMCID: PMC5998971 DOI: 10.1096/fj.201701059r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Although a deficiency of surfactant protein B (SFTPB) has been associated with lung injury, SFTPB expression has not yet been linked with nicotinamide phosphoribosyltransferase (NAMPT), a potential biomarker of acute lung injury (ALI). The effects of Nampt in the pulmonary epithelial cell on both SFTPB expression and lung inflammation were investigated in a LPS-induced ALI mouse model. Pulmonary epithelial cell-specific knockdown of Nampt gene expression, achieved by the crossing of Nampt gene exon 2 floxed mice with mice expressing epithelial-specific transgene Cre or by the use of epithelial-specific expression of anti-Nampt antibody cDNA, significantly attenuated LPS-induced ALI. Knockdown of Nampt expression was accompanied by lower levels of bronchoalveolar lavage (BAL) neutrophil infiltrates, total protein and TNF-α levels, as well as lower lung injury scores. Notably, Nampt knockdown was also associated with significantly increased BAL SFTPB levels relative to the wild-type control mice. Down-regulation of NAMPT increased the expression of SFTPB and rescued TNF-α-induced inhibition of SFTPB, whereas overexpression of NAMPT inhibited SFTPB expression in both H441 and A549 cells. Inhibition of NAMPT up-regulated SFTPB expression by enhancing histone acetylation to increase its transcription. Additional data indicated that these effects were mainly mediated by NAMPT nonenzymatic function via the JNK pathway. This study shows that pulmonary epithelial cell-specific knockdown of NAMPT expression attenuated ALI, in part, via up-regulation of SFTPB expression. Thus, epithelial cell-specific knockdown of Nampt may be a potential new and viable therapeutic modality to ALI.-Bi, G., Wu, L., Huang, P., Islam, S., Heruth, D. P., Zhang, L. Q., Li, D.-Y., Sampath, V., Huang, W., Simon, B. A., Easley, R. B., Ye, S. Q. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown.
Collapse
Affiliation(s)
- Guangliang Bi
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Peixin Huang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Shamima Islam
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Li Qin Zhang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Brett A. Simon
- Department of Anesthesiology, Josie Robertson Surgery Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ronald Blaine Easley
- Department of Pediatrics-Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shui Qing Ye
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Biomedical and Health Informatics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
38
|
Dalamaga M, Christodoulatos GS, Mantzoros CS. The role of extracellular and intracellular Nicotinamide phosphoribosyl-transferase in cancer: Diagnostic and therapeutic perspectives and challenges. Metabolism 2018; 82:72-87. [PMID: 29330025 DOI: 10.1016/j.metabol.2018.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Nicotinamide phosphoribosyl-transferase (Nampt) or pre-B cell colony-enhancing factor or visfatin represents a pleiotropic molecule acting as an enzyme, a cytokine and a growth factor. Intracellular Nampt plays an important role in cellular bioenergetics and metabolism, particularly NAD biosynthesis. NAD biosynthesis is critical in DNA repair, oncogenic signal transduction, transcription, genomic integrity and apoptosis. Although its insulin-mimetic function remains a controversial issue, extracellular Nampt presents proliferative, anti-apoptotic, pro-inflammatory, pro-angiogenic and metastatic properties. Nampt is upregulated in many malignancies, including obesity-associated cancers, and is associated with worse prognosis. Serum Nampt may be a potential diagnostic and prognostic biomarker in cancer. Pharmacologic agents that neutralize Nampt or medications that decrease Nampt levels or downregulate signaling pathways downstream of Nampt may prove to be useful anti-cancer treatments. In particular, Nampt inhibitors as monotherapy or in combination therapy have displayed anti-cancer activity in vivo and in vitro. The aim of this review is to explore the role of Nampt in cancer pathophysiology as well as to synopsize the mechanisms underlying the association between extracellular and intracellular Nampt, and malignancy. Exploring the interplay of cellular bioenergetics, inflammation and adiposopathy is expected to be of importance in the development of preventive and therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece.
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; Department of Microbiology, KAT Hospital, Nikis 2, Kifisia, 14561 Athens, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Zhang LQ, Nsumu M, Huang P, Heruth DP, Riordan SM, Shortt K, Zhang N, Grigoryev DN, Li DY, Friesen CA, Van Haandel L, Leeder JS, Olson J, Ye SQ. Novel Protective Role of Nicotinamide Phosphoribosyltransferase in Acetaminophen-Induced Acute Liver Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1640-1652. [PMID: 29684358 DOI: 10.1016/j.ajpath.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
Acetaminophen overdose is the most common cause of acute liver injury (ALI) or acute liver failure in the United States. Its pathogenetic mechanisms are incompletely understood. Additional studies are warranted to identify new genetic risk factors for more mechanistic insights and new therapeutic target discoveries. The objective of this study was to explore the role and mechanisms of nicotinamide phosphoribosyltransferase (NAMPT) in acetaminophen-induced ALI. C57BL/6 Nampt gene wild-type (Nampt+/+), heterozygous knockout (Nampt+/-), and overexpression (NamptOE) mice were treated with overdose of acetaminophen, followed by histologic, biochemical, and transcriptomic evaluation of liver injury. The mechanism of Nampt in acetaminophen-induced hepatocytic toxicity was also explored in cultured primary hepatocytes. Three lines of evidence have convergently demonstrated that acetaminophen overdose triggers the most severe oxidative stress and necrosis, and the highest expression of key necrosis driving genes in Nampt+/- mice, whereas the effects in NamptOE mice were least severe relative to Nampt+/+ mice. Treatment of P7C3-A20, a small chemical molecule up-regulator of Nampt, ameliorated acetaminophen-induced mouse ALI over the reagent control. These findings support the fact that NAMPT protects against acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Li Q Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, Missouri.
| | - Marianne Nsumu
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Peixin Huang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Sean M Riordan
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Katherine Shortt
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri
| | - Nini Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Dmitry N Grigoryev
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Ding-You Li
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Leon Van Haandel
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Jody Olson
- The University of Kansas Liver Center, University of Kansas School of Medicine, Kansas City, Missouri
| | - Shui Q Ye
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri.
| |
Collapse
|
40
|
Misner DL, Kauss MA, Singh J, Uppal H, Bruening-Wright A, Liederer BM, Lin T, McCray B, La N, Nguyen T, Sampath D, Dragovich PS, O'Brien T, Zabka TS. Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines. Cardiovasc Toxicol 2018; 17:307-318. [PMID: 27783203 DOI: 10.1007/s12012-016-9387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that functions as an enzyme, cytokine, growth factor and hormone. As a target for oncology, NAMPT is particularly attractive, because it catalyzes the rate-limiting step in the salvage pathway to generate nicotinamide adenine dinucleotide (NAD), a universal energy- and signal-carrying molecule involved in cellular energy metabolism and many homeostatic functions. Inhibition of NAMPT generally results in NAD depletion, followed by ATP reduction and loss of cell viability. Herein, we describe NAMPT inhibitor (NAMPTi)-induced cardiac toxicity in rodents following short-term administration (2-7 days) of NAMPTi's. The cardiac toxicity was interpreted as a functional effect leading to congestive heart failure, characterized by sudden death, thoracic and abdominal effusion, and myocardial degeneration. Based on exposures in the initial in vivo safety rodent studies and cardiotoxicity observed, we conducted studies in rat and human in vitro cardiomyocyte cell systems. Based on those results, combined with human cell line potency data, we demonstrated the toxicity is both on-target and likely human relevant. This toxicity was mitigated in vitro by co-administration of nicotinic acid (NA), which can enable NAD production through the NAMPT-independent pathway; however, this resulted in only partial mitigation in in vivo studies. This work also highlights the usefulness and predictivity of in vitro cardiomyocyte assays using human cells to rank-order compounds against potency in cell-based pharmacology assays. Lastly, this work strengthens the correlation between cardiomyocyte cell viability and functionality, suggesting that these assays together may enable early assessment of cardiotoxicity in vitro prior to conduct of in vivo studies and potentially reduce subsequent attrition due to cardiotoxicity.
Collapse
Affiliation(s)
- D L Misner
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA.
| | - M A Kauss
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - J Singh
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - H Uppal
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | | | - B M Liederer
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Lin
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - B McCray
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - N La
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Nguyen
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - D Sampath
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - P S Dragovich
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T O'Brien
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T S Zabka
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| |
Collapse
|
41
|
Cross resistance to diverse anticancer nicotinamide phosphoribosyltransferase inhibitors induced by FK866 treatment. Oncotarget 2018; 9:16451-16461. [PMID: 29662658 PMCID: PMC5893253 DOI: 10.18632/oncotarget.24731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/25/2018] [Indexed: 11/25/2022] Open
Abstract
Cross-resistance to drugs remains an unsolved problem in cancer chemotherapy. This study elucidates a molecular mechanism of cross-resistance to diverse inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) with anticancer activity. We generated a variant of the human colon cancer cell line HCT116, HCT116RFK866, which exhibited primary resistance to the potent NAMPT inhibitor FK866, and was approximately 1,000-fold less sensitive to the drug than the parental HCT116. HCT116RFK866 was found to be cross-resistant to diverse NAMPT inhibitors, including CHS-828, GNE-617, and STF-118804. Whole-exon sequencing revealed two point mutations (H191R and K342R) in NAMPT in HCT116RFK866, only one of which (K342R) was present in the parental HCT116. Importantly, the protein level, NAMPT enzyme activity, and intracellular NAD+ level were similar between HCT116RFK866 and HCT116. Hence, we investigated NAMPT-binding partners in both cell lines by focused proteomic analyses. The amount of NAMPT precipitated with anti-NAMPT monoclonal antibody was much higher in HCT116RFK866 than in the parental. Furthermore, in HCT116, but not in HCT116RFK866, NAMPT was revealed to interact with POTE ankyrin domain family member E and beta-actin. Thus, these results suggest that NAMPT usually interacts with the two partner proteins, and the H191R mutation may prevent the interactions, resulting in resistance to diverse NAMPT inhibitors.
Collapse
|
42
|
Mellouk N, Ramé C, Barbe A, Grandhaye J, Froment P, Dupont J. Chicken Is a Useful Model to Investigate the Role of Adipokines in Metabolic and Reproductive Diseases. Int J Endocrinol 2018; 2018:4579734. [PMID: 30018639 PMCID: PMC6029501 DOI: 10.1155/2018/4579734] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ, ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on avian species.
Collapse
Affiliation(s)
- Namya Mellouk
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alix Barbe
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Jérémy Grandhaye
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Pascal Froment
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| |
Collapse
|
43
|
NAMPT enzyme activity regulates catabolic gene expression in gingival fibroblasts during periodontitis. Exp Mol Med 2017; 49:e368. [PMID: 28819322 PMCID: PMC5579510 DOI: 10.1038/emm.2017.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is one of the most prevalent chronic disorders worldwide. It is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss. Here, we focused on the role of adipokines, which are locally expressed by periodontal tissues, in the regulation of catabolic gene expression leading to periodontal inflammation. The expression of the nicotinamide phosphoribosyltransferase (NAMPT) adipokine was dramatically increased in inflamed human and mouse gingival tissues. NAMPT expression was also increased in lipopolysaccharide- and proinflammatory cytokine-stimulated primary cultured human gingival fibroblasts (GF). Adenovirus-mediated NAMPT (Ad-Nampt) overexpression upregulated the expression and activity of COX-2, MMP1 and MMP3 in human GF. The upregulation of IL-1β- or Ad-Nampt-induced catabolic factors was significantly abrogated by the intracellular NAMPT (iNAMPT) inhibitor, FK866 or by the sirtuin (SIRT) inhibitor, nicotinamide (NIC). Recombinant NAMPT protein or extracellular NAMPT (eNAMPT) inhibition using a blocking antibody did not alter NAMPT target gene expression levels. Moreover, intragingival Ad-Nampt injection mediated periodontitis-like phenotypes including alveolar bone loss in mice. SIRT2, a part of the SIRT family, was positively associated with NAMPT actions in human GF. Furthermore, in vivo inhibition of the NAMPT-NAD+-SIRT axis by NIC injection in mice ameliorated the periodontal inflammation and alveolar bone erosion caused by intragingival injection of Ad-Nampt. Our findings indicate that NAMPT is highly upregulated in human GF, while its enzymatic activity acts as a crucial mediator of periodontal inflammation and alveolar bone destruction via regulation of COX-2, MMP1, and MMP3 levels.
Collapse
|
44
|
Guo JY, Li F, Wen YB, Cui HX, Guo ML, Zhang L, Zhang YF, Guo YJ, Guo YX. Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis. Oncotarget 2017; 8:55967-55983. [PMID: 28915567 PMCID: PMC5593538 DOI: 10.18632/oncotarget.18356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/12/2017] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease mainly characterized by cartilage degradation. Interleukin-1β (IL-1β) contributes to OA pathogenesis by enhancing oxidative stress and inflammation. Melatonin reportedly elicits potent protection against OA. However, the role of melatonin and underlying mechanism in IL-1β-stimulated chondrocytes remain largely unclear. In this study, we found that melatonin inhibited IL-1β-induced toxicity and sirtuin 1 (Sirt1) enhancement in human chondrocytes. Melatonin reduced the IL-1β-increased nicotinamide phosphoribosyltransferase (NAMPT) expression and the NAD+ level in chondrocytes in a Sirt1-dependent manner. In turn, the inhibitory effect of melatonin on Sirt1 was mediated by NAMPT. Moreover, melatonin suppressed IL-1β-induced Sirt1-mediated matrix metalloproteinase (MMP)-3 and MMP-13 production. Melatonin also decreased the Sirt1-steered nuclear factor of activated T cells 5 (NFAT5) expression in IL-1β-challenged chondrocytes. NFAT5 depletion mimicked the suppressive effects of melatonin on IL-1β-elevated production of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1β, prostaglandin E2 (PGE2), and nitric oxide (NO) in chondrocytes. TNF-α, IL-1β, PGE2, or NO decrease caused the similar reduction of MMP-3 and MMP-13 by melatonin in IL-1β-insulted chondrocytes. Highly consistent with in vitro findings, in vivo results demonstrated that melatonin repressed the expression of relevant genes in rat OA pathogenesis in anterior cruciate ligament transection model. Overall, these results indicate that melatonin effectively reduced IL-1β-induced MMP production by inhibiting Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes, suggesting melatonin as a potential therapeutic alternative for chondroprotection of OA patients.
Collapse
Affiliation(s)
- Jia Yi Guo
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Feng Li
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yong Bing Wen
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Hong Xun Cui
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Ma Long Guo
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Lin Zhang
- Department of Surgery, Advanced Clinical Skills Centre, University of Auckland, Auckland, New Zealand
| | - Yun Fei Zhang
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yan Jin Guo
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| | - Yan Xing Guo
- Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, China
| |
Collapse
|
45
|
Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death Dis 2017; 8:e2705. [PMID: 28333140 PMCID: PMC5386535 DOI: 10.1038/cddis.2017.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein implicated in the pathogenesis of acute respiratory distress syndrome, aging, cancer, coronary heart diseases, diabetes, nonalcoholic fatty liver disease, obesity, rheumatoid arthritis, and sepsis. However, the underlying molecular mechanisms of NAMPT in these physiological and pathological processes are not fully understood. Here, we provide experimental evidence that a Nampt gene homozygous knockout (Nampt−/−) resulted in lethality at an early stage of mouse embryonic development and death within 5–10 days in adult mice accompanied by a 25.24±2.22% body weight loss, after the tamoxifen induction of NamptF/F × Cre mice. These results substantiate that Nampt is an essential gene for life. In Nampt−/− mice versusNampt+/+ mice, biochemical assays indicated that liver and intestinal tissue NAD levels were decreased significantly; histological examination showed that mouse intestinal villi were atrophic and disrupted, and visceral fat was depleted; mass spectrometry detected unusual higher serum polyunsaturated fatty acid containing triglycerides. RNA-seq analyses of both mouse and human pediatric liver transcriptomes have convergently revealed that NAMPT is involved in key basic cellular functions such as transcription, translation, cell signaling, and fundamental metabolism. Notably, the expression of all eight enzymes in the tricarboxylic acid cycle were decreased significantly in the Nampt−/− mice. These findings prompt us to posit that adult Nampt−/− mouse lethality is a result of a short supply of ATP from compromised intestinal absorption of nutrients from digested food, which leads to the exhaustion of body fat stores.
Collapse
|
46
|
Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res 2017; 10:1178646917691938. [PMID: 28469468 PMCID: PMC5398323 DOI: 10.1177/1178646917691938] [Citation(s) in RCA: 731] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory and functional aspects of the kynurenine (K) pathway (KP) of tryptophan (Trp) degradation are reviewed. The KP accounts for ~95% of dietary Trp degradation, of which 90% is attributed to the hepatic KP. During immune activation, the minor extrahepatic KP plays a more active role. The KP is rate-limited by its first enzyme, Trp 2,3-dioxygenase (TDO), in liver and indoleamine 2,3-dioxygenase (IDO) elsewhere. TDO is regulated by glucocorticoid induction, substrate activation and stabilization by Trp, cofactor activation by heme, and end-product inhibition by reduced nicotinamide adenine dinucleotide (phosphate). IDO is regulated by IFN-γ and other cytokines and by nitric oxide. The KP disposes of excess Trp, controls hepatic heme synthesis and Trp availability for cerebral serotonin synthesis, and produces immunoregulatory and neuroactive metabolites, the B3 “vitamin” nicotinic acid, and oxidized nicotinamide adenine dinucleotide. Various KP enzymes are undermined in disease and are targeted for therapy of conditions ranging from immunological, neurological, and neurodegenerative conditions to cancer.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
47
|
Huang P, Lee MW, Sadrerafi K, Heruth DP, Zhang LQ, Maulik D, Ye SQ. MC-PPEA as a new and more potent inhibitor of CLP-induced sepsis and pulmonary inflammation than FK866. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:629-641. [PMID: 28424540 PMCID: PMC5344436 DOI: 10.2147/dddt.s125349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Our previous study indicated that overexpression of nicotinamide phosphoribosyltransferase (NAMPT) aggravated acute lung injury, while knockdown of NAMPT expression attenuated ventilator-induced lung injury. Recently, we found that meta-carborane-butyl-3-(3-pyridinyl)-2E-propenamide (MC-PPEA, MC4), in which the benzoylpiperidine moiety of FK866 has been replaced by a carborane, displayed a 100-fold increase in NAMPT inhibition over FK866. Here, we determined the effects of MC4 and FK866 on cecal ligation and puncture (CLP) surgery-induced sepsis in C57BL/6J mice. MC4 showed stronger inhibitory effects than FK866 on CLP-induced mortality, serum tumor necrosis factor α (TNFα) levels, pulmonary myeloperoxidase activity, alveolar injury, and interleukin 6 and interleukin1β messenger RNA levels. In vitro cell permeability and electric cell-substrate impedance sensing assays demonstrated that MC4 inhibited TNFα- and thrombin-mediated pulmonary endothelial cell permeability better than FK866. MC4 also exerted more potent effects than FK866, at concentrations as low as 0.3 nM, to attenuate TNFα-mediated intracellular cytokine expression, nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH levels, and nuclear factor kappa B p65 phosphorylation and nuclear translocation in A549 cells. Our results strongly suggest that the newly developed MC4 is a more potent suppressor of CLP-induced pulmonary inflammation and sepsis than FK866, with potential clinical application as a new treatment agent for sepsis and inflammation.
Collapse
Affiliation(s)
- Peixin Huang
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Mark W Lee
- Department of Chemistry, University of Missouri, Columbia, MO
| | | | - Daniel P Heruth
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Li Q Zhang
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Dev Maulik
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine.,Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, MO, USA
| | - Shui Qing Ye
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City.,Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, MO, USA
| |
Collapse
|
48
|
Travelli C, Aprile S, Rahimian R, Grolla AA, Rogati F, Bertolotti M, Malagnino F, di Paola R, Impellizzeri D, Fusco R, Mercalli V, Massarotti A, Stortini G, Terrazzino S, Del Grosso E, Fakhfouri G, Troiani MP, Alisi MA, Grosa G, Sorba G, Canonico PL, Orsomando G, Cuzzocrea S, Genazzani AA, Galli U, Tron GC. Identification of Novel Triazole-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors Endowed with Antiproliferative and Antiinflammatory Activity. J Med Chem 2017; 60:1768-1792. [DOI: 10.1021/acs.jmedchem.6b01392] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Travelli
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Reza Rahimian
- Department
of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department
of Psychiatry and Neuroscience, Faculty of Medicine, Research Center
of the Mental Health Institute of Quebec, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Ambra A. Grolla
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Federica Rogati
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Mattia Bertolotti
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Floriana Malagnino
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Rosanna di Paola
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via C. Valeria Gazzi, 98100 Messina, Italy
| | - Daniela Impellizzeri
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via C. Valeria Gazzi, 98100 Messina, Italy
| | - Roberta Fusco
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via C. Valeria Gazzi, 98100 Messina, Italy
| | - Valentina Mercalli
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Alberto Massarotti
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Giorgio Stortini
- Department
of Oncology, Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Salvatore Terrazzino
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Erika Del Grosso
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Gohar Fakhfouri
- Department
of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Pia Troiani
- R&D, Angelini Research Center, Piazzale della Stazione, 00040 S. Palomba-Pomezia, Italy
| | | | - Giorgio Grosa
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Giovanni Sorba
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Pier Luigi Canonico
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Giuseppe Orsomando
- Department
of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131 Ancona, Italy
| | - Salvatore Cuzzocrea
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via C. Valeria Gazzi, 98100 Messina, Italy
| | - Armando A. Genazzani
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Ubaldina Galli
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Gian Cesare Tron
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
49
|
Chen J, Sysol JR, Singla S, Zhao S, Yamamura A, Valdez-Jasso D, Abbasi T, Shioura KM, Sahni S, Reddy V, Sridhar A, Gao H, Torres J, Camp SM, Tang H, Ye SQ, Comhair S, Dweik R, Hassoun P, Yuan JXJ, Garcia JGN, Machado RF. Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation 2017; 135:1532-1546. [PMID: 28202489 DOI: 10.1161/circulationaha.116.024557] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a severe and progressive disease, a hallmark of which is pulmonary vascular remodeling. Nicotinamide phosphoribosyltransferase (NAMPT) is a cytozyme that regulates intracellular nicotinamide adenine dinucleotide levels and cellular redox state, regulates histone deacetylases, promotes cell proliferation, and inhibits apoptosis. We hypothesized that NAMPT promotes pulmonary vascular remodeling and that inhibition of NAMPT could attenuate pulmonary hypertension. METHODS Plasma, mRNA, and protein levels of NAMPT were measured in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension and in the lungs of rodent models of pulmonary hypertension. Nampt+/- mice were exposed to 10% hypoxia and room air for 4 weeks, and the preventive and therapeutic effects of NAMPT inhibition were tested in the monocrotaline and Sugen hypoxia models of pulmonary hypertension. The effects of NAMPT activity on proliferation, migration, apoptosis, and calcium signaling were tested in human pulmonary artery smooth muscle cells. RESULTS Plasma and mRNA and protein levels of NAMPT were increased in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension, as well as in lungs of rodent models of pulmonary hypertension. Nampt+/- mice were protected from hypoxia-mediated pulmonary hypertension. NAMPT activity promoted human pulmonary artery smooth muscle cell proliferation via a paracrine effect. In addition, recombinant NAMPT stimulated human pulmonary artery smooth muscle cell proliferation via enhancement of store-operated calcium entry by enhancing expression of Orai2 and STIM2. Last, inhibition of NAMPT activity attenuated monocrotaline and Sugen hypoxia-induced pulmonary hypertension in rats. CONCLUSIONS Our data provide evidence that NAMPT plays a role in pulmonary vascular remodeling and that its inhibition could be a potential therapeutic target for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jiwang Chen
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Justin R Sysol
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sunit Singla
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Shuangping Zhao
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Aya Yamamura
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Daniela Valdez-Jasso
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Taimur Abbasi
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Krystyna M Shioura
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sakshi Sahni
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Vamsi Reddy
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Arvind Sridhar
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Hui Gao
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Jaime Torres
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sara M Camp
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Haiyang Tang
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Shui Q Ye
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Suzy Comhair
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Raed Dweik
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Paul Hassoun
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Jason X-J Yuan
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Joe G N Garcia
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.).
| | - Roberto F Machado
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.).
| |
Collapse
|
50
|
Kim D, Lee G, Huh Y, Lee S, Park K, Kim S, Kim J, Koh J, Ryu J. NAMPT Is an Essential Regulator of RA-Mediated Periodontal Inflammation. J Dent Res 2017; 96:703-711. [DOI: 10.1177/0022034517690389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent studies have indicated a potential correlation between rheumatoid arthritis (RA) and periodontal inflammation. We undertook this study to verify whether RA mediates periodontitis-like phenotypes in experimental mouse models of RA and to explore the role of nicotinamide phosphoribosyltransferase (NAMPT) in periodontal inflammation during RA pathogenesis. Periodontal inflammation and alveolar bone loss have been reported in mice with collagen-induced arthritis (CIA) and in genetically modified tumor necrosis factor–α (TNF-α) transgenic (TG) mouse models. Among the adipokines examined in our study, NAMPT expression was markedly upregulated in the periodontal ligament (PDL) tissues in RA mouse models and in human PDL cells stimulated by the proinflammatory cytokines, interleukin (IL) 1β and TNF-α. When NAMPT was overexpressed with the Nampt-synthesizing adenovirus vector (Ad- Nampt), the PDL cells exhibited an increased expression of cytokines (IL6), chemokines (IL8 and chemokine [C-C motif] ligand 5 [CCL5]), inflammatory mediators (cyclooxygenase 2 [COX-2]), and matrix-degrading enzymes (matrix metalloproteinase [MMP] 1 and MMP3). Inhibition of NAMPT by the intracellular NAMPT (iNAMPT) inhibitor, FK866, or by the sirtuin inhibitor, nicotinamide, in PDL cells led to inhibition of the IL1β or Ad- Nampt–induced upregulation of catabolic factors, whereas treatment with recombinant NAMPT protein or blockade of extracellular NAMPT (eNAMPT) with blocking antibody did not. Moreover, NAMPT inhibition by the intraperitoneal or intragingival injection of FK866 in CIA mice inhibited periodontal tissue damage, under conditions of RA. Thus, our results verified the co-occurrence of RA and periodontal inflammation using experimental mouse models of RA, suggesting that iNAMPT in PDL cells plays a pivotal role in the pathogenesis of RA-mediated periodontal inflammation by regulating the expression levels of catabolic genes, such as IL6, IL8, CCL5, COX-2, MMP1, and MMP3.
Collapse
Affiliation(s)
- D. Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - G. Lee
- Bioimaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Y.H. Huh
- Bioimaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - S.Y. Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - K.H. Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - S. Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J. Kim
- Department of Pediatric Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J. Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J. Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|