1
|
Salinas P, Ponce N, del Sol M, Vásquez B. Impact of PM2.5 Exposure from Wood Combustion on Reproductive Health: Implications for Fertility, Ovarian Function, and Fetal Development. TOXICS 2025; 13:238. [PMID: 40278554 PMCID: PMC12031264 DOI: 10.3390/toxics13040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025]
Abstract
This study evaluates the impact of PM2.5 exposure from wood combustion on reproductive health and fetal development using an experimental model in Sprague Dawley rats. The study was conducted in Temuco, Chile, where high levels of air pollution are primarily attributed to residential wood burning. A multigenerational exposure model was implemented using controlled exposure chambers with filtered (FA) and unfiltered (NFA) air. Second-generation (G2) female rats (n = 48) were exposed pregestationally (60 days) and gestationally (23 days) under four conditions: FA/FA, FA/NFA, NFA/FA, and NFA/NFA. PM2.5 concentration and composition were monitored using beta-ray attenuation and X-ray fluorescence spectrometry. Reproductive parameters, ovarian follicle counts, and hormonal levels were assessed via vaginal cytology, histological analysis, and chemiluminescence immunoassays. PM2.5 exposure disrupted estrous cyclicity (p = 0.0001), reduced antral and growing follicles (p = 0.0020; p = 0.0317), and increased post-implantation losses (p = 0.0149). Serum progesterone and estradiol levels were significantly altered (p < 0.05). Despite ovarian disruptions, fertility rates remained unchanged. These findings suggest that chronic exposure to wood smoke-derived PM2.5 adversely affects ovarian function and fetal growth without significantly impairing overall reproductive capacity. This study highlights the need for public health policies to mitigate wood smoke pollution.
Collapse
Affiliation(s)
- Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile
| | - Nikol Ponce
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.P.); (M.d.S.)
- Center of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Mariano del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.P.); (M.d.S.)
- Center of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Bélgica Vásquez
- Center of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Temuco 4811230, Chile;
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
2
|
Tiwari A, Gajbhiye T, Pandey M, Agrawal K, Naik S, Meher S, Patel D, Dubey R, Malik TG, Zari M, Zari A, Alghamdi KM, Hakeem KR, Pandey SK. Foliar image-based characterization of airborne particulate matter in an urban area and its implications for remediation. Sci Rep 2025; 15:2212. [PMID: 39820289 PMCID: PMC11739406 DOI: 10.1038/s41598-024-84552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
This study addresses the pervasive issue of particulate matter (PM) emission in urban areas, proposing a better approach using scanning electron microscope (SEM) techniques to identify plant species effective in airborne PM removal. Conducted in Bilaspur city, the research strategically selected six plant species across four distinct sites and applied the SEM-Image J method for analysis, yielding significant insights, especially in the respirable PM range. Among the tested plant species, Senna Siamea and Dalbergia Sissoo emerged as consistent and standout performers, displaying the highest PM removal efficiency across all sites. Notably, the smaller leaves of Senna siamea and Dalbergia sissoo prevent PM from being resuspended in the air by strong winds, enhancing their overall performance in combating PM pollution. The SEM-EDS analysis was then employed for morphological and chemical characterizations of the PM, revealing anthropogenic sources as the primary contributors to pollution. Hazardous elements, including arsenic (As), antimony (Sb), iron (Fe), indium (In), terbium (Tb), chlorine (Cl), and iodine (I), were identified, underscoring potential health risks associated with the PM composition. The study underscores the significance of SEM-EDS based plant selection for mitigating airborne PM pollution and improving air quality. Senna Siamea and Dalbergia Sissoo are identified as top choices for effective PM removal, marking a significant step towards sustainable urban environments. The findings contribute valuable insights into the chemical makeup of PM, facilitating a deeper understanding of its sources and potential health implications. Overall, this research serves as a crucial step in developing strategies to combat air pollution and fosters the creation of healthier and more sustainable urban environments.
Collapse
Affiliation(s)
- Ankesh Tiwari
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
- Department of Botany, Government Naveen College, Kunda, Kabirdham, 491559, India
| | - Triratnesh Gajbhiye
- Department of Botany, Government Shankar Sao Patel college Waraseoni, Balaghat, MP, 481331, India
| | - Mohineeta Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
| | - Kajal Agrawal
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
| | - Shuvadarshini Naik
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
| | - Shubhrasmita Meher
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
| | - Dinesh Patel
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
| | - Rashmi Dubey
- Department of Chemistry, L.B.S. College, Baloda, Janjgir-Champa, C.G, 495559, India.
| | - Tanzil Gaffar Malik
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India
- National Taiwan University, Taipe, Taiwan
| | - Mohammed Zari
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, 80203, Jeddah, 21589, Saudi Arabia
| | - Ali Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- University Centre for Research and Development (UCRD), Chandigarh University, Mohali, Punjab, India
- Centre of Excellence in Bionanoscience, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya, (A Central University) Koni, Bilaspur, C.G, 495009, India.
| |
Collapse
|
3
|
Zhang BJ, Zhou Y, Pawełkowicz M, Sadłos A, Żurkowski M, Małecka-Przybysz M, Wójcik-Gront E, Zhu CY, Przybysz A. Autumn and winter air phytofiltration - Are plants able to biofilter air during peak pollutant emissions? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124027. [PMID: 39754801 DOI: 10.1016/j.jenvman.2025.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively. This study investigated the ability of nine species of leafy evergreen plants to accumulate PM (surface and in-wax PM; PM2.5 and PM10) and TE in autumn and winter. Plant material was harvested in November and December from the park in Wuhan, China. The amount of accumulated pollutants depended on the species. The shrubs (Loropetalum chinense, Pittosporum tobira, Rhododendron simsii) and grass (Ophiopogon japonicus), were more effective at phytofiltration of PM and TE per leaf area unit than the trees. However, to better understand the potential of plants to accumulate PM in relation to a unit of land area, the leaf area index (LAI) has to be considered. Ligustrum lucidum and P. tobira characterized by low LAI, despite having PM deposition comparable to other trees and shrubs, exhibited a markedly reduced efficacy of pollutants accumulation in relation to square metre of land they occupy. In contrast to the TE concentration in winter, PM deposition on plants did not always increase after the autumn, probably due to the park's low density of vegetation, PM resuspension by wind, and a decrease in the plants' physiological activity. Seasonal variations in pollutants accumulation among species were recorded during the autumn/winter. This study reinforces the need for biodiversity and higher-density urban greening to optimize post-growth air phytofiltration. A holistic, year-round air pollution mitigation strategy should be provided by incorporating more diverse evergreen plant species with complementary phytofiltering properties.
Collapse
Affiliation(s)
- B J Zhang
- College of Horticulture and Forestry, Huazhong Agricultural University, No. 1 Shizishan Street Hongshan District, Wuhan, Hubei, 430070, China
| | - Y Zhou
- College of Horticulture and Forestry, Huazhong Agricultural University, No. 1 Shizishan Street Hongshan District, Wuhan, Hubei, 430070, China
| | - M Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - A Sadłos
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - M Żurkowski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska Street 159, 02-776, Warsaw, Poland
| | - M Małecka-Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - E Wójcik-Gront
- Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - C Y Zhu
- College of Horticulture and Forestry, Huazhong Agricultural University, No. 1 Shizishan Street Hongshan District, Wuhan, Hubei, 430070, China.
| | - A Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland.
| |
Collapse
|
4
|
Furst L, Cipoli Y, Galindo N, Yubero E, Viegas C, Pena P, Nunes T, Feliciano M, Alves C. Comprehensive analysis of particulate matter, gaseous pollutants, and microbiological contamination in an international chain supermarket. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125236. [PMID: 39505100 DOI: 10.1016/j.envpol.2024.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Indoor environmental quality is of utmost importance since urban populations spend a large proportion of their life in confined spaces. Supermarkets offer a wide range of products and services that are prone to emitting several air pollutants. This study aimed to perform a comprehensive characterisation of the indoor and outdoor air quality in a multinational supermarket, encompassing not only criteria parameters but also unregulated pollutants of concern. Monitoring included measurements of comfort parameters, CO2, multiple gaseous pollutants, particulate matter (PM10) and bioburden. PM10, volatile organic compounds (VOCs) and carbonyls were subject to chemical speciation. Globally, the supermarket presented CO2, VOCs, and PM10 values below the limits imposed by international regulations. The PM10 concentration in the supermarket was 33.5 ± 23.2 μg/m3, and the indoor-to-outdoor PM10 ratio was 1.76. Carbonaceous constituents represented PM10 mass fractions of 21.6% indoors and 15.3% outdoors. Due to the use of stainless-steel utensils, flour and fermentation processes, the bakery proved to be a pollution hotspot, presenting the highest concentrations of PM10 (73.1 ± 9.16 μg/m3), PM10-bound elements (S, Cl, K, Ca, Ti, and Cr) and acetaldehyde (42.7 μg/m3). The maximum tetrachloroethylene level (130 μg/m3) was obtained in the cleaning products section. The highest values of colony-forming units of bacteria and fungi were recorded in the bakery, and fruit and vegetable section. The most prevalent fungal species was Penicillium sp., corresponding to 56.9% of the total colonies. In addition, other fungal species/sections with toxicological or pathogenic potential were detected (Aspergillus sections Aspergilli, Circumdati, Flavi, Mucor and Fusarium sp.).
Collapse
Affiliation(s)
- Leonardo Furst
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Yago Cipoli
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuria Galindo
- Department of Applied Physics, Miguel Hernández University, Elche, Spain
| | - Eduardo Yubero
- Department of Applied Physics, Miguel Hernández University, Elche, Spain
| | - Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal
| | - Pedro Pena
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA National School of Public Health, NOVA University Lisbon, 1099-085 Lisbon, Portugal
| | - Teresa Nunes
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel Feliciano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Célia Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Buwaniwal A, Joshi M, Sharma V, Gupta G, Khan A, Kansal S, Sapra BK. Long term measurements of aerosol mass concentration with optical particle counters: Discrepancies with plausible reasons. CHEMOSPHERE 2024; 363:142949. [PMID: 39067825 DOI: 10.1016/j.chemosphere.2024.142949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Gravimetry-based direct measurements of mass concentration require offline analysis which is not suited for field campaigns. Hence such campaigns rely on the estimation of mass concentration by indirect methods mostly calibrated in controlled laboratory conditions. Optical particle counter (OPC) employs algorithms converting the measured number concentration to mass concentration using appropriate conversion factors. The accuracy of such conversion has not been validated for widely varying atmospheric conditions. This study compares the mass concentration estimated by OPC with those directly obtained from gravimetry-based instruments for outdoor samples collected in Bathinda City, Punjab, India from January 2022 to November 2023. The difference in the gravimetrically measured and OPC predicted values quantified in terms of ratios (gravimetric to optically estimated mass concentration), came out to be 1.42 ± 0.77, 0.99 ± 0.51, and 1.17 ± 0.58 for PM10, PM2.5 and PM1, respectively. This difference when estimated with the back-up filter of OPC itself (C Factor), was 1.37 ± 0.66. More than half of the samples showed ratios outside the 0.8-1.2 range thus indicating under or over-estimation in the OPC predicted values. The probable role of variation in density, shape, and refractive index of atmospheric aerosol particles towards the observed inaccuracy of estimated mass concentration has been highlighted. In the absence of clear guidelines and protocols, the study suggests ways to improve the accuracy via periodic measurement of the C Factor and/or incorporating calibration factors in such measurements.
Collapse
Affiliation(s)
- Ankita Buwaniwal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Manish Joshi
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
| | - Veena Sharma
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Gagan Gupta
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Arshad Khan
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Sandeep Kansal
- Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Balvinder Kaur Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
6
|
Hofman J, Lazarov B, Stroobants C, Elst E, Smets I, Van Poppel M. Portable Sensors for Dynamic Exposure Assessments in Urban Environments: State of the Science. SENSORS (BASEL, SWITZERLAND) 2024; 24:5653. [PMID: 39275564 PMCID: PMC11398000 DOI: 10.3390/s24175653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
This study presents a fit-for-purpose lab and field evaluation of commercially available portable sensor systems for PM, NO2, and/or BC. The main aim of the study is to identify portable sensor systems that are capable of reliably quantifying dynamic exposure gradients in urban environments. After an initial literature and market study resulting in 39 sensor systems, 10 sensor systems were ultimately purchased and benchmarked under laboratory and real-word conditions. We evaluated the comparability to reference analyzers, sensor precision, and sensitivity towards environmental confounders (temperature, humidity, and O3). Moreover, we evaluated if the sensor accuracy can be improved by applying a lab or field calibration. Because the targeted application of the sensor systems under evaluation is mobile monitoring, we conducted a mobile field test in an urban environment to evaluate the GPS accuracy and potential impacts from vibrations on the resulting sensor signals. Results of the considered sensor systems indicate that out-of-the-box performance is relatively good for PM (R2 = 0.68-0.9, Uexp = 16-66%, BSU = 0.1-0.7 µg/m3) and BC (R2 = 0.82-0.83), but maturity of the tested NO2 sensors is still low (R2 = 0.38-0.55, Uexp = 111-614%) and additional efforts are needed in terms of signal noise and calibration, as proven by the performance after multilinear calibration (R2 = 0.75-0.83, Uexp = 37-44%)). The horizontal accuracy of the built-in GPS was generally good, achieving <10 m accuracy for all sensor systems. More accurate and dynamic exposure assessments in contemporary urban environments are crucial to study real-world exposure of individuals and the resulting impacts on potential health endpoints. A greater availability of mobile monitoring systems capable of quantifying urban pollutant gradients will further boost this line of research.
Collapse
Affiliation(s)
- Jelle Hofman
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Vlasmeer 5, 2400 Mol, Belgium
| | - Borislav Lazarov
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Vlasmeer 5, 2400 Mol, Belgium
| | | | - Evelyne Elst
- Flanders Environmental Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Inge Smets
- Flanders Environmental Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Martine Van Poppel
- Flanders Environmental Agency (VMM), Kronenburgstraat 45, 2000 Antwerp, Belgium
| |
Collapse
|
7
|
Zeb B, Alam K, Huang Z, Öztürk F, Wang P, Mihaylova L, Khokhar MF, Munir S. In-depth characterization of particulate matter in a highly polluted urban environment at the foothills of Himalaya-Karakorum Region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35705-35726. [PMID: 38739339 DOI: 10.1007/s11356-024-33487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the rising levels of atmospheric particulate matter (PM) have an impact on the earth's system, leading to undesirable consequences on various aspects like human health, visibility, and climate. The present work is carried out over an insufficiently studied but polluted urban area of Peshawar, which lies at the foothills of the famous Himalaya and Karakorum area, Northern Pakistan. The particulate matter with an aerodynamic diameter of less than 10 µm, i.e., PM10 are collected and analyzed for mineralogical, morphological, and chemical properties. Diverse techniques were used to examine the PM10 samples, for instance, Fourier transform infrared spectroscopy, x-ray diffraction, and scanning electron microscopy along with energy-dispersive x-ray spectroscopy, proton-induced x-ray emission, and an OC/EC carbon analyzer. The 24 h average PM10 mass concentration along with standard deviation was investigated to be 586.83 ± 217.70 µg/m3, which was around 13 times greater than the permissible limit of the world health organization (45 µg/m3) and 4 times the Pakistan national environmental quality standards for ambient PM10 (150 µg/m3). Minerals such as crystalline silicate, carbonate, asbestiform minerals, sulfate, and clay minerals were found using FTIR and XRD investigations. Microscopic examination revealed particles of various shapes, including angular, flaky, rod-like, crystalline, irregular, rounded, porous, chain, spherical, and agglomeration structures. This proved that the particles had geogenic, anthropogenic, and biological origins. The average value of organic carbon, elemental carbon, and total carbon is found to be 91.56 ± 43.17, 6.72 ± 1.99, and 102.41 ± 44.90 µg/m3, respectively. Water-soluble ions K+ and OC show a substantial association (R = 0.71). Prominent sources identified using Principle component analysis (PCA) are anthropogenic, crustal, industrial, and electronic combustion. This research paper identified the potential sources of PM10, which are vital for preparing an air quality management plan in the urban environment of Peshawar.
Collapse
Affiliation(s)
- Bahadar Zeb
- Department of Mathematics, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Khan Alam
- Collaborative Innovation Centre for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China.
- Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Zhongwei Huang
- Collaborative Innovation Centre for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fatma Öztürk
- Faculty of Engineering, Environmental Engineering Department, Bolu Abant İzzet Baysal University, Gölköy Campus 14030, Bolu, Turkey
| | - Peng Wang
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Lyudmila Mihaylova
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Said Munir
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Meraz-Cruz N, Manzano-León N, Sandoval-Colin DE, García de León Méndez MDC, Quintana-Belmares R, Tapia LS, Osornio-Vargas AR, Buxton MA, O’Neill MS, Vadillo-Ortega F. Effects of PM 10 Airborne Particles from Different Regions of a Megacity on In Vitro Secretion of Cytokines by a Monocyte Line during Different Seasons. TOXICS 2024; 12:149. [PMID: 38393244 PMCID: PMC10892217 DOI: 10.3390/toxics12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several epidemiological studies have demonstrated that particulate matter (PM) in air pollution can be involved in the genesis or aggravation of different cardiovascular, respiratory, perinatal, and cancer diseases. This study assessed the in vitro effects of PM10 on the secretion of cytokines by a human monocytic cell line (THP-1). We compared the chemotactic, pro-inflammatory, and anti-inflammatory cytokines induced by PM10 collected for two years during three different seasons in five different Mexico City locations. MIP-1α, IP-10, MCP-1, TNF-α, and VEGF were the main secretion products after stimulation with 80 μg/mL of PM10 for 24 h. The THP-1 cells showed a differential response to PM10 obtained in the different sites of Mexico City. The PM10 from the north and the central city areas induced a higher pro-inflammatory cytokine response than those from the south. Seasonal pro-inflammatory cytokine secretion always exceeded anti-inflammatory secretion. The rainy-season-derived particles caused the lowest pro-inflammatory effects. We concluded that toxicological assessment of airborne particles provides evidence supporting their potential role in the chronic exacerbation of local or systemic inflammatory responses that may worsen the evolution of some chronic diseases.
Collapse
Affiliation(s)
- Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Natalia Manzano-León
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Daniel Eduardo Sandoval-Colin
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - María del Carmen García de León Méndez
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Laura Sevilla Tapia
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.M.-L.); (R.Q.-B.); (L.S.T.)
| | - Alvaro R. Osornio-Vargas
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Miatta A. Buxton
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
| | - Marie S. O’Neill
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.A.B.); (M.S.O.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (N.M.-C.); (D.E.S.-C.); (M.d.C.G.d.L.M.)
- Department of Environmental Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Banoo R, Gupta S, Gadi R, Dawar A, Vijayan N, Mandal TK, Sharma SK. Chemical characteristics, morphology and source apportionment of PM 10 over National Capital Region (NCR) of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:163. [PMID: 38231424 DOI: 10.1007/s10661-023-12281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
The present study frames the physico-chemical characteristics and the source apportionment of PM10 over National Capital Region (NCR) of India using the receptor model's Positive Matrix Factorization (PMF) and Principal Momponent Mnalysis/Absolute Principal Component Score-Multilinear Regression (PCA/APCS-MLR). The annual average mass concentration of PM10 over the urban site of Faridabad, IGDTUW-Delhi and CSIR-NPL of NCR-Delhi were observed to be 195 ± 121, 275 ± 141 and 209 ± 81 µg m-3, respectively. Carbonaceous species (organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC)), elemental constituents (Al, Ti, Na, Mg, Cr, Mn, Fe, Cu, Zn, Br, Ba, Mo Pb) and water-soluble ionic components (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Mg2+, Ca2+) of PM10 were entrenched to the receptor models to comprehend the possible sources of PM10. The PMF assorted sources over Faridabad were soil dust (SD 15%), industrial emission (IE 14%), vehicular emission (VE 19%), secondary aerosol (SA 23%) and sodium magnesium salt (SMS 17%). For IGDTUW-Delhi, the sources were SD (16%), VE (19%), SMS (18%), IE (11%), SA (27%) and VE + IE (9%). Emission sources like SD (24%), IE (8%), SMS (20%), VE + IE (12%), VE (15%) and SA + BB (21%) were extracted over CSIR-NPL, New Delhi, which are quite obvious towards the sites. PCA/APCS-MLR quantified the similar sources with varied percentage contribution. Additionally, catalogue the Conditional Bivariate Probability Function (CBPF) for directionality of the local source regions and morphology as spherical, flocculent and irregular were imaged using a Field Emission-Scanning Electron Microscope (FE-SEM).
Collapse
Affiliation(s)
- Rubiya Banoo
- CSIR-National Physical Laboratory, D, K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarika Gupta
- Indira Gandhi Delhi Technical University for Women, Kashmiri Gate, New Delhi, 110006, India
| | - Ranu Gadi
- Indira Gandhi Delhi Technical University for Women, Kashmiri Gate, New Delhi, 110006, India
| | - Anit Dawar
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narayanasamy Vijayan
- CSIR-National Physical Laboratory, D, K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tuhin Kumar Mandal
- CSIR-National Physical Laboratory, D, K S Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhir Kumar Sharma
- CSIR-National Physical Laboratory, D, K S Krishnan Road, New Delhi, 110012, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Zeb B, Ditta A, Alam K, Sorooshian A, Din BU, Iqbal R, Habib Ur Rahman M, Raza A, Alwahibi MS, Elshikh MS. Wintertime investigation of PM 10 concentrations, sources, and relationship with different meteorological parameters. Sci Rep 2024; 14:154. [PMID: 38167892 PMCID: PMC10761681 DOI: 10.1038/s41598-023-49714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Meteorological factors play a crucial role in affecting air quality in the urban environment. Peshawar is the capital city of the Khyber Pakhtunkhwa province in Pakistan and is a pollution hotspot. Sources of PM10 and the influence of meteorological factors on PM10 in this megacity have yet to be studied. The current study aims to investigate PM10 mass concentration levels and composition, identify PM10 sources, and quantify links between PM10 and various meteorological parameters like temperature, relative humidity (RH), wind speed (WS), and rainfall (RF) during the winter months from December 2017 to February 2018. PM10 mass concentrations vary from 180 - 1071 µg m-3, with a mean value of 586 ± 217 µg m-3. The highest concentration is observed in December, followed by January and February. The average values of the mass concentration of carbonaceous species (i.e., total carbon, organic carbon, and elemental carbon) are 102.41, 91.56, and 6.72 μgm-3, respectively. Water-soluble ions adhere to the following concentration order: Ca2+ > Na+ > K+ > NH4+ > Mg2+. Twenty-four elements (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Co, Zn, Ga, Ge, As, Se, Kr, Ag, Pb, Cu, and Cd) are detected in the current study by PIXE analysis. Five sources based on Positive Matrix Factorization (PMF) modeling include industrial emissions, soil and re-suspended dust, household combustion, metallurgic industries, and vehicular emission. A positive relationship of PM10 with temperature and relative humidity is observed (r = 0.46 and r = 0.56, respectively). A negative correlation of PM10 is recorded with WS (r = - 0.27) and RF (r = - 0.46). This study's results motivate routine air quality monitoring owing to the high levels of pollution in this region. For this purpose, the establishment of air monitoring stations is highly suggested for both PM and meteorology. Air quality standards and legislation need to be revised and implemented. Moreover, the development of effective control strategies for air pollution is highly suggested.
Collapse
Affiliation(s)
- Bahadar Zeb
- Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Khan Alam
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Hydrology and Atmospheric Sciences, University Arizona, Tucson, AZ, 85721, USA
| | - Badshah Ud Din
- University Boys College, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammed Habib Ur Rahman
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Punjab, Pakistan
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Ahsan Raza
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany.
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Li S, Ju X, Liu Q, Yan Y, Zhang C, Qin Y, Deng X, Li C, Tian M, Zhang Y, Jin N, Jiang C. Ambient atmospheric PM worsens mouse lung injury induced by influenza A virus through lysosomal dysfunction. Respir Res 2023; 24:306. [PMID: 38057804 DOI: 10.1186/s12931-023-02618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.
Collapse
Affiliation(s)
- Shunwang Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiangwu Ju
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qiang Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yiwu Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Cong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhao Qin
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xingyu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yanli Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
13
|
Sarwar F, Alam K, Öztürk F, Koçak M, Malik RN. Appraising the characteristics of particulate matter from leather tanning micro-environments, their respirational risks, and dysfunctions amid exposed working cohorts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1556. [PMID: 38036894 DOI: 10.1007/s10661-023-12180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Leather tanneries are known for chemical laden work environments and pulmonic complaints among workers. This study presents an analysis of tannery micro-environments emphasizing on size-based variation in composition of particulate matter and consequent respiratory dysfunctions. Qualitative (FTIR, SEM-EDX) and quantitative assessment (elemental composition, carbon forms) of PM10 and 2.5 has been employed. For lung function evaluation of workforce, spirometry with ATS proprieties was used. The peak concentrations of both PM10 and 2.5 have been found at PU, FU, and B&S. The LTCR for only Cr is high for both PM2.5 and PM10. HQ was high for Al, Cr, and Mn for both PM sizes. The maximum organic and secondary organic carbon in PM10 was found at FU and in PM2.5 at PU. The varied PM composition included carbohydrate (B&S, WMO), ether (S&S, P&S) and hydroxyl (B&S, S&S, P&S), proteins, polyenes, vinyl groups (S&S, P&S, FU), alcohols (PU and FU), and aldehyde present at PU. These results were armored by high organic and total carbon concentrations for the same sites. Therefore, PM are classified into biogenic (carbonaceous: microbial and animal remains) from PU and WMO, incidental (industrial, mixt physico-chemical character) from PU, FU, WMO, B&S and P&S, and geogenic (crustal mineral dust) from RHT, B&S, PU, and P&S. Furthermore, increase in metal concentrations in PM10 (Cr, Mn, Co, Ni, V, As, Be, Ba, and Cd) and PM2.5 (As, Pb) while TC, OC, and SOC in PM2.5 caused depreciation overall lung function. The exposure to biogenic and incidental PM nature are key cause of pulmonic dysfunction.
Collapse
Affiliation(s)
- Fiza Sarwar
- Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fatma Öztürk
- Environmental Engineering Department, Faculty of Engineering, Bolu Abant Izzet Baysal University, Gölköy Campus, Bolu, 14030, Turkey
| | - Mustafa Koçak
- Chemical Oceanography, Institute of Marine Sciences, Middle East Technological University, Ankara, Mersin, Turkey
| | - Riffat Naseem Malik
- Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
14
|
Muruganandam N, Narayanan R. Divulging the dust: An examination of particle deposition on soft ocular lens during urban commuting. CHEMOSPHERE 2023; 344:140355. [PMID: 37806329 DOI: 10.1016/j.chemosphere.2023.140355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Air pollution affecting the eye is a relatively new, emerging area of research that has implications for urban commuting and is the key first study. This article emphasizes the importance of understanding the effects of particle deposition on the human eye using soft lenses and their exposure, as well as identifying the chemical, elemental composition, and morphology of particles when commuting over a period of 21-day period. In this study, the focus is on personal sampling with soft contact lenses (42% Hioxifilcon A, 58% H2O) to understand particle deposition on ocular along with cascade to understand cut-off size. Volunteers are used for five different modes, namely bus, open and closed car windows, pedestrian, and two-wheeler. The SEM results show that the morphology in buses, pedestrians and cars are denser, irregular, and nodular, with no or minimal interstitial pores, while the particles in two-wheelers appeared to be fibrous, thin, crystalline, and non-porous ranging from 51.2 nm to 406.3 nm. The ICPMS results show the higher concentration compositions for different commuter types, namely: zinc (0.0562 μg/m3 and 0.1076 μg/m3) for buses and pedestrians, potassium (1.5013 μg/m3) and calcium (2.5892 μg/m3), magnesium (2.978 μg/m3), potassium (4.197 μg/m3), calcium (22.335 μg/m3) and iron (7.526 μg/m3) for two-wheelers. The organic elemental composition from FTIR predominant groups namely carbonyl, carboxylic, OH, N-H, C-H, CC, CO, and C-O. The experiment concludes that travellers in two-wheelers and pedestrians are more susceptible to particle deposits which leads to several ocular effects such as eye-irritation, dryness, and visual impairment.
Collapse
Affiliation(s)
- Niveditha Muruganandam
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049 India; Research Scholar, Anna University, Chennai, Tamil Nadu, 600025 India
| | - Ramsundram Narayanan
- Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049 India.
| |
Collapse
|
15
|
Logesh B, Karthik V, Bhaskar BV, Ebenezer E, Kumar MA. Implications of equivalent black carbon heterogeneity in south Indian high-altitude eco-sensitive region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1374. [PMID: 37880449 DOI: 10.1007/s10661-023-11957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Large-scale representative source apportionment studies are uncommon, undermining source contribution studies in India, particularly in high-altitude locations. Kodaikanal is a high-altitude region in India's Western Ghats, with spatial heterogeneity of sources altering chemical complexity; thus, the associated implications are unknown. We conducted the campaign study REBER (Research on Equivalent Black Carbon Monitoring in an Eco-sensitive Region) at three Kodaikanal sites to understand local point sources, characteristics, and distribution of eBC during the winter-to-summer monsoon transition. For two main reasons: to understand the seasonal change of BC since the transition period has the lowest wind speeds and the highest particulate concentrations and is prone to high pollution events most often during seasonal transition months, and to study local pollution since the meridional monsoon and zonal winds in study region weaken whereby the transport of pollutants from ocean to land and vice versa is minimal. The results showed that the eBC mass concentration was 85% higher than in the previous study conducted by Bhaskar et al. (2018) during the monsoon transition period. To determine the ratio of fossil fuel and wood-burning sources, a real-time apportionment model of atmospheric eBC is used. The percentage of wood burning in the background location ranges from 21.12 to 88.98%. Wood burning leads in residential sites with 57.5 ± 7.3%, whereas fossil fuel contribution dominates traffic sites with 69.84 ± 10.2%. Fossil fuel contributions are significant in different characteristics of environments, ranging from 42.5 to 69.84%. The results of the conditional bivariate probability function (CBPF) analysis pointed out a competition between anthropogenic and natural sources to contribute as local sources to the monitoring stations. A scanning electron microscope (SEM) paired with an energy dispersive X-ray (EDX) analysis found that the particle size was 93% relatively large compared to other hill stations in India. The variation in the chemical constituents indicates that the particles originated from various sources.
Collapse
Affiliation(s)
- B Logesh
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India
| | - V Karthik
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India
| | - B Vijay Bhaskar
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India.
| | - E Ebenezer
- Kodaikanal Solar Observatory, Indian Institute of Astrophysics, Kodaikanal, Dindigul, India
| | - M Arun Kumar
- Advanced Environmental Laboratory, Tamil Nadu Pollution Control Board, Coimbatore, 641114, India
| |
Collapse
|
16
|
Ahmad S, Zeb B, Ditta A, Alam K, Shahid U, Shah AU, Ahmad I, Alasmari A, Sakran M, Alqurashi M. Morphological, Mineralogical, and Biochemical Characteristics of Particulate Matter in Three Size Fractions (PM 10, PM 2.5, and PM 1) in the Urban Environment. ACS OMEGA 2023; 8:31661-31674. [PMID: 37692244 PMCID: PMC10483683 DOI: 10.1021/acsomega.3c01667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Air pollution in megacities is increasing due to the dense population index, increasing vehicles, industries, and burning activities that negatively impact human health and climate. There is limited study of air pollution in many megacities of the world including Pakistan. Lahore is a megacity in Pakistan in which the continuous investigation of particulate matter is very important. Therefore, this study investigates particulate matter in three size fractions (PM1, PM2.5, and PM10) in Lahore, a polluted city in south Asia. The particulate matter was collected daily during the winter season of 2019. The average values of PM1, PM2.5, and PM10 were found to be 102.00 ± 64.03, 188.31 ± 49.21, and 279.73 ± 75.04 μg m-3, respectively. Various characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) were used. FT-IR and XRD techniques identified the minerals and compounds like quartz, peroxides, calcites and vaterite, feldspar group, kaolinite clay minerals, chrysotile, vaterite, illite, hematite, dolomite, calcite, magnesium phosphate, ammonium sulfate, calcium iron oxide, gypsum, vermiculite, CuSO4, and FeSO4. Morphology and elemental composition indicated quartz, iron, biological particles, carbonate, and carbonaceous particles. In addition, various elements like C, O, B, Mg, Si, Ca, Cl, Al, Na, K, Zn, and S were identified. Based on the elemental composition and morphology, different particles along with their percentage were found like carbonaceous- (38%), biogenic- (14%), boron-rich particle- (14%), feldspar- (10%), quartz- (9%), calcium-rich particle- (5%), chlorine-rich particle- (5%), and iron-rich particle (5%)-based. The main sources of the particulate matter included vehicular exertion, biomass consumption, resuspended dust, biological emissions, activities from construction sites, and industrial emissions near the sampling area.
Collapse
Affiliation(s)
- Shafiq Ahmad
- Department
of Physics, University of Malakand, Chakdara 18800, Pakistan
| | - Bahadar Zeb
- Department
of Mathematics, Shaheed Benazir Bhutto University, Sheringal 18000, Pakistan
| | - Allah Ditta
- Department
of Environmental Science, Shaheed Benazir
Bhutto University, Sheringal 18000, Pakistan
- School
of Biological Sciences, The University of
Western Australia, 35
Stirling Highway, Perth, WA 6009, Australia
| | - Khan Alam
- Department
of Physics, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Umer Shahid
- Department
of Geology, Shaheed Benazir Bhutto University, Sheringal 18000, Pakistan
| | - Atta Ullah Shah
- National
Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences (NILOP-C,
PIEAS), Nilore 44000, Pakistan
| | - Iftikhar Ahmad
- Department
of Physics, University of Malakand, Chakdara 18800, Pakistan
| | - Abdulrahman Alasmari
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed Sakran
- Department
of Biochemistry, Faculty of Science, University
of Tabuk, Tabuk 71491, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of
Science, Tanta University, Tanta 31511, Egypt
| | - Mohammed Alqurashi
- Department of Biotechnology, Faculty of
Science, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
17
|
Saleh WM, Ahmad MI, Yahya EB, H P S AK. Nanostructured Bioaerogels as a Potential Solution for Particulate Matter Pollution. Gels 2023; 9:575. [PMID: 37504454 PMCID: PMC10379271 DOI: 10.3390/gels9070575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications.
Collapse
Affiliation(s)
- Wafa Mustafa Saleh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
18
|
Anake WU, Nnamani EA. Physico-chemical characterization of indoor settled dust in Children's microenvironments in Ikeja and Ota, Nigeria. Heliyon 2023; 9:e16419. [PMID: 37251465 PMCID: PMC10220365 DOI: 10.1016/j.heliyon.2023.e16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Indoor dust is a collection of particles identified as a major reservoir for several emerging indoor chemical pollutants. This study presents indoor dust particles' morphology and elemental composition in eight children's urban and semi-urban microenvironments (A-H) in Nigeria. Samples were collected using a Tesco vacuum cleaner and analyzed with scanning electron microscopy coupled with an energy-dispersive X-ray (SEM-EDX). The morphology results confirm the presence of alumino silicates, mineral particles and flakes, fly ash and soot, and soot aggregates deposited on alumino silicate particles in the sampled microenvironments. These particles may trigger serious health concerns that directly or indirectly affect the overall well-being of children. From the EDX analysis, the trend of elements (w/w %) in the dust particles across the sampled sites was silicon (386) > oxygen (174)> aluminium (114) > carbon (34.5) > iron (28.0) > calcium (16.7) > magnesium (14.2) > sodium (7.92) > potassium (7.58) > phosphorus (2.22) > lead (2.04) > manganese (1.17) > titanium (0.21). Lead (Pb), a toxic and carcinogenic heavy metal, was observed in locations A and B. This is a concern without a safe lead level because of the neurotoxicity effect on children. As a result, further research on the concentrations, bioavailability, and health risk assessment of heavy metals in these sampled locations is recommended. Furthermore, frequent vacuum cleaning, wet moping and adequate ventilation systems will significantly reduce the accumulation of indoor dust-bound metals.
Collapse
Affiliation(s)
- Winifred U. Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| | - Esther A. Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M.B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
19
|
Roy D, Kim J, Lee M, Park J. Adverse impacts of Asian dust events on human health and the environment-A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162637. [PMID: 36889412 DOI: 10.1016/j.scitotenv.2023.162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Malá Z, Loskot J, Bušovský D, Bezdíček Z, Komárek J, Ziembik Z. An extensive individual particle analysis of solid airborne particles collected in a moderately urbanized area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22950-22962. [PMID: 36308657 DOI: 10.1007/s11356-022-23862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Detailed individual particle characterization of PM10, in terms of particle size, morphology, and elemental composition, was done using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. The samples were collected in four localities in the Czech Republic (Central Europe), three of which are medium-sized cities, and one is a natural locality in the mountains. More than 1600 particles obtained from each locality were evaluated. During the sampling period (1.9.-8.9.2019), the atmospheric conditions were similar in the localities, which enabled the identification of PM10 characteristics common to all the sampling sites. Some differences in the particles' morphology and composition, arising from site-specific conditions, were observed too. The most abundant elements in the PM10 were C, O, Si, Fe, Al, Ca, Na, K, Mg, and S, but some toxic elements (Cr, Cu, and Ni) were also detected. The main component of the PM10 is carbon, whose multimodal distribution indicates that the particles contain different carbonaceous chemical compounds. The distribution of carbon in the natural locality was different compared to the other sites, suggesting a specific character of the sources of carbonaceous compounds in this region. Last but not least, a relationship between Al, Si, and O concentrations was found, which implies the presence of aluminosilicates and silicon dioxide (possibly sand) of crustal origin in the particles.
Collapse
Affiliation(s)
- Zuzana Malá
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
| | - Damián Bušovský
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Zdeněk Bezdíček
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Jan Komárek
- Czech Hydrometeorological Institute, Na Šabatce 2050/17, 143 06, Prague, Czech Republic
| | - Zbigniew Ziembik
- Institute of Environmental Engineering and Biotechnology, Faculty of Natural Sciences and Technology, University of Opole, Ul. Kard. B. Kominka 6, 45-032, Opole, Poland
| |
Collapse
|
21
|
Jeong S, Bae S, Yu D, Yang HS, Yang MJ, Lee JH, Ha JH. Dietary Intervention with Quercetin Attenuates Diesel Exhaust Particle-Instilled Pulmonary Inflammation and Behavioral Abnormalities in Mice. J Med Food 2023; 26:93-103. [PMID: 36723487 DOI: 10.1089/jmf.2022.k.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure to diesel exhaust particles (DEPs) is inevitable and closely linked with increased health hazards, causing pulmonary abnormalities by increasing inflammation, hypoxia, and so on. Moreover, long-term exposure to DEPs may trigger whole-body toxicity with behavioral alterations. Therefore, nutritional intervention with natural components may be desirable to prevent and/or ameliorate DEP-inducible pathophysiology in mammals. Quercetin has been demonstrated to reduce metabolic complications by possessing antioxidative, anti-inflammatory, and antimutagenic effects. In this study, we investigated the effects of quercetin on pulmonary inflammation and behavioral alteration in male C57BL/6 mice against DEP instillation. The experimental mice were separated into four treatment groups (n = 8 per group), which include: vehicle control, DEP instillation, dietary intervention with a low dose of quercetin (20 mg/kg) for 14 days with DEP instillation for 7 days, or dietary intervention with a high dose of quercetin (100 mg/kg) for 14 days with DEP instillation for 7 days. Compared with the DEP-instilled group, dietary intervention with quercetin significantly attenuated eosinophils in the bronchoalveolar lavage fluid analysis, pulmonary cytokine, and hypoxic mRNA expressions regardless of quercetin concentrations. DEP instillation triggered hyperactivities in the experimental mice, while quercetin pretreatment successfully normalized DEP-inducible abnormalities regardless of the dosage. Therefore, dietary intervention with quercetin may be an applicable means to prevent DEP-triggered pulmonary and behavioral abnormalities.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea.,Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Sungryong Bae
- Department of Fire Protection and Disaster Management, Chosun University, Gwangju, Korea
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, Korea.,Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, Korea
| | - Hyo-Seon Yang
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Jeongeup, Korea
| | - Mi-Jin Yang
- Jeonbuk Pathology Research Group, Korea Institute of Toxicology, Jeongeup, Korea
| | - Jong-Hwa Lee
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea.,Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea.,Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
22
|
Ahmad M, Chen J, Yu Q, Tariq Khan M, Weqas Ali S, Nawab A, Phairuang W, Panyametheekul S. Characteristics and Risk Assessment of Environmentally Persistent Free Radicals (EPFRs) of PM 2.5 in Lahore, Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2384. [PMID: 36767750 PMCID: PMC9915328 DOI: 10.3390/ijerph20032384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are an emerging pollutant and source of oxidative stress. Samples of PM2.5 were collected at the urban sites of Lahore in both winter and summertime of 2019. The chemical composition of PM2.5, EPRF concentration, OH radical generation, and risk assessment of EPFRs in PM2.5 were evaluated. The average concentration of PM2.5 in wintertime and summertime in Lahore is 15 and 4.6 times higher than the national environmental quality standards (NEQS) of Pakistan and WHO. The dominant components of PM2.5 are carbonaceous species. The concentration of EPFRs and reactive oxygen species (ROS), such as OH radicals, is higher in the winter than in the summertime. The secondary inorganic ions do not contribute to the generation of OH radicals, although the contribution of SO42+, NO3-, and NH4+ to the mass concentration of PM2.5 is greater in summertime. The atmospheric EPFRs are used to evaluate the exposure risk. The EPFRs in PM2.5 and cigarette smoke have shown similar toxicity to humans. In winter and summer, the residents of Lahore inhaled the amount of EPFRs equivalent to 4.0 and 0.6 cigarettes per person per day, respectively. Compared to Joaquin County, USA, the residents of Lahore are 1.8 to 14.5 times more exposed to EPFRs in summer and wintertime. The correlation analysis of atmospheric EPFRs (spin/m3) and carbonaceous species of PM2.5 indicates that coal combustion, biomass burning, and vehicle emissions are the possible sources of EPFRs in the winter and summertime. In both winter and summertime, metallic and carbonaceous species correlated well with OH radical generation, suggesting that vehicular emissions, coal combustion, and industrial emissions contributed to the OH radical generation. The study's findings provide valuable information and data for evaluating the potential health effects of EPFRs in South Asia and implementing effective air pollution control strategies.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Muhammad Tariq Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, New Territories, Hong Kong, China
| | - Syed Weqas Ali
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Asim Nawab
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Sirima Panyametheekul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Network Centre on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit: HAUS IAQ, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Rincon G, Morantes Quintana G, Gonzalez A, Buitrago Y, Gonzalez JC, Molina C, Jones B. PM 2.5 exceedances and source appointment as inputs for an early warning system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4569-4593. [PMID: 35192100 PMCID: PMC9675665 DOI: 10.1007/s10653-021-01189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
Between June 2018 and April 2019, a sampling campaign was carried out to collect PM2.5, monitoring meteorological parameters and anthropogenic events in the Sartenejas Valley, Venezuela. We develop a logistic model for PM2.5 exceedances (≥ 12.5 µg m-3). Source appointment was done using elemental composition and morphology of PM by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). A proposal of an early warning system (EWS) for PM pollution episodes is presented. The logistic model has a holistic success rate of 94%, with forest fires and motor vehicle flows as significant variables. Source appointment analysis by occurrence of events showed that samples with higher concentrations of PM had carbon-rich particles and traces of K associated with biomass burning, as well as aluminosilicates and metallic elements associated with resuspension of soil dust by motor-vehicles. Quantitative source appointment analysis showed that soil dust, garbage burning/marine aerosols and wildfires are three majority sources of PM. An EWS for PM pollution episodes around the Sartenejas Valley is proposed considering the variables and elements mentioned.
Collapse
Affiliation(s)
- Gladys Rincon
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Marítima y Ciencias del Mar (FIMCM), Guayaquil, Ecuador.
- Pacific International Center for Disaster Risk Reduction, ESPOL, Guayaquil, Ecuador.
| | - Giobertti Morantes Quintana
- Department of Architecture and Built Environment, University of Nottingham, Nottingham, NG7 2RD, UK.
- Departamento de Procesos y Sistemas, Laboratorio de Residuales de Petróleo, Universidad Simón Bolívar, Caracas, Venezuela.
| | - Ahilymar Gonzalez
- Departamento de Procesos y Sistemas, Laboratorio de Residuales de Petróleo, Universidad Simón Bolívar, Caracas, Venezuela
| | - Yudeisy Buitrago
- Departamento de Procesos y Sistemas, Laboratorio de Residuales de Petróleo, Universidad Simón Bolívar, Caracas, Venezuela
| | - Jean Carlos Gonzalez
- Departamento de Procesos y Sistemas, Laboratorio de Residuales de Petróleo, Universidad Simón Bolívar, Caracas, Venezuela
| | - Constanza Molina
- Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Benjamin Jones
- Department of Architecture and Built Environment, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
24
|
Numerical simulation of mixed aerosols deposition behavior on cylindrical cross fibers. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yuan CS, Lai CS, Chang-Chien GP, Tseng YL, Cheng FJ. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157528. [PMID: 35882344 DOI: 10.1016/j.scitotenv.2022.157528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to fine particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is associated with adverse health effects. This study aimed to evaluate the toxic effects of the constituents of PM2.5 on mouse kidneys. METHODS We collected PM2.5 near an industrial complex located in southern Kaohsiung, Taiwan, that was divided into water extract and insoluble particles. Male C57BL/6 mice were divided into five groups: control, low- and high-dose insoluble particle exposure, and low- and high-dose water extract exposure. Biochemical analysis, Western blot analysis, histological examination, and immunohistochemistry were performed to evaluate the impact of PM2.5 constituents on mice kidneys. RESULTS PM2.5 was collected from January 1, 2021, to February 8, 2021, from an industrial complex in Kaohsiung, Taiwan. Metallic element analysis showed that Pb, Ni, V, and Ti were non-essential metals with enrichment factors >10. Polycyclic aromatic hydrocarbon and nitrate polycyclic aromatic hydrocarbon analyses revealed that the toxic equivalents are, in the order, benzo(a)pyrene (BaP), indeno(1,2,3-cd) pyrene (IP), dibenzo(a,h)anthracene (DBA), and benzo(b)fluoranthene (BbF), which are potential carcinogens. Both water extract and insoluble particle exposure induced inflammatory cytokine upregulation, inflammatory cell infiltration, antioxidant activity downregulation, and elevation of kidney injury molecule 1 (KIM-1) level in mouse kidneys. A dose-dependent effect of PM2.5 water extract and insoluble particle exposure on angiotensin converter enzyme 2 downregulation in mouse kidneys was observed. CONCLUSION We found that water-soluble extract and insoluble particles of PM2.5 could induce oxidative stress and inflammatory reactions, influence the regulation of renin-angiotensin system (RAS), and lead to kidney injury marker level elevation in mouse kidneys. The lowest-observed-adverse-effect level for renal toxicity in mice was 40 μg water-soluble extract/insoluble particle inhalation per week, which was approximately equal to the ambient PM2.5 concentration of 44 μg/m3 for mice.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Guo-Ping Chang-Chien
- Department of Chemical and Materials Engineering, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840 Chengcing Rd., Kaohsiung 833, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-Sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan, ROC; Chang Gung University College of Medicine, 259, Wenhua 1(st) Road, Guishan District, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
26
|
Comparison of Ambient Air Quality among Industrial and Residential Areas of a Typical South Asian city. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rapid increase in population growth due to industrialization and urbanization has resulted in air quality deterioration in Pakistan. Consequently, a considerable increase has been seen in the types of sources of air pollutants. However, the air quality of the country has deteriorated in the absence of management capabilities against air quality. Evidence from numerous governmental organizations and international bodies has specified that the environment, health, and quality of life are at high risk due to air pollution. Although the government of Pakistan established the Pakistan Clean Air Program, along with continuous monitoring stations to manage the quality of ambient air, air quality values have not yet been achieved. The present investigations were made in the city of Faisalabad in selected locations. Sampling of a 24 h average was done for selected sites. The air quality parameters such as NO2, SO2, COx, O2, noise level, and suspended particulate matter (SPM) were measured at two locations, i.e., Khurrianwala and Liaqatabad in the Faisalabad District. The measured values of air quality parameters were compared with national environmental quality standards (NEQS). Air pollutants such as SPM, SO2, and noise levels were found to be significantly higher than the 24-h standards of NEQS, which poses harmful effects on the quality of air and health, whereas the O2 concentration was found to be lower than the normal values, and NO2 and COx values were normal. The SO2, CO2, noise level, SPM, and O2 values ranged from 418–652 and 423–661 µg/m3, 3.03–3.44 and 3.08–3.51 mg/m3, 68–73 and 69–75 dB, 555–667 and 581–682 µg/m3, and 19.5–20 and 19.5–20.3 % for summer and winter season, respectively, as compared to standard values (150 µg/m3, 10 mg/m3, 65 dB, 550 µg/m3 and 21%). After the complete analysis of the selected locations, it was concluded that the ambient air quality of this area is severely degraded due to industrial as well as other commercial activities. These significant variations in air quality parameters suggest that there is a need to check the air quality regularly to take appropriate measures for reducing ambient air pollutants, especially in industrial areas as well as commercial areas.
Collapse
|
27
|
Integrative analysis to explore the biological association between environmental skin diseases and ambient particulate matter. Sci Rep 2022; 12:9750. [PMID: 35697899 PMCID: PMC9192598 DOI: 10.1038/s41598-022-13001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Although numerous experimental studies have suggested a significant association between ambient particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM and environmental skin diseases is not clearly understood. Here, we aimed to explore the association between PM and skin diseases through biological big data analysis. Differential gene expression profiles associated with PM and environmental skin diseases were retrieved from public genome databases. The co-expression among them was analyzed using a text-mining-based network analysis software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate their relationships using public genome data. We found that changes in upstream regulators and inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a literature-based co-expression analysis and experimental validation not only improves the reliability of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced dermal toxicity that can be applied to screen the relationship between other chemicals and adverse effects.
Collapse
|
28
|
Naydenova S, Veli A, Mustafa Z, Hudai S, Hristova E, Gonsalvesh-Musakova L. Atmospheric levels, distribution, sources, correlation with meteorological parameters and other pollutants and health risk of PAHs bound in PM 2.5 and PM 10 in Burgas, Bulgaria - a case study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:306-317. [PMID: 35414336 DOI: 10.1080/10934529.2022.2060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The quality of atmospheric air of Burgas city, Bulgaria was analyzed in relation to PAHs in two particulate matter fractions - 2.5 μm and 10 μm. It was found that PAHs registered in PM10 represent entirely the ones registered in PM2.5 - an indication that the particulate PAHs in ambient air of Burgas for the sampling period are associated with the fine PM fraction. The PAH compounds with highest concentrations are mainly associated with coal combustion, diesel and gasoline vehicle and biomass burning, which is further confirmed by the calculated diagnostic ratios. The combustion-derived PAHs represent on average 86.6 ± 2.8% of total PAHs concentration. The linear regression analysis showed strong and statistically meaningful correlations between PM fractions and PAHs indicating the influence of similar local events and emission sources of pollution. PM2.5 or PM10 relationships with PAHs were significant but lower correlation coefficients were observed for low-molecular weight (LMW) PAHs in comparison to middle-molecular weight (MMW) and higher-molecular weight (HMW) PAHs, due to their lower presence in particulates and higher partition in gaseous atmospheric phase. Further significant correlations were found with wind speed, solar radiation and atmospheric pressure as well as NO2 and O3 ambient concentration. The calculated excess cancer risks are twice as much as acceptable limit.
Collapse
Affiliation(s)
- St Naydenova
- Department of Ecology and Environmental Protection, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
| | - A Veli
- Central Scientific Research Laboratory, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
| | - Z Mustafa
- Central Scientific Research Laboratory, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
| | - S Hudai
- Chemistry department, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
| | - E Hristova
- National Institute of Meteorology and Hydrology, Sofia, Bulgaria
| | - L Gonsalvesh-Musakova
- Central Scientific Research Laboratory, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
- Chemistry department, Prof. Dr. Assen Zlatarov, Burgas, Bulgaria
| |
Collapse
|
29
|
Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, van Eldik R, Suski M, Olszanecki R. Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113112. [PMID: 34953274 DOI: 10.1016/j.ecoenv.2021.113112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Filip Rolski
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 265 Wielicka Street, 30-663 Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Łukasz Chmura
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Grzegorz Majka
- Chair of Immunology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland; Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland.
| |
Collapse
|
30
|
In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The current study investigates the variation and physicochemical properties of ambient particulate matter (PM) in the very important location which lies in the foothills of the Hindu Kush ranges in northern Pakistan. This work investigates the mass concentration, mineral content, elemental composition and morphology of PM in three size fractions, i.e., PM1, PM2.5 and PM10, during the year of 2019. The collected samples were characterized by microscopic and spectroscopic techniques like Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) spectroscopy. During the study period, the average temperature, relative humidity, rainfall and wind speed were found to be 17.9 °C, 65.83%, 73.75 mm and 0.23 m/s, respectively. The results showed that the 24 h average mass concentration of PM10, PM2.5 and PM1 were 64 µgm−3, 43.9 µgm−3 and 22.4 µgm−3, respectively. The 24 h concentration of both PM10 and PM2.5 were 1.42 and 2.92 times greater, respectively, than the WHO limits. This study confirms the presence of minerals such as wollastonite, ammonium sulphate, wustite, illite, kaolinite, augite, crocidolite, calcite, calcium aluminosilicate, hematite, copper sulphate, dolomite, quartz, vaterite, calcium iron oxide, muscovite, gypsum and vermiculite. On the basis of FESEM-EDX analysis, 14 elements (O, C, Al, Si, Mg, Na, K, Ca, Fe, N, Mo, B, S and Cl) and six groups of PM (carbonaceous (45%), sulfate (13%), bioaerosols (8%), aluminosilicates (19%), quartz (10%) and nitrate (3%)) were identified.
Collapse
|
31
|
Li D, Zhang T, Yue W, Gao P, Luo Y, Wang C, Luo X. Identification and classification of particle contaminants on photomasks based on individual-particle Raman scattering spectra and SEM images. RSC Adv 2022; 12:33349-33357. [DOI: 10.1039/d2ra05672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Raman spectroscopy was used for the detection chemical composition of particle contamination on photomasks. Particle types and sources were identified and classified according to the Raman spectra of individual particles.
Collapse
Affiliation(s)
- Dongxian Li
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, P.O. Box 350, Chengdu 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
| | - Weisheng Yue
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
| | - Ping Gao
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
| | - Yunfei Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
| | - Changtao Wang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
| | - Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Mushtaq Z, Sharma M, Bangotra P, Gautam AS, Gautam S. Atmospheric Aerosols: Some Highlights and Highlighters, Past to Recent Years. AEROSOL SCIENCE AND ENGINEERING 2022; 6:135-145. [PMCID: PMC8943797 DOI: 10.1007/s41810-022-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2024]
Abstract
The severe harmful impact of atmospheric aerosols over the environment leads to create the diverse human interests and concerns. Various progressive steps were taken by researchers and scientists to understand the fundamentals, such as nucleation and growth mechanisms, formalization of particle dynamics, characterization of the mechanisms for the particle-size dispensation, detection of chemical processes for atmospheric particle sources. The increase in population growth and different manmade activities have led to change in the environmental conditions causes to pollute the distinct vicinities. Different changes in the environment such as land use pattern, increased concentration of various greenhouse gases, and Industrial pollutants change the energy balance in our climatic conditions and affect the radiation budget of earth’ atmosphere. Such changes in climate and polluted environment leads to many health-related ailments to mankind. The present study outlines the recent research perspectives of atmospheric aerosols, their estimation through different modes, effects, and an overview of the current situations that need to be addressed before they become completely incorporated.
Collapse
Affiliation(s)
- Zainab Mushtaq
- Atmospheric Research Laboratory, Department of Environmental Sciences, SBSR, Sharda University, Greater Noida, India
| | - Manish Sharma
- Department of Physics, School of Basic Sciences, Bahra University, Shimla Hills, Shimla, HP India
| | - Pargin Bangotra
- Atmospheric Research Laboratory, Department of Environmental Sciences, SBSR, Sharda University, Greater Noida, India
| | - Alok Sagar Gautam
- Department of Physics, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
33
|
Song W, He Y, Wu Y, Qu W. Characterization of Burning Behaviors and Particulate Matter Emissions of Crop Straws Based on a Cone Calorimeter. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3407. [PMID: 34202949 PMCID: PMC8234294 DOI: 10.3390/ma14123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022]
Abstract
Crop residue burning is one of the major sources of particulate matter (PM) in the air. The burning behaviors and PM emissions of the three typical crop residues (rice straw, wheat straw, corn straw) in China were characterized by a cone calorimeter (CONE) coupled with a laser dust meter. The water-soluble compounds, carbonaceous content, and morphology of PM were measured by ion chromatography, elemental analyzer, transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometer (EDS). The results showed that thermal stability of corn straw was the worst among the three crop straws. The heat release rate (HRR) curves of the three crop straws were the typical curves of thermally thick charring (residue forming) samples. Wheat straw had the highest smoke yield, which was 2.9 times that of rice straw. The PM emission factor of wheat straw was 180.91 µg/g, which was about three times that of rice straw. The contents of K+, Na+, and Cl- in PM were significantly higher than those of the other six water-soluble inorganic ions. The ratio of organic carbon and elemental carbon (OC/EC) ranged from 14.82 to 30.82, which was similar to the results of open burning. There were mainly three kinds of aggregates in the PM of crop straws: network, chain-like, and soot. Individual particles were mixtures of KCl and organic matters. Core-shell structures were found in PM of rice straw and corn straw. The results in this study were provided based on CONE, an ISO-standard apparatus, which could avoid data conflicts caused by the difference of combustion devices. The relationship between the burning behavior and PM emission characteristics of crop straws was established, which is helpful to understand emissions of crop straws and to find a novel way to solve the problems from the burning of crop residues.
Collapse
Affiliation(s)
| | | | | | - Wei Qu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (W.S.); (Y.H.); (Y.W.)
| |
Collapse
|
34
|
Miyashita L, Foley G, Gill I, Gillmore G, Grigg J, Wertheim D. Confocal microscopy 3D imaging of diesel particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30384-30389. [PMID: 33890224 PMCID: PMC8222012 DOI: 10.1007/s11356-021-14025-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/16/2021] [Indexed: 05/06/2023]
Abstract
To date, diesel particulate matter (DPM) has been described as aggregates of spherule particles with a smooth appearing surface. We have used a new colour confocal microscope imaging method to study the 3D shape of diesel particulate matter (DPM); we observed that the particles can have sharp jagged appearing edges and consistent with these findings, 2D light microscopy demonstrated that DPM adheres to human lung epithelial cells. Importantly, the slide preparation and confocal microscopy method applied avoids possible alteration to the particles' surfaces and enables colour 3D visualisation of the particles. From twenty-one PM10 particles, the mean (standard deviation) major axis length was 5.6 (2.25) μm with corresponding values for the minor axis length of 3.8 (1.25) μm. These new findings may help explain why air pollution particulate matter (PM) has the ability to infiltrate human airway cells, potentially leading to respiratory tract, cardiovascular and neurological disease.
Collapse
Affiliation(s)
- Lisa Miyashita
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Gary Foley
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Ian Gill
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK
| | - Gavin Gillmore
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK
- School of Science, Bath Spa University, Bath, UK
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - David Wertheim
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK.
| |
Collapse
|
35
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
36
|
Ahmad M, Yu Q, Chen J, Cheng S, Qin W, Zhang Y. Chemical characteristics, oxidative potential, and sources of PM 2.5 in wintertime in Lahore and Peshawar, Pakistan. J Environ Sci (China) 2021; 102:148-158. [PMID: 33637240 DOI: 10.1016/j.jes.2020.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/02/2023]
Abstract
The chemical characteristics, oxidative potential, and sources of PM2.5 were analyzed at the urban sites of Lahore and Peshawar, Pakistan in February 2019. Carbonaceous species, water soluble ions, and metal elements were measured to investigate the chemical composition and sources of PM2.5. The dithiothreitol (DTT) consumption rate was measured to evaluate the oxidative potential of PM2.5. Both cities showed a high exposure risk of PM2.5 regarding its oxidative potential (DTTv). Carbonaceous and some of the elemental species of PM2.5 correlated well with DTTv in both Lahore and Peshawar. Besides, the DTTv of PM2.5 in Lahore showed significant positive correlation with most of the measured water soluble ions, however, ions were DTT-inactive in Peshawar. Due to the higher proportions of carbonaceous species and metal elements, Peshawar showed higher mass-normalized DTT activity of PM2.5 compared to Lahore although the average PM2.5 concentration in Peshawar was lower. The high concentrations of toxic metals also posed serious non-carcinogenic and carcinogenic risks to the residents of both cities. Principle component analysis coupled with multiple linear regression was applied to investigate different source contributions to PM2.5 and its oxidative potential. Mixed sources of traffic and road dust resuspension and coal combustion, direct vehicle emission, and biomass burning and formation of secondary aerosol were identified as the major sources of PM2.5 in both cities. The findings of this study provide important data for evaluation of the potential health risks of PM2.5 and for formulation of efficient control strategies in major cities of Pakistan.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Siming Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Weihua Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuepeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
37
|
Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. TOXICS 2021; 9:toxics9020037. [PMID: 33670617 PMCID: PMC7922855 DOI: 10.3390/toxics9020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022]
Abstract
In this work, the particulate matter (PM) from three different monitoring stations in the Monterrey Metropolitan Area in Mexico were investigated for their compositional, morphological, and optical properties. The main aim of the research was to decipher the different sources of the particles. The methodology involved the ex situ sequential analysis of individual particles by three analytical techniques: scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), polarized light microscopy (PLM), and micro-Raman spectroscopy (MRS). The microanalysis was performed on samples of total suspended particles. Different morphologies were observed for particles rich in the same element, including prismatic, spherical, spheroidal, and irregular morphologies. The sequential microanalysis by SEM-EDS/PLM/MRS revealed that Fe-rich particles with spherical and irregular morphologies were derived from anthopogenic sources, such as emissions from the metallurgical industry and the wear of automobile parts, respectively. In contrast, Fe-rich particles with prismatic morphologies were associated with natural sources. In relation to carbon (C), the methodology was able to distinguish between the C-rich particles that came from different anthopogenic sources—such as the burning of fossil fuels, biomass, or charcoal—and the metallurgical industry. The optical properties of the Si-rich particles depended, to a greater extent, on their chemical composition than on their morphology, which made it possible to quickly and accurately differentiate aluminosilicates from quartz. The methodology demonstrated in this study was useful for performing the speciation of the particles rich in different elements. This differentiation helped to assign their possible emission sources.
Collapse
|
38
|
Kończak B, Cempa M, Pierzchała Ł, Deska M. Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115465. [PMID: 33152599 DOI: 10.1016/j.envpol.2020.115465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 05/06/2023]
Abstract
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes. Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula 'Youngii', Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
Collapse
Affiliation(s)
- B Kończak
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland.
| | - M Cempa
- Department of Environmental Monitoring, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - Ł Pierzchała
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| | - M Deska
- Department of Water Protection, Central Mining Institute, Pl. Gwarków 1, 40-166, Katowice, Poland
| |
Collapse
|
39
|
Chen X, Qiu B, Zou Q, Qiu T, Li R, Truong A, Qi Y, Liu T, Han L, Liu T, Chang J, Sun Q, Zhu Y, Xu D. Source specific PM 2.5 associated with heart rate variability in the elderly with coronary heart disease: A community-based panel study. CHEMOSPHERE 2020; 260:127399. [PMID: 32668362 DOI: 10.1016/j.chemosphere.2020.127399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
There is increasingly concern that PM2.5 constituents play a significant role in PM2.5-related cardiovascular outcomes. However, little is known about the associations between specific constituents of PM2.5 and risk for cardiovascular health. To evaluate the exposure to specific chemicals of PM2.5 from various sources and their cardiac effects, a longitudinal investigation was conducted with four repeated measurements of elderly participants' HRV and PM2.5 species in urban Beijing. Multiple chemicals in PM2.5 (metals, ions and PAHs) were characterized for PM2.5 source apportionment and personalized exposure assessment. Five sources were finally identified with specific chemicals as the indicators: oil combustion (1.1%, V & PAHs), secondary particle (11.3%, SO42- & NO3-), vehicle emission (1.2%, Pd), construction dust (28.7%, Mg & Ca), and coal combustion (57.7%, Se & As). As observed, each IQR increase in exposure to oil combustion (V), vehicle emission (Pd), and coal combustion (Se) significantly decreased rMSSD by 13.1% (95% CI: -25.3%, -1.0%), 27.4% (95% CI: -42.9%, -7.6%) and 24.7% (95% CI: -39.2%, -6.9%), respectively, while those of PM2.5 mass with decreases of rMSSD by 11.1% (95% CI: -19.6%, -1.9%) at lag 0. Elevated exposures to specific sources/constituents of PM2.5 disrupt cardiac autonomic function in elderly and have more adverse effects than PM2.5 mass. In the stratified analysis, medication and gender modify the associations of specific chemicals from variable sources with HRV. The findings of this study provide evidence on the roles of influential constituents of ambient air PM2.5 and their sources in terms of their adverse cardiovascular health effects.
Collapse
Affiliation(s)
- Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Qiu
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing, China
| | - Qinpei Zou
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Tian Qiu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ashley Truong
- Brown University School of Public Health, Providence, RI, USA
| | - Yanmin Qi
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing, China
| | - Tao Liu
- Civil Aviation General Hospital, Beijing, China
| | - Limin Han
- Civil Aviation General Hospital, Beijing, China
| | - Tiebing Liu
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing, China
| | - Junrui Chang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Sun
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Dongqun Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
40
|
Mishra R, Krishnamoorthy P, Gangamma S, Raut AA, Kumar H. Particulate matter (PM 10) enhances RNA virus infection through modulation of innate immune responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115148. [PMID: 32771845 PMCID: PMC7357538 DOI: 10.1016/j.envpol.2020.115148] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 05/07/2023]
Abstract
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM10 (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) - H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM10 prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM10 enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Pandikannan Krishnamoorthy
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - S Gangamma
- National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru, 575025, Karnataka, India; Centre for Water Food and Environment, IIT Ropar, Rupnagar, 140001, Punjab, India
| | - Ashwin Ashok Raut
- Pathogenomics Laboratory, ICAR - National Institute of High Security Animal Diseases (NIHSAD), OIE Reference Laboratory for Avian Influenza, Bhopal, 462021, MP, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan.
| |
Collapse
|
41
|
Parvizimehr A, Baghani AN, Hoseini M, Sorooshian A, Cuevas-Robles A, Fararouei M, Dehghani M, Delikhoon M, Barkhordari A, Shahsavani S, Badeenezhad A. On the nature of heavy metals in PM10 for an urban desert city in the Middle East: Shiraz, Iran. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Alvi MU, Kistler M, Shahid I, Alam K, Chishtie F, Mahmud T, Kasper-Giebl A. Composition and source apportionment of saccharides in aerosol particles from an agro-industrial zone in the Indo-Gangetic Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14124-14137. [PMID: 32043252 DOI: 10.1007/s11356-020-07905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The characterization of saccharidic compounds in atmospheric aerosols is important in order to retrieve information about organic carbon sources and their transport pathways through the atmosphere. In this study, composition and sources of saccharides in PM10 were determined in a South Asian megacity (Faisalabad) during the year 2015 - 2016. PM10 sampled on quartz filters was analyzed by anion exchange chromatography for the selected saccharidic compounds. The average PM10 concentration was found to be 744 ± 392 μg m-3, exceeding the daily limits proposed by Pak-EPA (150 μg m-3), US-EPA (150 μg m-3), and WHO (50 μg m-3). The average total saccharidic concentration was found to be 2820 ± 2247 ng m-3. Among the different saccharidic categories, anhydrosugars were the most abundant in concentration followed by primary sugars and sugar alcohols. The correlation and principal component analysis indicated emissions from biomass combustion, soil suspensions from areas such as farmlands having high microorganism activity, and biogenic emissions such as airborne fungal spores and vegetation detritus as major sources of saccharides in the aerosol samples.
Collapse
Affiliation(s)
- Muhammad Usman Alvi
- Institute of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
- Institute for Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Magdalena Kistler
- Institute for Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Imran Shahid
- Institute of Space Technology, Islamabad, Pakistan.
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Tariq Mahmud
- Institute of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Anne Kasper-Giebl
- Institute for Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
43
|
Neupane BB, Sharma A, Giri B, Joshi MK. Characterization of airborne dust samples collected from core areas of Kathmandu Valley. Heliyon 2020; 6:e03791. [PMID: 32368645 PMCID: PMC7184532 DOI: 10.1016/j.heliyon.2020.e03791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Kathmandu Valley is reported to be one of the highly polluted and populated cities in the world. Particulate matter is one of the major contributors of unhealthy air in Kathmandu. Although there are several reports on spatial and temporal variation of air quality of Kathmandu Valley, the morphological and mineralogical characteristics of particulate matter are very limited or none. In this study, we report on the mineralogical and morphological analysis of airborne particulate matter collected from densely populated core areas of Kathmandu Valley using spectroscopic and microscopic techniques. The Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) data showed the presence of clay minerals, crystalline silicate mineral, carbonate minerals, and asbestiform mineral in the dust samples. The field emission scanning electron microscopic analysis confirmed the existence of particles having diverse morphology with some of the particles having aspect ratio as high as twenty; indicating the existence of asbestiform type minerals. Based on SEM-EDX data, we found that the relative distribution of elements to be different in different samples and C, O, Mg, Ca, and Si were the major elements in the dust samples. Interestingly, the XRD data analysis showed that in all the samples quartz mineral having high degree of crystallinity was present. The XRD measurement was also carried out in three different brands of cement samples. Few minerals present in dust samples were also identified in the cement samples. This observation could indicate that cement is one of the sources of minerals in the airborne particulate matter in the Kathmandu Valley.
Collapse
Affiliation(s)
- Bhanu B. Neupane
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Amita Sharma
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Basant Giri
- Center for Analytical Sciences, Kathmandu Institute of Applied Sciences, Kathmandu, Nepal
| | - Mahesh K. Joshi
- Department of Chemistry, Tri-chandra Campus, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
44
|
Islam N, Dihingia A, Khare P, Saikia BK. Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121472. [PMID: 31733994 DOI: 10.1016/j.jhazmat.2019.121472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
The nature of the atmospheric particulate matters (PMs) varies depending on their sizes and their origin from different activities in the background environment. These PMs are associated with potentially hazardous elements (PHEs) such as organic compounds (e.g. Polyaromatic Hydrocarbons) that can be harmful to health. The main objective of this work is the identification and investigation of the toxicological aspects of PHEs in PMs during pre-monsoon and post-monsoon season in an urban area of Northeast region (NER) of India. In the course of the study, the 24 -hs average concentrations of PMs were detected to be more than two-times higher than the Indian standard limit (NAAQ, category) which indicates poor air quality in both the seasons around the sampling sites. This study demonstrates that the concentrations of PM-bound PAHs are mutagenic and that the Excess Cancer Risks exceed the USEPA standard limits. PMs cause cytotoxicity and can also induce genotoxicity to human health analyzed by cell culture and gel electrophoresis. This study helps to promote research to evaluate the PMs bound PHEs toxicity in diverse human cell lines and also their relationship with climatic factors as well as quantitative source apportionment for mitigation purposes.
Collapse
Affiliation(s)
- Nazrul Islam
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India
| | - Anjum Dihingia
- Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India; Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Puja Khare
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
| | - Binoy K Saikia
- Polymer Petroleum and Coal Chemistry Group, Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat, 785006, India.
| |
Collapse
|
45
|
Khan N, Alam K, Seema H, Samreen A, Zeb B. Fabrication of graphene oxide coated quartz filter paper for enhanced adsorption of particulate matter. APPLIED OPTICS 2020; 59:463-468. [PMID: 32225332 DOI: 10.1364/ao.59.000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Airborne particulate matter has become an emerging issue globally due to environmental degradation and the health risk it causes. Volatilization of weakly adsorbed particles onto quartz filter paper (QFP) limits its performance. The adsorption of particulate matter (PM10) onto QFP coated with different concentrations of graphene oxide (GO) was investigated to enhance the adsorption potential. Hummer's method was adopted to synthesize GO. QFPs were coated with different concentrations of GO using a spin coating technique to optimize the result. The morphology and microstructure of GO-QFP were characterized by various experimental techniques, like XRD, FTIR, EDX, and SEM. GO showed considerable affinity to aerosol particles for GO-QFP weighing 5 mg/ml, whereas adsorption of the coated samples before and after was significantly reduced. The high affinity to aerosol particles was due to dominated π-π interactions and the grooved regions formed on the GO layer. It was considered that the high surface to volume ratio of GO-QFP improves the adsorptive property of the QF and consequently enhances the performance of the filter paper.
Collapse
|
46
|
Keshavarz F, Shcherbacheva A, Kubečka J, Vehkamäki H, Kurtén T. Computational Study of the Effect of Mineral Dust on Secondary Organic Aerosol Formation by Accretion Reactions of Closed-Shell Organic Compounds. J Phys Chem A 2019; 123:9008-9018. [PMID: 31556608 DOI: 10.1021/acs.jpca.9b06331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of dust aerosols on accretion reactions of water, formaldehyde, and formic acid was studied in the conditions of earth's troposphere at the DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-31++G** level of theory. A detailed analysis of the reaction mechanisms in the gas phase and on the surface of mineral dust, represented by mono- and trisilicic acid, revealed that mineral dust has the potential of decreasing reaction barrier heights. Specifically, at 0 K, mineral dust can lower the apparent energy barrier of the reaction of formaldehyde with formic acid to zero. However, when the entropic contributions to the reaction free energies were accounted for, mineral dust was found to selectively enhance the reaction of water with formaldehyde, while inhibiting the reaction of formaldehyde and formic acid, in the lower parts of the troposphere (with temperatures around 298 K). In the upper troposphere (with temperatures closer to 198 K), mineral dust catalyzes both reactions and also the reaction of methanol with formic acid. Despite the intrinsic potential of mineral dust, calculation of the catalytic enhancement parameter for a likely range of dust aerosol concentrations suggested that dust aerosols will not contribute to secondary organic aerosol formation via dimerization of closed-shell organic compounds. The main reason for this is the relatively low absolute concentration of tropospheric dust aerosol and its inefficiency in increasing the effective reaction rate coefficients.
Collapse
|
47
|
Short-Term Effects of Ambient Air Pollution on ST-Elevation Myocardial Infarction Events: Are There Potentially Susceptible Groups? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193760. [PMID: 31591299 PMCID: PMC6801768 DOI: 10.3390/ijerph16193760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
Abstract
Background: Air pollution exposure is associated with greater risk for cardiovascular events. This study aims to examine the effects of increased exposure to short-term air pollutants on ST-segment elevation myocardial infarction (STEMI) and determine the susceptible groups. Methods: Data on particulate matter PM2.5 and PM10 and other air pollutants, measured at each of the 11 air-quality monitoring stations in Kaohsiung City, were collected between 2011 and 2016. The medical records of non-trauma adult (>17 years) patients who had visited the emergency department (ED) with a typical electrocardiogram change of STEMI were extracted. A time-stratified and case-crossover study design was used to examine the relationship between air pollutants and daily ED visits for STEMI. Results: An interquartile range increment in PM2.5 on lag 0 was associated with an increment of 25.5% (95% confidence interval, 2.6%–53.4%) in the risk of STEMI ED visits. Men and persons with ≥3 risk factors (male sex, age, hypertension, diabetes, current smoker, dyslipidemia, history of myocardial infarction, and high body mass index) for myocardial infarction (MI) were more sensitive to the hazardous effects of PM2.5 (interaction: p = 0.039 and p = 0.018, respectively). The associations between PM10, NO2, and O3 and STEMI did not achieve statistical significance. Conclusion: PM2.5 may play an important role in STEMI events on the day of exposure in Kaohsiung. Men and persons with ≥3 risk factors of MI are more susceptible to the adverse effects of PM2.5 on STEMI.
Collapse
|
48
|
Cheng CY, Cheng SY, Chen CC, Pan HY, Wu KH, Cheng FJ. Ambient air pollution is associated with pediatric pneumonia: a time-stratified case-crossover study in an urban area. Environ Health 2019; 18:77. [PMID: 31462279 PMCID: PMC6714311 DOI: 10.1186/s12940-019-0520-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/22/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Pneumonia, the leading reason underlying childhood deaths, may be triggered or exacerbated by air pollution. To date, only a few studies have examined the association of air pollution with emergency department (ED) visits for pediatric pneumonia, with inconsistent results. Therefore, we aimed to elucidate the impact of short-term exposure to particulate matter (PM) and other air pollutants on the incidence of ED visits for pediatric pneumonia. METHODS PM2.5, PM10, and other air pollutant levels were measured at 11 air quality-monitoring stations in Kaohsiung City, Taiwan, between 2008 and 2014. Further, we extracted the medical records of non-trauma patients aged ≤17 years and who had visited an ED with the principal diagnosis of pneumonia. A time-stratified case-crossover study design was employed to determine the hazard effect of air pollution in a total of 4024 patients. RESULTS The single-pollutant model suggested that per interquartile range increment in PM2.5, PM10, nitrogen dioxide (NO2), and sulfur dioxide (SO2) on 3 days before the event increased the odds of pediatric pneumonia by 14.0% [95% confidence interval (CI), 5.1-23.8%], 10.9% (95% CI, 2.4-20.0%), 14.1% (95% CI, 5.0-24.1%), and 4.5% (95% CI, 0.8-8.4%), respectively. In two-pollutant models, PM2.5 and NO2 were significant after adjusting for PM10 and SO2. Subgroup analyses showed that older children (aged ≥4 years) were more susceptible to PM2.5 (interaction p = 0.024) and children were more susceptible to NO2 during warm days (≥26.5 °C, interaction p = 0.011). CONCLUSIONS Short-term exposure to PM2.5 and NO2 possibly plays an important role in pediatric pneumonia in Kaohsiung, Taiwan. Older children are more susceptible to PM2.5, and all children are more susceptible to NO2 during warm days.
Collapse
Affiliation(s)
- Chi-Yung Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Township, Kaohsiung, County, 833, Taiwan
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Shih-Yu Cheng
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
- Department of Emergency Medicine, Yunlin Chang Gung Memorial Hospital, No. 1500, Gongye Rd, Mailiao Township, Yunlin County, 638, Taiwan
| | - Chien-Chih Chen
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Township, Kaohsiung, County, 833, Taiwan
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Township, Kaohsiung, County, 833, Taiwan
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Kuan-Han Wu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Township, Kaohsiung, County, 833, Taiwan
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Township, Kaohsiung, County, 833, Taiwan.
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.
| |
Collapse
|
49
|
Zeb B, Alam K, Sorooshian A, Chishtie F, Ahmad I, Bibi H. Temporal characteristics of aerosol optical properties over the glacier region of northern Pakistan. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS 2019; 186:35-46. [PMID: 33911973 PMCID: PMC8078013 DOI: 10.1016/j.jastp.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glacier melting due to light-absorbing aerosol has become a growing issue in recent decades. The emphasis of this study is to examine aerosol loadings over the high mountain glacier region of northern Pakistan between 2004 and 2016, with sources including local emissions and long-range transported pollution. Optical properties of aerosols were seasonally analyzed over the glacier region (35-36.5°N; 74.5-77.5°E) along with three selected sites (Gilgit, Skardu, and Diamar) based on the Ozone Monitoring Instrument (OMI). The aerosol sub-type profile was analyzed with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to understand the origin of air masses arriving in the study region. The highest values of aerosol optical depth (AOD) and single scattering albedo (SSA) occurred during spring, whereas aerosol index (AI) and absorption AOD (AAOD) exhibited maximum values in winter and summer, respectively. The minimum values of AOD, AI, AAOD, and SSA occurred in winter, autumn, winter, and autumn, respectively. The results revealed that in spring and summer the prominent aerosols were dust, whereas, in autumn and winter, anthropogenic aerosols were prominent. Trend analysis showed that AI, AOD, and AAOD increased at the rate of 0.005, 0.006, and 0.0001 yr-1, respectively, while SSA decreased at the rate of 0.0002 yr-1. This is suggestive of the enhancement in aerosol types over the region with time that accelerates melting of ice. CALIPSO data indicate that the regional aerosol was mostly comprised of sub-types categorized as dust, polluted dust, smoke, and clean continental. The types of aerosols defined by OMI were in good agreement with CALIPSO retrievals. Analysis of the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air parcels arriving at the glacier region stemmed from different source sites.
Collapse
Affiliation(s)
- Bahadar Zeb
- Department of Physics, University of Malakand, Khyber Pakhtunkhwa, Pakistan
- Department of Mathematics, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Khan Alam
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
- Corresponding author. (K. Alam)
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Farrukh Chishtie
- SERVIR-Mekong, Asian Disaster Preparedness Centre (ADPC), Bangkok, Thailand
| | - Ifthikhar Ahmad
- Department of Physics, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Humera Bibi
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
50
|
Thatcher TH, Woeller CF, McCarthy CE, Sime PJ. Quenching the fires: Pro-resolving mediators, air pollution, and smoking. Pharmacol Ther 2019; 197:212-224. [PMID: 30759375 DOI: 10.1016/j.pharmthera.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to air pollution and other environmental inhalation hazards, such as occupational exposures to dusts and fumes, aeroallergens, and tobacco smoke, is a significant cause of chronic lung inflammation leading to respiratory disease. It is now recognized that resolution of inflammation is an active process controlled by a novel family of small lipid mediators termed "specialized pro-resolving mediators" or SPMs, derived mainly from dietary omega-3 polyunsaturated fatty acids. Chronic inflammation results from an imbalance between pro-inflammatory and pro-resolution pathways. Research is ongoing to develop SPMs, and the pro-resolution pathway more generally, as a novel therapeutic approach to diseases characterized by chronic inflammation. Here, we will review evidence that the resolution pathway is dysregulated in chronic lung inflammatory diseases, and that SPMs and related molecules have exciting therapeutic potential to reverse or prevent chronic lung inflammation, with a focus on lung inflammation due to inhalation of environmental hazards including urban particulate matter, organic dusts and tobacco smoke.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Collynn F Woeller
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Claire E McCarthy
- National Cancer Institute, Division of Cancer Biology, 9609 Medical Center Drive, Rockville, MD 20850, United States
| | - Patricia J Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry Rochester, NY 14642, United States; Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|