1
|
Semi-field and surveillance data define the natural diapause timeline for Culex pipiens across the United States. Commun Biol 2022; 5:1300. [PMID: 36435882 PMCID: PMC9701209 DOI: 10.1038/s42003-022-04276-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.
Collapse
|
2
|
Evaluation of the effectiveness of the California mosquito-borne virus surveillance & response plan, 2009–2018. PLoS Negl Trop Dis 2022; 16:e0010375. [PMID: 35533207 PMCID: PMC9119623 DOI: 10.1371/journal.pntd.0010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/19/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Local vector control and public health agencies in California use the California Mosquito-Borne Virus Surveillance and Response Plan to monitor and evaluate West Nile virus (WNV) activity and guide responses to reduce the burden of WNV disease. All available data from environmental surveillance, such as the abundance and WNV infection rates in Culex tarsalis and the Culex pipiens complex mosquitoes, the numbers of dead birds, seroconversions in sentinel chickens, and ambient air temperatures, are fed into a formula to estimate the risk level and associated risk of human infections. In many other areas of the US, the vector index, based only on vector mosquito abundance and infection rates, is used by vector control programs to estimate the risk of human WNV transmission. We built models to determine the association between risk level and the number of reported symptomatic human disease cases with onset in the following three weeks to identify the essential components of the risk level and to compare California’s risk estimates to vector index. Risk level calculations based on Cx. tarsalis and Cx. pipiens complex levels were significantly associated with increased human risk, particularly when accounting for vector control area and population, and were better predictors than using vector index. Including all potential environmental components created an effective tool to estimate the risk of WNV transmission to humans in California.
Collapse
|
3
|
Feng X, Kambic L, Nishimoto JH, Reed FA, Denton JA, Sutton JT, Gantz VM. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. CRISPR J 2021; 4:595-608. [PMID: 34280034 PMCID: PMC8392076 DOI: 10.1089/crispr.2021.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Lukas Kambic
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | | | - Floyd A. Reed
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawai‘i, USA
| | - Jai A. Denton
- Institute of Vector-borne Disease, University of Monash, Clayton, Australia
| | - Jolene T. Sutton
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | - Valentino M. Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Snyder RE, Feiszli T, Foss L, Messenger S, Fang Y, Barker CM, Reisen WK, Vugia DJ, Padgett KA, Kramer VL. West Nile virus in California, 2003-2018: A persistent threat. PLoS Negl Trop Dis 2020; 14:e0008841. [PMID: 33206634 PMCID: PMC7710070 DOI: 10.1371/journal.pntd.0008841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The California Arbovirus Surveillance Program was initiated over 50 years ago to track endemic encephalitides and was enhanced in 2000 to include West Nile virus (WNV) infections in humans, mosquitoes, sentinel chickens, dead birds and horses. This comprehensive statewide program is a function of strong partnerships among the California Department of Public Health (CDPH), the University of California, and local vector control and public health agencies. This manuscript summarizes WNV surveillance data in California since WNV was first detected in 2003 in southern California. From 2003 through 2018, 6,909 human cases of WNV disease, inclusive of 326 deaths, were reported to CDPH, as well as 730 asymptomatic WNV infections identified during screening of blood and organ donors. Of these, 4,073 (59.0%) were reported as West Nile neuroinvasive disease. California's WNV disease burden comprised 15% of all cases that were reported to the U.S. Centers for Disease Control and Prevention during this time, more than any other state. Additionally, 1,299 equine WNV cases were identified, along with detections of WNV in 23,322 dead birds, 31,695 mosquito pools, and 7,340 sentinel chickens. Annual enzootic detection of WNV typically preceded detection in humans and prompted enhanced intervention to reduce the risk of WNV transmission. Peak WNV activity occurred from July through October in the Central Valley and southern California. Less than five percent of WNV activity occurred in other regions of the state or outside of this time. WNV continues to be a major threat to public and wild avian health in California, particularly in southern California and the Central Valley during summer and early fall months. Local and state public health partners must continue statewide human and mosquito surveillance and facilitate effective mosquito control and bite prevention measures.
Collapse
Affiliation(s)
- Robert E. Snyder
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Tina Feiszli
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Leslie Foss
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Sharon Messenger
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Ying Fang
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Duc J. Vugia
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Kerry A. Padgett
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Vicki L. Kramer
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| |
Collapse
|
5
|
Swetnam DM, Stuart JB, Young K, Maharaj PD, Fang Y, Garcia S, Barker CM, Smith K, Godsey MS, Savage HM, Barton V, Bolling BG, Duggal N, Brault AC, Coffey LL. Movement of St. Louis encephalitis virus in the Western United States, 2014- 2018. PLoS Negl Trop Dis 2020; 14:e0008343. [PMID: 32520944 PMCID: PMC7307790 DOI: 10.1371/journal.pntd.0008343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/22/2020] [Accepted: 05/02/2020] [Indexed: 11/22/2022] Open
Abstract
St. Louis encephalitis virus (SLEV) is a flavivirus that circulates in an enzootic cycle between birds and mosquitoes and can also infect humans to cause febrile disease and sometimes encephalitis. Although SLEV is endemic to the United States, no activity was detected in California during the years 2004 through 2014, despite continuous surveillance in mosquitoes and sentinel chickens. In 2015, SLEV-positive mosquito pools were detected in Maricopa County, Arizona, concurrent with an outbreak of human SLEV disease. SLEV-positive mosquito pools were also detected in southeastern California and Nevada in summer 2015. From 2016 to 2018, SLEV was detected in mosquito pools throughout southern and central California, Oregon, Idaho, and Texas. To understand genetic relatedness and geographic dispersal of SLEV in the western United States since 2015, we sequenced four historical genomes (3 from California and 1 from Louisiana) and 26 contemporary SLEV genomes from mosquito pools from locations across the western US. Bayesian phylogeographic approaches were then applied to map the recent spread of SLEV. Three routes of SLEV dispersal in the western United States were identified: Arizona to southern California, Arizona to Central California, and Arizona to all locations east of the Sierra Nevada mountains. Given the topography of the Western United States, these routes may have been limited by mountain ranges that influence the movement of avian reservoirs and mosquito vectors, which probably represents the primary mechanism of SLEV dispersal. Our analysis detected repeated SLEV introductions from Arizona into southern California and limited evidence of year-to-year persistence of genomes of the same ancestry. By contrast, genetic tracing suggests that all SLEV activity since 2015 in central California is the result of a single persistent SLEV introduction. The identification of natural barriers that influence SLEV dispersal enhances our understanding of arbovirus ecology in the western United States and may also support regional public health agencies in implementing more targeted vector mitigation efforts to protect their communities more effectively.
Collapse
Affiliation(s)
- Daniele M. Swetnam
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Jackson B. Stuart
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Katherine Young
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Payal D. Maharaj
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Ying Fang
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Sandra Garcia
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Kirk Smith
- Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Marvin S. Godsey
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Harry M. Savage
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Vonnita Barton
- Idaho Bureau of Laboratories, Boise, Idaho, United States of America
| | - Bethany G. Bolling
- Laboratory Services Section, Texas Department of State Health Services, Austin, Texas, United States of America
| | - Nisha Duggal
- Department of Molecular Biology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Aaron C. Brault
- Division of Vector-borne Diseases, Centers for Disease Control, Fort Collins, Colorado, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
6
|
Kothera L, Mutebi JP, Kenney JL, Saxton-Shaw K, Ward MP, Savage HM. Bloodmeal, Host Selection, and Genetic Admixture Analyses of Culex pipiens Complex (Diptera: Culicidae) Mosquitoes in Chicago, IL. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:78-87. [PMID: 31576405 PMCID: PMC11313203 DOI: 10.1093/jme/tjz158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 06/10/2023]
Abstract
The area in and around Chicago, IL, is a hotspot of West Nile virus activity. The discovery of a Culex pipiens form molestus Forskӓl population in Chicago in 2009 added to speculation that offspring from hybridization between Cx. pipiens f. pipiens L. and f. molestus could show a preference for feeding on humans. We collected blood-fed female mosquitoes (N = 1,023) from eight residential sites and one public park site in Chicago in July and August 2012. Bloodmeal analysis using the COI (cytochrome c oxidase subunit I) gene was performed to ascertain host choice. Almost all (99%) bloodmeals came from birds, with American Robins (Turdus migratorius L.) and House Sparrows (Passer domesticus L.) making up the largest percentage (74% combined). A forage ratio analysis comparing bird species fed upon and available bird species based on point count surveys indicated Northern Cardinals (Cardinalis cardinalis) and American Robins (Turdus migratorius) appeared to be over-utilized, whereas several species were under-utilized. Two human bloodmeals came from Culex pipiens complex mosquitoes. Admixture and population genetic analyses were conducted with 15 microsatellite loci on head and thorax DNA from the collected blood-fed mosquitoes. A modest amount of hybridization was detected between Cx. pipiens f. pipiens and f. molestus, as well as between f. pipiens and Cx. quinquefasciatus Say. Several pure Cx. quinquefasciatus individuals were noted at the two Trumbull Park sites. Our data suggest that Cx. pipiens complex mosquitoes in the Chicago area are not highly introgressed with f. molestus and appear to utilize avian hosts.
Collapse
Affiliation(s)
- Linda Kothera
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arboviral Diseases Branch, 3156 Rampart Road, Fort Collins, CO 80521
| | - John-Paul Mutebi
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arboviral Diseases Branch, 3156 Rampart Road, Fort Collins, CO 80521
| | - Joan L. Kenney
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arboviral Diseases Branch, 3156 Rampart Road, Fort Collins, CO 80521
| | - Kali Saxton-Shaw
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arboviral Diseases Branch, 3156 Rampart Road, Fort Collins, CO 80521
| | - Michael P. Ward
- University of Illinois, Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL 61801
| | - Harry M. Savage
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arboviral Diseases Branch, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
7
|
Aardema ML, vonHoldt BM, Fritz ML, Davis SR. Global evaluation of taxonomic relationships and admixture within the Culex pipiens complex of mosquitoes. Parasit Vectors 2020; 13:8. [PMID: 31915057 PMCID: PMC6950815 DOI: 10.1186/s13071-020-3879-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Within the Culex pipiens mosquito complex, there are six contemporarily recognized taxa: Cx. quinquefasciatus, Cx. pipiens f. pipiens, Cx. pipiens f. molestus, Cx. pipiens pallens, Cx. australicus and Cx. globocoxitus. Many phylogenetic aspects within this complex have eluded resolution, such as the relationship of the two Australian endemic taxa to the other four members, as well as the evolutionary origins and taxonomic status of Cx. pipiens pallens and Cx. pipiens f. molestus. Ultimately, insights into lineage relationships within the complex will facilitate a better understanding of differential disease transmission by these mosquitoes. To this end, we have combined publicly available data with our own sequencing efforts to examine these questions. RESULTS We found that the two Australian endemic complex members, Cx. australicus and Cx. globocoxitus, comprise a monophyletic group, are genetically distinct, and are most closely related to the cosmopolitan Cx. quinquefasciatus. Our results also show that Cx. pipiens pallens is genetically distinct, but may have arisen from past hybridization. Lastly, we observed complicated patterns of genetic differentiation within and between Cx. pipiens f. pipiens and Cx. pipiens f. molestus. CONCLUSIONS Two Australian endemic Culex taxa, Cx. australicus and Cx. globocoxitus, belong within the Cx. pipiens complex, but have a relatively older evolutionary origin. They likely diverged from Cx. quinquefasciatus after its colonization of Australia. The taxon Cx. pipiens pallens is a distinct evolutionary entity that likely arose from past hybridization between Cx. quinquefasciatus and Cx. pipiens f. pipiens/Cx. pipiens f. molestus. Our results do not suggest it derives from ongoing hybridization. Finally, genetic differentiation within the Cx. pipiens f. pipiens and Cx. pipiens f. molestus samples suggests that they collectively form two separate geographic clades, one in North America and one in Europe and the Mediterranean. This may indicate that the Cx. pipiens f. molestus form has two distinct origins, arising from Cx. pipiens f. pipiens in each region. However, ongoing genetic exchange within and between these taxa have obscured their evolutionary histories, and could also explain the absence of monophyly among our samples. Overall, this work suggests many avenues that warrant further investigation.
Collapse
Affiliation(s)
- Matthew L. Aardema
- Department of Biology, Montclair State University, Montclair, NJ USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY USA
| | | | - Megan L. Fritz
- Department of Entomology, University of Maryland, College Park, MD USA
| | - Steven R. Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
| |
Collapse
|
8
|
Francuski L, Gojković N, Krtinić B, Milankov V. The diagnostic utility of sequence-based assays for the molecular delimitation of the epidemiologically relevant Culex pipiens pipiens taxa (Diptera: Culicidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:752-761. [PMID: 30968784 DOI: 10.1017/s0007485319000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The northern house mosquito (Culex pipiens pipiens L.) is a vector of several important pathogens and comprises two epidemiologically distinct ecotypes (molestus Forskål and pipiens). The delimitation of its ecotypes is a crucial, yet controversial step in vector surveillance due to varying diagnostic values of different characters. Therefore, we reviewed the success of a diagnostic assay based on the mitochondrial cytochrome c oxidase subunit I locus (COI) by analyzing previously published sequences of molestus and pipiens sampled in different geographical areas. Next, by genotyping individuals from Northern Serbia at this locus, we additionally assessed whether genetic structure of urban and rural Cx. p. pipiens ecotypes corresponded to the admixture pattern. Finally, to account for the different susceptibility of genetic markers to introgression, we also analyzed genetic structuring based on the ribosomal internal transcribed spacer 2 (ITS2). No latitude-dependent differentiation of Cx. p. pipiens ecotypes was found at a global level, with the COI assay further failing to accurately identify molestus and pipiens ecotypes. Likewise, both individual- (BAPS) and population-based (analysis of molecular variance and FST estimates) methods showed no significant urban/rural genetic differentiation in Serbia, indicating unhindered gene flow between different Cx. p. pipiens habitat types. The findings challenge the previous instances of Cx. p. pipiens ecotype identification, while also spotlighting the vectorial capacity of their hybrid offspring.
Collapse
Affiliation(s)
- L Francuski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - N Gojković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - B Krtinić
- Ciklonizacija, Primorska 76, 21000 Novi Sad, Serbia
| | - V Milankov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Rochlin I, Faraji A, Healy K, Andreadis TG. West Nile Virus Mosquito Vectors in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1475-1490. [PMID: 31549725 DOI: 10.1093/jme/tjz146] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 05/11/2023]
Abstract
In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT
| | - Kristen Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA
| | - Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
10
|
Reisen WK, Wheeler SS. Overwintering of West Nile Virus in the United States. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1498-1507. [PMID: 31549726 DOI: 10.1093/jme/tjz070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 06/10/2023]
Abstract
The establishment of a tropical virus such as West Nile (WNV; Flaviviridae: Flavivirus) within the temperate latitudes of the continental United States was unexpected and perhaps contingent, in part, upon the ability of this invasive virus to persist during winter when temperatures become too cold for replication and vector mosquito gonotrophic activity. Our Forum article reviews research examining possible overwintering mechanisms that include consistent reintroduction and local persistence in vector mosquitoes and avian hosts, mostly using examples from research conducted in California. We conclude that the transmission of WNV involves so many vectors and hosts within different landscapes that multiple overwintering pathways are possible and collectively may be necessary to allow this virus to overwinter consistently within the United States.
Collapse
Affiliation(s)
- William K Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
11
|
Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS One 2019; 14:e0218397. [PMID: 31269040 PMCID: PMC6608931 DOI: 10.1371/journal.pone.0218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
Resistance to insecticides can hamper the control of mosquitoes such as Culex quinquefasciatus, known to vector arboviruses such as West Nile virus and others. The strong selective pressure exerted on a mosquito population by the use of insecticides can result in heritable genetic changes associated with resistance. We sought to characterize genetic differences between insecticide resistant and susceptible Culex quinquefasciatus mosquitoes using targeted DNA sequencing. To that end, we developed a panel of 122 genes known or hypothesized to be involved in insecticide resistance, and used an Ion Torrent PGM sequencer to sequence 125 unrelated individuals from seven populations in the southern U.S. whose resistance phenotypes to permethrin and malathion were known from previous CDC bottle bioassay testing. Data analysis consisted of discovering SNPs (Single Nucleotide Polymorphism) and genes with evidence of copy number variants (CNVs) statistically associated with resistance. Ten of the seventeen genes found to be present in higher copy numbers were experimentally validated with real-time PCR. Of those, six, including the gene with the knock-down resistance (kdr) mutation, showed evidence of a ≥ 1.5 fold increase compared to control DNA. The SNP analysis revealed 228 unique SNPs that had significant p-values for both a Fisher’s Exact Test and the Cochran-Armitage Test for Trend. We calculated the population frequency for each of the 64 nonsynonymous SNPs in this group. Several genes not previously well characterized represent potential candidates for diagnostic assays when further validation is conducted.
Collapse
|
12
|
Kim S, Trocke S, Sim C. Comparative studies of stenogamous behaviour in the mosquito Culex pipiens complex. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:427-435. [PMID: 29856079 DOI: 10.1111/mve.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the processes of reproductive behaviour in mosquitoes is crucial for improving mating competitiveness and mating specificity for sterile insect release programmes. The Culex pipiens (Linneaus) (Diptera: Culicidae) forms pipiens and molestus (Forskål), two biotypes of the Cx. pipiens complex, are vectors for West Nile virus, St Louis encephalitis virus and lymphatic filariases. Hybridization of these biotypes is known to occur in nature, although form pipiens mates above ground in large spaces (eurygamy) and form molestus preferentially mates in small spaces (stenogamy) such as sewage tunnels. Hybridization may allow gene flow of biotype-specific characteristics that are crucial in the disease transmission cycle. The present study examined and compared mating behaviours, insemination rates, fecundity and fertility in parental and F1 hybrids between Cx. pipiens f. pipiens and Cx. pipiens f. molestus in conditions of stenogamy. Unique mating behaviour sequences were identified in Cx. pipiens f. molestus, including tapping, mounting, co-flying and copulation. Despite the considerably high insemination rates in hybrid crosses, fertility and fecundity rates were varied. This observation could suggest reproductive isolation in the hybrid zone. The study also documents a failure of heterospecific males to produce fertile eggs in Cx. pipiens f. pipiens females, which may be attributable to gametic incompatibilities and may represent an additional barrier to gene exchange.
Collapse
Affiliation(s)
- S Kim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - S Trocke
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - C Sim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| |
Collapse
|
13
|
Carlson JS, Nelms B, Barker CM, Reisen WK, Sehgal RNM, Cornel AJ. Avian malaria co-infections confound infectivity and vector competence assays of Plasmodium homopolare. Parasitol Res 2018; 117:2385-2394. [PMID: 29845414 PMCID: PMC6061047 DOI: 10.1007/s00436-018-5924-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/11/2018] [Indexed: 12/01/2022]
Abstract
Currently, there are very few studies of avian malaria that investigate relationships among the host-vector-parasite triad concomitantly. In the current study, we experimentally measured the vector competence of several Culex mosquitoes for a newly described avian malaria parasite, Plasmodium homopolare. Song sparrow (Melospiza melodia) blood infected with a low P. homopolare parasitemia was inoculated into a naïve domestic canary (Serinus canaria forma domestica). Within 5 to 10 days post infection (dpi), the canary unexpectedly developed a simultaneous high parasitemic infection of Plasmodium cathemerium (Pcat6) and a low parasitemic infection of P. homopolare, both of which were detected in blood smears. During this infection period, PCR detected Pcat6, but not P. homopolare in the canary. Between 10 and 60 dpi, Pcat6 blood stages were no longer visible and PCR no longer amplified Pcat6 parasite DNA from canary blood. However, P. homopolare blood stages remained visible, albeit still at very low parasitemias, and PCR was able to amplify P. homopolare DNA. This pattern of mixed Pcat6 and P. homopolare infection was repeated in three secondary infected canaries that were injected with blood from the first infected canary. Mosquitoes that blood-fed on the secondary infected canaries developed infections with Pcat6 as well as another P. cathemerium lineage (Pcat8); none developed PCR detectable P. homopolare infections. These observations suggest that the original P. homopolare-infected songbird also had two un-detectable P. cathemerium lineages/strains. The vector and host infectivity trials in this study demonstrated that current molecular assays may significantly underreport the extent of mixed avian malaria infections in vectors and hosts.
Collapse
Affiliation(s)
- Jenny S Carlson
- Department of Entomology, University of California at Davis, Davis, CA, USA.
| | | | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, University of California at Davis, Davis, CA, USA
| | - William K Reisen
- Department of Pathology, Microbiology, and Immunology, University of California at Davis, Davis, CA, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Anthony J Cornel
- Department of Entomology, University of California at Davis, Davis, CA, USA.,Vector Genetics Laboratory, Dept. Pathology, Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Adjunct Appointment, School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats. Parasit Vectors 2018; 11:10. [PMID: 29301567 PMCID: PMC5755309 DOI: 10.1186/s13071-017-2594-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 12/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Culex pipiens complex consists of several morphologically similar, closely related species. In the United States, Cx. pipiens L. is distributed North of 39° latitude, while Cx. quinquefasciatus Say occurs South of 36° latitude; a hybrid zone occurs between these two latitudes including in the Central Valley of California. Members of the Cx. pipiens complex and their hybrids are vectors for West Nile virus (WNv). Hybrid offspring of Cx. pipiens and Cx. quinquefasciatus have been found to have enhanced transmission rates of WNv over those of pure populations of each species. We investigated whether hybrids of Cx. pipiens and Cx. quinquefasciatus occurred more frequently in any of five habitats which were dairies, rural, suburban, and urban areas, and wetlands. In addition, the proportion of alleles unique to Cx. quinquefasciatus and Cx. pipiens found in each habitat-associated population were determined. METHODS Amplified fragment length polymorphism (AFLP) markers were used to compare the population structure of the Cx. pipiens complex from each habitat to geographically distant populations considered pure Cx. pipiens and Cx. quinquefasciatus. Structure analyses were used to assign individuals to either Cx. pipiens, Cx. quinquefasciatus, or hybrids of the Cx. pipiens complex. The ancestry of hybrids (F1, F2, or backcrossed) in relation to the two parent populations was estimated for each Central Valley population. Loci unique to the pure Cx. pipiens population and the pure Cx. quinquefasciatus population were determined. The proportion of loci unique to Cx. pipiens and Cx. quinquefasciatus populations were subsequently determined for each population from the five Merced habitats and from the Oroville California population. The unique loci found in Merced populations and not in Cx. pipiens or Cx. quinquefasciatus were also determined. A principal components analysis was run, as was an analysis to determine loci under putative selection. RESULTS The Structure Harvester analysis found K = 3, and the Culex pipiens complex mosquitoes formed a genetic cluster distinct from Cx. quinquefasciatus and Cx. pipiens. Individuals collected from each habitat were nearly all hybrids. However, Cx. pipiens complex collected near dairies had more individuals categorized as Cx. pipiens than collections from the other habitats. None of the mosquitoes collected in Merced or Oroville were considered pure Cx. quinquefasciatus. Significant genetic divergence was detected among the Cx. pipiens complex from the five habitats in Merced; Cx. pipiens complex mosquitoes from dairies were divergent from the urban and suburban populations. New Hybrids analysis found that individuals from all five Merced habitat-associated populations and the population from Oroville were primarily categorized as hybrids backcrossed to the Cx. pipiens population. Finally, all five habitat-associated populations shared more alleles with Cx. pipiens than with Cx. quinquefasciatus, even though the pure Cx. quinquefasciatus population was more geographically proximate to Merced. Results from the principal component analysis, and the occurrence of several unique loci in Merced populations, suggest that Cx. pipiens molestus may also occur in the habitats sampled. CONCLUSIONS Nearly all mosquitoes in the five habitats in Merced in the Central Valley of California area were hybrids of Cx. pipiens and Cx. quinquefasciatus, consisting of hybrids backcrossed to Cx. pipiens. Habitat-associated mosquitoes collected near dairies had more individuals consisting of pure Cx. pipiens, and no mosquitoes from Merced or Oroville CA classified as pure Cx. quinquefasciatus. The genetic distances among Cx. pipiens and Cx. quinquefasciatus, and hybrid populations agree with previous studies using other molecular markers. Cx. pipiens hybrids in Merced shared more alleles with Cx. pipiens than Cx. quinquefasciatus which was unexpected, since Merced is geographically closer to the northern limit of Cx. quinquefasciatus distribution. Culex pipiens molestus may occur in more habitats in the Central Valley than previously suspected, which warrants further investigation. Future studies could investigate the vector competence of hybrids backcrossed to either Cx. pipiens or Cx. quinquefasciatus parent for their ability to transmit West Nile virus.
Collapse
|
15
|
Increases in the competitive fitness of West Nile virus isolates after introduction into California. Virology 2017; 514:170-181. [PMID: 29195094 DOI: 10.1016/j.virol.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 11/23/2022]
Abstract
To investigate the phenotypic evolution of West Nile virus (WNV) in California, we competed sixteen isolates made during 2007-08 against COAV997-5nt, a genetically marked clone from the founding 2003 California isolate COAV997-2003. Using in vivo fitness competitions in House Finches (HOFI) and Culex tarsalis mosquitoes, we found that the majority of WNV WN02 and SW03 genotype isolates exhibited elevated replicative fitness in both hosts compared to COAV997-5nt. Increased replicative capacity in HOFIs was not associated with increased mortality, indicating that these isolates had not gained avian virulence. One WN02 isolate from Coachella Valley, a region geographically close to the isolation of COAV997, showed neutral fitness in HOFIs and reduced fitness in Cx. tarsalis. Two isolates from Kern County and Sacramento/Yolo County out-competed COAV997-nt in HOFIs, but were transmitted less efficiently by Cx. tarsalis. Competition demonstrated neutral or increased fitness that appeared independent of both WN02 and SW03 genotypes.
Collapse
|
16
|
Silva Martins WF, Wilding CS, Steen K, Mawejje H, Antão TR, Donnelly MJ. Local selection in the presence of high levels of gene flow: Evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations. PLoS Negl Trop Dis 2017; 11:e0005917. [PMID: 28972985 PMCID: PMC5640252 DOI: 10.1371/journal.pntd.0005917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/13/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Culex quinquefasciatus collected in Uganda, where no vector control interventions directly targeting this species have been conducted, was used as a model to determine if it is possible to detect heterogeneities in selection pressure driven by insecticide application targeting other insect species. METHODOLOGY/PRINCIPAL FINDINGS Population genetic structure was assessed through microsatellite analysis, and the impact of insecticide pressure by genotyping two target-site mutations, Vgsc-1014F of the voltage-gated sodium channel target of pyrethroid and DDT insecticides, and Ace1-119S of the acetylcholinesterase gene, target of carbamate and organophosphate insecticides. No significant differences in genetic diversity were observed among populations by microsatellite markers with HE ranging from 0.597 to 0.612 and low, but significant, genetic differentiation among populations (FST = 0.019, P = 0.001). By contrast, the insecticide-resistance markers display heterogeneous allelic distributions with significant differences detected between Central Ugandan (urban) populations relative to Eastern and Southwestern (rural) populations. In the central region, a frequency of 62% for Vgsc-1014F, and 32% for the Ace1-119S resistant allele were observed. Conversely, in both Eastern and Southwestern regions the Vgsc-1014F alleles were close to fixation, whilst Ace1-119S allele frequency was 12% (although frequencies may be underestimated due to copy number variation at both loci). CONCLUSIONS/SIGNIFICANCE Taken together, the microsatellite and both insecticide resistance target-site markers provide evidence that in the face of intense gene flow among populations, disjunction in resistance frequencies arise due to intense local selection pressures despite an absence of insecticidal control interventions targeting Culex.
Collapse
Affiliation(s)
- Walter Fabricio Silva Martins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Craig Stephen Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Tiago Rodrigues Antão
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Division of Biological Science, University of Montana, Missoula, United States of America
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
17
|
Carlson JS, Giannitti F, Valkiūnas G, Tell LA, Snipes J, Wright S, Cornel AJ. A method to preserve low parasitaemia Plasmodium-infected avian blood for host and vector infectivity assays. Malar J 2016; 15:154. [PMID: 26969510 PMCID: PMC4787182 DOI: 10.1186/s12936-016-1198-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/01/2016] [Indexed: 11/11/2022] Open
Abstract
Background Avian malaria vector competence studies are needed to understand more succinctly complex avian parasite-vector-relations. The lack of vector competence trials may be attributed to the difficulty of obtaining gametocytes for the majority of Plasmodium species and lineages. To conduct avian malaria infectivity assays for those Plasmodium spp. and lineages that are refractory to in vitro cultivation, it is necessary to obtain and preserve for short periods sufficient viable merozoites to infect naïve donor birds to be used as gametocyte donors to infect mosquitoes. Currently, there is only one described method for long-term storage of Plasmodium spp.—infected wild avian blood and it is reliable at a parasitaemia of at least 1 %. However, most naturally infected wild-caught birds have a parasitaemia of much less that 1 %. To address this problem, a method for short-term storage of infected wild avian blood with low parasitaemia (even ≤0.0005 %) has been explored and validated. Methods To obtain viable infective merozoites, blood was collected from wild birds using a syringe containing the anticoagulant and the red blood cell preservative citrate phosphate dextrose adenine solution (CPDA). Each blood sample was stored at 4 °C for up to 48 h providing sufficient time to determine the species and parasitaemia of Plasmodium spp. in the blood by morphological examination before injecting into donor canaries. Plasmodium spp.—infected blood was inoculated intravenously into canaries and once infection was established, Culex stigmatosoma, Cx. pipiens and Cx. quinquefasciatus mosquitoes were then allowed to feed on the infected canaries to validate the efficacy of this method for mosquito vector competence assays. Results Storage of Plasmodium spp.—infected donor blood at 4 °C yielded viable parasites for 48 h. All five experimentally-infected canaries developed clinical signs and were infectious. Pathologic examination of three canaries that later died revealed splenic lesions typical of avian malaria infection. Mosquito infectivity assays demonstrated that Cx. stigmatosoma and Cx. pipiens were competent vectors for Plasmodium cathemerium. Conclusions A simple method of collecting and preserving avian whole blood with malaria parasites of low parasitaemia (≤0.0005 %) was developed that remained viable for further experimental bird and mosquito infectivity assays. This method allows researchers interested in conducting infectivity assays on target Plasmodium spp. to collect these parasites directly from nature with minimal impact on wild birds.
Collapse
Affiliation(s)
- Jenny S Carlson
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, Kearney Agriculture Center, University of California, Parlier, Davis, USA.
| | - Federico Giannitti
- Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, USA.,Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Colonia, Uruguay.,California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, USA
| | | | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| | - Joy Snipes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, USA
| | - Stan Wright
- Sacramento-Yolo Mosquito Vector and Control District, Elk Grove, USA
| | - Anthony J Cornel
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, Kearney Agriculture Center, University of California, Parlier, Davis, USA.,Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California, Davis, USA
| |
Collapse
|
18
|
Duggal NK, Reisen WK, Fang Y, Newman RM, Yang X, Ebel GD, Brault AC. Genotype-specific variation in West Nile virus dispersal in California. Virology 2015. [PMID: 26210076 DOI: 10.1016/j.virol.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV) is an arbovirus that was first reported in North America in New York in 1999 and, by 2003, had spread more than 4000 km to California. However, variation in viral genetics associated with spread is not well understood. Herein, we report sequences for more than 100 WNV isolates made from mosquito pools that were collected from 2003 to 2011 as part of routine surveillance by the California Mosquito-borne Virus Surveillance System. We performed phylogeographic analyses and demonstrated that 5 independent introductions of WNV (1 WN02 genotype strain and 4 SW03 genotype strains) occurred in California. The SW03 genotype of WNV was constrained to the southwestern U.S. and had a more rapid rate of spread. In addition, geographic constraint of WNV strains within a single region for up to 6 years suggest viral maintenance has been driven by resident, rather than migratory, birds and overwintering in mosquitoes.
Collapse
Affiliation(s)
- Nisha K Duggal
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - William K Reisen
- Center for Vectorborne Diseases, University of California, Davis, CA, USA
| | - Ying Fang
- Center for Vectorborne Diseases, University of California, Davis, CA, USA
| | - Ruchi M Newman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Yang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Hinton MG, Reisen WK, Wheeler SS, Townsend AK. West Nile Virus Activity in a Winter Roost of American Crows (Corvus brachyrhynchos): Is Bird-To-Bird Transmission Important in Persistence and Amplification? JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:683-92. [PMID: 26335475 PMCID: PMC4592346 DOI: 10.1093/jme/tjv040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 05/19/2023]
Abstract
Since its emergence in North America, West Nile virus (WNV) has had a large impact on equines, humans, and wild bird communities, yet gaps remain in our understanding of how the virus persists at temperate latitudes when winter temperatures preclude virus replication and host-seeking activity by mosquito vectors. Bird-to-bird transmission at large communal American Crow roosts could provide one mechanism for WNV persistence. Herein, we describe seasonal patterns of crow and Culex mosquito abundance, WNV infection rates, and the prevalence of WNV-positive fecal samples at a winter crow roost to test the hypothesis that bird-to-bird transmission allows WNV to persist at winter crow roosts. Samples were collected from large winter crow roosts in the Sacramento Valley of California from January 2013 until August 2014, encompassing two overwintering roost periods. West Nile virus RNA was detected in local crow carcasses in both summer [13/18 (72% WNV positive)] and winter [18/44 (41% WNV positive)] 2013-2014. Winter infections were unlikely to have arisen by recent bites from infected mosquitoes because Culex host-seeking activity was very low in winter and all Culex mosquitoes collected during winter months tested negative for WNV. Opportunities existed for fecal-oral transfer at the overwintering roost: most carcasses that tested positive for WNV had detectable viral RNA in both kidney and cloacal swabs, suggesting that infected crows were shedding virus in their feces, and >50% of crows at the roost were stained with feces by mid-winter. Moreover, 2.3% of fecal samples collected in late summer, when mosquitoes were active, tested positive for WNV RNA. Nevertheless, none of the 1,119 feces collected from three roosts over two winters contained detectable WNV RNA. This study provided evidence of WNV infection in overwintering American crows without mosquito vector activity, but did not elucidate a mechanism of WNV transmission during winter.
Collapse
Affiliation(s)
- M G Hinton
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, 1088 Academic Surge, Davis, CA 95616.
| | - W K Reisen
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, Center for Vectorborne Diseases, Old Davis Road, Davis, CA 95616
| | - S S Wheeler
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, Center for Vectorborne Diseases, Old Davis Road, Davis, CA 95616
| | - A K Townsend
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, 1088 Academic Surge, Davis, CA 95616. Department of Biology, Hamilton College, Clinton, NY 13323
| |
Collapse
|
20
|
Fritz ML, Walker ED, Miller JR, Severson DW, Dworkin I. Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:115-123. [PMID: 25600086 DOI: 10.1111/mve.12096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Culex pipiens form pipiens and Cx. pipiens form molestus (Diptera: Culicidae) belong to a cosmopolitan taxonomic group known as the Pipiens Assemblage. Hybridization between these forms is thought to contribute to human transmission of West Nile virus (WNV) in North America. Complementary choice and no-choice landing assays were developed to examine host acceptance by North American Cx. pipiens in the laboratory. Populations collected from above- and below-ground sites in suburban Chicago were identified as forms pipiens and molestus using a polymerase chain reaction-based assay. Avian and human host acceptance was then quantified for the two populations, as well as for their hybrid and backcross offspring. No-choice tests were used to demonstrate that both the pipiens and molestus forms were capable of feeding on human and avian hosts. Choice tests were used to demonstrate that form pipiens females were strongly avian-seeking; an individual's probability of accepting the chick host was 85%. Form molestus females were more likely to accept the human host (87%). Rates of host acceptance by F1 and backcross progeny were intermediate to those of their parents. The results suggest that host preferences in Cx. pipiens are genetically determined, and that ongoing hybridization between above- and below-ground populations is an important contributor to epizootic transmission of WNV in North America.
Collapse
Affiliation(s)
- M L Fritz
- Department of Zoology, Michigan State University, East Lansing, MI, U.S.A.; Department of Entomology, North Carolina State University, Raleigh, NC, U.S.A
| | | | | | | | | |
Collapse
|
21
|
Sullivan GA, Liu C, Syed Z. Oviposition signals and their neuroethological correlates in the Culex pipiens complex. INFECTION GENETICS AND EVOLUTION 2014; 28:735-43. [PMID: 25460826 DOI: 10.1016/j.meegid.2014.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/27/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
Mosquitoes in the Culex pipiens complex (Diptera: Culicidae), especially Cx. pipiens and Culex quinquefasciatus, have successfully exploited the rapid growth of the human population and globalization to their advantage by successfully utilizing man-made habitats, particularly for oviposition. Culex spp. lay over 100 eggs together in a raft. Each egg in the raft produces an apical droplet containing an oviposition attractant, erythro-6-acetoxy-5-hexadecanolide, commonly referred to as Mosquito Oviposition Pheromone (MOP). Here we present a detailed gas chromatography-mass spectrometry (GC-MS) analysis of the apical droplets from six populations that revealed MOP as the most abundant constituent. Subjecting MOP and the remaining 17 most abundant chemical constituents of the droplets from these populations to a Principal Component Analysis (PCA) resolved the populations into two distinct clusters that contained two populations each of Cx. quinquefasciatus and Culex pipiens molestus. The two Culex pipiens pipiens, however, did not resolve into a single cluster, with the Shasta population sorting closer to Cx. quinquefasciatus. Comparing the PCA scores with the genetic evidence from adult females using available molecular markers that have earlier shown to sort various Culex forms, we found that the molecular data support the PCA clustering pattern. Behavioral investigation of the droplet-induced attraction tested in gravid Cx. quinquefasciatus elicited various degrees of oviposition to the droplets from each population. Overall, droplets from all six populations induced higher attraction compared to controls. A detailed time-course analysis of droplet composition in Cx. quinquefasciatus from 6 to 54 h post egg-laying identified MOP again as the main constituent. Finally, our electrophysiological investigation identified MOP as the only biologically active constituent from of the droplets eliciting responses from female antennae. These studies will aid in global efforts to understand the vector biology and evolution that can be exploited to develop novel vector management strategies.
Collapse
Affiliation(s)
- Gwyneth A Sullivan
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Cheng Liu
- Center for Research Computing, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zainulabeuddin Syed
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
22
|
Wei ZD, Kobmoo N, Cruaud A, Kjellberg F. Genetic structure and hybridization in the species group of Ficus auriculata: can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Mol Ecol 2014; 23:3538-50. [PMID: 24938182 DOI: 10.1111/mec.12825] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 11/29/2022]
Abstract
Obligate mutualistic nursery pollination systems between insects and plants have led to substantial codiversification involving at least some parallel cladogenesis, as documented in Yucca, Ficus and Phyllanthaceae. In such systems, pollinators are generally species specific thus limiting hybridization and introgression among interfertile host species. Nevertheless, in the three systems, cases of one insect pollinating several plant species are reported. In most cases, host plants sharing pollinators are allopatric. However, in the case of the species group of Ficus auriculata, forms may co-occur over large parts of their range. We show here that the species group of F. auriculata is constituted by four well-defined genetic entities that share pollinators. We detected hybrids in nature mainly when both parental forms were growing nearby. Controlled crosses showed that F1 offspring could be successfully backcrossed. Hence, despite sharing pollinators and despite hybrid viability, the different forms have preserved their genetic and morphological identity. We propose that ecological differentiation among forms coupled with limited overlap of reproductive season has facilitated the maintenance of these interfertile forms. As such, establishment of pollinator host specificity may not be a prerequisite for sympatric diversification in Ficus.
Collapse
Affiliation(s)
- Z-D Wei
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China; Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
23
|
Nelms BM, Kothera L, Thiemann T, Macedo PA, Savage HM, Reisen WK. Phenotypic variation among Culex pipiens complex (Diptera: Culicidae) populations from the Sacramento Valley, California: horizontal and vertical transmission of West Nile virus, diapause potential, autogeny, and host selection. Am J Trop Med Hyg 2013; 89:1168-78. [PMID: 24043690 DOI: 10.4269/ajtmh.13-0219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The vector competence and bionomics of Culex pipiens form pipiens L. and Cx. pipiens f. molestus Forskäl were evaluated for populations from the Sacramento Valley. Both f. pipiens and f. molestus females became infected, produced disseminated infections, and were able to transmit West Nile virus. Form molestus females also transmitted West Nile virus vertically to egg rafts and F1 progeny, whereas f. pipiens females only transmitted to egg rafts. Culex pipiens complex from urban Sacramento blood-fed on seven different avian species and two mammalian species. Structure analysis of blood-fed mosquitoes identified K = 4 genetic clusters: f. molestus, f. pipiens, a group of genetically similar hybrids (Cluster X), and admixed individuals. When females were exposed as larvae to midwinter conditions in bioenvironmental chambers, 85% (N = 79) of aboveground Cx. pipiens complex females and 100% (N = 34) of underground f. molestus females did not enter reproductive diapause.
Collapse
Affiliation(s)
- Brittany M Nelms
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California, Davis, California; Centers for Disease Control and Prevention, Fort Collins, Colorado; Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, California
| | | | | | | | | | | |
Collapse
|
24
|
NELMS BRITTANYM, MACEDO PAULAA, KOTHERA LINDA, SAVAGE HARRYM, REISEN WILLIAMK. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:773-90. [PMID: 23926775 PMCID: PMC3920460 DOI: 10.1603/me12280] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
At temperate latitudes, Culex (Diptera: Culicidae) mosquitoes typically overwinter as adult females in reproductive arrest and also may serve as reservoir hosts for arboviruses when cold temperatures arrest viral replication. To evaluate their role in the persistence of West Nile virus (WNV) in the Sacramento Valley of California, the induction and termination of diapause were investigated for members of the Culex pipiens (L.) complex, Culex tarsalis Coquillett, and Culex stigmatosoma Dyar under field, seminatural, and experimental conditions. All Culex spp. remained vagile throughout winter, enabling the collection of 3,174 females and 1,706 males from diverse habitats during the winters of 2010-2012. Overwintering strategies included both quiescence and diapause. In addition, Cx. pipiens form molestus Forskäl females remained reproductively active in both underground and aboveground habitats. Some blood-fed, gravid, and parous Cx. tarsalis and Cx. pipiens complex females were collected throughout the winter period. Under both field and experimental conditions, Cx. tarsalis and Cx. stigmatosoma females exposed to autumnal conditions arrested primary follicular maturation at previtellogenic stage I, with primary to secondary follicular ratios <1.5 (indicative of a hormonally induced diapause). In contrast, most Cx. pipiens complex females did not enter reproductive diapause and ovarian follicles matured to >or=stage I-II (host-seeking arrest) or were found in various stages of degeneration. Diapause was initiated in the majority of Cx. tarsalis and Cx. stigmatosoma females by mid-late October and was terminated after the winter solstice, but host-seeking seemed limited by temperature. An accrual of 97.52 +/- 30.7 and 162.85 +/- 79.3 degree-days after the winter solstice was estimated to be necessary for diapause termination in Cx. tarsalis under field and seminatural conditions, respectively. An increase in the proportion of blood-fed Culex females in resting collections occurred concurrently with diapause termination in field populations based on ovarian morphometrics. WNV RNA was detected in one pool of 18 males and in a single blood-fed female Cx. tarsalis collected during winter. Therefore, both vertically and horizontally infected Culex females may persist through winter and possibly transmit WNV after diapause termination in late winter or early spring in the Sacramento Valley of California.
Collapse
Affiliation(s)
- BRITTANY M. NELMS
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, One Shields Ave., Davis, CA 95616
| | - PAULA A. MACEDO
- Sacramento-Yolo Mosquito and Vector Control District, 8631 Bond Rd., Elk Grove, CA 95624
| | - LINDA KOTHERA
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521
| | - HARRY M. SAVAGE
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521
| | - WILLIAM K. REISEN
- Center for Vectorborne Diseases and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, One Shields Ave., Davis, CA 95616
- Corresponding author:
| |
Collapse
|