1
|
Chen X, Sun M, Ma X, Ma Y, Chen B. Silencing hepatic PCSK9 via novel chimeric AAV8 mitigates the progression of atherosclerosis by inhibiting inflammation in ApoE -/- mice. Mol Ther Methods Clin Dev 2025; 33:101390. [PMID: 39897642 PMCID: PMC11787523 DOI: 10.1016/j.omtm.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Adeno-associated virus (AAV) is the most widely utilized vector for gene therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9), predominantly expressed in the liver, plays a crucial role in lipid regulation and atherosclerosis progression. Here, we developed a novel chimeric AAV8.P-PCSK9 short hairpin RNA (shRNA) vector that incorporates a cross-species specific shRNA targeting PCSK9 to assess its effects on lipid levels and atherosclerosis in mice. AAV8.P demonstrated superior transduction efficiency and safety, achieving about 90% liver transduction and maintaining transgene expression for up to a year. The AAV8.P-PCSK9 shRNA exhibited typical liver-tropism and effectively silenced hepatic PCSK9. Moreover, it significantly lowered serum cholesterol and triglyceride levels while increasing LDL-R level without causing hepatotoxicity in wild-type mice. Additionally, it decreased PCSK9 expression and elevated low-density lipoprotein receptor expression in Apolipoprotein E-deficient mice, leading to early changes in lipid profiles but lacking a sustained impact on circulating lipids. Importantly, silencing PCSK9 resulted in reduced plaque areas with enhanced stability, decreased inflammatory macrophage infiltration, and lower levels of vascular and systemic inflammatory markers. These findings indicate that targeted silencing of hepatic PCSK9 significantly reduces lipid levels and effectively mitigates atherosclerosis progression by inhibiting inflammatory responses via the AAV8.P-PCSK9 shRNA vector, thereby providing critical support for its clinical translation.
Collapse
Affiliation(s)
- Xiaocui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Minghui Sun
- Department of Nephrology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, P.R. China
| | - Xiang Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Yitong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
- Basic Medical College, Xinjiang Medical University, Urumqi 830011, P.R. China
| |
Collapse
|
2
|
Momtazi-Borojeni AA, Banach M, Sahebkar A. Evaluating the effect of the antiPCSK9 vaccine on systemic inflammation and oxidative stress in an experimental mouse model. Cardiol J 2025; 32:73-82. [PMID: 39776050 PMCID: PMC11870013 DOI: 10.5603/cj.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND To investigate whether the antiPCSK9 vaccine can affect the CRP and oxidative stress (OS) during acute systemic inflammation. METHODS Male albino mice were randomly divided into three groups: non-treated mice (the sham group), treated with a nonspecific stimulator of the immune response - Freund's complete adjuvant (CFA; the CFA group), and vaccinated mice treated with CFA (the vaccine group). The vaccine group was subcutaneously immunized with the antiPCSK9 formulation, 4 × in bi-weekly intervals. To induce inflammation, all mice were subjected to the CFA challenge after the vaccination plan. The hsCRP level and OS status were evaluated by a mouse CRP ELISA kit and the pro-oxidant antioxidant balance (PAB) assay, respectively. RESULTS The vaccine induced a high-titter IgG antiPCSK9 antibody, which was accompanied with a significant PCSK9 reduction (-24.7% and -28.5% compared with the sham and CFA group, respectively), and the inhibition of PCSK9/LDLR interaction (-27.8% and -29.4%, respectively). hsCRP was significantly increased in the vaccine and CFA groups by 225% and 274% respectively, when compared with the sham group; however, it was non-significantly decreased (-18%; p = 0.520) in the vaccine group in comparison with the CFA group. The PAB values indicated that OS was significantly increased in the CFA group (by 72.7%) and the vaccine group (by 76%) when compared to the sham group; however, there was no significant difference in the PAB values between the vaccine and CFA groups. CONCLUSION The antiPCSK9 vaccine failed to significantly reduce the serum hs-CRP and OS induced in the CFA-challenged albino mice.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maciej Banach
- Faculty of Medicine, John Paul II Catholic University of Lublin, Lublin, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Iran.
| |
Collapse
|
3
|
Tsioulos G, Vallianou NG, Skourtis A, Dalamaga M, Kotsi E, Kargioti S, Adamidis N, Karampela I, Mourouzis I, Kounatidis D. Vaccination as a Promising Approach in Cardiovascular Risk Mitigation: Are We Ready to Embrace a Vaccine Strategy? Biomolecules 2024; 14:1637. [PMID: 39766344 PMCID: PMC11727084 DOI: 10.3390/biom14121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular disease (CVD) remains a leading global health concern, with atherosclerosis being its principal cause. Standard CVD treatments primarily focus on mitigating cardiovascular (CV) risk factors through lifestyle changes and cholesterol-lowering therapies. As atherosclerosis is marked by chronic arterial inflammation, the innate and adaptive immune systems play vital roles in its progression, either exacerbating or alleviating disease development. This intricate interplay positions the immune system as a compelling therapeutic target. Consequently, immunomodulatory strategies have gained increasing attention, though none have yet reached widespread clinical adoption. Safety concerns, particularly the suppression of host immune defenses, remain a significant barrier to the clinical application of anti-inflammatory therapies. Recent decades have revealed the significant role of adaptive immune responses to plaque-associated autoantigens in atherogenesis, opening new perspectives for targeted immunological interventions. Preclinical models indicate that vaccines targeting specific atherosclerosis-related autoantigens can slow disease progression while preserving systemic immune function. In this context, numerous experimental studies have advanced the understanding of vaccine development by exploring diverse targeting pathways. Key strategies include passive immunization using naturally occurring immunoglobulin G (IgG) antibodies and active immunization targeting low-density lipoprotein cholesterol (LDL-C) and apolipoproteins, such as apolipoprotein B100 (ApoB100) and apolipoprotein CIII (ApoCIII). Other approaches involve vaccine formulations aimed at proteins that regulate lipoprotein metabolism, including proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesteryl ester transfer protein (CETP), and angiopoietin-like protein 3 (ANGPTL3). Furthermore, the literature highlights the potential for developing non-lipid-related vaccines, with key targets including heat shock proteins (HSPs), interleukins (ILs), angiotensin III (Ang III), and a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7). However, translating these promising findings into safe and effective clinical therapies presents substantial challenges. This review provides a critical evaluation of current anti-atherosclerotic vaccination strategies, examines their proposed mechanisms of action, and discusses key challenges that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Georgios Tsioulos
- Fourth Department of Internal Medicine, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Alexandros Skourtis
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelia Kotsi
- Second Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokratio General Hospital, 11527 Athens, Greece;
| | - Sofia Kargioti
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Nikolaos Adamidis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (S.K.); (N.A.)
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 12461 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
4
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL, Hu B, Wu JH. Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics 2024; 14:7505-7533. [PMID: 39659570 PMCID: PMC11626940 DOI: 10.7150/thno.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Atherosclerosis remains a significant global health challenge, with its related conditions as the leading cause of death, underscoring the urgent need for enhanced diagnostic and therapeutic approaches. Recently, self-assembled nanoparticles (SANPs) have shown remarkable promise in treating atherosclerosis, attributed to their superior bioavailability, biodegradability, biocompatibility, and ease of functional modification. Numerous SANP variants, such as DNA origami, metal-organic frameworks (MOFs), nanozymes, peptide-based nanoparticles, and self-assembled prodrug nanoparticles, have been engineered, extending their utility in targeted drug delivery and imaging. Advances in fabrication technologies, including microfluidic techniques, allow for precise and scalable SANP production, while innovative nanoparticle designs-such as stimuli-responsive and carrier-free variants-enhance pharmacokinetic properties. The deployment of SANPs in atherosclerosis has introduced a range of diagnostic and therapeutic solutions, from non-invasive imaging and stimuli-responsive drug delivery to vaccination, theranostics, and biosensing. This review consolidates the recent progress in SANP applications for atherosclerosis, emphasizing their transformative potential in disease management.
Collapse
Affiliation(s)
- Tuersun Aili
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia-bin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-xiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-liang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie-hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Shi T, Liu K, Peng Y, Dai W, Du D, Li X, Liu T, Song N, Meng Y. Research progress on the therapeutic effects of nanoparticles loaded with drugs against atherosclerosis. Cardiovasc Drugs Ther 2024; 38:977-997. [PMID: 37178241 DOI: 10.1007/s10557-023-07461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.
Collapse
Affiliation(s)
- Tianfeng Shi
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kunkun Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Weibin Dai
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Donglian Du
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Xiaoqiong Li
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
| | - Tingting Liu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ningning Song
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, Shanxi, China.
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Sahebkar A, Banach M. Transforming hypercholesterolemia management: Spotlight on PCSK9 peptide vaccines. Cell Rep Med 2024; 5:101726. [PMID: 39293395 PMCID: PMC11525015 DOI: 10.1016/j.xcrm.2024.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a therapeutic target for dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). Two recent studies published by Fang et al.1 and Zhang et al.2 in Cell Reports Medicine and Cell Reports, respectively, show the efficacy of peptide vaccines in eliciting an antibody response against PCSK9 and reducing plasma cholesterol levels.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Liverpool Centre for Cardiovascular Science (LCCS), Liverpool, UK.
| |
Collapse
|
7
|
Fang Q, Lu X, Zhu Y, Lv X, Yu F, Ma X, Liu B, Zhang H. Development of a PCSK9-targeted nanoparticle vaccine to effectively decrease the hypercholesterolemia. Cell Rep Med 2024; 5:101614. [PMID: 38897173 PMCID: PMC11228807 DOI: 10.1016/j.xcrm.2024.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Qiannan Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinyu Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yuanqiang Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University·Zhaoqing Hospital, Zhaoqing, Guangdong 510630, China
| | - Xi Lv
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
8
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Surma S, Sahebkar A, Banach M. Whether and Why Do We Need a Vaccine Against Atherosclerosis? Can We Expect It Anytime Soon? Curr Atheroscler Rep 2024; 26:59-71. [PMID: 38165521 PMCID: PMC10881686 DOI: 10.1007/s11883-023-01186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of premature death. Lipid disorders, particularly elevated serum low-density lipoprotein cholesterol (LDL-C), contribute significantly to ASCVD. The risk of developing ASCVD is influenced by the duration of exposure to elevated LDL-C concentrations (cholesterol-years concept). Implementing lipid-lowering treatments based on the principles of "the earlier the better," "the lower the better," and "the longer the better" has been shown to reduce cardiovascular risk and significantly extend lifespan. Despite the availability of numerous lipid-lowering drugs, achieving satisfactory control of lipid disorders remains very challenging. Therefore, there is a need for novel approaches to improve treatment adherence. RECENT FINDINGS One promising solution under investigation is the development of an anti-PCSK9 vaccine, which could be administered annually to provide long-term control over LDL-C concentrations. Experimental studies and the sole clinical trial conducted thus far have demonstrated that the anti-PCSK9 vaccine induces a durable immune response associated with lipid-lowering and anti-atherosclerotic effects. Furthermore, it has exhibited good tolerability and a satisfactory safety profile. However, we still need data from phase 2, 3, and cardiovascular outcome trial to confirm its safety and efficacy and add value in the armamentarium of available and perspective lipid-lowering drugs. This article highlights the significance of developing an anti-PCSK9 vaccine and provides an overview of the current knowledge on various anti-PCSK9 vaccines.
Collapse
Affiliation(s)
- Stanisław Surma
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, 40-752, Katowice, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338, Lodz, Poland.
- Cardiovascular Research Centre, University of Zielona Gora, 65-417, Zielona Gora, Poland.
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338, Lodz, Poland.
| |
Collapse
|
10
|
Volkova A, Shulgin B, Helmlinger G, Peskov K, Sokolov V. Optimization of the MACE endpoint composition to increase power in studies of lipid-lowering therapies-a model-based meta-analysis. Front Cardiovasc Med 2024; 10:1242845. [PMID: 38304061 PMCID: PMC10832431 DOI: 10.3389/fcvm.2023.1242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Aims To develop a model-informed methodology for the optimization of the Major Adverse Cardiac Events (MACE) composite endpoint, based on a model-based meta-analysis across anti-hypercholesterolemia trials of statin and anti-PCSK9 drugs. Methods and results Mixed-effects meta-regression modeling of stand-alone MACE outcomes was performed, with therapy type, population demographics, baseline and change over time in lipid biomarkers as predictors. Randomized clinical trials up to June 28, 2022, of either statins or anti-PCSK9 therapies were identified through a systematic review process in PubMed and ClinicalTrials.gov databases. In total, 54 studies (270,471 patients) were collected, reporting 15 different single cardiovascular events. Treatment-mediated decrease in low density lipoprotein cholesterol, baseline levels of remnant and high-density lipoprotein cholesterol as well as non-lipid population characteristics and type of therapy were identified as significant covariates for 10 of the 15 outcomes. The required sample size per composite 3- and 4-point MACE endpoint was calculated based on the estimated treatment effects in a population and frequencies of the incorporated events in the control group, trial duration, and uncertainty in model parameters. Conclusion A quantitative tool was developed and used to benchmark different compositions of 3- and 4-point MACE for statins and anti-PCSK9 therapies, based on the minimum population size required to achieve statistical significance in relative risk reduction, following meta-regression modeling of the single MACE components. The approach we developed may be applied towards the optimization of the design of future trials in dyslipidemia disorders as well as in other therapeutic areas.
Collapse
Affiliation(s)
- Alina Volkova
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | - Boris Shulgin
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Kirill Peskov
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Sokolov
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
11
|
Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S, Weyer K. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther 2023; 249:108480. [PMID: 37331523 DOI: 10.1016/j.pharmthera.2023.108480] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Lowering blood cholesterol levels efficiently reduces the risk of developing atherosclerotic cardiovascular disease (ASCVD), including coronary artery disease (CAD), which is the main cause of death worldwide. CAD is caused by plaque formation, comprising cholesterol deposits in the coronary arteries. Proprotein convertase subtilisin kexin/type 9 (PCSK9) was discovered in the early 2000s and later identified as a key regulator of cholesterol metabolism. PCSK9 induces lysosomal degradation of the low-density lipoprotein (LDL) receptor in the liver, which is responsible for clearing LDL-cholesterol (LDL-C) from the circulation. Accordingly, gain-of-function PCSK9 mutations are causative of familial hypercholesterolemia, a severe condition with extremely high plasma cholesterol levels and increased ASCVD risk, whereas loss-of-function PCSK9 mutations are associated with very low LDL-C levels and protection against CAD. Since the discovery of PCSK9, extensive investigations in developing PCSK9 targeting therapies have been performed. The combined delineation of clear biology, genetic risk variants, and PCSK9 crystal structures have been major drivers in developing antagonistic molecules. Today, two antibody-based PCSK9 inhibitors have successfully progressed to clinical application and shown to be effective in reducing cholesterol levels and mitigating the risk of ASCVD events, including myocardial infarction, stroke, and death, without any major adverse effects. A third siRNA-based inhibitor has been FDA-approved but awaits cardiovascular outcome data. In this review, we outline the PCSK9 biology, focusing on the structure and nonsynonymous mutations reported in the PCSK9 gene and elaborate on PCSK9-lowering strategies under development. Finally, we discuss future perspectives with PCSK9 inhibition in other severe disorders beyond cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Mohamed F, Mansfield B, Raal FJ. Targeting PCSK9 and Beyond for the Management of Low-Density Lipoprotein Cholesterol. J Clin Med 2023; 12:5082. [PMID: 37568484 PMCID: PMC10419884 DOI: 10.3390/jcm12155082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels is crucial to the prevention of atherosclerotic cardiovascular disease (ASCVD). However, many patients, especially those at very high ASCVD risk or with familial hypercholesterolemia (FH), do not achieve target LDL-C levels with statin monotherapy. The underutilization of novel lipid-lowering therapies (LLT) globally may be due to cost concerns or therapeutic inertia. Emerging approaches have the potential to lower LDL-C and reduce ASCVD risk further, in addition to offering alternatives for statin-intolerant patients. Shifting the treatment paradigm towards initial combination therapy and utilizing novel LLT strategies can complement existing treatments. This review discusses innovative approaches including combination therapies involving statins and agents like ezetimibe, bempedoic acid, cholesterol ester transfer protein (CETP) inhibitors as well as strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and angiopoietin-like protein 3 (ANGPTL3) inhibition. Advances in nucleic acid-based therapies and gene editing are innovative approaches that will improve patient compliance and adherence. These strategies demonstrate significant LDL-C reductions and improved cardiovascular outcomes, offering potential for optimal LDL-C control and reduced ASCVD risk. By addressing the limitations of statin monotherapy, these approaches provide new management options for elevated LDL-C levels.
Collapse
Affiliation(s)
| | | | - Frederick J. Raal
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (F.M.); (B.M.)
| |
Collapse
|
13
|
Mahmoudi A, Butler AE, Banach M, Jamialahmadi T, Sahebkar A. Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure. Curr Probl Cardiol 2023; 48:101660. [PMID: 36841313 DOI: 10.1016/j.cpcardiol.2023.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
The leading cause of atherosclerotic cardiovascular disease (ASCVD) is elevated low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased risk of coronary heart disease (CHD). Herein, using virtual screening tools, we aimed to identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. We first performed chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of 5 and achieved 3853 compounds. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and 5 compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV) = 0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module (a complete package for pharmacophore modeling) designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas 9 (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising 1 hydrogen donor (D), 2 hydrophobic groups (H), and 2 rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening. Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and 2 H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and 3 H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and 1 H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and 4 H-bonds were ranked next, respectively. To conclude, the archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL) Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research institute (PMMHRI), Lodz, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Moreno-Gonzalez MA, Ortega-Rivera OA, Steinmetz NF. Two decades of vaccine development against atherosclerosis. NANO TODAY 2023; 50:101822. [PMID: 37860053 PMCID: PMC10586238 DOI: 10.1016/j.nantod.2023.101822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Atherosclerosis is an immune-mediated chronic inflammatory disease that leads to the development of fatty plaques in the arterial walls, ultimately increasing the risk of thrombosis, stroke, and myocardial infarction. The immune response in this complex disease is both atheroprotective and pro-atherogenic, involving both innate and adaptive immunity. Current treatments include the adjustment of lifestyle factors, cholesterol-lowering drugs such as statins, and immunotherapy, whereas vaccine development has received comparatively little attention. In this review, we discuss the potential of antigen-specific vaccination as a preventative approach based on more than 20 years of research and innovation. Vaccination targets include proteins that are more abundant in atherosclerotic patients, such as oxidized low-density lipoprotein (LDL), apolipoprotein B-100, proprotein convertase subtilisin/kexin type-9 serine protease (PCSK9), cholesteryl ester transfer protein (CETP), and heat shock proteins HSP60 and HSP65. Immunization with such proteins or their peptide epitopes has been shown to induce T-cell activation, produce antigen-specific antibodies, reduce the size of atherosclerotic lesions, and/or reduce serum cholesterol levels. Vaccination against atherosclerosis therefore offers a new strategy to address the burden on healthcare systems caused by cardiovascular disease, the leading cause of death worldwide.
Collapse
Affiliation(s)
- Miguel A. Moreno-Gonzalez
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Oscar A. Ortega-Rivera
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
15
|
Gill PK, Hegele RA. Low cholesterol states: clinical implications and management. Expert Rev Endocrinol Metab 2023; 18:241-253. [PMID: 37089071 DOI: 10.1080/17446651.2023.2204932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Hypocholesterolemia results from genetic - both monogenic and polygenic - and non-genetic causes and can sometimes be a source of clinical concern. We review etiologies and sequelae of hypocholesterolemia and therapeutics inspired from genetic hypocholesterolemia. AREAS COVERED Monogenic hypocholesterolemia disorders caused by the complete absence of apolipoprotein (apo) B-containing lipoproteins (abetalipoproteinemia and homozygous hypobetalipoproteinemia) or an isolated absence of apo B-48 lipoproteinemia (chylomicron retention disease) lead to clinical sequelae. These include gastrointestinal disturbances and severe vitamin deficiencies that affect multiple body systems, i.e. neurological, musculoskeletal, ophthalmological, and hematological. Monogenic hypocholesterolemia disorders with reduced but not absent levels of apo B lipoproteins have a milder clinical presentation and patients are protected against atherosclerotic cardiovascular disease. Patients with heterozygous hypobetalipoproteinemia have somewhat increased risk of hepatic disease, while patients with PCSK9 deficiency, ANGPTL3 deficiency, and polygenic hypocholesterolemia typically have anunremarkable clinical presentation. EXPERT OPINION In patients with severe monogenic hypocholesterolemia, early initiation of high-dose vitamin therapy and a low-fat diet are essential for optimal prognosis. The molecular basis of monogenic hypocholesterolemia has inspired novel therapeutics to help patients with the opposite phenotype - i.e. elevated apo B-containing lipoproteins. In particular, inhibitors of PCSK9 and ANGPTL3 show important clinical impact.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
16
|
Momtazi-Borojeni AA, Banach M, Tabatabaei SA, Sahebkar A. Preclinical toxicity assessment of a peptide-based antiPCSK9 vaccine in healthy mice. Biomed Pharmacother 2023; 158:114170. [PMID: 36587555 DOI: 10.1016/j.biopha.2022.114170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel cholesterol-lowering treatment for decreasing the risk of atherosclerosis. We have previously shown that active immunization using the antiPCSK9 vaccine could decrease hypercholesterolemia and impede the development of atherosclerotic lesions in the experimental model of atherosclerosis. Here, we evaluated the toxicity of the vaccine in healthy mice. METHODS Forty male and female albino mice were divided into 4 experimental groups, including vaccine female (10 mice) and male (10 mice) groups receiving the antiPCSK9 vaccine as well as the corresponding control female (10 mice) and male (10 mice) groups receiving the phosphate buffer. Vaccination was planned based on 4 subcutaneous injections of the vaccine formulation (10 µg/mouse) in bi-weekly intervals. The toxicity study was performed by the subacute protocol, 28 days after the last vaccine injection. To this end, the plasma levels of lipid indexes, urea, creatinine, AST, ALT, ALP, and fasting plasma glucose (FPG), as well as the CBC test were measured. To evaluate histopathological alterations, various tissues including the heart, liver, kidney, spleen, and brain were studied using hematoxylin & eosin (H&E) staining by an expert pathologist. The severity of damage to the tissue was considered based on the standard classification; grade 1 as light damage, grade 2 as moderate damage, grade 3 as near intense damage, and grade 4 as intense damage. RESULTS The results showed non-significant changes of total cholesterol, LDL-C, triglyceride, HDL-C, FBS, creatinine, urea, AST, ALP, ALT, and PAB in the vaccinated mice when compared with control mice. The CBS test indicated that there were no significant changes in the levels of WBC, RBC, HGB, HCT, MCH, MCHC, PLT, LYM, NEUT, MCV, RDW-S, PDW, and MPV in the vaccinated mice when compared with control mice. Evaluating histopathological alterations in various tissues indicated no significant adverse effects in vaccinated mice when compared to control mice. CONCLUSION The findings of the present study indicate that antiPCSK9 is safe and exerts no adverse effects on the function of different organs and blood levels of cellular and biochemical biomarkers in healthy mice.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Rehues P, Girona J, Guardiola M, Plana N, Scicali R, Piro S, Muñiz-Grijalvo O, Díaz-Díaz JL, Recasens L, Pinyol M, Rosales R, Esteban Y, Amigó N, Masana L, Ibarretxe D, Ribalta J. PCSK9 Inhibitors Have Apolipoprotein C-III-Related Anti-Inflammatory Activity, Assessed by 1H-NMR Glycoprotein Profile in Subjects at High or very High Cardiovascular Risk. Int J Mol Sci 2023; 24:2319. [PMID: 36768645 PMCID: PMC9917120 DOI: 10.3390/ijms24032319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by the accumulation of cholesterol in the intima. Proprotein convertase subtilisin/kexin type 9 inhibitors (iPCSK9) can reduce low-density lipoprotein (LDL) cholesterol levels by 60%, but there is still no evidence that they can lower markers of systemic inflammation such as high-sensitivity C-reactive protein (hsCRP). Acute-phase serum glycoproteins are upregulated in the liver during systemic inflammation, and their role as inflammatory biomarkers is under clinical evaluation. In this observational study, we evaluate the effects of iPCSK9 on glycoproteins (Glyc) A, B and F. Thirty-nine patients eligible for iPCSK9 therapy were enrolled. One sample before and after one to six months of iPCSK9 therapy with alirocumab was obtained from each patient. Lipids, apolipoproteins, hsCRP and PCSK9 levels were measured by biochemical analyses, and the lipoprotein and glycoprotein profiles were measured by 1H nuclear magnetic resonance (1H-NMR). The PCSK9 inhibitor reduced total (36.27%, p < 0.001), LDL (55.05%, p < 0.001) and non-high-density lipoprotein (HDL) (45.11%, p < 0.001) cholesterol, apolipoprotein (apo) C-III (10%, p < 0.001), triglycerides (9.92%, p < 0.001) and glycoprotein signals GlycA (11.97%, p < 0.001), GlycB (3.83%, p = 0.017) and GlycF (7.26%, p < 0.001). It also increased apoA-I (2.05%, p = 0.043) and HDL cholesterol levels (11.58%, p < 0.001). Circulating PCSK9 levels increased six-fold (626.28%, p < 0.001). The decrease in Glyc signals positively correlated with the decrease in triglycerides and apoC-III. In conclusion, in addition to LDL cholesterol, iPCSK9 therapy also induces a reduction in systemic inflammation measured by 1H-NMR glycoprotein signals, which correlates with a decrease in triglycerides and apoC-III.
Collapse
Affiliation(s)
- Pere Rehues
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Josefa Girona
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Montse Guardiola
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Plana
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy
| | - Ovidio Muñiz-Grijalvo
- Unidad Clinico-Experimental de Riesgo Vascular, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - José Luis Díaz-Díaz
- Department of Internal Medicine, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
| | - Lluís Recasens
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Cardiac Rehabilitation Unit, Department of Cardiology, Hospital del Mar, 08003 Barcelona, Spain
| | - Marta Pinyol
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
| | - Roser Rosales
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Yaiza Esteban
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Núria Amigó
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Lluís Masana
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Daiana Ibarretxe
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
- Unitat de Medicina Vascular i Metabolisme, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Josep Ribalta
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, 43201 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
18
|
Ataei S, Ganjali S, Banach M, Karimi E, Sahebkar A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with the PCSK9/LDLR pathway. Arch Med Sci 2023; 19:203-208. [PMID: 36817686 PMCID: PMC9897094 DOI: 10.5114/aoms/152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a class of gene expression epigenetic regulators that play roles in regulating genes involved in cholesterol homeostasis, including low-density lipoprotein receptor (LDLR) and PCSK9; therefore, miRNAs have been suggested as potential therapeutic targets for treating cardiometabolic disorders. Thus, the present study aimed to assess the effect of immunotherapy with the PCSK9 peptide vaccine on the hepatic expression levels of microRNAs associated with the LDLR pathway, including miRNA-27a, miRNA-30c, and miRNA-191, in normal vaccinated mice. MATERIAL AND METHODS PCSK9 immunogenic peptide and 0.4% alum adjuvant were mixed at a 1 : 1 ratio and used as a vaccine formulation. Male albino mice were randomly assigned to the vaccine or control group. Mice in the vaccine group were injected four times at two-week intervals with a PCSK9 peptide vaccine, and mice in the control group were injected with phosphate-buffered saline (PBS). Animal livers were sampled 2 weeks after the last injection to assess miRNA expression levels. The hepatic expression levels of miRNA-27a, miRNA-30c, and miRNA-191 were evaluated by SYBR Green real-time PCR, quantified by a comparative (2- Δ Δ CT) method (fold change (FC)) and normalized to U6 small nuclear RNA (U6snRNA) expression as an internal control. RESULTS The hepatic expression level of miRNA-27a was significantly lower in mice following immunotherapy with the PCSK9 peptide vaccine compared to the control group (FC: 0.731 ±0.1, p = 0.027). Also, there was a borderline significantly lower hepatic expression level of miRNA-30c in the vaccinated group compared to the control (FC: 0.569 ±0.1, p = 0.078). However, no significant differences were found in the hepatic expression level of miRNA-191 between the two studied groups (FC: 0.852 ±0.1, p = 0.343). CONCLUSIONS According to the findings, the PCSK9 peptide vaccine could effectively reduce the hepatic expression level of miRNA-27a and may be helpful in the management of LDL-C level and atherosclerosis, which may be mediated through the LDLR pathway.
Collapse
Affiliation(s)
- Sarina Ataei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187:106596. [PMID: 36473629 DOI: 10.1016/j.phrs.2022.106596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide. Inflammation and its biomarkers, like C-reactive protein (CRP), among the risk factors, such as hypertension, lipid disorders, and diabetes, may be also responsible for the residual cardiovascular disease (CVD) risk. Modern lipid-lowering treatment with statins, ezetimibe, PCSK9 inhibitors, or bempedoic acid does not fully protect against inflammation. The recommendations of the International Lipid Expert Panel (ILEP) indicate selected nutraceuticals with anti-inflammatory properties. Diet may have a significant impact on inflammation. Especially interesting in the context of inflammation is the consumption of coffee and tea. These drinks in many observational studies significantly reduced cardiovascular risk and mortality. The question is whether the anti-inflammatory effects of these drinks contribute significantly to the observed clinical effects. Thus, in this narrative review, we primarily discuss the anti-inflammatory properties of consuming tea and coffee. Based on a comprehensive analysis of the studies and their meta-analyses, inconsistent results were obtained, which makes it impossible to conclusively state how clinically significant the potential anti-inflammatory properties of black and green tea and coffee are. A number of confounding factors can cause the inconsistency of the available results. Consumption of tea and coffee appears to increase adiponectin concentrations, decrease reactive oxygen species, decrease low density lipoprotein (LDL) cholesterol concentrations (effect of green tea, etc.). Despite the still uncertain anti-inflammatory effect of tea and coffee, we recommend their consumption as a part of the healthy diet.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland.
| |
Collapse
|
20
|
Evinacumab, an ANGPTL3 Inhibitor, in the Treatment of Dyslipidemia. J Clin Med 2022; 12:jcm12010168. [PMID: 36614969 PMCID: PMC9821629 DOI: 10.3390/jcm12010168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disorder. The level of low-density lipoprotein cholesterol (LDL-C) in patients with homozygous FH can be twice as high as that in patients with heterozygous FH. The inhibition of ANGPTL3 shows an important therapeutic approach in reducing LDL-C and triglycerides (TG) levels and, thus, is a potentially effective strategy in the treatment of FH. Evinacumab is a monoclonal antibody inhibiting circulating ANGPTL3, available under the trade name Evkeeza® for the treatment of homozygous FH. It was reported that evinacumab is effective and safe in patients with homozygous and heterozygous FH, as well as resistant hypercholesterolemia and hypertriglyceridemia. This paper summarizes existing knowledge on the role of ANGPTL3, 4, and 8 proteins in lipoprotein metabolism, the findings from clinical trials with evinacumab, a fully human ANGPTL3 mAb, and the place for this new agent in lipid-lowering therapy.
Collapse
|
21
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
22
|
Margiana R, Alsaikhan F, Al-Awsi GRL, Patra I, Sivaraman R, Fadhil AA, Al-Baghdady HFA, Qasim MT, Hameed NM, Mustafa YF, Hosseini-Fard S. Functions and therapeutic interventions of non-coding RNAs associated with TLR signaling pathway in atherosclerosis. Cell Signal 2022; 100:110471. [PMID: 36122884 DOI: 10.1016/j.cellsig.2022.110471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, emerging data demonstrate that the toll-like receptor (TLR) signaling pathway plays an important role in the progression of inflammatory atherosclerosis. Indeed, dysregulated TLR signaling pathway could be a cornerstone of inflammation and atherosclerosis, which contributes to the development of cardiovascular diseases. It is interesting to note that this pathway is heavily controlled by several mechanisms, such as epigenetic factors in which the role of non-coding RNAs (ncRNAs), particularly microRNAs and long noncoding RNAs as well as circular RNAs in the pathogenesis of atherosclerosis has been well studied. Recent years have seen a significant surge in the amount of research exploring the interplay between ncRNAs and TLR signaling pathway downstream targets in the development of atherosclerosis; however, there is still considerable room for improvement in this field. The current study was designed to review underlying mechanisms of TLR signaling pathway and ncRNA interactions to shed light on therapeutic implications in patients with atherosclerosis.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Jakarta, Indonesia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | - Ramaswamy Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Arumbakkam, Chennai, India
| | | | | | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Cai J, Jiang Y, Chen F, Wu S, Ren H, Wang P, Wang J, Liu W. Serum PCSK9 is positively correlated with disease activity and Th17 cells, while its short-term decline during treatment reflects desirable outcomes in ankylosing spondylitis patients. Ir J Med Sci 2022:10.1007/s11845-022-03204-6. [PMID: 36344709 DOI: 10.1007/s11845-022-03204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Proprotein convertase subtilisin/kexin type 9 (PCSK9) participates in the autoimmune disease pathology by regulating T helper (Th) cell differentiation, NF-κB pathway, toll-like receptor 4, etc. This study intended to investigate the association of serum PCSK9 with disease activity, Th cells, and treatment response in ankylosing spondylitis (AS) patients. METHODS Eighty-nine active AS patients were enrolled in this multicenter, prospective study. Serum was collected from AS patients at week (W)0, W4, W8, and W12, as well as from 20 osteoarthritis patients and 20 healthy controls after enrollment to detect PCSK9 by ELISA. Based on the ASAS40 response at W12, AS patients were classified as responders and non-responders. RESULTS PCSK9 was increased in AS patients versus healthy controls (P < 0.001) and osteoarthritis patients (P = 0.006). In AS patients, PCSK9 was positively linked with C-reactive protein (CRP) (P = 0.003) and ASDAS-CRP (P = 0.017), but not with other clinical properties (P > 0.05). Besides, PCSK9 was negatively correlated with interleukin-4 (P = 0.034), positively associated with Th17 cells (P = 0.005) and interleukin-17A (P = 0.014), but did not relate to Th1 cells, interferon-γ, or Th2 cells (all P > 0.05). Additionally, PCSK9 was decreased from W0 to W12 in general AS patients (P < 0.001) and responders (P < 0.001) but remained unchanged in non-responders (P = 0.129). Moreover, PCSK9 was lower at W4 (P = 0.045), W8 (P = 0.008), and W12 (P = 0.004) in responders versus non-responders. Furthermore, the treatment options did not affect the PCSK9 level (P > 0.05). CONCLUSION Serum PCSK9 is positively associated with disease activity and Th17 cells, while its short-term decline reflects desirable treatment response in AS patients.
Collapse
|
24
|
Banach M, Reiner Z, Cicero AF, Sabouret P, Viigimaa M, Sahebkar A, Postadzhiyan A, Gaita D, Pella D, Penson PE. 2022: the year in cardiovascular disease - the year of upfront lipid lowering combination therapy. Arch Med Sci 2022; 18:1429-1434. [PMID: 36457968 PMCID: PMC9710261 DOI: 10.5114/aoms/156147] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research institute (PMMHRI), Lodz, Poland
| | - Zeljko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Arrigo F.G. Cicero
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Pierre Sabouret
- Heart Institute and Action Group, Pitié-Salpétrière, Sorbonne University Paris, Paris, France
| | - Margus Viigimaa
- Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- The North Estonia Medical Centre, Tallinn, Estonia
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Postadzhiyan
- Department of General Medicine, Emergency University Hospital “St. Anna”, Medical University of Sofia, Sofia, Bulgaria
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
- Clinica de Cardiologie, Institutul de Boli Cardiovasculare Timisoara, Romania
| | - Daniel Pella
- 2 Department of Cardiology of the East Slovak Institute of Cardiovascular Disease and Faculty of Medicine PJ Safarik University, Kosice, Slovak Republic
| | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| |
Collapse
|
25
|
Momtazi-Borojeni AA, Banach M, Ruscica M, Sahebkar A. The role of PCSK9 in NAFLD/NASH and therapeutic implications of PCSK9 inhibition. Expert Rev Clin Pharmacol 2022; 15:1199-1208. [PMID: 36193738 DOI: 10.1080/17512433.2022.2132229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There are inconsistent findings regarding the effect of lipid-lowering agents on nonalcoholic fatty liver disease (NAFLD). Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is an important player in cholesterol homeostasis and intracellular lipogenesis, and PCSK9 inhibitors (PCSK9-i) have been found to be efficient for pharmacological management of hyperlipidemia. AREAS COVERED Whether PCSK9 (itself) or PCSK9-i affects NAFLD is still disputed. To address this question, we review published preclinical and clinical studies providing evidence for the role of PCSK9 in and the effect of PCSK9-I on the development and pathogenesis of NAFLD. EXPERT OPINION The current evidence from a landscape of preclinical and clinical studies examining the role of PCSK9 in NAFLD shows controversial results. Preclinical studies indicate that PCSK9 associates with NAFLD and nonalcoholic steatohepatitis (NASH) progression in opposite directions. In humans, it has been concluded that the severity of hepatic steatosis affects the correlation between circulating PCSK9 and liver fat content in humans, with a possible impact of circulating PCSK9 in the early stages of NAFLD, but not in the late stages. However, data from clinical trials with PCSK9-i reassure to the safety of these agents, although real-life long-term evidence is needed.
Collapse
Affiliation(s)
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Liu C, Chen J, Chen H, Zhang T, He D, Luo Q, Chi J, Hong Z, Liao Y, Zhang S, Wu Q, Cen H, Chen G, Li J, Wang L. PCSK9 Inhibition: From Current Advances to Evolving Future. Cells 2022; 11:cells11192972. [PMID: 36230934 PMCID: PMC9562883 DOI: 10.3390/cells11192972] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease synthesized primarily by the liver. It mainly promotes the degradation of low-density lipoprotein receptor (LDL-R) by binding LDL-R, reducing low-density lipoprotein cholesterol (LDL-C) clearance. In addition to regulating LDL-R, PCSK9 inhibitors can also bind Toll-like receptors (TLRs), scavenger receptor B (SR-B/CD36), low-density lipoprotein receptor-related protein 1 (LRP1), apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDL-R) reducing the lipoprotein concentration and slowing thrombosis. In addition to cardiovascular diseases, PCSK9 is also used in pancreatic cancer, sepsis, and Parkinson’s disease. Currently marketed PCSK9 inhibitors include alirocumab, evolocumab, and inclisiran, as well as small molecules, nucleic acid drugs, and vaccines under development. This review systematically summarized the application, preclinical studies, safety, mechanism of action, and latest research progress of PCSK9 inhibitors, aiming to provide ideas for the drug research and development and the clinical application of PCSK9 in cardiovascular diseases and expand its application in other diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510080, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Correspondence: (C.L.); (L.W.)
| | - Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tong Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qiyuan Luo
- Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiaxin Chi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Zebin Hong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yizhong Liao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shihui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qizhe Wu
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Guangzhong Chen
- Department of Neurosurgery, Institute of Neuroscience, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinxin Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Correspondence: (C.L.); (L.W.)
| |
Collapse
|
27
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
28
|
Jamialahmadi T, Banach M, Almahmeed W, Kesharwani P, Sahebkar A. Impact of bariatric surgery on circulating PCSK9 levels as a marker of cardiovascular disease risk: a meta-analysis. Arch Med Sci 2022; 18:1372-1377. [PMID: 36160336 PMCID: PMC9479707 DOI: 10.5114/aoms/152685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION This systematic review and meta-analysis focuses on PCSK9 changes in obese patients following bariatric surgery. METHODS A systematic literature search in four databases was performed. Comprehensive Meta-Analysis (CMA) V2 software used to conduct the meta-analysis. Studies were evaluated regarding heterogeneity in design, populations under investigation, and treatment duration using a random-effects model and the generic inverse variance weighting approach. A random-effect meta-regression approach was used to investigate the association with the estimated effect size. RESULTS The results of the meta-analysis on 4 trials including 260 individuals demonstrated a remarkable decline of PCSK9 after bariatric surgery (WMD = -57.34 ng/ml, 95% CI: -87.97, -26.71, p < 0.001; I 2 = 96.25%). Consistently, a significant decrease of LDL-C after bariatric surgery (WMD = -22.57 mg/dl, 95% CI: -27.5, -17.574, p < 0.001; I 2 = 86.35%) was observed. CONCLUSIONS PCSK9 is reduced significantly after bariatric surgery. The decrease of PCSK9 might be utilized as an independent surrogate marker of improvement of atherosclerotic cardiovascular disease risk after bariatric surgery.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Libby P, Tokgözoğlu L. Chasing LDL cholesterol to the bottom - PCSK9 in perspective. NATURE CARDIOVASCULAR RESEARCH 2022; 1:554-561. [PMID: 39195874 DOI: 10.1038/s44161-022-00085-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/10/2022] [Indexed: 08/29/2024]
Abstract
Low-density lipoprotein (LDL) indubitably contributes causally to atherosclerosis, a leading challenge to health worldwide. Interventions that lower LDL cholesterol (LDL-C) have made remarkable inroads against this global scourge. Recent therapeutic advances have achieved ever lower levels of LDL-C. Improved cardiovascular outcomes continue to accrue from these interventions. In particular, the discovery of the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) as the causal gene in autosomal-dominant hypercholesterolemia has led with remarkable speed to the development of novel agents to lower LDL-C concentrations beyond prior measures, and to alleviate further cardiovascular risk. We review how this story, and its position in the broader landscape of therapy to prevent atherosclerotic events, represents a notable victory of contemporary cardiovascular medicine and reflects successful partnerships between basic scientists, the pharmaceutical and biotechnology sectors, and clinical investigators. Continued cooperation in this manner promises to yield further progress in combating cardiovascular diseases beyond interventions on LDL-C.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW We reviewed lipid-modifying therapies and the risk of stroke and other cerebrovascular outcomes, with a focus on newer therapies. RECENT FINDINGS Statins and ezetimibe reduce ischemic stroke risk without increasing hemorrhagic stroke risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors similarly reduce ischemic stroke risk in statin-treated patients with atherosclerosis without increasing hemorrhagic stroke, even with very low achieved low-density lipoprotein cholesterol levels. Icosapent ethyl reduces the risk of total and first ischemic stroke in patients with established cardiovascular disease or diabetes mellitus. Clinical outcome trials are underway for newer lipid-modifying agents, including inclisiran, bempedoic acid, and pemafibrate. New biologic agents including evinacumab, pelacarsen, olpasiran, and SLN360 are also discussed. In addition to statins and ezetimibe, PCSK9 inhibitors and icosapent ethyl reduce the risk of ischemic stroke without increasing the risk of hemorrhagic stroke. These therapies dramatically expand options for reducing stroke in high-risk settings.
Collapse
|
31
|
Dayar E, Pechanova O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022; 10:1090. [PMID: 35625827 PMCID: PMC9138651 DOI: 10.3390/biomedicines10051090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy-known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors-suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events.
Collapse
Affiliation(s)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| |
Collapse
|
32
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 469] [Impact Index Per Article: 156.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
33
|
Harnessing Intranasal Delivery Systems of Sumatriptan for the Treatment of Migraine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3692065. [PMID: 35075426 PMCID: PMC8783720 DOI: 10.1155/2022/3692065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.
Collapse
|
34
|
Walker HE, Rizzo M, Fras Z, Jug B, Banach M, Penson PE. CRISPR Gene Editing in Lipid Disorders and Atherosclerosis: Mechanisms and Opportunities. Metabolites 2021; 11:857. [PMID: 34940615 PMCID: PMC8707018 DOI: 10.3390/metabo11120857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022] Open
Abstract
Elevated circulating concentrations of low-density lipoprotein cholesterol (LDL-C) have been conclusively demonstrated in epidemiological and intervention studies to be causally associated with the development of atherosclerotic cardiovascular disease. Enormous advances in LDL-C reduction have been achieved through the use of statins, and in recent years, through drugs targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of the hepatic LDL-receptor. Existing approaches to PCSK9 targeting have used monoclonal antibodies or RNA interference. Although these approaches do not require daily dosing, as statins do, repeated subcutaneous injections are nevertheless necessary to maintain effectiveness over time. Recent experimental studies suggest that clustered regularly interspaced short palindromic repeats (CRISPR) gene-editing targeted at PCSK9 may represent a promising tool to achieve the elusive goal of a 'fire and forget' lifelong approach to LDL-C reduction. This paper will provide an overview of CRISPR technology, with a particular focus on recent studies with relevance to its potential use in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Harry E. Walker
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90133 Palermo, Italy;
| | - Zlatko Fras
- Centre for Preventive Cardiology, Division of Medicine, University Medical Centre Ljubljana, SI-1525 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Borut Jug
- Department of Vascular Diseases, University Medical Centre Ljubljana, SI-1525 Ljubljana, Slovenia;
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93338 Lodz, Poland;
- Cardiovascular Research Centre, University of Zielona Gora, 65046 Zielona Gora, Poland
| | - Peter E. Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
35
|
Momtazi-Borojeni AA, Pirro M, Xu S, Sahebkar A. PCSK9 inhibition-based therapeutic approaches: an immunotherapy perspective. Curr Med Chem 2021; 29:980-999. [PMID: 34711156 DOI: 10.2174/0929867328666211027125245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (PCSK9-I) are novel therapeutic tools to decrease cardiovascular risk. These agents work by lowering the low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients who are statin resistant/intolerant. Current clinically approved and investigational PCSK9-I act generally by blocking PCSK9 activity in the plasma or suppressing its expression or secretion by hepatocytes. The most widely investigated method is the disruption of PCSK9/LDL receptor (LDLR) interaction by fully-humanized monoclonal antibodies (mAbs), evolocumab and alirocumab, which have been approved for the therapy of hypercholesterolemia and atherosclerotic cardiovascular disease (CVD). Besides, a small interfering RNA called inclisiran, which specifically suppresses PCSK9 expression in hepatocytes, is as effective as mAbs but with administration twice a year. Because of the high costs of such therapeutic approaches, several other PCSK9-I have been surveyed, including peptide-based anti-PCSK9 vaccines and small oral anti-PCSK9 molecules, which are under investigation in preclinical and phase I clinical studies. Interestingly, anti-PCSK9 vaccination has been found to serve as a more widely feasible and more cost-effective therapeutic tool over mAb PCSK9-I for managing hypercholesterolemia. The present review will discuss LDL-lowering and cardioprotective effects of PCSK9-I, mainly immunotherapy-based inhibitors including mAbs and vaccines, in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, 06129. Italy
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
36
|
Momtazi-Borojeni AA, Jaafari MR, Abdollahi E, Banach M, Sahebkar A. Impact of PCSK9 Immunization on Glycemic Indices in Diabetic Rats. J Diabetes Res 2021; 2021:4757170. [PMID: 34504898 PMCID: PMC8423580 DOI: 10.1155/2021/4757170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
METHODS To prepare the anti-PCSK9 vaccine, a peptide construct called Immunogenic Fused PCSK9-Tetanus (IFPT) was linked to the surface of nanoliposome carriers. Healthy rats received four subcutaneous injections of the vaccine at biweekly intervals. Two weeks after the last vaccination, anti-PCSK9 antibody titers, PCSK9 targeting, and inhibition of PCSK9-low-density lipoprotein receptor (LDLR) interaction were evaluated. After verification of antibody generation, the immunized rats were intraperitoneally treated with a single dose (45 mg/kg) of streptozotocin (STZ) to induce diabetes mellitus. The levels of fasting blood glucose (FBG) were measured, and the oral glucose tolerance test (OGTT) as well as the insulin tolerance test (ITT) were carried out to assess glycemic status. At the end of the study, the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol concentrations were assayed. Histopathology examination of the liver and pancreas was also performed using the hematoxylin-eosin staining method. RESULTS The prepared nanoliposomal vaccine could strongly induce anti-PCSK9 antibodies in the vaccinated rats. Within one week following the STZ injection, the FBG level was lower in the vaccinated group vs. diabetic control group (49% (-171.7 ± 35 mg/dL, p < 0.001)). In the OGTT, the injected rats showed improved glucose tolerance as reflected by the reduction of blood glucose levels over 180 min, compared with the diabetic controls. Moreover, the ITT demonstrated that, after the insulin injection, blood glucose concentration declined by 49.3% in the vaccinated group vs. diabetic control group. Expectedly, the vaccinated rats exhibited lower (-26.65%, p = 0.03) plasma LDL-C levels compared with the diabetic controls. Histopathology examination of pancreas tissue demonstrated that the pancreatic islets of the vaccinated rats had a slight decline in the population of β-cells and few α-cells. Normal liver histology was also observed in the vaccinated rats. CONCLUSION PCSK9 inhibition through the liposomal IFPT vaccine can improve the glucose and insulin tolerance impairments as well as the lipid profile in diabetes.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Iran's National Elites Foundation, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Momtazi-Borojeni AA, Jaafari MR, Banach M, Gorabi AM, Sahraei H, Sahebkar A. Pre-Clinical Evaluation of the Nanoliposomal antiPCSK9 Vaccine in Healthy Non-Human Primates. Vaccines (Basel) 2021; 9:749. [PMID: 34358164 PMCID: PMC8309966 DOI: 10.3390/vaccines9070749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous studies showed the safe preventive and therapeutic effects of immunization using the nanoliposomal antiPCSK9 vaccine called "Liposomal Immunogenic Fused PCSK9-Tetanus plus Alum adjuvant" (L-IFPTA), in mouse models of atherosclerosis. Here we aimed to ascertain the immunogenicity and safety of the L-IFPTA vaccine in a pre-clinical study in healthy non-human primates. METHODS Five male rhesus macaque monkeys were subcutaneously immunized with the L-IFPTA vaccine, four times with bi-weekly intervals. To evaluate immunogenicity, the plasma antiPCSK9 antibody in immunized monkeys was detected and quantified using the ELISA method. The functionality of the induced antiPCSK9 antibodies was determined by the PCSK9/LDLR in vitro binding assay kit. The safety of the vaccine was tested using the evaluation of several major circulating indicators including plasma lipid alterations, inflammatory biomarkers and organ injury biomarkers. RESULTS The resultant data indicated that the L-IFPTA vaccine significantly and highly induced the generation of functional and safe antiPCSK9 antibodies in immunized monkeys. Plasma levels of specific biomarkers indicating organ performance including creatinine, urea, uric acid, bilirubin, ALP, AS, ALT and TSH were not significantly altered. After immunization in healthy monkeys, non-prespecified endpoints (plasma levels of TC, LDL-C, VLDL-C and TG) were non-significantly reduced by 11.6 ± 36%; 16 ± 28%; 22 ± 53% and 24 ± 51%, respectively, while HDL-C was slightly increased by 2 ± 64%. There were also no significant changes in plasma levels of pro- and anti-inflammatory biomarkers. CONCLUSION The L-IFPTA vaccine could efficiently stimulate the host humoral immune response to produce active antibodies that inhibit plasma PCSK9 while not provoking systemic inflammation and not adversely affecting organ performance.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.A.M.-B.); (M.R.J.)
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj 3149969415, Iran
- Iran’s National Elites Foundation, Tehran 9311114578, Iran
| | - Mahmoud R. Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.A.M.-B.); (M.R.J.)
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland;
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran 9311114578, Iran;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
38
|
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Iran's National Elites Foundation, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| |
Collapse
|