1
|
Urhan E, Kara CS, Oguz EF, Neselioglu S, Erel O, Altuntas HD, Bayram F. The assessment of thiol-disulfide homeostasis and ıschemia-modified albumin levels in patients with acromegaly. Pituitary 2025; 28:46. [PMID: 40186831 PMCID: PMC11972178 DOI: 10.1007/s11102-025-01519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Data regarding the relationship between acromegaly and oxidative stress (OS) remain limited. Dynamic thiol-disulfide homeostasis (TDH) is vital for antioxidant protection, and ischemia-modified albumin (IMA) serves as a marker of OS. This study aimed to measure serum TDH parameters and IMA levels in acromegaly patients, comparing them with healthy controls. METHODS This cross-sectional study consecutively included 81 patients and 55 controls, matched for age, gender, and body mass index. Serum levels of native thiol, total thiol, and disulfide (TDH parameters) were measured using the automated spectrophotometric method developed by Erel and Neselioglu, along with serum IMA levels. RESULTS In patients, serum native and total thiol levels were significantly lower (p = 0.005 and p = 0.007), while serum IMA levels were significantly higher (p = 0.001). Disulfide levels were similar. Patients with active disease (N = 32), patients in remission (N = 49), and controls (N = 55) were compared. In post-hoc analyses; serum TDH parameters and IMA levels were similar in remission and active disease patients. Native and total thiol levels were significantly lower in patients in remission compared to controls (p = 0.01 and p = 0.04). IMA levels were significantly higher in patients in remission compared to controls (p = 0.04). Serum thiol levels positively correlated with serum insulin-like growth factor-1 levels and negatively with age and disease duration, while age independently exerted a negative impact on serum thiol levels. CONCLUSION Our findings may indicate increased OS in the acromegalic process, which may contribute to the development of acromegaly and its related complications and comorbidities.
Collapse
Affiliation(s)
- Emre Urhan
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey.
| | - Canan Sehit Kara
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Esra Fırat Oguz
- Department of Medical Biochemistry, Ankara City Hospital, Ankara, Turkey
| | - Salim Neselioglu
- Department of Medical Biochemistry, Yildirim Beyazit University Medical School, Ankara, Turkey
| | - Ozcan Erel
- Department of Medical Biochemistry, Yildirim Beyazit University Medical School, Ankara, Turkey
| | | | - Fahri Bayram
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| |
Collapse
|
2
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
3
|
Güneşliol BE, Karaca E, Ağagündüz D, Acar ZA. Association of physical activity and nutrition with telomere length, a marker of cellular aging: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:674-692. [PMID: 34553645 DOI: 10.1080/10408398.2021.1952402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aging of the population has great social and economic effects because it is characterized by a gradual loss in physiological integrity, resulting in functional decline, thereby loss of ability to move independently. Telomeres, the hallmarks of biological aging, play a protective role in both cell death and aging. Critically short telomeres give rise to a metabolically active cell that is unable to repair damage or divide, thereby leading to aging. Lifestyle factors such as physical activity (PA) and nutrition could be associated with telomere length (TL). Indeed, regular PA and healthy nutrition as integral parts of our lifestyle can slow down telomere shortening, thereby delaying aging. In this context, the present comprehensive review summarizes the data from recent literature on the association of PA and nutrition with TL.
Collapse
Affiliation(s)
| | - Esen Karaca
- Department of Nutrition and Dietetics, Izmir Demokrasi University, Izmir, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | | |
Collapse
|
4
|
Wang X, Meng H, Ruan J, Chen W, Meng F. Low G0S2 gene expression levels in peripheral blood may be a genetic marker of acute myocardial infarction in patients with stable coronary atherosclerotic disease: A retrospective clinical study. Medicine (Baltimore) 2021; 100:e23468. [PMID: 33545927 PMCID: PMC7837852 DOI: 10.1097/md.0000000000023468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The G0/G1 switch 2 (G0S2) gene is closely related to lipolysis, cell proliferation, apoptosis, oxidative phosphorylation, and the development of a variety of tumors. The aim of the present study was to expand the sample size to confirm the relationship between the expression of the G0S2 gene in peripheral blood and acute myocardial infarction (AMI) based on previous gene chip results. METHODS Three hundred patients were initially selected, of which 133 were excluded in accordance with the exclusion criteria. Peripheral blood leukocytes were collected from 92 patients with AMI and 75 patients with stable coronary atherosclerotic disease (CAD). mRNA expression levels of G0S2 in peripheral blood leukocytes was measured by RT-PCR, and protein expression levels by Western blot analysis. The results of these assays in the 2 groups were compared. RESULTS mRNA expression levels of GOS2 in the peripheral blood leukocytes of patients with AMI were 0.41-fold lower than those of patients with stable CAD (P < .05), and GOS2 protein expression levels were 0.45-fold lower. Multivariate logistic regression analysis indicated that low expression levels of the G0S2 gene increased the risk of AMI by 2.08-fold in stable CAD patients. CONCLUSIONS G0S2 gene expression in the peripheral blood leukocytes of AMI patients was lower than that of stable CAD patients. Low G0S2 gene expression in peripheral blood leukocytes is an independent risk factor for AMI in stable CAD patients.
Collapse
|
5
|
Canudas S, Becerra-Tomás N, Hernández-Alonso P, Galié S, Leung C, Crous-Bou M, De Vivo I, Gao Y, Gu Y, Meinilä J, Milte C, García-Calzón S, Marti A, Boccardi V, Ventura-Marra M, Salas-Salvadó J. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv Nutr 2020; 11:1544-1554. [PMID: 32730558 PMCID: PMC7666892 DOI: 10.1093/advances/nmaa079] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023] Open
Abstract
Accelerated telomere shortening has been associated with several age-related diseases and/or decreased lifespan in humans. The Mediterranean diet (MedDiet) is considered to be 1 of the most recognized diets for disease prevention and healthy aging, partially due to its demonstrated anti-inflammatory and antioxidative properties which may impact on telomere length (TL). The aim of this meta-analysis was to determine the associations between MedDiet adherence and TL maintenance. MEDLINE-PubMed and Cochrane databases were searched up to December 2018 for studies evaluating the association between MedDiet adherence and TL in blood cells. Two reviewers, working independently, screened all titles and abstracts to identify studies that met the inclusion criteria [cross-sectional, case-control, and prospective cohort studies and randomized clinical trials (RCTs) published in English and excluded nonoriginal articles]. Data were pooled by the generic inverse variance method using the random effects model and expressed as standardized mean difference (SMD). Heterogeneity was identified using the Cochran Q test and quantified by the I2 statistic. A total of 8 original cross-sectional studies were included for the quantitative meta-analysis, comprising a total of 13,733 participants from 5 countries. A positive association between adherence to the MedDiet and TL was observed in all meta-analyses, with the exception of those conducted only in men: SMD (95% CI) of 0.130 (0.029; 0.231) for all subjects, 0.078 (0.005; 0.152) for women, and 0.095 (-0.005; 0.195) for men. Only 1 prospective cohort study and 1 RCT were identified, therefore, we could not undertake a meta-analysis for these study designs. The present meta-analysis of cross-sectional studies demonstrates that higher MedDiet adherence is associated with longer TL. At the same time, larger and high-quality prospective studies and clinical trials are warranted to confirm this association.
Collapse
Affiliation(s)
- Silvia Canudas
- Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Universitat Rovira i Virgili. Sant Joan de Reus University Hospital, Reus, Spain
- Pere Virgili Institut of Health (IISPV), Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Nerea Becerra-Tomás
- Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Universitat Rovira i Virgili. Sant Joan de Reus University Hospital, Reus, Spain
- Pere Virgili Institut of Health (IISPV), Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain
| | - Pablo Hernández-Alonso
- Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Universitat Rovira i Virgili. Sant Joan de Reus University Hospital, Reus, Spain
- Pere Virgili Institut of Health (IISPV), Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga (IBIMA)Málaga, Spain
| | - Serena Galié
- Pere Virgili Institut of Health (IISPV), Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Cindy Leung
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Marta Crous-Bou
- Barcelona Beta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Frailty and Healthy Ageing Networking Biomedical Researcher Center (CIBERFES), Carlos III Health Institute, Madrid, Spain
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA, USA
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, USA
| | - Yawen Gao
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yian Gu
- The Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Jelena Meinilä
- Public Health Research Program, Folkhälsan Research Center, Helsinki, Finland
| | - Catherine Milte
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences CRC, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Amelia Marti
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Virginia Boccardi
- Department of Internal Medicine, Surgical, Neurological Metabolic Disease and Geriatric Medicine, Second University of Naples, Naples, Italy
| | - Melissa Ventura-Marra
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jordi Salas-Salvadó
- Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Universitat Rovira i Virgili. Sant Joan de Reus University Hospital, Reus, Spain
- Pere Virgili Institut of Health (IISPV), Reus, Spain
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Center (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
6
|
Zhu S, Zhang J, Lv Y. Glaucocalyxin A inhibits hydrogen peroxide‐induced oxidative stress and inflammatory response in coronary artery smooth muscle cells. Clin Exp Pharmacol Physiol 2020; 47:765-770. [PMID: 31912910 DOI: 10.1111/1440-1681.13253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Shunming Zhu
- Department of Cardiology Shaanxi Provincial People's Hospital Xi'an China
| | - Junbo Zhang
- Department of Peripheral Vascular Diseases The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Ying Lv
- Department of Cardiology Shaanxi Provincial People's Hospital Xi'an China
| |
Collapse
|
7
|
Blann A. British Journal of Biomedical Science in 2019. What have we learned? Br J Biomed Sci 2019; 77:1-6. [PMID: 31818192 DOI: 10.1080/09674845.2019.1692455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2019 the British Journal of Biomedical Science published 40 articles in the various disciplines that comprise biomedical science. These were one review, 22 original articles and 17 'In Brief' short reports. Of those citing original data, the majority were in cellular pathology (14 papers), clinical chemistry (9 papers), and microbiology (6 papers: 4 in bacteriology and 2 in virology). There were 3 papers in haematology and 2 in andrology, whilst 5 papers crossed traditional discipline boundaries (such as the molecular genetics of IL6, liver function tests, and hepatocellular carcinoma). Over two-thirds of papers used techniques in molecular genetics. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.
Collapse
Affiliation(s)
- A Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|
8
|
Azizi S, Mahdavi R, Vaghef-Mehrabany E, Maleki V, Karamzad N, Ebrahimi-Mameghani M. Potential roles of Citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus, current evidence and future directions: A systematic review. Clin Exp Pharmacol Physiol 2019; 47:187-198. [PMID: 31612510 DOI: 10.1111/1440-1681.13190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Diabetes mellitus is a prevalent endocrine disorder worldwide. Citrulline is an α-amino acid, which is abundant in watermelon, and a precursor of arginine and nitric oxide. Decreased bioavailability of nitric oxide is associated with insulin resistance. The present systematic review focused on the existing evidence of citrulline and watermelon extract effects on metabolic and inflammatory parameters in diabetes mellitus. METHODS A systematic search of the databases PubMed, Scopus, EMBASE, ProQuest and Google Scholar was conducted for relevant papers published from inception until October 2018. All clinical trials, animal and in vitro studies published in the English language that assessed the role of citrulline and watermelon extract on diabetes mellitus, were eligible. Studies providing inadequate information were excluded. RESULTS Out of 1262 articles we found, only eight articles met the inclusion criteria for analysis. In three studies an increase in the synthesis of nitric oxide was reported with citrulline and watermelon extract supplementation. Four studies showed a significant reduction in blood glucose after supplementation with watermelon extract, and two studies reported a decrease in a number of inflammatory biomarkers following citrulline supplementation. Although citrulline intake caused a significant reduction in HOMA-IR in one study, inconsistent results were revealed on the effects of citrulline and watermelon extract on insulin levels and lipid profile. CONCLUSION Citrulline and watermelon extract could improve nitric oxide synthesis, glycaemic status and inflammation in diabetes mellitus. However, further studies are required to shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Samaneh Azizi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Vaghef-Mehrabany
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karamzad
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Circulating Leukocytes and Oxidative Stress in Cardiovascular Diseases: A State of the Art. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2650429. [PMID: 31737166 PMCID: PMC6815586 DOI: 10.1155/2019/2650429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.
Collapse
|
10
|
Alhamdow A, Lindh C, Albin M, Gustavsson P, Tinnerberg H, Broberg K. Cardiovascular Disease-Related Serum Proteins in Workers Occupationally Exposed to Polycyclic Aromatic Hydrocarbons. Toxicol Sci 2019; 171:235-246. [PMID: 31228248 PMCID: PMC6735884 DOI: 10.1093/toxsci/kfz142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/28/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023] Open
Abstract
Chimney sweeps have higher incidence and mortality of cardiovascular disease (CVD), likely related to their exposure to polycyclic aromatic hydrocarbons (PAH). In order to identify underlying mechanisms of PAH-related CVD, we here investigated whether PAH exposure was associated with levels of putative CVD-related proteins in serum among currently working chimney sweeps. We enrolled 116 chimney sweeps and 125 unexposed controls, all nonsmoking male workers from Sweden. We measured monohydroxylated PAH metabolites in urine by liquid chromatography coupled to tandem mass spectrometry and a panel of 85 proteins in serum using proximity extension assay. Linear regression analysis adjusted for age and body mass index showed that 25 proteins were differentially expressed between chimney sweeps and the controls (p < .05, adjusted for false discovery rate). Of the 25 proteins, follistatin (FS), prointerleukin-16 (IL-16), and heat shock protein beta-1 (HSP 27) showed positive associations with the monohydroxylated metabolites of PAH in a dose-response manner (p < .05). Pathway and gene ontology analyses demonstrated that the differentially expressed proteins were mainly involved in inflammatory response and immunological functions, such as leukocyte migration, cell movement of leukocytes, and adhesion of immune cells. In conclusion, we found a number of putative CVD-related proteins differentially expressed, between PAH-exposed and unexposed individuals, and mainly involved in inflammation and immune function. Our data warrant protective measures to reduce PAH exposure and longitudinal investigations of the protein profile in chimney sweeps and other occupational groups exposed to PAH.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
- Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm 113 65, Sweden
| | - Per Gustavsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Centre for Occupational and Environmental Medicine (CAMM), Stockholm County Council, Stockholm 113 65, Sweden
| | - Håkan Tinnerberg
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg 405 30, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 223 63, Sweden
| |
Collapse
|
11
|
Novella S, Pérez‐Cremades D, Mompeón A, Hermenegildo C. Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J Physiol 2019; 597:4873-4886. [DOI: 10.1113/jp278063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Susana Novella
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Daniel Pérez‐Cremades
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Ana Mompeón
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Carlos Hermenegildo
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| |
Collapse
|
12
|
Takahashi M, Lim PJ, Tsubosaka M, Kim HK, Miyashita M, Suzuki K, Tan EL, Shibata S. Effects of increased daily physical activity on mental health and depression biomarkers in postmenopausal women. J Phys Ther Sci 2019; 31:408-413. [PMID: 31037019 PMCID: PMC6451947 DOI: 10.1589/jpts.31.408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
[Purpose] Little is known about the effectiveness of daily physical activity on
depression biomarkers in older adults. This study aimed to investigate the effects of
increased daily physical activity for 8 weeks on depression biomarkers in postmenopausal
women. [Participants and Methods] Thirty-eight postmenopausal females were randomly
assigned into a control or an active group and were asked to wear a uniaxial accelerometer
for 8 weeks. Blood samples were obtained at baseline and at the end of the intervention.
During the intervention, the active group was asked to increase their physical activity
level above their usual lifestyle whereas those in the control group maintained their
daily lifestyle. [Results] After the 8-week intervention, the step counts of the
participants in the active group increased. The serum concentration of the brain-derived
neurotrophic factor and serotonin increased significantly in the active group, but not in
the control group, as compared with baseline values. The serum concentration of
derivatives of reactive oxygen metabolites and biological antioxidant potential did not
change after the intervention in either group. [Conclusion] These findings may suggest
that promotion of daily physical activity in postmenopausal women has a positive impact on
depression without any change in oxidative stress.
Collapse
Affiliation(s)
- Masaki Takahashi
- Waseda Bioscience Research Institute in Singapore, Waseda University: 138667, Singapore
| | - Pei Jean Lim
- Waseda Bioscience Research Institute in Singapore, Waseda University: 138667, Singapore
| | - Miku Tsubosaka
- Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Hyeon-Ki Kim
- Organization for University Research Initiatives, Waseda University, Japan
| | | | | | - Eng Lee Tan
- Digital Healthcare Innovation Center, Singapore Polytechnic, Singapore
| | | |
Collapse
|
13
|
Polonikov AV, Ponomarenko IV, Bykanova MA, Sirotina SS, Bocharova AV, Vagaytseva KV, Stepanov VA, Azarova IE, Churnosov MI, Solodilova MA. A comprehensive study revealed SNP-SNP interactions and a sex-dependent relationship between polymorphisms of the CYP2J2 gene and hypertension risk. Hypertens Res 2019; 42:257-272. [PMID: 30518987 DOI: 10.1038/s41440-018-0142-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 11/09/2022]
Abstract
This study investigated whether common polymorphisms of cytochrome P450 2J2 (CYP2J2), a major enzyme that controls the biosynthesis of vasoactive epoxyeicosatrienoic acids, are collectively involved in the molecular basis of essential hypertension (EH). A total of 2314 unrelated Russian subjects from the Kursk (discovery sample: 913 EH patients and 645 controls) and Belgorod (replication sample: 345 EH patients and 411 controls) regions were recruited for this study. Eight single nucleotide polymorphisms (SNPs), including rs890293, rs11572182, rs10493270, rs1155002, rs2280275, rs7515289, rs11572325, and rs10889162, of CYP2J2 were genotyped using the MassARRAY 4 system and TaqMan-based assays. Significant associations were identified among the SNPs rs890293 (OR = 2.17, 95%CI 1.30-3.65), rs2280275 (OR = 1.59, 95%CI 1.10-2.37) and rs11572325 (OR = 1.89, 95%CI 1.22-2.95) and the risk of EH in females from the Kursk population. Sixteen CYP2J2 genotype combinations only showed significant associations with EH risk only in females. A common haplotype, T-T-G-C-C-C-T-A, increased the risk of EH in females. The bioinformatic analysis enabled identification of the SNPs that possess regulatory potential and/or are located within the binding sites for multiple transcription factors that play roles in the pathways involved in hypertension pathogenesis. Moreover, the polymorphisms rs890293, rs2280275, and rs11572325 were found to be significantly associated with hypertension risk in the Belgorod population. In conclusion, the rs2280275 and rs11572325 SNPs of CYP2J2 may be considered novel genetic markers of hypertension, at least in Russian women. However, sex-specific associations between CYP2J2 gene polymorphisms and hypertension require further investigation to clarify the specific genetic and/or environmental factors that are responsible for the increased disease susceptibility of women compared to that of men.
Collapse
Affiliation(s)
- Alexey V Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk, 305041, Russian Federation.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, 305041, Russian Federation.
| | - Irina V Ponomarenko
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk, 305041, Russian Federation
| | - Marina A Bykanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, 305041, Russian Federation
| | - Svetlana S Sirotina
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk, 305041, Russian Federation
| | - Anna V Bocharova
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk, 634050, Russian Federation
| | - Kseniya V Vagaytseva
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk, 634050, Russian Federation
| | - Vadim A Stepanov
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk, 634050, Russian Federation
| | - Iuliia E Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk, 305041, Russian Federation
| | - Mikhail I Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobeda St., Belgorod, 308015, Russian Federation
| | - Maria A Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk, 305041, Russian Federation
| |
Collapse
|
14
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
15
|
Physical Activity and Nutrition: Two Promising Strategies for Telomere Maintenance? Nutrients 2018; 10:nu10121942. [PMID: 30544511 PMCID: PMC6316700 DOI: 10.3390/nu10121942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
As the world demographic structure is getting older, highlighting strategies to counteract age-related diseases is a major public health concern. Telomeres are nucleoprotein structures that serve as guardians of genome stability by ensuring protection against both cell death and senescence. A hallmark of biological aging, telomere health is determined throughout the lifespan by a combination of both genetic and non-genetic influences. This review summarizes data from recently published studies looking at the effect of lifestyle variables such as nutrition and physical activity on telomere dynamics.
Collapse
|
16
|
Pérez-Cremades D, Mompeón A, Vidal-Gómez X, Hermenegildo C, Novella S. miRNA as a New Regulatory Mechanism of Estrogen Vascular Action. Int J Mol Sci 2018; 19:ijms19020473. [PMID: 29415433 PMCID: PMC5855695 DOI: 10.3390/ijms19020473] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
The beneficial effects of estrogen on the cardiovascular system have been reported extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched men during their fertile stage of life, a benefit that disappears after menopause. These sex-related differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors. The regulation of vascular function by estrogen is mainly related to the maintenance of normal endothelial function and is mediated by both direct and indirect gene transcription through the activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the expression of a high percentage of protein-coding genes in mammals and are related to the correct function of human physiology. Moreover, within the cardiovascular system, miRNAs have been related to physiological and pathological conditions. In this review, we address what is known about the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Ana Mompeón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Xavier Vidal-Gómez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain.
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
| |
Collapse
|
17
|
Ilhan M, Turgut S, Turan S, Demirci Cekic S, Ergen HA, Korkmaz Dursun G, Mezani B, Karaman O, Yaylim I, Apak MR, Tasan E. The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly. Endocr J 2018; 65:91-99. [PMID: 29046499 DOI: 10.1507/endocrj.ej17-0300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oxidative status is attributed to endothelial dysfunction and might be one of the key mechanisms of endothelial dysfunction in acromegaly. In this study, we aimed to investigate the effect of acromegaly on superoxide dismutase (SOD) and total antioxidant capacity (TAC) levels, and the possible influence of human manganese superoxide dismutase (MnSOD) polymorphism on these levels. 51 acromegaly patients and 57 age and sex matched healthy subjects were recruited to the study in Bezmialem Vakif University Hospital between 2011 and 2014. The median SOD and TAC levels were 42.7 (33-60) pg/mL and 1,313.7 (155-1,902) μM in acromegaly; and 46.3 (38-95) pg/mL and 1,607.3 (195-1,981) μM in healthy subjects (p < 0.001, p < 0.001). SOD levels were decreased in controlled and uncontrolled patients compared to healthy subjects (p = 0.05 and p = 0.002, respectively). Controlled and uncontrolled acromegaly displayed significantly decreased levels of TAC compared to healthy subjects (p < 0.05 and p < 0.001, respectively). SOD levels were not associated with MnSOD polymorphisms in acromegaly. In conclusion, this study showed that acromegaly was associated with decreased levels of SOD and TAC, and controlling the disease activity could not adequately improve these levels.
Collapse
Affiliation(s)
- Muzaffer Ilhan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Seda Turgut
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Saime Turan
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Sema Demirci Cekic
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Hayriye Arzu Ergen
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Gurbet Korkmaz Dursun
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Brunilda Mezani
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - Ilhan Yaylim
- The Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Mustafa Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University, Millet Caddesi, Capa, 34104, İstanbul, Turkey
| | - Ertugrul Tasan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Vatan Caddesi, 34093, Istanbul, Turkey
| |
Collapse
|
18
|
Hitsumoto T. Relationship Between Serum Total Testosterone Concentration and Augmentation Index at Radial Artery in Japanese Postmenopausal Patients. J Clin Med Res 2017; 9:872-878. [PMID: 28912924 PMCID: PMC5593435 DOI: 10.14740/jocmr3164w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 11/11/2022] Open
Abstract
Background The significance of testosterone as a risk factor for cardiovascular disease (CVD) in females is controversial. This cross-sectional study aimed to elucidate the relationship between serum total testosterone concentration (T-T) and augmentation index at the radial artery (r-AIx) as a marker of arterial function in Japanese postmenopausal patients. Methods A total of 447 postmenopausal patients with traditional cardiovascular risk factors and/or a history of CVD (age (mean ± standard deviation (SD)), 73 ± 10 years) were enrolled. r-AIx was measured using tonometry, and the association between r-AIx and various clinical parameters, including T-T, was determined. Results r-AIx significantly increased (CVD vs. non-CVD: 99±11% vs. 91±11%, P < 0.001) and T-T significantly decreased (CVD vs. non-CVD: 0.31 ± 0.13 ng/mL vs. 0.49 ± 0.23 ng/mL, P < 0.001) in patients with CVD than in those without CVD. A significant negative correlation (r = -0.48; P < 0.001) between r-AIx and T-T was observed. Furthermore, multiple regression analysis indicated that T-T (t value = -7.7; P < 0.001), height (t value = -5.3; P < 0.001), d-ROMs test as a marker of oxidative stress in vivo (t value = 3.2; P < 0.001), CVD (t value = 2.9; P < 0.01), and pulse rate (t value = -2.7; P < 0.01) were independent variables for r-AIx as a subordinate factor. Conclusion This study revealed that low T-T is an important determining factor for an increase in r-AIx in Japanese postmenopausal patients. A prospective multicenter study with a large sample size is required to confirm the results of this study.
Collapse
Affiliation(s)
- Takashi Hitsumoto
- Hitsumoto Medical Clinic, 2-7-7, Takezakicyou, Shimonoseki City, Yamaguchi 750-0025, Japan.
| |
Collapse
|
19
|
Polonikov A, Kharchenko A, Bykanova M, Sirotina S, Ponomarenko I, Bocharova A, Vagaytseva K, Stepanov V, Bushueva O, Churnosov M, Solodilova M. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene 2017; 627:451-459. [PMID: 28687336 DOI: 10.1016/j.gene.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 12/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are important vasoactive products of arachidonic acid metabolism with a wide range of biological actions in the cardiovascular system. The present study investigated whether single nucleotide polymorphisms (SNP) of genes coding cytochrome P450 2C subfamily, enzymes involved in biosynthesis of EETs, are associated with the risk of coronary heart disease (CHD). A total of 1255 unrelated Russian subjects comprising 561 patients with angiographically diagnosed CHD and 694 age- and sex-matched healthy subjects were included in the study. DNA samples from all study participants were genotyped for six common SNPs rs7909236, rs1934953 of CYP2C8, rs9332242, rs4918758 and rs61886769 of CYP2C9 and rs4244285 of CYP2C19 using by the Mass-ARRAY 4 system. SNP rs4918758 of CYP2C9 was associated with decreased risk of CHD (codominant model) at a borderline significance with odds ratio adjusted for sex and age 0.61 (95% CI: 0.41-0.92, P=0.038, Q=0.20). SNP rs9332242 of CYP2C9 showed a trend towards association with increased CHD risk in cigarette smokers (P=0.049, Q=0.29). Log-likelihood ratio test (LRT) pointed out epistatic interactions between rs9332242 and rs61886769 of CYP2C9 (codominant model, Pinteraction=0.02), however, this P-value did not survive after correction for multiple tests. Bioinformatic analysis revealed a regulatory potential for a majority of the investigated SNPs. Our preliminary results demonstrate that polymorphisms of genes encoding CYP2C subfamily represent potential genetic markers of CHD susceptibility. Further studies are required to substantiate the contribution of these genes to the disease risk.
Collapse
Affiliation(s)
- Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Alexander Kharchenko
- Department of Internal Medicine, Kursk State Medical University, 14 Pirogova St., Kursk 305035, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Svetlana Sirotina
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Irina Ponomarenko
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Anna Bocharova
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Kseniya Vagaytseva
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Vadim Stepanov
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobeda St., Belgorod 308015, Russian Federation
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| |
Collapse
|
20
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
21
|
Singh SK, Thirumalai A, Pathak A, Ngwa DN, Agrawal A. Functional Transformation of C-reactive Protein by Hydrogen Peroxide. J Biol Chem 2017; 292:3129-3136. [PMID: 28096464 PMCID: PMC5336149 DOI: 10.1074/jbc.m116.773176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
C-reactive protein (CRP) is present at sites of inflammation including amyloid plaques, atherosclerotic lesions, and arthritic joints. CRP, in its native pentameric structural conformation, binds to cells and molecules that have exposed phosphocholine (PCh) groups. CRP, in its non-native pentameric structural conformation, binds to a variety of deposited, denatured, and aggregated proteins, in addition to binding to PCh-containing substances. In this study, we investigated the effects of H2O2, a prototypical reactive oxygen species that is also present at sites of inflammation, on the ligand recognition function of CRP. Controlled H2O2 treatment of native CRP did not monomerize CRP and did not affect the PCh binding activity of CRP. In solid phase ELISA-based ligand binding assays, purified pentameric H2O2-treated CRP bound to a number of immobilized proteins including oxidized LDL, IgG, amyloid β peptide 1-42, C4b-binding protein, and factor H, in a CRP concentration- and ligand concentration-dependent manner. Using oxidized LDL as a representative protein ligand for H2O2-treated CRP, we found that the binding occurred in a Ca2+-independent manner and did not involve the PCh-binding site of CRP. We conclude that H2O2 is a biological modifier of the structure and ligand recognition function of CRP. Overall, the data suggest that the ligand recognition function of CRP is dependent on the presence of an inflammatory microenvironment. We hypothesize that one of the functions of CRP at sites of inflammation is to sense the inflammatory microenvironment, change its own structure in response but remain pentameric, and then bind to pathogenic proteins deposited at those sites.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Avinash Thirumalai
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614.
| |
Collapse
|
22
|
Ramachandran S, Vinitha A, Kartha CC. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol 2016; 15:152. [PMID: 27809851 PMCID: PMC5094075 DOI: 10.1186/s12933-016-0467-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Vascular disease in diabetes is initiated by monocyte adhesion to vascular endothelium, transmigration and formation of foam cells. Increasing clinical evidence supports a role for the secretory protein, cyclophilin A in diabetic vascular disease. The means by which cyclophilin A contributes to vascular lesion development in diabetes is however largely unknown. Methods In this study we investigated using THP1 cells and human monocytes whether cyclophilin A under hyperglycemic conditions, functions in the inflammatory cascade as a chemoattractant and increases lipid uptake by formation of foam cells invitro. We developed an invitro model of monocytes cultured in 20 mm glucose (high glucose) equivalent to 360 mg/dL of plasma glucose levels. These monocytes were then differentiated into macrophages using PMA and subsequently transformed to lipid laden foam cells using oxidized low density lipoproteins in the presence and absence of cyclophilin A. This cellular model was used to study monocyte to macrophage differentiation, transmigration and foam cell formation. A similar cellular model using siRNA mediated transient elimination of the cyclophilin A gene as well as chemical inhibitors were used to further confirm the role of cyclophilin A in the differentiation and foam cell formation process. Results Cyclophilin A effectively increased migration of high glucose treated monocytes to the endothelial cell monolayer (p < 0.0001). In the presence of cyclophilin A, differentiated macrophages, when treated with oxLDL had a 36 percent increase in intracellular lipid accumulation (p = 0.01) when compared to cells treated with oxLDL alone. An increased flux of reactive oxygen species was also observed (p = 0.01). Inflammatory cytokines such as TNF-α, MCP-1 and cyclophilin A were significantly increased. Silencing cyclophilin A in THP-1 cells and human monocytes using siRNA or chemical inhibitor, TMN355 resulted in decrease in lipid uptake by 65–75% even after exposure to oxidized LDL. The expression of scavenger receptors expressed during differentiation process, CD36 and LOX-1 were decreased (p < 0.0001). Levels of extracellular cyclophilin A and other inflammatory cytokines such as TNF-α and MCP-1also significantly reduced. Conclusions Taken together, we describe here a possible cellular basis by which cyclophilin A may accelerate atherogenesis in diabetes mellitus. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0467-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.
| | - Anandan Vinitha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
23
|
Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YMW, Matsui R, Zang M, Hamburg NM, Cohen RA. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biol 2016; 9:306-319. [PMID: 27693992 PMCID: PMC5045950 DOI: 10.1016/j.redox.2016.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.
Collapse
Affiliation(s)
- Jingyan Han
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| | - Robert M Weisbrod
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yosuke Watanabe
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyan Yin
- Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | | - Reiko Matsui
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mengwei Zang
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Naomi M Hamburg
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cohen
- Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Moreno-Viedma V, Amor M, Sarabi A, Bilban M, Staffler G, Zeyda M, Stulnig TM. Common dysregulated pathways in obese adipose tissue and atherosclerosis. Cardiovasc Diabetol 2016; 15:120. [PMID: 27561966 PMCID: PMC5000404 DOI: 10.1186/s12933-016-0441-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background The metabolic syndrome is becoming increasingly prevalent in the general population that is at simultaneous risk for both type 2 diabetes and cardiovascular disease. The critical pathogenic mechanisms underlying these diseases are obesity-driven insulin resistance and atherosclerosis, respectively. To obtain a better understanding of molecular mechanisms involved in pathogenesis of the metabolic syndrome as a basis for future treatment strategies, studies considering both inherent risks, namely metabolic and cardiovascular, are needed. Hence, the aim of this study was to identify pathways commonly dysregulated in obese adipose tissue and atherosclerotic plaques. Methods We carried out a gene set enrichment analysis utilizing data from two microarray experiments with obese white adipose tissue and atherosclerotic aortae as well as respective controls using a combined insulin resistance-atherosclerosis mouse model. Results We identified 22 dysregulated pathways common to both tissues with p values below 0.05, and selected inflammatory response and oxidative phosphorylation pathways from the Hallmark gene set to conduct a deeper evaluation at the single gene level. This analysis provided evidence of a vast overlap in gene expression alterations in obese adipose tissue and atherosclerosis with Il7r, C3ar1, Tlr1, Rgs1 and Semad4d being the highest ranked genes for the inflammatory response pathway and Maob, Bckdha, Aldh6a1, Echs1 and Cox8a for the oxidative phosphorylation pathway. Conclusions In conclusion, this study provides extensive evidence for common pathogenic pathways underlying obesity-driven insulin resistance and atherogenesis which could provide a basis for the development of novel strategies to simultaneously prevent type 2 diabetes and cardiovascular disease in patients with metabolic syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0441-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Moreno-Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Amor
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - A Sarabi
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | | | - M Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - T M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Akbari M, Nejat AH, Farkhondeh N, Mehraban Moghadam S, Hashemy SI, Mohammadipour HS. Does at-home bleaching induce systemic oxidative stress in healthy subjects? Aust Dent J 2016; 62:58-64. [PMID: 27091347 DOI: 10.1111/adj.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND At-home bleaching is a technique characterized by the use of carbamide peroxide or hydrogen peroxide as a tooth-whitening agent. However, no data exist regarding systemic safety of this technique. The aim of this study was to investigate the effect of at-home bleaching on serum redox homeostasis. METHODS Twenty-nine healthy volunteers who requested tooth-whitening participated in this study. Specified bleaching trays were fabricated for the maxilla and mandible arches. Each participant was given two syringes containing 9% hydrogen peroxide gel to use for 30 min/night for 14 nights consecutively. To evaluate the redox status, the serum concentrations of malondialdehyde (MDA), total antioxidant capacity (TAC) and pro-oxidant-antioxidant balance (PAB) were measured. Blood samples were obtained in the morning prior to initiation of study and the morning after expiration of the bleaching period. The collected data were analyzed using Student's t-test with 95% confidence interval. RESULTS Twenty-three subjects completed the study. MDA, PAB and TAC were significantly increased after the bleaching period (P = 0.001, 0.001 and 0.002, respectively). CONCLUSIONS At-home bleaching revealed the potential to disturb oxidant-antioxidant balance and induce oxidative stress. Its clinical relevance is unfavourable and potential side-effects of at-home bleaching should be considered.
Collapse
Affiliation(s)
- M Akbari
- Dental Research Centre, Department of Operative and Esthetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A H Nejat
- Post Graduate Student of Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - N Farkhondeh
- Department of Operative and Esthetic Dentistry, School of Dentistry, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Mehraban Moghadam
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S I Hashemy
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H S Mohammadipour
- Dental Materials Research Centre, Department of Operative and Esthetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Nie H, Jing J, Tian Y, Yang W, Zhang R, Zhang X. Reversible and Dynamic Fluorescence Imaging of Cellular Redox Self-Regulation Using Fast-Responsive Near-Infrared Ge-Pyronines. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8991-8997. [PMID: 26996443 DOI: 10.1021/acsami.6b01348] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular self-regulation of reactive oxygen species (ROS) stress via glutathione (GSH) antioxidant repair plays a crucial role in maintaining redox balance, which affects various physiological and pathological pathways. In this work, we developed a simple yet effective strategy for reversible, dynamic, and real-time fluorescence imaging of ROS stress and GSH repair, based on novel Ge-pyronine dyes (GePs). Unlike the current O-pyronine (OP) dye, the fluorescence of GePs can be quenched in GSH reduction and then greatly restored by ROS (e.g., ClO(-), ONOO(-), and HO(•)) oxidation because of their unique affinity toward thiols. The "on-off" and "off-on" fluorescence switch can complete in 10 and 20 s, respectively, and exhibit excellent reversibility in vitro and in cells. GePs also show excitation in the long wavelength from the deep-red to near-infrared (NIR) (621-662 nm) region, high fluorescence quantum yield (Φ(fl) = 0.32-0.44) in aqueous media, and excellent cell permeability. Our results demonstrated that GePs can be used for real-time monitoring of the reversible and dynamic interconversion between ROS oxidation and GSH reduction in living cells. GePs might be a useful tool for investigating various redox-related physiological and pathological pathways.
Collapse
Affiliation(s)
- Hailiang Nie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| | - Yong Tian
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| | - Wen Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , 5 Zhongguancun Road, Beijing 100081, P. R. China
| |
Collapse
|
27
|
Simão ANC, Lehmann MF, Alfieri DF, Meloni MZ, Flauzino T, Scavuzzi BM, de Oliveira SR, Lozovoy MAB, Dichi I, Reiche EMV. Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis 2015; 30:1409-16. [PMID: 26342606 DOI: 10.1007/s11011-015-9720-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022]
Abstract
Oxidative stress has been implicated in the pathophysiology of cardiovascular disease and MetS and it may be one of molecular mechanisms involved in stroke. The aims of the present study were to verify differences in oxidative stress markers in acute ischemic stroke patients with and without MetS and to verify whether MetS influences disability and short time outcome of the patients. 148 patients with acute ischemic stroke were divided in two groups: with MetS (n = 92) and without MetS (n = 56). The modified Rankin Scale (mRS) was used for measuring the functional disability after 3-month follow-up. The study assessed the metabolic profile and oxidative stress markers. Stroke patients with MetS had higher levels of lipid hydroperoxides (p < 0.0001) and advanced oxidation protein products (AOPP, p = 0.0302) than those without MetS. Hydroperoxides were directly and independently associated with MetS (OR: 1.000, 95 % IC = 1.000-1.000, p = 0.005). Linear regression demonstrated that AOPP levels (R(2) = 0.281, p < 0.0001) and oxidative stress index (OSI, R(2) = 0.223, p < 0.0001) were directly associated with triglycerides levels and hydroperoxides levels was also directly associated with glucose levels (R(2) = 0.080, p = 0.013. The mRS and short-come outcome did not differ after 3 months in both groups. In conclusion, an increase in oxidative stress markers was shown in acute ischemic stroke patients with MetS and this elevation seems to be involved mainly with changes in lipid profile, but the presence of MetS did not influence short-time disability and survival of the acute ischemic stroke patients.
Collapse
Affiliation(s)
- Andrea Name Colado Simão
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil.
| | | | - Daniela Frizon Alfieri
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| | - Milena Zardetto Meloni
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| | - Tamires Flauzino
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| | - Bruna Miglioranza Scavuzzi
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| | | | - Marcell Alysson Batisti Lozovoy
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| | - Isaias Dichi
- Department of Internal Medicine, University of Londrina, Londrina, Paraná, Brazil
| | - Edna Maria Vissoci Reiche
- Department Clinical of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Robert Koch Avenue n° 60 Bairro Cervejaria, Londrina, Paraná, 86038-440, Brazil
| |
Collapse
|
28
|
Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2015; 51:49-59. [DOI: 10.1007/s11745-015-4091-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023]
|
29
|
Dai CF, Xie X, Ma YT, Yang YN, Li XM, Fu ZY, Liu F, Chen BD, Gai MT. Relationship between CYP17A1 Genetic Polymorphism and Essential Hypertension in a Chinese Population. Aging Dis 2015; 6:486-498. [PMID: 26618050 PMCID: PMC4657820 DOI: 10.14336/ad.2015.0505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/05/2015] [Indexed: 11/01/2022] Open
Abstract
The relationship between CYP17A1 genetic polymorphisms and essential hypertension (EH) remains unclear. The aim of this study was to investigate the association of CYP17A1 genetic polymorphisms with EH in Han and Uighur populations in China. A Han population including 558 people (270 EH patients and 288 controls) and a Uighur population including 473 people (181 EH patients and 292 controls) were selected. Five single-nucleotide polymorphisms (SNPs) (rs4919686, rs1004467, rs4919687, rs10786712, and rs2486758) were genotyped using real-time PCR (TaqMan). In the Uighur population, for the total and the men, rs4919686, rs4919687 and rs10786712 were found to be associated with EH (rs4919686: P≤0.02, rs4919687: P≤0.002, rs10786712: P≤0.004, respectively). The difference remained statistically significant after the multivariate adjustment (all P<0.05). The overall distributions of the haplotypes established by SNP1-SNP3, SNP1-SNP4, SNP1-SNP3-SNP5 and SNP1-SNP4-SNP5 were significantly different between the EH patients and the control subjects (for the total: P=0.013, P=0.008, P=0.032, P=0.010, for men: P<0.001, P=0.001, P=0.010, P=0.00). In the Han population, for men, rs2486758 was found to be associated with EH in a recessive model (P=0.007); the significant difference was not retained after the adjustment for the covariates (date not shown). The A allele of rs4919686 could be a susceptible genetic marker, and the T allele of rs10786712 could be a protective genetic marker of EH. The AC genotype of rs4919686, the AG genotype of rs4919687 and the TT genotype of rs10786712 could be protective genetic markers of EH.
Collapse
Affiliation(s)
- Chuan-Fang Dai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Bang-Dang Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Min-Tao Gai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| |
Collapse
|
30
|
Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 2015; 88:221-232. [PMID: 26117321 DOI: 10.1016/j.freeradbiomed.2015.06.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular arterial walls. A number of studies have revealed the biological and genetic bases of atherosclerosis, and over 100 genes influence atherosclerosis development. Nrf2 plays an important role in oxidative stress response and drug metabolism, but the Nrf2 signaling pathway is closely associated with atherosclerosis development. During atherosclerosis progression, Nrf2 signaling modulates many physiological and pathophysiological processes, such as lipid homeostasis regulation, foam cell formation, macrophage polarization, redox regulation and inflammation. Interestingly, Nrf2 exhibits both pro- and anti-atherogenic effects in experimental animal models. These observations make the Nrf2 pathway a promising target to prevent atherosclerosis.
Collapse
Affiliation(s)
- Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
31
|
Ozkan C, Altinova AE, Cerit ET, Yayla C, Sahinarslan A, Sahin D, Dincel AS, Toruner FB, Akturk M, Arslan M. Markers of early atherosclerosis, oxidative stress and inflammation in patients with acromegaly. Pituitary 2015; 18:621-9. [PMID: 25500981 DOI: 10.1007/s11102-014-0621-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Data regarding atherosclerosis in acromegaly is controversial in literature. We aimed to investigate the markers of early atherosclerosis, oxidative stress, inflammation and their relationships with each other in acromegaly. METHODS Thirty-nine patients with acromegaly and 40 control subjects were enrolled. Patients were classified into two groups; active acromegaly (AA) and controlled acromegaly (CA). Controls were matched by age, gender, body mass index and presence of cardiovascular risk factors. Flow mediated dilatation (FMD), carotid intima media thickness (CIMT), epicardial adipose tissue thickness (EAT) were measured and serum levels of oxidative stress parameters, high mobility group box 1 protein (HMGB1) and high sensitive CRP (hs CRP) were evaluated. RESULTS Significantly decreased FMD, increased CIMT and EAT were found in patients with acromegaly compared to controls (p < 0.01, p < 0.05, p < 0.001, respectively). EAT correlated negatively with FMD (r = -0.24, p = 0.038) and positively with CIMT (r = 0.37, p < 0.01). Presence of acromegaly, hypertension and age were found to be the predictors of early atherosclerosis (p < 0.05). Hs CRP was decreased in AA compared to controls (p = 0.01). There were no significant differences for HMGB1 and oxidized LDL (ox-LDL) cholesterol levels and total antioxidant capacity (TAC) between AA, CA and controls (p > 0.05). CONCLUSION Early atherosclerosis measured with FMD, CIMT and EAT may exist in acromegaly. However, decreased hs CRP and unchanged HMGB1, ox-LDL and TAC levels suggest that inflammation and oxidative stress do not seem to contribute to the development of atherosclerosis in these patients.
Collapse
Affiliation(s)
- Cigdem Ozkan
- Department of Endocrinology and Metabolism, Gazi University Faculty of Medicine, Besevler, 06500, Ankara, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tzveova R, Naydenova G, Yaneva T, Dimitrov G, Vandeva S, Matrozova Y, Pendicheva-Duhlenska D, Popov I, Beltheva O, Naydenov C, Tarnovska-Kadreva R, Nachev G, Mitev V, Kaneva R. Gender-Specific Effect of CYP2C8*3 on the Risk of Essential Hypertension in Bulgarian Patients. Biochem Genet 2015; 53:319-33. [PMID: 26404779 DOI: 10.1007/s10528-015-9696-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/19/2015] [Indexed: 01/04/2023]
Abstract
We conducted a case-control study to determine the contribution of polymorphisms in CYP2C8 (CYP2C8*3) and CYP2J2 (CYP2J2*7) to increased risk of coronary artery disease and essential hypertension in Bulgarians. The current analysis included 192 unrelated hypertensive patients, 261 patients with angiographically documented CAD (153 with myocardial infarction and 108 without myocardial infarction), and 496 population controls. The CYP2C8*3 and CYP2J2*7 polymorphisms were genotyped by TaqMan SNP Genotyping Assay. PLINK version 1.07 was used for the statistical analysis. No overall association was observed for the studied polymorphisms with coronary artery disease and essential hypertension. The frequency of -50T mutant allele of CYP2J2*7 was significantly higher in male with coronary artery disease without history of myocardial infarction (OR 2.16 95% CI 1.04-4.48 p = 0.035) compared to population control group, but this association did not survive after Bonferroni correction (p adj = 0.07). A significant association of CYP2C8*3 allele with increased risk of essential hypertension has found in men (OR 2.12 95% CI 1.18-3.81 p = 0.015) and this relationship remained significant after adjustment for multiple comparisons (p adj = 0.03). This is the first study showing significant gene-sex interaction for CYP2C8*3 with twofold increase in the relative risk of essential hypertension and a similar tendency for CYP2J2*7 associated with coronary artery disease without myocardial infarction in Bulgarian males. The association is not seen in females and in the whole group of patients. This result could be partly explained by the effect of estrogens on the vascular tone of coronary arteries and CYP2C8 gene expression.
Collapse
Affiliation(s)
- Reni Tzveova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave str, 1431, Sofia, Bulgaria.
| | - Galya Naydenova
- Second Department of Cardiology, UMBAL "Dr. G. Stranski", Pleven, Pleven, Bulgaria
| | - Teodora Yaneva
- Department of Internal Medicine, Clinic of Cardiology, Medical University, Sofia, Sofia, Bulgaria
| | - Georgi Dimitrov
- Department of Internal Medicine, Clinic of Cardiology, Medical University, Sofia, Sofia, Bulgaria
| | - Silviya Vandeva
- Clinical Center of Endocrinology and Gerontology, Medical University, Sofia, Sofia, Bulgaria
| | - Yoanna Matrozova
- Clinical Center of Endocrinology and Gerontology, Medical University, Sofia, Sofia, Bulgaria
| | - Diana Pendicheva-Duhlenska
- Department of Experimental and Clinical Pharmacology, Dermatology and Venereology, Medical University, Pleven, Pleven, Bulgaria
| | - Ivan Popov
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave str, 1431, Sofia, Bulgaria
| | - Olga Beltheva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave str, 1431, Sofia, Bulgaria
| | - Cyrill Naydenov
- Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Sofia, Bulgaria
| | | | - Gencho Nachev
- Department of Cardiovascular Surgery, University Hospital of Cardiovascular Surgery and Cardiology "St. Ekaterina", Sofia, Sofia, Bulgaria
| | - Vanio Mitev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave str, 1431, Sofia, Bulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave str, 1431, Sofia, Bulgaria
| |
Collapse
|
33
|
Dai CF, Xie X, Ma YT, Yang YN, Li XM, Fu ZY, Liu F, Chen BD, Gai MT. Haplotype analyses of CYP17A1 genetic polymorphisms and coronary artery disease in a Uygur population. J Renin Angiotensin Aldosterone Syst 2015; 16:389-398. [PMID: 25592814 DOI: 10.1177/1470320314565840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The relationship between CYP17A1 genetic polymorphisms and coronary artery disease (CAD) remains unclear. The aim of the present study was to assess the association between CYP17A1 gene polymorphism and CAD in a Chinese Uygur population. METHODS A total of 493 people including 266 patients and 227 controls were selected for the present study. All CAD patients and controls were genotyped for the same five single nucleotide polymorphisms (SNPs) (rs4919686, rs1004467, rs4919687, rs10786712, and rs2486758) by a real-time PCR method. RESULTS The rs4919686, rs1004467, and rs4919687 polymorphisms were found to be associated with CAD in genotypes, dominant model, recessive model, and allele frequency (rs4919686: all p<0.05, rs1004467: all p ≤ 0.001, rs4919687: all p<0.001); the significant difference was retained (all p<0.05) after adjustment for the major confounding factors. The overall distribution of haplotypes established by SNP1-SNP4 (in total subjects and men) and SNP1-SNP4-SNP5 (in total subjects) were significantly different between the CAD patients and the control subjects (p=0.006, men: p=0.026, and p=0.030, respectively). CONCLUSION Polymorphisms rs4919686, rs4919687 and rs1004467 were found to be associated with CAD in this Uygur population.
Collapse
Affiliation(s)
- Chuan-Fang Dai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Bang-Dang Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| | - Min-Tao Gai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 P.R., China
| |
Collapse
|
34
|
Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep 2015; 12:3315-3322. [PMID: 25997826 PMCID: PMC4526036 DOI: 10.3892/mmr.2015.3800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/24/2015] [Indexed: 01/26/2023] Open
Abstract
Micro-angiogenesis in the arterial wall has been observed during the development and progression of atherosclerosis. The aim of the present study was to examine whether inflammation, oxidative stress and hypoxia are involved in the process of early atherosclerotic micro-angiogenesis. A total of 24 rabbits were randomly divided into a normal diet group or a high-cholesterol (HC) diet group and were fed the corresponding diets for 4 weeks. The microvessel density (MVD), level of hypoxia and the levels of inflammatory markers and antioxidants in the arterial wall were detected using immunohistochemical and molecular biological techniques, respectively. The present results demonstrated that the MVD in the HC group was significantly higher (P<0.01) than that observed in the rabbits, which were provided with a normal diet, while hypoxia-inducible factor-1α levels did not exhibit marked changes in either of the two groups (P>0.05). The levels of inflammatory markers and antioxidants were significantly different between the two groups (P<0.05). The present study demonstrated that the primary factors, which promote micro-angiogenesis are possibly associated with an increase in inflammation and a decrease in the levels of antioxidants, as tissue hypoxia in the arterial wall at this stage was not evident.
Collapse
|
35
|
Sokolovskaya E, Rahmani S, Misra AC, Bräse S, Lahann J. Dual-stimuli-responsive microparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9744-51. [PMID: 25886692 PMCID: PMC5665401 DOI: 10.1021/acsami.5b01592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The need for smart materials in the area of biotechnology has fueled the development of numerous stimuli-responsive polymers. Many of these polymers are responsive to pH, light, temperature, or oxidative stress, and yet very few are responsive toward multiple stimuli. Here we report on the synthesis of a novel dual-stimuli-responsive poly(ethylene glycol)-based polymer capable of changing its hydrophilic properties upon treatment with UV light (exogenous stimulus) and markers of oxidative stress (endogenous stimulus). From this polymer, smart microparticles and fibers were fabricated and their responses to either stimulus separately and in conjunction were examined. Comparison of the degradation kinetics demonstrated that the polymer became water-soluble only after both oxidation and irradiation with UV light, which resulted in selective degradation of the corresponding particles. Furthermore, in vitro experiments demonstrated successful uptake of these particles by Raw 264.7 cells. Such dual-stimuli-responsive particles could have potential applications in drug delivery, imaging, and tissue engineering.
Collapse
Affiliation(s)
- Ekaterina Sokolovskaya
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sahar Rahmani
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Asish C. Misra
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Stefan Bräse
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Campus Süd, D-76131 Karlsruhe, Germany
| | - Joerg Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute and Departments of Biomedical Engineering and Chemical Engineering, University of Michigan 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Corresponding Author:
| |
Collapse
|
36
|
Role of natural antioxidants and potential use of bergamot in treating rheumatoid arthritis. PHARMANUTRITION 2015. [DOI: 10.1016/j.phanu.2015.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Chen KS, Chen PN, Hsieh YS, Lin CY, Lee YH, Chu SC. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action. Chem Biol Interact 2015; 228:35-45. [PMID: 25603234 DOI: 10.1016/j.cbi.2015.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/25/2014] [Accepted: 01/07/2015] [Indexed: 01/20/2023]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation.
Collapse
Affiliation(s)
- Kuo-Shuen Chen
- Department of Internal Medicine, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | - Pei-Ni Chen
- Clinical Laboratory, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan; Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan; Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | - Chin-Yin Lin
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | - Yi-Hsun Lee
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, No. 11 Pu-tzu Lane, Pu-tzu Road, Taichung 406, Taiwan.
| |
Collapse
|
38
|
Wang Y, Zhang Y, Zhu Y, Zhang P. Lipolytic inhibitor G0/G1 switch gene 2 inhibits reactive oxygen species production and apoptosis in endothelial cells. Am J Physiol Cell Physiol 2015; 308:C496-504. [PMID: 25588877 DOI: 10.1152/ajpcell.00317.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G0/G1 switch gene 2 (G0S2), a novel target gene of peroxisome proliferator-activated receptor, is highly expressed in fat tissues. G0S2 acts as proapoptotic factor toward human cancer cells. Endothelial cell (EC) apoptosis may be an initiating event in the development of atherosclerosis. However, the expression and function of G0S2 in vascular ECs remain unknown. Here, we reported for the first time that G0S2 is expressed in arterial ECs. Ectopic expression of G0S2 increased neutral lipid accumulation in cultured ECs. However, G0S2 prevented ECs from serum-free starvation stress- and hydrogen peroxide (H2O2)-induced apoptosis. G0S2 blocked the H2O2-induced dissipation of mitochondrial membrane potential. G0S2 decreased the release of cytochrome c from mitochondria into the cytosol, followed by activation of caspase-9 and caspase-3. The anti-apoptotic effect of G0S2 was Bcl-2 and adipose triglyceride lipase independent. In contrast, gene silence of G0S2 increased serum-free starvation stress-induced EC apoptosis and decreased the formation of capillary-like structures. We further found that G0S2 couples with the F0F1-ATP synthase in ECs. Levels of ATP were elevated, whereas reactive oxygen species levels were reduced in G0S2-expressing ECs. G0S2 can inhibit endothelial denudation secondary to H2O2-induced injury to ECs in vivo. These results indicate that G0S2 acts as a prosurvival molecule in ECs. Taken together, our results indicate that G0S2 has a protective function in ECs and may be a potential target for the treatment of cardiovascular diseases associated with reactive oxygen species-induced EC injury, such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Yinfang Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yahui Zhang
- Department of Pathophysiology, Hubei University of Medicine, Hubei, China; and
| | - Yichun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Cui Y, Jia F, He J, Xie X, Li Z, Fu M, Hao H, Liu Y, Liu DZ, Cowan PJ, Zhu H, Sun Q, Liu Z. Ambient Fine Particulate Matter Suppresses In Vivo Proliferation of Bone Marrow Stem Cells through Reactive Oxygen Species Formation. PLoS One 2015; 10:e0127309. [PMID: 26058063 PMCID: PMC4461321 DOI: 10.1371/journal.pone.0127309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Some environmental insults, such as fine particulate matter (PM) exposure, significantly impair the function of stem cells. However, it is unknown if PM exposure could affect the population of bone marrow stem cells (BMSCs). The present study was to investigate the effects of PM on BMSCs population and related mechanism(s). MAIN METHEODS PM was intranasally distilled into male C57BL/6 mice for one month. Flow cytometry with antibodies for BMSCs, Annexin V and BrdU ware used to determine the number of BMSCs and the levels of their apoptosis and proliferation in vivo. Phosphorylated Akt (P-Akt) level was determined in the BM cells with western blotting. Intracellular reactive oxygen species (ROS) formation was quantified using flow cytometry analysis. To determine the role of PM-induced ROS in BMSCs population, proliferation, and apotosis, experiments were repeated using N-acetylcysteine (NAC)-treated wild type mice or a triple transgenic mouse line with overexpression of antioxidant network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase-1 with decreased in vivo ROS production. KEY FINDINGS PM treatment significantly reduced BMSCs population in association with increased ROS formation, decreased P-Akt level, and inhibition of proliferation of BMSCs without induction of apoptosis. NAC treatment or AON overexpression with reduced ROS formation effectively prevented PM-induced reduction of BMSCs population and proliferation with partial recovery of P-Akt level. SIGNIFICANCE PM exposure significantly decreased the population of BMSCs due to diminished proliferation via ROS-mediated mechanism (could be partially via inhibition of Akt signaling).
Collapse
Affiliation(s)
- Yuqi Cui
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, 324 Jing 5 road, Jinan, Shandong 250021, P.R. China
| | - Fengpeng Jia
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Cardiovascular Medicine, the First Affiliated Hospital,Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng He
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Xiaoyun Xie
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Zhihong Li
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Minghuan Fu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Hong Hao
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ying Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Dylan Z. Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Cowan
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Melbourne, Australia
| | - Hua Zhu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Qinghua Sun
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Zhenguo Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sakai T, Sato B, Hara K, Hara Y, Naritomi Y, Koyanagi S, Hara H, Nagao T, Ishibashi T. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc Health Risk Manag 2014; 10:591-7. [PMID: 25378931 PMCID: PMC4207582 DOI: 10.2147/vhrm.s68844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The redox imbalance between nitric oxide and superoxide generated in the endothelium is thought to play a pivotal role in the development of endothelial dysfunction. A third reactive oxygen species (ROS), H2O2, is known to have both beneficial and detrimental effects on the vasculature. Nonetheless, the influence of the hydroxyl radical, a byproduct of H2O2 decay, is unclear, and there is no direct evidence that the hydroxyl radical impairs endothelial function in conduit arteries. Molecular hydrogen (H2) neutralizes detrimental ROS, especially the hydroxyl radical. OBJECTIVES To assess the influence of the hydroxyl radical on the endothelium and to confirm that a gaseous antioxidant, H2, can be a useful modulator of blood vessel function. METHODS The efficacy of water containing a high concentration of H2 was tested by measuring flow-mediated dilation (FMD) of the brachial artery (BA). The subjects were randomly divided into two groups: the high-H2 group, who drank high-H2 water containing 7 ppm H2 (3.5 mg H2 in 500 mL water); and the placebo group. Endothelial function was evaluated by measuring the FMD of the BA. After measurement of diameter of the BA and FMD at baseline, volunteers drank the high-H2 water or placebo water immediately and with a 30-minute interval; FMD was compared to baseline. RESULTS FMD increased in the high-H2 group (eight males; eight females) from 6.80%±1.96% to 7.64%±1.68% (mean ± standard deviation) and decreased from 8.07%±2.41% to 6.87%±2.94% in the placebo group (ten males; eight females). The ratio to the baseline in the changes of FMD showed significant improvement (P<0.05) in the high-H2 group compared to the placebo group. CONCLUSION H2 may protect the vasculature from shear stress-derived detrimental ROS, such as the hydroxyl radical, by maintaining the nitric oxide-mediated vasomotor response.
Collapse
Affiliation(s)
- Takaaki Sakai
- Department of Cardiology, Haradoi Hospital, Fukuoka, Japan
| | - Bunpei Sato
- MiZ Company Limited, Fujisawa, Kanagawa, Japan
| | - Koji Hara
- Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan
| | - Yuichi Hara
- Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan
| | - Yuji Naritomi
- Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan
| | - Samon Koyanagi
- Department of Cardiology, Haradoi Hospital, Fukuoka, Japan
| | - Hiroshi Hara
- Department of Internal Medicine, Haradoi Hospital, Fukuoka, Japan
| | | | - Toru Ishibashi
- Department of Rheumatology and Orthopedic Surgery, Haradoi Hospital, Fukuoka, Japan
| |
Collapse
|
41
|
Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JBT, Galina A, Ribeiro-do-Valle RM, de Bem AF. Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function. Biochimie 2014; 105:172-81. [DOI: 10.1016/j.biochi.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
|
42
|
Buendía P, Carracedo J, Soriano S, Madueño JA, Ortiz A, Martín-Malo A, Aljama P, Ramírez R. Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia. J Gerontol A Biol Sci Med Sci 2014; 70:1198-209. [PMID: 25246106 DOI: 10.1093/gerona/glu170] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 08/14/2014] [Indexed: 12/25/2022] Open
Abstract
In patients with renal disease, uremia raises oxidative stress and senescence in endothelial cells, which can lead to endothelial dysfunction and cardiovascular disease. Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. This protein is recognized as an antiaging gene, that modulate both stress-induced senescence and functional response. The aim of the study was to investigate how senescence and oxidative stress induced by uremia in endothelial cells affects Klotho expression and whether intra or extracellular Klotho has effects on the response of these cells. Senescence and oxidative stress was obtained by exposure to uremic serum. Telomere length, the enzyme β-galactosidase, and oxidative stress were studied by flow cytometry. Nuclear factor kappa B activity was determined by electrophoretic mobility shift assay. The expression of Klotho decreased with the uremia and preceded the manifestations of cell aging. Levels of intracellular Klotho decreases associated to endothelial senescence, and exogenous Klotho prevents cellular senescence by inhibiting the increase in oxidative stress induced by uremia and diminished the nuclear factor kappa B-DNA binding ability.
Collapse
Affiliation(s)
- Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain.
| | - Sagrario Soriano
- Nephrology Unit, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Juan Antonio Madueño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Alberto Ortiz
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Unidad de Diálisis, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Rafael Ramírez
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Physiology Department, Alcala de Henares University, Madrid, Spain
| |
Collapse
|
43
|
Zou JG, Ma YT, Xie X, Yang YN, Pan S, Adi D, Liu F, Chen BD. The association between CYP1A1 genetic polymorphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis 2014; 13:145. [PMID: 25189712 PMCID: PMC4175619 DOI: 10.1186/1476-511x-13-145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022] Open
Abstract
Background The cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) gene is expressed in the vascular endothelium, which metabolizes arachidonic acid into 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs). 20-HETE mediates cardiovascular homeostasis and growth response in vascular smooth muscle cells (VSMCs) as well as the anti-platelet effect. EETs are potent endogenous vasodilators and inhibitors of vascular inflammation. This study assessed the association between human CYP1A1 gene polymorphisms and coronary artery disease (CAD) in the Uygur and Han in China. Methods Two independent case–control studies that recruited Han (389 patients with CAD and 411 controls) and Uygur participants (293 patients with CAD and 408 controls) analyzed the relationship between CYP1A1 single nucleotide polymorphisms (SNPs: rs4886605, rs12441817, rs4646422 and rs1048943) and CAD. All patients with CAD and controls were genotyped for the four SNPs of CYP1A1 using TaqMan SNP genotyping assays. Results In the Uygur group, the distribution of the dominant model(CC vs CT + TT) of rs4886605 for the total sample and the males was significantly different between CAD patients and control participants (P = 0.001 and P = 0.012, respectively), The difference remained significant after a multivariate adjustment (P = 0.018, P = 0.015, respectively). The rs12441817 was also associated with CAD in a dominant model for all participants (P = 0.003) and men (P = 0.012), and the difference remained significant after a multivariate adjustment (P = 0.016, P = 0.002, respectively). However, we did not observe differences in the Uygur females and Han group with regard to the allele frequency or genotypic distribution of rs4886605 and rs12441817 between patients with CAD and control participants. Patients with CAD did not significantly differ from the control participants with regard to the distributions of rs4646422 and rs1048943 genotypes, the dominant model, the recessive model, or allele frequency in the Han and Uygur groups. Conclusion Both rs4886605 and rs12441817 SNPs of the CYP1A1 gene are associated with CAD in the Uygur population of China.
Collapse
Affiliation(s)
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Fu Z, Zhu Q, Ma Y, Huang D, Pan S, Xie X, Liu F, Cha E. Diplotypes of CYP2C9 gene is associated with coronary artery disease in the Xinjiang Han population for women in China. Lipids Health Dis 2014; 13:143. [PMID: 25182955 PMCID: PMC4246459 DOI: 10.1186/1476-511x-13-143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/12/2014] [Indexed: 11/14/2022] Open
Abstract
Background Cytochrome P450 (CYP) 2C9 is expressed in the vascular endothelium and metabolizes arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have the crucial role in the modulation of cardiovascular homeostasis. We sought to assess the association between the human CYP2C9 gene and coronary artery disease (CAD) in Xinjiang Han Population of China. Methods 301 CAD patients and 220 control subjects were genotyped for 4 single-nucleotide polymorphisms (SNPs) of the human CYP2C9 gene (rs4086116, rs2475376, rs1057910, and rs1934967) by a Real-Time PCR instrument. The datas were assessed for 3 groups: total, men, and women via diplotype-based case–control study. Results For women, the distribution of genotypes, dominant model and alleles of SNP2 (rs2475376) showed significant difference between the CAD patients and control participants (p = 0.033, P = 0.010 and p = 0.038, respectively). The significant difference of the dominant model (CC vs CT + TT) was retained after adjustment for covariates in women (OR: 2.427, 95% confidence interval [CI]: 1.305-4.510, p = 0.005). The haplotype (C-T-A-C) and the diplotypes (CTAC/CTAC) in CYP2C9 gene were lower in CAD patients than in control subjects (p* = 0.0016, and p* = 0.036 respectively). The haplotype (C-C-A-T) was higher in the CAD patients than in the control subjects in women (p* = 0.016). Conclusions CC genotype of rs2475376 and C-C-A-T haplotype in CYP2C9 may be a risk genetic marker of CAD in women. T allele of rs2475376, the haplotype (C-T-A-C) and the diplotype (CTAC/CTAC) could be protective genetic markers of CAD for women in Han population of China.
Collapse
Affiliation(s)
| | | | - Yitong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Li Yu Shan South Road 137, Urumqi 830054, China.
| | | | | | | | | | | |
Collapse
|
45
|
Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen CA. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd²⁺-induced apoptosis. Free Radic Biol Med 2014; 74:188-199. [PMID: 24973647 PMCID: PMC4146716 DOI: 10.1016/j.freeradbiomed.2014.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.
Collapse
Affiliation(s)
- Alma Barajas-Espinosa
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Ariel Basye
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Erin Jesse
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Haixu Yan
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - David Quan
- Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus OH, 43210 USA
| | - Chun-An Chen
- Corresponding Author: Chun-An (Andy) Chen, Department of Emergency Medicine, 760 Prior Hall 376 W 10 Ave Columbus, OH 43210, Tel. 614-366-6380, Fax. 614-293-3124,
| |
Collapse
|
46
|
Fidaleo M, Fracassi A, Zuorro A, Lavecchia R, Moreno S, Sartori C. Cocoa protective effects against abnormal fat storage and oxidative stress induced by a high-fat diet involve PPARα signalling activation. Food Funct 2014; 5:2931-9. [DOI: 10.1039/c4fo00616j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Lee YJ, Sim BY, Lee HJ, Bak JW, Kim DH. Effect of Gami-Chunggisan on Antioxidant and Pro-Inflammatory Cytokine. ACTA ACUST UNITED AC 2014. [DOI: 10.6116/kjh.2014.29.4.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Deevska G, Sunkara M, Karakashian C, Peppers B, Morris AJ, Nikolova-Karakashian MN. Effect of procysteine on aging-associated changes in hepatic GSH and SMase: evidence for transcriptional regulation of smpd3. J Lipid Res 2014; 55:2041-52. [PMID: 25047167 DOI: 10.1194/jlr.m048223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In hepatocytes, aging-associated decline in GSH has been linked to activation of neutral SMase (nSMase), accumulation of bioactive ceramide, and inflammation. In this study, we seek to test whether dietary supplementation with the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTC), would correct the aging-associated differences in hepatic GSH, nSMase, and ceramide. Young and aged mice were placed on a diet that either lacked sulfur-containing amino acids (SAAs) or had 0.5% OTC for 4 weeks. Mice fed standard chow were used as an additional control. SAA-deficient mice exhibited significant aging-associated differences in hepatic GSH, GSH/GSSG, ceramide, and nSMase. C24:1 ceramide, the major ceramide species in liver, was affected the most by aging, followed by the less abundant C16:0 ceramide. OTC supplementation eliminated the aging-associated differences in hepatic GSH and GSH/GSSG ratio. Surprisingly, however, instead of decreasing, the nSMase activity and ceramide increased in the OTC-fed mice irrespective of their age. These effects were due to elevated nSMase-2 mRNA and protein and appeared to be direct. Similar increases were seen in HepG2 cells following treatment with OTC. The OTC-fed aged mice also exhibited hepatic steatosis and triacylglyceride accumulation. These results suggest that OTC is a potent stimulant of nSMase-2 expression and that there may be unanticipated complications of OTC supplementation.
Collapse
Affiliation(s)
- Gergana Deevska
- Department of Physiology, A. B. Chandler Medical Center, University of Kentucky, Lexington, KY 40536
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington, KY 40536
| | - Claudia Karakashian
- Department of Physiology, A. B. Chandler Medical Center, University of Kentucky, Lexington, KY 40536
| | - Benjamin Peppers
- Department of Physiology, A. B. Chandler Medical Center, University of Kentucky, Lexington, KY 40536
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, Lexington Veterans Affairs Medical Center, Lexington, KY 40536
| | | |
Collapse
|
49
|
García-Pérez AI, Galeano E, Nieto E, Estañ MC, Sancho P. Dequalinium induces cytotoxicity in human leukemia NB4 cells by downregulation of Raf/MEK/ERK and PI3K/Akt signaling pathways and potentiation of specific inhibitors of these pathways. Leuk Res 2014; 38:795-803. [DOI: 10.1016/j.leukres.2014.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 02/06/2023]
|
50
|
Ishibashi T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr Pharm Des 2014; 19:6375-81. [PMID: 23859555 PMCID: PMC3788323 DOI: 10.2174/13816128113199990507] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/09/2013] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease in which the progressive destruction of joint causes morbidity. It is also associated with an increased risk of atherosclerosis, which can result in cardiovascular disease and mortality. The therapeutic goal is to control the systemic inflammation to obtain not only the remission of symptoms, but also improve general state of health. Although recent biologic immunosuppressive therapies targeting pro-inflammatory cytokines have spawned a paradigm shift regarding the prognosis of RA, these therapies possess inherent side effects. Also, early diagnosis of the disease remains confounded by uncertainty. While the mechanisms responsible for the onset of RA remain unclear, reactive oxygen species (ROS) play a significant role in the pathogenesis of RA. ROS play a central role both upstream and downstream of NF-κB and TNFα pathways, which are located at the center of the inflammatory response. Among the ROS, the hydroxyl radical is the most harmful, and molecular hydrogen (H2) is a selective scavenger for this species. Recently, it has been shown that H2 is useful when administered along with the conventional therapy in RA as it acts to reduce oxidative stress in the patients. Especially in the early stage, H2 showed significant therapeutic potential, which also seemed to assist diagnosis and treatment decisions of RA. The possible expectations regarding the potential benefits of H2 by reducing the oxidative stress, resulting from inflammatory factors, are raised and discussed here. They include prevention of RA and related atherosclerosis, as well as therapeutic validity for RA
Collapse
Affiliation(s)
- Toru Ishibashi
- Haradoi Hospital, Department of Rheumatology and Orthopaedic Surgery, 6-40-8 Aoba, Higashi-ku, Fukuoka 813-8588, Japan.
| |
Collapse
|