1
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
2
|
Cabral LM, Oliveira LM, Miranda NC, Kawamoto EM, K P Costa S, Moreira TS, Takakura AC. TNFR1-mediated neuroinflammation is necessary for respiratory deficits observed in 6-hydroxydopamine mouse model of Parkinsońs Disease. Brain Res 2024; 1822:148586. [PMID: 37757967 DOI: 10.1016/j.brainres.2023.148586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
3
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
4
|
Poejo J, Berrocal M, Saez L, Gutierrez-Merino C, Mata AM. Store-Operated Calcium Entry Inhibition and Plasma Membrane Calcium Pump Upregulation Contribute to the Maintenance of Resting Cytosolic Calcium Concentration in A1-like Astrocytes. Molecules 2023; 28:5363. [PMID: 37513235 PMCID: PMC10383710 DOI: 10.3390/molecules28145363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Highly neurotoxic A1-reactive astrocytes have been associated with several human neurodegenerative diseases. Complement protein C3 expression is strongly upregulated in A1 astrocytes, and this protein has been shown to be a specific biomarker of these astrocytes. Several cytokines released in neurodegenerative diseases have been shown to upregulate the production of amyloid β protein precursor (APP) and neurotoxic amyloid β (Aβ) peptides in reactive astrocytes. Also, aberrant Ca2+ signals have been proposed as a hallmark of astrocyte functional remodeling in Alzheimer's disease mouse models. In this work, we induced the generation of A1-like reactive astrocytes after the co-treatment of U251 human astroglioma cells with a cocktail of the cytokines TNF-α, IL1-α and C1q. These A1-like astrocytes show increased production of APP and Aβ peptides compared to untreated U251 cells. Additionally, A1-like astrocytes show a (75 ± 10)% decrease in the Ca2+ stored in the endoplasmic reticulum (ER), (85 ± 10)% attenuation of Ca2+ entry after complete Ca2+ depletion of the ER, and three-fold upregulation of plasma membrane calcium pump expression, with respect to non-treated Control astrocytes. These altered intracellular Ca2+ dynamics allow A1-like astrocytes to efficiently counterbalance the enhanced release of Ca2+ from the ER, preventing a rise in the resting cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, 06006 Badajoz, Spain
| | - María Berrocal
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, 06006 Badajoz, Spain
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Lucía Saez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, 06006 Badajoz, Spain
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
5
|
Ng W, Ng SY. Remodeling of astrocyte secretome in amyotrophic lateral sclerosis: uncovering novel targets to combat astrocyte-mediated toxicity. Transl Neurodegener 2022; 11:54. [PMID: 36567359 PMCID: PMC9791755 DOI: 10.1186/s40035-022-00332-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset paralytic disease characterized by progressive degeneration of upper and lower motor neurons in the motor cortex, brainstem and spinal cord. Motor neuron degeneration is typically caused by a combination of intrinsic neuronal (cell autonomous) defects as well as extrinsic (non-cell autonomous) factors such as astrocyte-mediated toxicity. Astrocytes are highly plastic cells that react to their microenvironment to mediate relevant responses. In neurodegeneration, astrocytes often turn reactive and in turn secrete a slew of factors to exert pro-inflammatory and neurotoxic effects. Various efforts have been carried out to characterize the diseased astrocyte secretome over the years, revealing that pro-inflammatory chemokines, cytokines and microRNAs are the main players in mediating neuronal death. As metabolomic technologies mature, these studies begin to shed light on neurotoxic metabolites such as secreted lipids. In this focused review, we will discuss changes in the astrocyte secretome during ALS. In particular, we will discuss the components of the reactive astrocyte secretome that contribute to neuronal death in ALS.
Collapse
Affiliation(s)
- Winanto Ng
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673 Singapore
| | - Shi-Yan Ng
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673 Singapore
| |
Collapse
|
6
|
Lopez-Sanchez C, Poejo J, Garcia-Lopez V, Salazar J, Garcia-Martinez V, Gutierrez-Merino C. Kaempferol prevents the activation of complement C3 protein and the generation of reactive A1 astrocytes that mediate rat brain degeneration induced by 3-nitropropionic acid. Food Chem Toxicol 2022; 164:113017. [PMID: 35452770 DOI: 10.1016/j.fct.2022.113017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/30/2023]
Abstract
Kaempferol is a natural antioxidant present in vegetables and fruits used in human nutrition. In previous work, we showed that intraperitoneal (i.p.) kaempferol administration strongly protects against striatum neurodegeneration induced by i.p. injections of 3-nitropropionic acid (NPA), an animal model of Huntington's disease. Recently, we have shown that reactive A1 astrocytes generation is an early event in the neurodegeneration induced by NPA i.p. injections. In the present work, we have experimentally evaluated the hypothesis that kaempferol protects both against the activation of complement C3 protein and the generation of reactive A1 astrocytes in rat brain striatum and hippocampus. To this end, we have administered NPA and kaempferol i.p. injections to adult Wistar rats following the protocol described in previous work. Kaempferol administration prevents proteolytic activation of complement C3 protein and generation of reactive A1 astrocytes NPA-induced in the striatum and hippocampus. Also, it blocked the NPA-induced increase of NF-κB expression and enhanced secretion of cytokines IL-1α, TNFα, and C1q, which have been linked to the generation of reactive A1 astrocytes. In addition, kaempferol administration prevented the enhanced production of amyloid β peptides in the striatum and hippocampus, a novel finding in NPA-induced brain degeneration found in this work.
Collapse
Affiliation(s)
- Carmen Lopez-Sanchez
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain; Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Virginio Garcia-Lopez
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain; Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Jairo Salazar
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain; Departamento de Química, Universidad Nacional Autónoma de Nicaragua-León, León, 21000, Nicaragua
| | - Virginio Garcia-Martinez
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain; Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006, Badajoz, Spain; Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
7
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
8
|
Wang T, Sun Q, Yang J, Wang G, Zhao F, Chen Y, Jin Y. Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β, TNF-α, and iNOS upregulation. Food Chem Toxicol 2021; 157:112550. [PMID: 34517076 DOI: 10.1016/j.fct.2021.112550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
The synthetic organic chemical, 1,2-dichloroethane (1,2-DCE), can cause brain edemas under subacute poisoning. Our previous studies indicated that neuroinflammation could be induced due to astrocytes and microglia activation during brain edemas in 1,2-DCE-intoxicated mice. However, the crosstalk between these two glial cells in 1,2-DCE-induced neuroinflammation remained unclear. In this study, primary cultured rat astrocytes and microglia, as well as an immortalized microglia cell line were employed to study the effects of 2-chloroethanol (2-CE, a 1,2-DCE intermediate metabolite in vivo) treated astrocytes on microglia polarization. Our current results revealed that 2-CE treated rat astrocytes were activated through p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) signaling pathways. Theses pathways were triggered by reactive oxygen species (ROS) produced during 2-CE metabolism. Also, astrocytes were more sensitive to 2-CE effects than microglia. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expressions were upregulated in 2-CE-induced reactive astrocytes, enhancing IL-1β, TNF-α, and nitric oxide (NO) excretions, which stimulated microglia polarization. Therefore, the neuroinflammation induced by 1,2-DCE in mice's brains is probably triggered by reactive astrocytes.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qi Sun
- Department of Child and Adolescent Health, China Medical University, Shenyang, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuhua Chen
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
10
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
11
|
Proteostasis Disturbances and Inflammation in Neurodegenerative Diseases. Cells 2020; 9:cells9102183. [PMID: 32998318 PMCID: PMC7601929 DOI: 10.3390/cells9102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) disturbances and inflammation are evident in normal aging and some age-related neurodegenerative diseases. While the proteostasis network maintains the integrity of intracellular and extracellular functional proteins, inflammation is a biological response to harmful stimuli. Cellular stress conditions can cause protein damage, thus exacerbating protein misfolding and leading to an eventual overload of the degradation system. The regulation of proteostasis network is particularly important in postmitotic neurons due to their limited regenerative capacity. Therefore, maintaining balanced protein synthesis, handling unfolding, refolding, and degrading misfolded proteins are essential to preserve all cellular functions in the central nervous sysytem. Failing proteostasis may trigger inflammatory responses in glial cells, and the consequent release of inflammatory mediators may lead to disturbances in proteostasis. Here, we review the mechanisms of proteostasis and inflammatory response, emphasizing their role in the pathological hallmarks of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, we discuss the interplay between proteostatic stress and excessive immune response that activates inflammation and leads to dysfunctional proteostasis.
Collapse
|
12
|
Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K. The anti-neuroinflammatory effects of Clinacanthus nutans leaf extract on metabolism elucidated through 1H NMR in correlation with cytokines microarray. PLoS One 2020; 15:e0238503. [PMID: 32925968 PMCID: PMC7489527 DOI: 10.1371/journal.pone.0238503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
Collapse
Affiliation(s)
- Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Kupnicka P, Kojder K, Metryka E, Kapczuk P, Jeżewski D, Gutowska I, Goschorska M, Chlubek D, Baranowska-Bosiacka I. Morphine-element interactions - The influence of selected chemical elements on neural pathways associated with addiction. J Trace Elem Med Biol 2020; 60:126495. [PMID: 32179426 DOI: 10.1016/j.jtemb.2020.126495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a pressing social problem worldwide and opioid dependence can be considered the strongest and most difficult addiction to treat. Mesolimbic and mesocortical dopaminergic pathways play an important role in modulation of cognitive processes and decision making and, therefore, changes in dopamine metabolism are considered the central basis for the development of dependence. Disturbances caused by excesses or deficiency of certain elements have a significant impact on the functioning of the central nervous system (CNS) both in physiological conditions and in pathology and can affect the cerebral reward system and therefore, may modulate processes associated with the development of addiction. In this paper we review the mechanisms of interactions between morphine and zinc, manganese, chromium, cadmium, lead, fluoride, their impact on neural pathways associated with addiction, and on antinociception and morphine tolerance and dependence.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitive Science, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| |
Collapse
|
14
|
Yaremchuk OZ, Posokhova KA. Content of GFAP in the Brain of BALB/C Mice with the Antiphospholipid Syndrome: Effects of L-Arginine and Aminoguanidine. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Malik VA, Zajicek F, Mittmann LA, Klaus J, Unterseer S, Rajkumar S, Pütz B, Deussing JM, Neumann ID, Rupprecht R, Di Benedetto B. GDF15 promotes simultaneous astrocyte remodeling and tight junction strengthening at the blood-brain barrier. J Neurosci Res 2020; 98:1433-1456. [PMID: 32170776 DOI: 10.1002/jnr.24611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
Perivascular astrocyte processes (PAP) surround cerebral endothelial cells (ECs) and modulate the strengthening of tight junctions to influence blood-brain barrier (BBB) permeability. Morphologically altered astrocytes may affect barrier properties and trigger the onset of brain pathologies. However, astrocyte-dependent mediators of these events remain poorly studied. Here, we show a pharmacologically driven elevated expression and release of growth/differentiation factor 15 (GDF15) in rat primary astrocytes and cerebral PAP. GDF15 has been shown to possess trophic properties for motor neurons, prompting us to hypothesize similar effects on astrocytes. Indeed, its increased expression and release occurred simultaneously to morphological changes of astrocytes in vitro and PAP, suggesting modulatory effects of GDF15 on these cells, but also neighboring EC. Administration of recombinant GDF15 was sufficient to promote astrocyte remodeling and enhance barrier properties between ECs in vitro, whereas its pharmacogenetic abrogation prevented these effects. We validated our findings in male high anxiety-related behavior rats, an animal model of depressive-like behavior, with shrunk PAP associated with reduced expression of the junctional protein claudin-5, which were both restored by a pharmacologically induced increase in GDF15 expression. Thus, we identified GDF15 as an astrocyte-derived trigger of astrocyte process remodeling linked to enhanced tight junction strengthening at the BBB.
Collapse
Affiliation(s)
- Victoria A Malik
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Franziska Zajicek
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Laura A Mittmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | | | - Sandeep Rajkumar
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Inga D Neumann
- Department of Neurobiology and Animal Physiology, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Dragić M, Zarić M, Mitrović N, Nedeljković N, Grković I. Two Distinct Hippocampal Astrocyte Morphotypes Reveal Subfield-Different Fate during Neurodegeneration Induced by Trimethyltin Intoxication. Neuroscience 2019; 423:38-54. [PMID: 31682945 DOI: 10.1016/j.neuroscience.2019.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Astrocytes comprise a heterogenic group of glial cells, which perform homeostatic functions in the central nervous system. These cells react to all kind of insults by changing the morphology and function that result in a transition from the quiescent to a reactive phenotype. Trimethyltin (TMT) intoxication, which reproduces pathological events in the hippocampus similar to those associated with seizures and cognitive decline, has been proven as a useful model for studying responses of the glial cells to neurodegeneration. In the present study, we have explored morphological varieties of astrocytes in the hippocampal subregions of ovariectomized female rats exposed to TMT. We have demonstrated an early loss of neurons in CA1 and DG subfields. Distinct morphotypes of protoplasmic astrocytes observed in CA1/CA3 and the hilus of control animals developed different responses to TMT intoxication, as assessed by GFAP-immunohistochemistry. In CA1 subregion, GFAP+ astrocytes preserved their domain organization and responded with typical hypertrophy, while the hilar GFAP+ astrocytes developed atrophy-like phenotype and increased expression of vimentin and nestin 7 days after the exposure. Both reactive and atrophied-like astrocytes expressed Kir4.1 in CA1/CA3 and the hilus of DG, respectively, indicating that these cells did not change their potential for normal activity at this time point of pathology. Together, the results demonstrate the persistence of two protoplasmic morphotypes of astrocytes, with distinct appearance, function, and fate after TMT-induced neurodegeneration, suggesting their pleiotropic roles in the hippocampal response to neurodegeneration.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia; Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
17
|
Bruce M, Streifel KM, Boosalis CA, Heuer L, González EA, Li S, Harvey DJ, Lein PJ, Van de Water J. Acute peripheral immune activation alters cytokine expression and glial activation in the early postnatal rat brain. J Neuroinflammation 2019; 16:200. [PMID: 31672161 PMCID: PMC6822372 DOI: 10.1186/s12974-019-1569-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuroinflammation can modulate brain development; however, the influence of an acute peripheral immune challenge on neuroinflammatory responses in the early postnatal brain is not well characterized. To address this gap in knowledge, we evaluated the peripheral and central nervous system (CNS) immune responses to a mixed immune challenge in early postnatal rats of varying strains and sex. Methods On postnatal day 10 (P10), male and female Lewis and Brown Norway rats were injected intramuscularly with either a mix of bacterial and viral components in adjuvant, adjuvant-only, or saline. Immune responses were evaluated at 2 and 5 days post-challenge. Cytokine and chemokine levels were evaluated in serum and in multiple brain regions using a Luminex multiplex assay. Multi-factor ANOVAs were used to compare analyte levels across treatment groups within strain, sex, and day of sample collection. Numbers and activation status of astrocytes and microglia were also analyzed in the cortex and hippocampus by quantifying immunoreactivity for GFAP, IBA-1, and CD68 in fixed brain slices. Immunohistochemical data were analyzed using a mixed-model regression analysis. Results Acute peripheral immune challenge differentially altered cytokine and chemokine levels in the serum versus the brain. Within the brain, the cytokine and chemokine response varied between strains, sexes, and days post-challenge. Main findings included differences in T helper (Th) type cytokine responses in various brain regions, particularly the cortex, with respect to IL-4, IL-10, and IL-17 levels. Additionally, peripheral immune challenge altered GFAP and IBA-1 immunoreactivity in the brain in a strain- and sex-dependent manner. Conclusions These findings indicate that genetic background and sex influence the CNS response to an acute peripheral immune challenge during early postnatal development. Additionally, these data reinforce that the developmental time point during which the challenge occurs has a distinct effect on the activation of CNS-resident cells. Electronic supplementary material The online version of this article (10.1186/s12974-019-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Bruce
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA
| | - Karin M Streifel
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA.,Department of Biology, Regis University, Denver, CO, 80221, USA
| | - Casey A Boosalis
- Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Luke Heuer
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA
| | - Eduardo A González
- Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Shuyang Li
- Department of Public Health Sciences, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Pamela J Lein
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA.,Department of Molecular Bioscience, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis School of Medicine, Sacramento, CA, 95817, USA. .,Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, UC Davis School of Medicine, UC Davis MIND Institute, 6512 Genome and Biomedical Sciences Facility 451 Health Sciences Drive, Davis, CA, 95616-5270, USA.
| |
Collapse
|
18
|
Delery EC, MacLean AG. Culture Model for Non-human Primate Choroid Plexus. Front Cell Neurosci 2019; 13:396. [PMID: 31555096 PMCID: PMC6724611 DOI: 10.3389/fncel.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
While there are murine and rat choroid plexus epithelial cell cultures, a translationally relevant model for choroid plexus activation and function is still lacking. The rhesus macaque is the gold standard for modeling viral infection and activation of CNS, including HIV-associated neurocognitive disorders. We have developed a rhesus macaque choroid plexus epithelial cell culture model which we believe to be suitable for studies of inflammation associated with viral infection of the CNS. Epithelial morphology and function were assessed using vimentin, phalloidin, the tight junction protein zonula-occludens-1 (ZO-1), and focal adhesion kinase (FAK). Choroid plexus epithelial cell type was confirmed using immunofluorescence with two proteins highly expressed in the choroid plexus: transthyretin and α-klotho. Finally, barrier properties of the model were monitored using pro- and anti-inflammatory mediators (TNF-α, the TLR2 agonist PamCys3K, and dexamethasone). When pro-inflammatory TNF-α was added to the xCelligence wells, there was a decrease in barrier function, which decreased in a step-wise fashion with each additional administration. This barrier function was repaired upon addition of the steroid dexamethasone. The TLR2 agonist PAM3CysK increased barrier functions in TNF-α treated wells. We have presented a model of the blood-CSF barrier that will allow study into pro- and anti-inflammatory conditions in the brain, while simultaneously measuring real time changes to epithelial cells.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States
| | - Andrew G MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Tulane Program in Biomedical Sciences, New Orleans, LA, United States.,Department of Microbiology and Immunology, Tulane Medical School, New Orleans, LA, United States.,Tulane Brain Institute, New Orleans, LA, United States.,Tulane Center for Aging, New Orleans, LA, United States
| |
Collapse
|
19
|
Calcium(II) oscillations to glucose: An astrocyte relation. Biophys Chem 2019; 252:106195. [PMID: 31195340 DOI: 10.1016/j.bpc.2019.106195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
Astrocytes, the most common type of glial cell, are critical to the health of the central nervous system. Evidence implies that changes in the astrocyte's cytosolic calcium concentration is part of a central mechanism by which information is passed and processed in the cell, and it is linked to both external stimuli impacting the cell as well as downstream events such as metabolism and neurotransmitter release. This work proposes a novel chemical model to further the understanding of how extracellular signals could affect intracellular calcium dynamics and metabolic processes within the cell.
Collapse
|
20
|
Bårdsen K, Brede C, Kvivik I, Kvaløy JT, Jonsdottir K, Tjensvoll AB, Ruoff P, Omdal R. Interleukin-1-related activity and hypocretin-1 in cerebrospinal fluid contribute to fatigue in primary Sjögren's syndrome. J Neuroinflammation 2019; 16:102. [PMID: 31101054 PMCID: PMC6525358 DOI: 10.1186/s12974-019-1502-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fatigue is a common and sometimes debilitating phenomenon in primary Sjögren's syndrome (pSS) and other chronic inflammatory diseases. We aimed to investigate how IL-1 β-related molecules and the neuropeptide hypocretin-1 (Hcrt1), a regulator of wakefulness, influence fatigue. METHODS Hcrt1 was measured by radioimmunoassay (RIA) in cerebrospinal fluid (CSF) from 49 patients with pSS. Interleukin-1 receptor antagonist (IL-1Ra), IL-1 receptor type 2 (IL-1RII), IL-6, and S100B protein were measured by enzyme-linked immunosorbent assay (ELISA). Fatigue was rated by the fatigue visual analog scale (fVAS). RESULTS Simple univariate regression and multiple regression analyses with fatigue as a dependent variable revealed that depression, pain, and the biochemical variable IL-1Ra had a significant association with fatigue. In PCA, two significant components were revealed. The first component (PC1) was dominated by variables related to IL-1β activity (IL-1Ra, IL-1RII, and S100B). PC2 showed a negative association between IL-6 and Hcrt1. fVAS was then introduced as an additional variable. This new model demonstrated that fatigue had a higher association with the IL-1β-related PC1 than to PC2. Additionally, a third component (PC3) became significant between low Hcrt1 concentrations and fVAS scores. CONCLUSIONS The main findings of this study indicate a functional network in which several IL-1β-related molecules in CSF influence fatigue in addition to the classical clinical factors of depression and pain. The neuropeptide Hcrt1 seems to participate in fatigue generation, but likely not through the IL-1 pathway.
Collapse
Affiliation(s)
- Kjetil Bårdsen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Cato Brede
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Ingeborg Kvivik
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Jan Terje Kvaløy
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
| | | | | | - Peter Ruoff
- Centre for Organelle Research (CORE), Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, POB 8100, N-4068, Stavanger, Norway. .,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
21
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr Neuropharmacol 2019; 17:874-890. [PMID: 30520375 PMCID: PMC7052835 DOI: 10.2174/1570159x17666181206101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic brain injury is a complex network of factors, which is mainly characterized by a decrease in levels of oxygen concentration and blood flow, which lead to an inefficient supply of nutrients to the brain. Hypoxic-ischemic brain injury can be found in perinatal asphyxia and ischemic-stroke, which represent one of the main causes of mortality and morbidity in children and adults worldwide. Therefore, knowledge of underlying mechanisms triggering these insults may help establish neuroprotective treatments. Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators exert several neuroprotective effects, including a decrease of reactive oxygen species, maintenance of cell viability, mitochondrial survival, among others. However, these strategies represent a traditional approach of targeting a single factor of pathology without satisfactory results. Hence, combined therapies, such as the administration of therapeutic hypothermia with a complementary neuroprotective agent, constitute a promising alternative. In this sense, the present review summarizes the underlying mechanisms of hypoxic-ischemic brain injury and compiles several neuroprotective strategies, including Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators, which represent putative agents for combined therapies with therapeutic hypothermia.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Address correspondence to this author at the Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; E-mail:
| | | | | | | | | |
Collapse
|
23
|
Ramsey J, Martin EC, Purcell OM, Lee KM, MacLean AG. Self-injurious behaviours in rhesus macaques: Potential glial mechanisms. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:1008-1017. [PMID: 30450801 PMCID: PMC6385863 DOI: 10.1111/jir.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Self-injurious behaviour (SIB) can be classified as intentional, direct injuring of body tissue usually without suicidal intent. In its non-suicidal form it is commonly seen as a clinical sign of borderline personality disorder, autism, PTSD, depression, and anxiety affecting a wide range of ages and conditions. In rhesus macaques SIB is most commonly manifested through hair plucking, self-biting, self-hitting, and head banging. SIB in the form of self-biting is observed in approximately 5-15% of individually housed monkeys. Recently, glial cells are becoming recognised as key players in regulating behaviours. METHOD The goal of this study was to determine the role of glial activation, including astrocytes, in macaques that had displayed SIB. To this end, we performed immunohistochemistry and next generation sequence of brain tissues from rhesus macaques with SIB. RESULTS Our studies showed increased vimentin, but not nestin, expression on astrocytes of macaques displaying SIB. Initial RNA Seq analyses indicate activation of pathways involved in tissue remodelling, neuroinflammation and cAMP signalling. CONCLUSIONS Glia are most probably activated in primates with self-injury, and are therefore potential novel targets for therapeutics.
Collapse
Affiliation(s)
- Joseph Ramsey
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Elizabeth C. Martin
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Olivia M. Purcell
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
| | - Kim M. Lee
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
| | - Andrew G. MacLean
- Tulane Program in Neuroscience, Tulane University, New Orleans, LA 70112
- Tulane National Primate Research Center, Covington, LA 70433
- Tulane Program in Biomedical Science, Tulane Medical School, New Orleans, LA 70112
- Department of Microbiology & Immunology, Tulane Medical School, New Orleans, LA 70112
- Tulane Center for Aging, Tulane University New Orleans, LA 70112
| |
Collapse
|
24
|
Hasby Saad M, Safwat O, El-Guindy D, Raafat R, Elgendy D, Hasby E. Biomolecular Changes and Cortical Neurodegenerative Lesions in Trichinella Spiralis Infected BALB/c Mice: A Preliminary Study Elucidating a Potential Relationship Between Systemic Helminthic Infections and Idiopathic Parkinson's. Helminthologia 2018; 55:261-274. [PMID: 31662657 PMCID: PMC6662001 DOI: 10.2478/helm-2018-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
Idiopathic Parkinson's (IP) is a neurodegenerative disease that is suspected to be due to exposure to infections during early life. Toxoplasmosishas been the only suspected parasitic infection in IP (Celik et al., 2010). Recently, some non-central nervous system bacterial and viral infections have been incriminated in IP (Çamcı & Oğuz, 2016). So in the current study, we tried to explore if the systemic inflammatory reactions triggered by some helminths like Trichinella spiralis can induce Parkinsonian lesions in the brain, especially that the cerebral complications have been reported in 10-20% of Trichinella spiralis infected patients . An experimental study was designed to assess the neurodegenerative and biomolecular changes that may occur in Trichinella spiralis infected BALB/C mice in comparison to rotenone induced PD model and apparently healthy ones. The motor affection was significantly lesser in the Trichinella infected mice than the Parkinson's model, but when the catalepsy score was calculated (through the grid and bar tests) it was found to be significantly higher in the infected mice than in the healthy ones. A significant increase in the blood advanced oxidative protein products (AOPP), IFN-γ, TGF-β, and brain DNA fragmentation was also detected in the Trichinella spiralis infected mice. After histopathological examination, a significant increase in the cortical apoptotic neurons and Lewy's body were observed in the Trichinella infected and the rotenone induced Parkinson's model sections. A significant decrease in the immunohistochemical expression of the tyrosine hydroxylase expression in the brain sections and the ELISA measured dopamine level in the brain homogenate was also reported in the infected mice group. This study findings may collectively suggest that the systemic inflammatory reactions and the oxidative stresses associated with some systemic helminthic infections like trichinellosis are possible to precipitate neurodegenerative lesions and biomolecular changes in the brain , and manifest with IPD later in life.
Collapse
Affiliation(s)
- M. Hasby Saad
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - O. Safwat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. El-Guindy
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - R. Raafat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. Elgendy
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - E. Hasby
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| |
Collapse
|
25
|
Abstract
Viral infection in the brain can be acute or chronic, with the responses often producing foci of increasingly cytotoxic inflammation. This can lead to effects beyond the central nervous system (CNS). To stimulate discussion, this commentary addresses four questions: What drives the development of human immunodeficiency virus (HIV)-associated neurocognitive disorders, does the phenotype of macrophages in the CNS spur development of HIV encephalitis (HIVE), does continual activation of astrocytes drive the development of HIV-associated neurocognitive disorders/subclinical disease, and neuroinflammation: friend or foe? A unifying theory that connects each question is the issue of continued activation of glial cells, even in the apparent absence of simian immunodeficiency virus/HIV in the CNS. As the CNS innate immune system is distinct from the rest of the body, it is likely there could be a number of activation profiles not observed elsewhere.
Collapse
Affiliation(s)
- Elizabeth C. Delery
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
| | - Andrew G. MacLean
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
- Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
26
|
SheikhBahaei S, Morris B, Collina J, Anjum S, Znati S, Gamarra J, Zhang R, Gourine AV, Smith JC. Morphometric analysis of astrocytes in brainstem respiratory regions. J Comp Neurol 2018; 526:2032-2047. [PMID: 29888789 PMCID: PMC6158060 DOI: 10.1002/cne.24472] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/30/2022]
Abstract
Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm‐generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory‐related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland.,Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Brian Morris
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Jared Collina
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Sommer Anjum
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Sami Znati
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Julio Gamarra
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Ruli Zhang
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS) National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
27
|
Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Res Bull 2018; 137:120-131. [DOI: 10.1016/j.brainresbull.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
|
28
|
Regulation of neuroinflammation by matrix metalloproteinase-8 inhibitor derivatives in activated microglia and astrocytes. Oncotarget 2017; 8:78677-78690. [PMID: 29108257 PMCID: PMC5667990 DOI: 10.18632/oncotarget.20207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a pivotal role in neuroinflammation that is associated with neurodegenerative diseases. Our group recently reported that MMP-8 mediates inflammatory reactions by modulating the processing of TNF-α. To improve the efficacy of the currently available MMP-8 inhibitor (M8I), we have synthesized structurally modified M8I derivatives (comp 2, 3, 4, 5) and compared their efficacy with original compound (comp 1). Among M8I derivatives, comp 2, 3, and 5 inhibited the production of NO, ROS, and IL-6 more efficiently than the original compound in lipopolysaccharide (LPS)-stimulated microglia. When we compared the anti-inflammatory mechanisms of the most effective derivative, comp 3, with comp 1, comp 3 suppressed the mRNA expression of iNOS and cytokines more efficiently than comp 1. Although comp 1 inhibits only TNF-α processing, comp 3 additionally inhibits the expression of TNF-α. Both compounds inhibited LPS-induced activity of MAP kinases, NF-κB, and AP-1, while they increased heme oxygenase-1 expression by upregulating AMPK-Nrf2 signaling. Overall, the effect of comp 3 on anti-inflammatory signaling was much stronger than comp 1. We verified the anti-inflammatory effects of comp 1 and 3 in the LPS-injected mouse brain and primary cultured astrocytes. Comp 1 and 3 suppressed microglial activation, astrogliosis, and proinflammatory gene expression in the brain. Moreover, the compounds inhibited proinflammatory gene expression in the cultured astrocytes. Collectively, our data suggest that the MMP-8 inhibitor may be a promising therapeutic agent for neuroinflammatory disorders.
Collapse
|
29
|
Bondan E, Cardoso C, Martins MDF. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:546-552. [DOI: 10.1590/0004-282x20170092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
ABSTRACT Recent studies have demonstrated that curcumin (Cur) has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB) injections into the central nervous system (CNS) are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP). This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route) during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.
Collapse
Affiliation(s)
- Eduardo Bondan
- Universidade Paulista, Brasil; Universidade Cruzeiro do Sul, Brasil
| | | | | |
Collapse
|
30
|
Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy. J Neurosci 2017; 36:11013-11023. [PMID: 27798182 DOI: 10.1523/jneurosci.1371-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/21/2016] [Indexed: 12/30/2022] Open
Abstract
Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently.
Collapse
|
31
|
Maadawi ZME. Conditioned Medium Derived from Salidroside-Pretreated Mesenchymal Stem Cell Culture Ameliorates Mouse Lipopolysaccharide-Induced Cerebral Neuroinflammation- Histological and Immunohistochemical Study. Int J Stem Cells 2017; 10:60-68. [PMID: 28446004 PMCID: PMC5488777 DOI: 10.15283/ijsc16055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Neuroinflammation is involved in the pathogenesis of neurodegenerative disorders. Conditioned medium (CM) derived from bone marrow mesenchymal stem cells (MSCs) revealed substantial benefits due to its rich content of trophic factors. Salidroside (Sal), extracted from Rhodiola rosea, is known for its anti-inflammatory and neuroprotective effects. This study was designed to investigate the effect of Sal pretreated CM (CM-Sal) derived from bone marrow MSCs in lipopolysaccharide (LPS) induced neuroinflammation. Material and Methods Fifty adult male mice were equally divided into 5 groups: Group I (Normal Control), Group II (LPS): single 0.8 mg/kg LPS intraperitoneally; Group III (LPS-DMEM), Group IV (LPS-CM) and Group V (LPS-CM-Sal): LPS was injected as group II followed, 24 hours later, by intranasal injection of 50 μl of filtered serum- free Dulbecco's Modified Eagle's medium (DMEM), CM or CM-Sal, respectively, twice daily for 4 days. Animals were sacrificed at day 6 and paraffin cerebral sections were subjected to Hematoxylin and Eosin staining and immunohistochemistry with caspase 3 (apoptosis), glial fibrillary acidic protein GFAP (astrocytes) and CD68 (active microglia) followed by quantitative morphometric study. Results Examination of LPS and LPS-DMEM groups revealed neuronal apoptosis with reactive astrogliosis and increased active microglia. LPS-CM and LPS-CM-Sal groups showed less apoptosis, less astrocytes and less active microglia. The regression in neuroinflammation was more evident in LPS-CM-Sal group and the difference was statistically significant compared to other groups. Conclusion CM-Sal derived from MSCs culture elicited significant histopathological improvement in LPS induced neuroinflammation which could be used as new therapeutic modality.
Collapse
Affiliation(s)
- Zeinab M El Maadawi
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Sprenkle NT, Sims SG, Sánchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 2017; 12:42. [PMID: 28545479 PMCID: PMC5445486 DOI: 10.1186/s13024-017-0183-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress is thought to drive the pathology of many chronic disorders due to its potential to elicit aberrant inflammatory signaling and facilitate cell death. In neurodegenerative diseases, the accumulation of misfolded proteins and concomitant induction of ER stress in neurons contributes to neuronal dysfunction. In addition, ER stress responses induced in the surrounding neuroglia may promote disease progression by coordinating damaging inflammatory responses, which help fuel a neurotoxic milieu. Nevertheless, there still remains a gap in knowledge regarding the cell-specific mechanisms by which ER stress mediates neuroinflammation. In this review, we will discuss recently uncovered inflammatory pathways linked to the ER stress response. Moreover, we will summarize the present literature delineating how ER stress is generated in Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis, and highlight how ER stress and neuroinflammation intersect mechanistically within the central nervous system. The mechanisms by which stress-induced inflammation contributes to the pathogenesis and progression of neurodegenerative diseases remain poorly understood. Further examination of this interplay could present unappreciated insights into the development of neurodegenerative diseases, and reveal new therapeutic targets.
Collapse
Affiliation(s)
- Neil T Sprenkle
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Savannah G Sims
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Cristina L Sánchez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA. .,Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
33
|
Leiss L, Mutlu E, Øyan A, Yan T, Tsinkalovsky O, Sleire L, Petersen K, Rahman MA, Johannessen M, Mitra SS, Jacobsen HK, Talasila KM, Miletic H, Jonassen I, Li X, Brons NH, Kalland KH, Wang J, Enger PØ. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts. BMC Cancer 2017; 17:108. [PMID: 28173797 PMCID: PMC5294893 DOI: 10.1186/s12885-017-3109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. METHODS We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b+ immune and CD31+ endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. RESULTS TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. CONCLUSIONS Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.
Collapse
Affiliation(s)
- Lina Leiss
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway.,Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ercan Mutlu
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Anne Øyan
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway
| | - Tao Yan
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Oleg Tsinkalovsky
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Sleire
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway
| | - Mohummad Aminur Rahman
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mireille Johannessen
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sidhartha S Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Hege K Jacobsen
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Krishna M Talasila
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hrvoje Miletic
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway.,Department of Informatics, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Nicolaas H Brons
- Core Facility Flow Cytometry, Centre de Recherche Public de la Santé (CRP-Santé), L-1526, Luxembourg, Luxembourg
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway
| | - Jian Wang
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Per Øyvind Enger
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Abstract
Although the cause of Alzheimer’s disease (AD) remains unknown, a number of new findings suggest that the immune system may play a critical role in the early stages of the disease. Genome-wide association studies have identified a wide array of risk-associated genes for AD, many of which are associated with abnormal functioning of immune cells. Microglia are the brain’s immune cells. They play an important role in maintaining the brain’s extracellular environment, including clearance of aggregated proteins such as amyloid-β (Aβ). Recent studies suggest that microglia play a more active role in the brain than initially considered. Specifically, microglia provide trophic support to neurons and also regulate synapses. Microglial regulation of neuronal activity may have important consequences for AD. In this article we review the function of microglia in AD and examine the possible relationship between microglial dysfunction and network abnormalities, which occur very early in disease pathogenesis.
Collapse
Affiliation(s)
- Katherine A. Southam
- Correspondence to: Dr. Katherine Southam, Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000 Australia. Tel.: +61 3 6226 4834; Fax: +61 3 6226 7704; E-mail:
| | | | | |
Collapse
|
35
|
Jernigan TL, Stiles J. Construction of the human forebrain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 27906520 DOI: 10.1002/wcs.1409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/12/2022]
Abstract
The adult human brain is arguably the most complex of biological systems. It contains 86 billion neurons (the information processing cells of the brain) and many more support cells. The neurons, with the assistance of the support cells, form trillions of connections creating complex, interconnected neural networks that support all human thought, feeling, and action. A challenge for modern neuroscience is to provide a model that accounts for this exquisitely complex and dynamic system. One fundamental part of this model is an account of how the human brain develops. This essay describes two important aspects of this developmental story. The first part of the story focuses on the remarkable and dynamic set of events that unfold during the prenatal period to give rise to cell lineage that form the essential substance of the brain, particularly the structures of the cerebral hemispheres. The second part of the story focuses on the formation of the major brain pathways of the cerebrum, the intricate fiber bundles that connect different populations of neurons to form the information processing systems that support all human thought and action. These two aspects of early brain development provide an essential foundation for understanding how the structure, organization, and functioning of the human brain emerge. WIREs Cogn Sci 2017, 8:e1409. doi: 10.1002/wcs.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Joan Stiles
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain. Brain Sci 2016; 6:brainsci6030031. [PMID: 27537918 PMCID: PMC5039460 DOI: 10.3390/brainsci6030031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Maria Hui
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Kurt Masiello
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
37
|
Abstract
Astrocytes are the most explored non-neuronal cells in the brain under neurophysiological and neurodegenerative conditions. Extensive research has been done to understand their specific role during neuropathological conditions but still the existing findings could not conclude their mechanism of action and their specific role in neurodegenerative conditions. This review discusses their physiological and pathological roles, their activation, morphological alterations and their probable use in search of new therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- a 1 Toxicology Division, CSIR-CDRI , Lucknow , India.,b 2 Department of Biochemistry and Biophysics , University of California , San Francisco, San Francisco , CA , USA
| | - Neeraj Joshi
- a 1 Toxicology Division, CSIR-CDRI , Lucknow , India.,b 2 Department of Biochemistry and Biophysics , University of California , San Francisco, San Francisco , CA , USA
| |
Collapse
|
38
|
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 2016; 144:68-87. [PMID: 27000556 DOI: 10.1016/j.pneurobio.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain.
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Impact of rapamycin on status epilepticus induced hippocampal pathology and weight gain. Exp Neurol 2016; 280:1-12. [PMID: 26995324 DOI: 10.1016/j.expneurol.2016.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring. Recently, attention has focused on the mammalian target of rapamycin (mTOR) signaling pathway as a potential mediator of epileptogenic change. Systemic administration of the mTOR inhibitor rapamycin has promising therapeutic potential, as it has been shown to reduce seizure frequency and seizure severity in rodent models. Here, we tested whether mTOR signaling facilitates abnormal development of granule cells during epileptogenesis. We also examined dentate inflammation and mossy cell death in the dentate hilus. To determine if mTOR activation is necessary for abnormal granule cell development, transgenic mice that harbored fluorescently-labeled adult-born granule cells were treated with rapamycin following pilocarpine-induced status epilepticus. Systemic rapamycin effectively blocked phosphorylation of S6 protein (a readout of mTOR activity) and reduced granule cell mossy fiber axon sprouting. However, the accumulation of ectopic granule cells and granule cells with aberrant basal dendrites was not significantly reduced. Mossy cell death and reactive astrocytosis were also unaffected. These data suggest that anti-epileptogenic effects of mTOR inhibition may be mediated by mechanisms other than inhibition of these common dentate pathologies. Consistent with this conclusion, rapamycin prevented pathological weight gain in epileptic mice, suggesting that rapamycin might act on central circuits or even peripheral tissues controlling weight gain in epilepsy.
Collapse
|
40
|
Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer's disease. J Neuroinflammation 2016; 13:61. [PMID: 26965310 PMCID: PMC4787218 DOI: 10.1186/s12974-016-0525-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 (ω-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain function. It has largely been explored as a potential candidate to treat Alzheimer’s disease (AD). Clinical evidence favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage, DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated receptor γ (PPARγ). In conjunction with activated retinoid X receptors (RXR), PPARγ modulates inflammation, cell survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid β peptide (Aβ) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons, remove amyloid β peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on neuroinflammation and in some AD models. The evidence supports PPARγ as a preferred target for gene modulation. The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.
Collapse
Affiliation(s)
- David Heras-Sandoval
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México.,Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México
| | - Jazmin M Pérez-Rojas
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México.
| |
Collapse
|
41
|
Kálmán S, Garbett KA, Janka Z, Mirnics K. Human dermal fibroblasts in psychiatry research. Neuroscience 2016; 320:105-21. [PMID: 26855193 DOI: 10.1016/j.neuroscience.2016.01.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In order to decipher the disease etiology, progression and treatment of multifactorial human brain diseases we utilize a host of different experimental models. Recently, patient-derived human dermal fibroblast (HDF) cultures have re-emerged as promising in vitro functional system for examining various cellular, molecular, metabolic and (patho)physiological states and traits of psychiatric disorders. HDF studies serve as a powerful complement to postmortem and animal studies, and often appear to be informative about the altered homeostasis in neural tissue. Studies of HDFs from patients with schizophrenia (SZ), depression, bipolar disorder (BD), autism, attention deficit and hyperactivity disorder and other psychiatric disorders have significantly advanced our understanding of these devastating diseases. These reports unequivocally prove that signal transduction, redox homeostasis, circadian rhythms and gene*environment (G*E) interactions are all amenable for assessment by the HDF model. Furthermore, the reported findings suggest that this underutilized patient biomaterial, combined with modern molecular biology techniques, may have both diagnostic and prognostic value, including prediction of response to therapeutic agents.
Collapse
Affiliation(s)
- S Kálmán
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K A Garbett
- Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| | - Z Janka
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K Mirnics
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary; Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Khairallah MI, Kassem LA, Yassin NA, Gamal el Din MA, Zekri M, Attia M. Activation of migration of endogenous stem cells by erythropoietin as potential rescue for neurodegenerative diseases. Brain Res Bull 2016; 121:148-57. [PMID: 26802509 DOI: 10.1016/j.brainresbull.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023]
Abstract
UNLABELLED Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by progressive cognitive dysfunction and memory loss. There is deposition of amyloid plaques in the brain and subsequent neuronal loss. Neuroinflammation plays a key role in the pathogenesis of AD. There is still no effective curative therapy for these patients. One promising strategy involves the stimulation of endogenous stem cells. This study investigated the therapeutic effect of erythropoietin (EPO) in neurogenesis, and proved its manipulation of the endogenous mesenchymal stem cells in model of lipopolysaccharide (LPS)-induced neuroinflammation. METHODS Forty five adult male mice were divided equally into 3 groups: Group I (control), group II (LPS untreated group): mice were injected with single dose of lipopolysaccharide (LPS) 0.8 mg/kg intraperitoneally (ip) to induce neuroinflammation, group III (EPO treated group): in addition to (LPS) mice were further injected with EPO in dose of 40 μg/kg of body weight three times weekly for 5 consecutive weeks. Groups were tested for their locomotor activity and memory using open field test and Y-maze. Cerebral specimens were subjected to histological and morphometric studies. Glial fibrillary acidic protein (GFAP) and mesenchymal stem cell marker CD44 were assessed using immunostaining. Gene expression of brain derived neurotrophic factor (BDNF) was examined in brain tissue. RESULTS LPS decreased locomotor activity and percentage of correct choices in Y-maze test. Cerebral sections of LPS treated mice showed increased percentage area of dark nuclei and amyloid plaques. Multiple GFAP positive astrocytes were detected in affected cerebral sections. In addition, decrease BDNF gene expression was noted. On the other hand, EPO treated group, showed improvement in locomotor and cognitive function. Examination of the cerebral sections showed multiple neurons exhibiting less dark nuclei and less amyloid plaques in comparison to the untreated group. GFAP positive astrocytes were also reduced. Cerebral sections of the EPO treated group showed multiple branched and spindle CD44 positive cells inside and around blood vessels more than in LPS group. This immunostaining was negative in the control group. EPO administration increased BDNF gene expression. CONCLUSION This study proved that EPO provides excellent neuroprotective and neurotrophic effects in vivo model of LPS induced neuroinflammation. It enhances brain tissue regeneration via stimulation of endogenous mesenchymal stem cells proliferation and their migration to the site of inflammation. EPO also up regulates cerebral BDNF expression and production, which might contributes to EPO mediated neurogenesis. It also attenuates reactive gliosis thus reduces neuroinflammation. These encouraging results obtained with the use of EPO proved that it may be a promising candidate for future clinical application and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Khairallah
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt.
| | - L A Kassem
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - N A Yassin
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M A Gamal el Din
- Department of Physiology, Egypt; Faculty of Pharmacy & Biotechnology-German University in Cairo (GUC), Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Zekri
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| | - M Attia
- Department of Histology, Egypt; Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
43
|
Weller J, Steinhäuser C, Seifert G. pH-Sensitive K+ Currents and Properties of K2P Channels in Murine Hippocampal Astrocytes. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:263-94. [DOI: 10.1016/bs.apcsb.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Bosch ME, Kielian T. Neuroinflammatory paradigms in lysosomal storage diseases. Front Neurosci 2015; 9:417. [PMID: 26578874 PMCID: PMC4627351 DOI: 10.3389/fnins.2015.00417] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Lysosomal storage diseases (LSDs) include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.
Collapse
Affiliation(s)
- Megan E. Bosch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, USA
| | - Tammy Kielian
- Pathology and Microbiology, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
45
|
Oklinski MK, Choi HJ, Kwon TH. Peripheral nerve injury induces aquaporin-4 expression and astrocytic enlargement in spinal cord. Neuroscience 2015; 311:138-52. [PMID: 26480815 DOI: 10.1016/j.neuroscience.2015.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/22/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022]
Abstract
Aquaporin-4 (AQP4), a water channel protein, is expressed mainly in the perivascular end-feet of astrocytes in the brain and spinal cord. Dysregulation of AQP4 is critically associated with abnormal water transport in the astrocytes. We aimed to examine whether peripheral nerve injury (PNI) could induce the changes of AQP4 expression and astrocytic morphology in the spinal cord. Two different PNI models [partial sciatic nerve transection (PST) and chronic constriction injury (CCI)] were established on the left sciatic nerve in Sprague-Dawley rats, which decreased the pain withdrawal threshold in the ipsilateral hind paws. Both PNI models were associated with a persistent up-regulation of AQP4 in the ipsilateral dorsal horn at the lower lumbar region over 3 weeks, despite an absence of direct injury to the spinal cord. Three-dimensional reconstruction of astrocytes was made and morphometric analysis was done. Up-regulation of AQP4 was accompanied by a significant increase in the length and volume of astrocytic processes and the number of branch points. The most prominent changes were present in the distal processes of the astrocytes and the changes were maintained throughout the whole experimental period. Extravasation of systemically administered tracers Evans Blue and sodium fluorescein was not seen in both models. Taken together, PNI was associated with a long-lasting AQP4 up-regulation and enlargement of astrocytic processes in the spinal cord in rats, both of which were not related to the disruption of blood-spinal cord barrier. The findings could provide novel insights on the understanding of pathophysiology of spinal cords after PNI.
Collapse
Affiliation(s)
- M K Oklinski
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - H-J Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - T-H Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, South Korea.
| |
Collapse
|
46
|
Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation. J Neurovirol 2015; 22:140-8. [PMID: 26419894 DOI: 10.1007/s13365-015-0378-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022]
Abstract
Chikungunya, "that which bends up" in the Makonde dialect, is an emerging global health threat, with increasing incidence of neurological complications. Until 2013, Chikungunya infection had been largely restricted to East Africa and the Indian Ocean, with cases within the USA reported to be from foreign travel. However, in 2014, over 1 million suspected cases were reported in the Americas, and a recently infected human could serve as an unwitting reservoir for the virus resulting in an epidemic in the continental USA. Chikungunya infection is increasingly being associated with neurological sequelae. In this study, we sought to understand the role of astrocytes in the neuropathogenesis of Chikungunya infection. Even after virus has been cleared form the circulation, astrocytes were activated with regard to TLR2 expression. In addition, white matter astrocytes were hypertrophic, with increased arbor volume in gray matter astrocytes. Combined, these would alter the number and distribution of synapses that each astrocyte would be capable of forming. These results provide the first evidence that Chikungunya infection induces morphometric and innate immune activation of astrocytes in vivo. Perturbed glia-neuron signaling could be a major driving factor in the development of Chikungunya-associated neuropathology.
Collapse
|
47
|
Jauregui-Huerta F, Zhang L, Yañez-Delgadillo G, Hernandez-Carrillo P, García-Estrada J, Luquín S. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress. Front Aging Neurosci 2015; 7:159. [PMID: 26347648 PMCID: PMC4539520 DOI: 10.3389/fnagi.2015.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.
Collapse
Affiliation(s)
- Fernando Jauregui-Huerta
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Griselda Yañez-Delgadillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Pamela Hernandez-Carrillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social Guadalajara, Mexico
| | - Sonia Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| |
Collapse
|