1
|
Wang M, Li B, Nie S, Meng X, Wang G, Yang M, Dang W, He K, Sun T, Xu P, Yang X, Ye K. Asparagine endopeptidase cleaves apolipoprotein A1 and accelerates pathogenesis of atherosclerosis. J Clin Invest 2025; 135:e185128. [PMID: 40371638 PMCID: PMC12077905 DOI: 10.1172/jci185128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Atherosclerosis is a slowly progressing inflammatory disease characterized with cholesterol disorder and intimal plaques. Asparagine endopeptidase (AEP) is an endolysosomal protease that is activated under acidic conditions and is elevated substantially in both plasma and plaques of patients with atherosclerosis. However, how AEP accelerates atherosclerosis development remains incompletely understood, especially from the view of cholesterol metabolism. This project aims to reveal the crucial substrate of AEP during atherosclerosis plaque formation and to lay the foundation for developing novel therapeutic agents for Atherosclerosis. Here, we show that AEP is augmented in the atherosclerosis plaques obtained from patients and proteolytically cuts apolipoprotein A1 (APOA1) and impairs cholesterol efflux and high-density lipoprotein (HDL) formation, facilitating atherosclerosis pathologies. AEP is activated in the liver and aorta of apolipoprotein E-null (APOE-null) mice, and deletion of AEP from APOE-/- mice attenuates atherosclerosis. APOA1, an essential lipoprotein in HDL for cholesterol efflux, is cleaved by AEP at N208 residue in the liver and atherosclerotic macrophages of APOE-/- mice. Blockade of APOA1 cleavage by AEP via N208A mutation or its specific inhibitor, #11a, substantially diminishes atherosclerosis in both APOE-/- and LDLR-/- mice. Hence, our findings support that AEP disrupts cholesterol metabolism and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Mengmeng Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bowei Li
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Shuke Nie
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xin Meng
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guangxing Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghan Yang
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Wenxin Dang
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Kangning He
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Tucheng Sun
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Keqiang Ye
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), University of Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Yoshikawa Y, Toh R, Murakami K, Harada A, Kim J, Kobayash Y, Miwa K, Nagao M, Ishida T, Hirata KI, Takegami M, Nishimura K. Cholesterol Uptake Capacity as a Prognostic Marker of Cardiovascular Events for Patients with Coronary Artery Disease. J Atheroscler Thromb 2025:65520. [PMID: 40159248 DOI: 10.5551/jat.65520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
AIM Cholesterol uptake capacity (CUC) is a functional assessment of high-density lipoprotein (HDL) and has drawn attention for the risk stratification of atherosclerotic cardiovascular disease (ASCVD). This study evaluated the usefulness of HDL-CUC as a predictive marker for long-term ASCVD events in patients with coronary artery disease (CAD). METHODS This retrospective observational study included 503 patients with CAD who underwent coronary revascularization. Blood was sampled from the participants within three months before or after index revascularization. The CUC was assayed using a previously reported automated system. The study population was divided into three groups according to the tertiles of CUC levels. The primary outcome was ASCVD events, which were defined as a composite of all-cause death, acute myocardial infarction, stroke, and peripheral artery disease. RESULTS A total of 29 events were observed during the follow-up (median 2.8 years). The risk of the primary outcome in the low-CUC group was significantly higher than that in the high-CUC group (3-year incidence: low CUC 8.8% vs. high CUC 4.0%; log-rank p = 0.046). After adjusting for age and sex, the risk in the low-CUC group relative to that in the high-CUC group remained significantly high (hazard ratio 3.17, 95% confidence interval 1.05-9.54, p = 0.040). CONCLUSION Low CUC in patients with CAD were associated with a higher risk of ASCVD events after coronary revascularization than high CUC levels. The assessment of HDL functionality measured by CUC would be useful for the risk prediction of ASCVD after coronary revascularization.
Collapse
Affiliation(s)
- Yusuke Yoshikawa
- Department of Biostatistics, National Cerebral and Cardiovascular Center
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine
| | | | - Amane Harada
- Central Research Laboratories, Sysmex Corporation
| | - Jeeeun Kim
- Central Research Laboratories, Sysmex Corporation
| | | | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tatsuro Ishida
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | - Misa Takegami
- Department of Public Health and Health Policy, The University of Tokyo
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center
| | - Kunihiro Nishimura
- Department of Biostatistics, National Cerebral and Cardiovascular Center
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center
| |
Collapse
|
3
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024; 34:2611-2622. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
4
|
Toh R. Genetic Determinants of High-density Lipoprotein Cholesterol Efflux Capacity: Insights from Paraoxonase 1 Polymorphisms. J Atheroscler Thromb 2024; 31:1260-1262. [PMID: 38910119 PMCID: PMC11374540 DOI: 10.5551/jat.ed267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
5
|
Martagon AJ, Zubirán R, González-Arellanes R, Praget-Bracamontes S, Rivera-Alcántara JA, Aguilar-Salinas CA. HDL abnormalities in type 2 diabetes: Clinical implications. Atherosclerosis 2024; 394:117213. [PMID: 37580206 DOI: 10.1016/j.atherosclerosis.2023.117213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) represents the primary cause of mortality among patients with Type 2 Diabetes Mellitus (T2DM). In this population, High-Density Lipoprotein (HDL) particles exhibit abnormalities in number, composition, and function, culminating in diminished anti-atherosclerotic capabilities despite normal HDL cholesterol (HDL-C) concentrations. Hyperglycemic conditions contribute to these alterations in HDL kinetics, composition, and function, causing T2DM patients' HDL particles to exhibit decreased concentrations of diverse lipid species and proteins. Treatment of hyperglycemia has the potential to correct abnormal HDL particle attributes in T2DM; however, pharmacological interventions, including metformin and thiazolidinediones, yield inconsistent outcomes with respect to HDL-C concentrations and functionality. Despite numerous attempts with diverse drugs, pharmacologically augmenting HDL-C levels has not resulted in clinical benefits in mitigating ASCVD risk. In contrast, reducing Low Density Lipoprotein cholesterol (LDL-C) via statins and ezetimibe has demonstrated significant efficacy in curtailing CVD risk among T2DM individuals. Promising results have been observed in animal models and early-phase trials utilizing recombinant HDL and Lecitin Cholesterol Acyl Transferase (LCAT) -enhancing agents, but the evaluation of their efficacy and safety in large-scale clinical trials is ongoing. While aberrant HDL metabolism constitutes a prevalent aspect of dyslipidemia in T2DM, HDL cholesterol concentrations and composition no longer offer valuable insights for informing therapeutic decisions. Nevertheless, HDL metabolism remains a critical research area in T2DM, necessitating further investigation to elucidate the role of HDL particles in the development of diabetes-associated complications.
Collapse
Affiliation(s)
- Alexandro J Martagon
- Unidad de Investigación de Enfermedades Metabólicas Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico; Institute for Obesity Research, Tecnologico de Monterrey, México City, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Rafael Zubirán
- Unidad de Investigación de Enfermedades Metabólicas Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | | | - Samantha Praget-Bracamontes
- Unidad de Investigación de Enfermedades Metabólicas Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | | | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico; Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico; Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
6
|
Heinecke JW, Vaisar T, Bornfeldt KE. Does small HDL's function improve when lipid-lowering alters its composition? J Lipid Res 2024; 65:100505. [PMID: 38246236 PMCID: PMC10884751 DOI: 10.1016/j.jlr.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Affiliation(s)
- Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff MJ, Ronda N. Statins influence the relationship between ATP-binding cassette A1 membrane transporter-mediated cholesterol efflux capacity and coronary atherosclerosis in rheumatoid arthritis. J Transl Autoimmun 2023; 7:100206. [PMID: 37484708 PMCID: PMC10362327 DOI: 10.1016/j.jtauto.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives Cholesterol efflux capacity (CEC) is the main antiatherogenic function of high-density lipoprotein (HDL). ATP-binding-cassette A1 (ABCA1) membrane transporter initiates cholesterol export from arterial macrophages to pre-β HDL particles fostering their maturation; in turn, those accept cholesterol through ABCG1-mediated export. Impaired pre-β HDL maturation may disrupt the collaborative function of the two transporters and adversely affect atherosclerosis. Statins exert atheroprotective functions systemically and locally on plaque. We here evaluated associations between ABCA1-CEC, coronary atherosclerosis and cardiovascular risk and the influence of statins on those relationships in rheumatoid arthritis (RA). Methods Evaluation with computed tomography angiography was undertaken in 140 patients and repeated in 99 after 6.9 ± 0.3 years. Events comprising cardiovascular death, acute coronary syndromes, stroke, claudication, revascularization and heart failure were recorded. ABCA1-CEC and ABCG1-CEC were evaluated in J774A.1 macrophages and Chinese hamster ovary (CHO) cells respectively and expressed as percentage of effluxed over total intracellular cholesterol. Covariates in all cardiovascular event risk and plaque outcome models included atherosclerotic cardiovascular disease (ASCVD) risk score and high-density lipoprotein cholesterol. Results ABCA1-CEC negatively correlated with ABCG1-CEC (r = -0.167, p = 0.049). ABCA1-CEC associated with cardiovascular risk (adjusted hazard ratio 2.05 [95%CI 1.20-3.48] per standard deviation [SD] increment). There was an interaction of ABCA1-CEC with time-varying statin use (p = 0.038) such that current statin use inversely associated with risk only in patients with ABCA1-CEC below the upper tertile. ABCA1-CEC had no main effect on plaque or plaque progression; instead, ABCA1-CEC (per SD) associated with fewer baseline total plaques (adjusted rate ratio [aRR] 0.81, [95%CI 0.65-1.00]), noncalcified plaques (aRR 0.78 [95%CI 0.61-0.98]), and vulnerable low-attenuation plaques (aRR 0.41 [95%CI 0.23-0.74]) in statin users, and more low-attenuation plaques (aRR 1.91 [95%CI 1.18-3.08]) in nonusers (p-for-interaction = 0.018, 0.011, 0.025 and < 0.001 respectively). Moreover, ABCA1-CEC (per SD) associated with greater partially/fully-calcified plaque progression (adjusted odds ratio 3.07 [95%CI 1.20-7.86]) only in patients not exposed to statins during follow-up (p-for-interaction = 0.009). Conclusion In patients with RA, higher ABCA1-CEC may reflect a proatherogenic state, associated with enhanced cardiovascular risk. Statin use may unmask the protective impact of ABCA1-mediated cholesterol efflux on plaque formation, progression and cardiovascular risk.
Collapse
Affiliation(s)
- George A. Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah R. Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | | | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Matthew J. Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and the Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Arsh H, Ali A, Khenhrani RR, Simran F, Dino U, Tamang S, Manoj F, Bai S, Bai M, Panjwani GR, Kumar D, Rani D, Partab F, Malik J. Efficacy and Safety of Pitavastatin in Patients with Impaired Glucose Tolerance: An Updated Review. Curr Probl Cardiol 2023; 48:101981. [PMID: 37473935 DOI: 10.1016/j.cpcardiol.2023.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
This review provides an updated overview of the efficacy and safety of pitavastatin in patients with impaired glucose tolerance (IGT). IGT is a prediabetic state characterized by elevated blood glucose levels that do not meet the criteria for diabetes. The review explores the potential benefits of pitavastatin in reducing cardiovascular risk and improving lipid profiles in individuals with IGT. It also examines the glycemic effects of pitavastatin, including its impact on fasting blood glucose levels, insulin sensitivity, and beta-cell function. The review highlights the need for individualized treatment approaches, taking into account the patient's overall cardiovascular risk profile and glycemic control needs. While pitavastatin has shown modest improvements in glycemic control, it is not a substitute for lifestyle modifications or standard antidiabetic medications. Future directions for research include long-term follow-up studies, mechanistic investigations, and comparative analyses to further understand the glycemic effects of pitavastatin in IGT. Overall, this narrative review provides valuable insights for healthcare professionals involved in the management of individuals with IGT, emphasizing the importance of a comprehensive approach to reduce cardiovascular risk and optimize glycemic control.
Collapse
Affiliation(s)
- Hina Arsh
- Department of Medicine, THQ Hospital, Pasrur, Pakistan
| | - Asif Ali
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Simran
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Umbish Dino
- Department of Medicine, Sheikh Khalifa Bin Zayed Al Nayhan Medical and Dental College, Lahore, Pakistan
| | - Sweta Tamang
- Nepal Medical College and Teaching Hospital, Nepal
| | - Fnu Manoj
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shuaita Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | - Monika Bai
- Department of Medicine, People's University of Medical and Health Sciences, Nawabshah, Pakistan
| | | | - Deepak Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Deepa Rani
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Lyari, Pakistan
| | - Fnu Partab
- Department of Medicine, Chandka Medical College, Larkana, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
9
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
10
|
Negi P, Heikkilä T, Vuorenpää K, Tuunainen E, Nammas W, Maaniitty T, Knuuti J, Metso J, Lövgren J, Jauhiainen M, Lamminmäki U, Pettersson K, Saraste A. Time-resolved fluorescence based direct two-site apoA-I immunoassays and their clinical application in patients with suspected obstructive coronary artery disease. Front Cardiovasc Med 2022; 9:912578. [PMID: 36312264 PMCID: PMC9614376 DOI: 10.3389/fcvm.2022.912578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective High-density lipoprotein (HDL) is a heterogeneous group of subpopulations differing in protein/lipid composition and in their anti-atherogenic function. There is a lack of assays that can target the functionality of HDL particles related to atherosclerosis. The objective of this study was to construct two-site apolipoprotein A-I (apoA-I) assays and to evaluate their clinical performance in patients with suspected obstructive coronary artery disease (CAD). Approach and results Direct two-site apoA-I assays (named 109-121 and 110-525) were developed to identify the presence of apoA-I in the HDL of patients with CAD using apoA-I antibodies as a single-chain variable fragment fused with alkaline phosphatase. ApoA-I109-121 and apoA-I110-525 were measured in 197 patients undergoing coronary computed tomography angiography (CTA) and myocardial positron emission tomography perfusion imaging due to suspected obstructive CAD. Among patients not using lipid-lowering medication (LLM, n = 125), the level of apoA-I110-525 was higher in the presence than in the absence of coronary atherosclerosis [21.88 (15.89-27.44) mg/dl vs. 17.66 (13.38-24.48) mg/dl, P = 0.01)], whereas there was no difference in apoA-I109-121, HDL cholesterol, and apoA-I determined using a polyclonal apoA-I antibody. The levels of apoA-I109-121 and apoA-I110-525 were similar in the presence or absence of obstructive CAD. Among patients not using LLM, apoA-I110-525 adjusted for age and sex identified individuals with coronary atherosclerosis with a similar accuracy to traditional risk factors [area under the curve [AUC] (95% CI): 0.75(0.66-0.84) 0.71 (0.62-0.81)]. However, a combination of apoA-I110-525 with risk factors did not improve the accuracy [AUC (95% CI): 0.73 (0.64-0.82)]. Conclusion Direct two-site apoA-I assays recognizing heterogeneity in reactivity with apoA-I could provide a potential approach to identify individuals at a risk of coronary atherosclerosis. However, their clinical value remains to be studied in larger cohorts.
Collapse
Affiliation(s)
- Priyanka Negi
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland,*Correspondence: Priyanka Negi
| | - Taina Heikkilä
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Karoliina Vuorenpää
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Emilia Tuunainen
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Wail Nammas
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland,Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland,National Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland
| | - Janita Lövgren
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland,National Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Life Technologies/Biotechnology, University of Turku, Turku, Finland
| | - Antti Saraste
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland,Antti Saraste
| |
Collapse
|
11
|
Fujimoto D, Otake H, Kawamori H, Toba T, Nagao M, Nakano S, Tanimura K, Takahashi Y, Fukuyama Y, Kakizaki S, Nakamura K, Harada A, Murakami K, Iino T, Toh R, Hirata KI. Cholesterol uptake capacity: A new measure of high-density lipoprotein functionality as a predictor of subsequent revascularization in patients undergoing percutaneous coronary intervention. Atherosclerosis 2022; 345:44-50. [DOI: 10.1016/j.atherosclerosis.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
|
12
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
13
|
Kosmas CE, Sourlas A, Guzman E, Kostara CE. Environmental Factors Modifying HDL Functionality. Curr Med Chem 2021; 29:1687-1701. [PMID: 34269662 DOI: 10.2174/0929867328666210714155422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, it has been recognized that High-Density Lipoproteins (HDL) functionality plays a much more essential role in protection from atherosclerosis than circulating HDL-cholesterol (HDL-C) levels per se. Cholesterol efflux from macrophages to HDL, cholesterol efflux capacity (CEC) has been shown to be a key metric of HDL functionality. Thus, quantitative assessment of CEC may be an important tool for the evaluation of HDL functionality, as improvement of HDL function may lead to a reduction of the risk for Cardiovascular disease (CVD). INTRODUCTION Although the cardioprotective action of HDLs is exerted mainly through their involvement in the reverse cholesterol transport (RCT) pathway, HDLs also have important anti-inflammatory, antioxidant, antiaggregatory and anticoagulant properties that contribute to their favorable cardiovascular effects. Certain genetic, pathophysiologic, disease states and environmental conditions may influence the cardioprotective effects of HDL either by inducing modifications in lipidome and/or protein composition or in the enzymes responsible for HDL metabolism. On the other hand, certain healthy habits or pharmacologic interventions may actually favorably affect HDL functionality. METHOD The present review discusses the effects of environmental factors, including obesity, smoking, alcohol consumption, dietary habits, various pharmacologic interventions, as well as aerobic exercise, on HDL functionality. RESULT Experimental and clinical studies or pharmacological interventions support the impact of these environmental factors in the modification of HDL functionality, although the mechanisms that are mediated are poorly understood. CONCLUSION Further research should be conducted to unreal the underlying mechanisms of these environmental factors and to identify new pharmacologic interventions, capable of enhancing CEC, improving HDL functionality and potentially improving cardiovascular risk.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Christina E Kostara
- Laboratory of Clinical Chemistry, Medical Department, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
14
|
Zhou X, Wu L, Chen Y, Xiao H, Huang X, Li Y, Xiao H, Cao X. Forty-eight weeks of statin therapy for type 2 diabetes mellitus patients with lower extremity atherosclerotic disease: Comparison of the effects of pitavastatin and atorvastatin on lower femoral total plaque areas. J Diabetes Investig 2021; 12:1278-1286. [PMID: 33289308 PMCID: PMC8264389 DOI: 10.1111/jdi.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is correlated with systemic atherosclerosis. Statin therapies have been proved to reduce low-density lipoprotein cholesterol (LDL-C) level, protecting type 2 diabetes mellitus patients from cardiovascular events. Recently, more interest has been focused on the regression of lower extremity atherosclerotic disease (LEAD) for the potential prevention of amputation. However, the effects of pitavastatin and atorvastatin on LEAD in type 2 diabetes mellitus patients have not been directly compared. MATERIALS AND METHODS This study compared the effects of pitavastatin and atorvastatin on femoral total plaque areas (FTPA), and lipids and glucose metabolism in type 2 diabetes mellitus patients with elevated LDL-C level and LEAD. Type 2 diabetes mellitus patients with LDL-C level >2.6 mmol/L and LEAD were randomly assigned to receive either pitavastatin 2 mg/day or atorvastatin 10 mg/day for 48 weeks. FTPA were measured at baseline and the end of the study. Levels of glucose and lipids profile were measured periodically. The efficacy was evaluated in 63 patients. RESULTS The percentage change in FTPA measurements was similar between the pitavastatin group and atorvastatin group (-17.79 ± 21.27% vs -14.34 ± 16.33%), as were the changes in LDL-C (-44.0 ± 18.0% vs -40.3 ± 18.2%) and triglyceride (17.6 ± 20.0% vs 16.2 ± 17.0%). However, the level of high-density lipoprotein cholesterol was significantly higher in the pitavastatin group compared with the atorvastatin group after 48 weeks of treatment (12.9 ± 10.3% vs 7.2 ± 11.7%, P < 0.05). There were no significant differences between groups for the measurements of glucose metabolism. CONCLUSION In type 2 diabetes mellitus patients with elevated LDL-C level and LEAD, 48 weeks of treatment with either pitavastatin or atorvastatin was associated with significant regression of FTPA. Pitavastatin treatment resulted in a significantly higher high-density lipoprotein cholesterol level compared with atorvastatin treatment.
Collapse
Affiliation(s)
- Xieda Zhou
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liting Wu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yan Chen
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Huangmeng Xiao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoyu Huang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yanbing Li
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Haipeng Xiao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaopei Cao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
15
|
Omote K, Yokota I, Nagai T, Sakuma I, Nakagawa Y, Kamiya K, Iwata H, Miyauchi K, Ozaki Y, Hibi K, Hiro T, Fukumoto Y, Mori H, Hokimoto S, Ohashi Y, Ohtsu H, Ogawa H, Daida H, Iimuro S, Shimokawa H, Saito Y, Kimura T, Matsuzaki M, Nagai R, Anzai T. High-Density Lipoprotein Cholesterol and Cardiovascular Events in Patients with Stable Coronary Artery Disease Treated with Statins: An Observation from the REAL-CAD Study. J Atheroscler Thromb 2021; 29:50-68. [PMID: 33431716 PMCID: PMC8737079 DOI: 10.5551/jat.59881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The association between high-density lipoprotein cholesterol (HDL-C) level after statin therapy and cardiovascular events in patients with stable coronary artery disease (CAD) remains unclear. Thus, in this study, we sought to determine how HDL-C level after statin therapy is associated with cardiovascular events in stable CAD patients. METHODS From the REAL-CAD study which had shown the favorable prognostic effect of high-dose pitavastatin in stable CAD patients with low-density lipoprotein cholesterol (LDL-C) <120 mg/dL, 9,221 patients with HDL-C data at baseline and 6 months, no occurrence of primary outcome at 6 months, and reported non-adherence for pitavastatin, were examined. The primary outcome was a composite of cardiovascular death, non-fatal myocardial infarction, non-fatal ischemic stroke, or unstable angina requiring emergent admission after 6 months of randomization. Absolute difference and ratio of HDL-C levels were defined as (those at 6 months-at baseline) and (absolute difference/baseline)×100, respectively. RESULTS During a median follow-up period of 4.0 (IQR 3.2-4.7) years, the primary outcome occurred in 417 (4.5%) patients. The adjusted risk of all HDL-C-related variables (baseline value, 6-month value, absolute, and relative changes) for the primary outcome was not significant (hazard ratio [HR] 0.99, 95% confidence interval [CI] 0.91-1.08, HR 1.03, 95% CI 0.94-1.12, HR 1.05, 95% CI 0.98-1.12, and HR 1.08, 95% CI 0.94-1.24, respectively). Furthermore, adjusted HRs of all HDL-C-related variables remained non-significant for the primary outcome regardless of on-treatment LDL-C level at 6 months. CONCLUSIONS After statin therapy with modestly controlled LDL-C, HDL-C level has little prognostic value in patients with stable CAD.
Collapse
Affiliation(s)
- Kazunori Omote
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | | | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science Hospital
| | - Kiwamu Kamiya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Hiroshi Iwata
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University School of Medicine
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Hiroyoshi Mori
- Department of Cardiology, Showa University Fujigaoka Hospital
| | - Seiji Hokimoto
- Department of Cardiovascular Medicine, Kumamoto University Hospital
| | - Yasuo Ohashi
- Department of Integrated Science and Technology for Sustainable Society, Chuo University
| | - Hiroshi Ohtsu
- National Center for Global Health and Medicine, Center for Clinical Sciences
| | | | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | | | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | | | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | | |
Collapse
|
16
|
Naresh S, Bitla AR, Rao PVLNS, Sachan A, Amancharla YL. Efficacy of oral rosuvastatin intervention on HDL and its associated proteins in men with type 2 diabetes mellitus. Endocrine 2021; 71:76-86. [PMID: 32895874 DOI: 10.1007/s12020-020-02472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE High-density lipoprotein (HDL) undergoes structural and functional modification in patients with type 2 diabetes mellitus (T2DM). There are limited data on effect of rosuvastatin on HDL-associated proteins and the antiatherogenic effects of rosuvastatin. The present study intended to study the efficacy of rosuvastatin intervention on HDL-associated proteins and its other antiatherogenic effects in men with T2DM. METHODS Men with T2DM on oral antidiabetic treatment, with LDL-C levels > 75 mg/dL and willing for rosuvastatin intervention (20 mg/day orally for a period of 12 weeks), were included. Fasting glucose, lipid profile were measured using standard methods. Oxidized low-density lipoprotein (oxLDL), oxidized HDL (oxHDL), paraoxonase-1 (PON-1), tumour necrosis factor-α (TNF-α) and lecithin:cholesterol acyltransferase (LCAT) in serum were measured by ELISA; serum myeloperoxidase (MPO) by spectrophotometric method and cholesterol efflux by fluorometric assay. Carotid intima-media thickness (cIMT) measurement to assess vascular health status was done using doppler. RESULTS Rosuvastatin produced a significant decrease (p < 0.05) in lipids (total cholesterol, triglycerides, LDL-C); oxidative stress (oxLDL, oxHDL, MPO); inflammation (TNF-α); LCAT concentration; cIMT; significant increase in antiatherogenic HDL and cholesterol efflux (p < 0.05) and no change in apoA-I levels from baseline to 12 weeks of follow-up. A decrease in MPO activity was found to be independently associated with an increase in cholesterol efflux. CONCLUSIONS Post intervention there is a quantitative and qualitative improvement in HDL, which helps in its reverse cholesterol transport (RCT) and antioxidant functions. Improvement in HDL functions and suppression of inflammation by rosuvastatin lead to regression in cIMT, which is beneficial in decreasing the progression of cardiovascular disease (CVD) in men with diabetes.
Collapse
Affiliation(s)
- Sriram Naresh
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| | - P V L N Srinivasa Rao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Alok Sachan
- Department of Endocrinology and Metabolism, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Yadagiri Lakshmi Amancharla
- Department of Radiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
17
|
Jiang C, Qi Z, He W, Li Z, Tang Y, Wang Y, Huang Y, Zang H, Yang H, Liu J. Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression. J Control Release 2019; 308:71-85. [PMID: 31295543 DOI: 10.1016/j.jconrel.2019.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden.
Collapse
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zitong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Wanhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zhuoting Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yuqi Tang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yunbo Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yilei Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Haojing Zang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
18
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
19
|
PON1 concentration and high-density lipoprotein characteristics as cardiovascular biomarkers. ACTA ACUST UNITED AC 2019; 4:e47-e54. [PMID: 31211270 PMCID: PMC6549041 DOI: 10.5114/amsad.2019.84447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/20/2019] [Indexed: 01/27/2023]
Abstract
Introduction Serum paraoxonase 1 (PON1) is now known to be related to cardiovascular diseases (CVD). The aim of this study was to determine the relationship between PON1 concentration and high-density lipoprotein (HDL) subclasses in patients with proven CVD, cardiovascular risk factors but no CVD (CRF), and in healthy controls (control group). Material and methods A case-control study was carried out with 69 volunteers from the Mexican Institute of Social Security, Mexico. Clinical parameters, lipid profile, PON1 concentration, PON1 activities (AREase and CMPAase), and HDL subclasses were evaluated. Results Patients with CVD had significantly higher glucose and lower total cholesterol than the control group had (p < 0.01). AREase activity was not different between the control (122.57 ±30.72 U/ml), CRF (115.81 ±32.81 U/ml), and CVD (109.34 ±29.60 U/ml) groups. PON1 concentration was significantly lower in CVD patients than in CRF and control patients (p < 0.001); a positive correlation was observed between AREase activity and PON1 concentration in the CVD group (Rho = 0.58; p < 0.01). Logistic regression analysis showed that the decrease in PON1 level was associated with the CVD group (RRR = 0.20; 95% CI: 0.09–0.45) but not with the CRF group (RRR = 1.29; 95% CI: 0.89–1.90). Significant differences were observed in HDL 2a and HDL 3a concentrations between the control group and CRF and CVD groups (p < 0.05), but not between the CRF and CVD groups. Conclusions Our data suggest that PON1 status and HDL characteristics could be early biomarkers that predict the potential for developing CVD.
Collapse
|
20
|
Chan P, Shao L, Tomlinson B, Zhang Y, Liu ZM. An evaluation of pitavastatin for the treatment of hypercholesterolemia. Expert Opin Pharmacother 2018; 20:103-113. [PMID: 30482061 DOI: 10.1080/14656566.2018.1544243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Li Shao
- The VIP Department, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brian Tomlinson
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhong-Min Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Samadi S, Ghayour-Mobarhan M, Mohammadpour A, Farjami Z, Tabadkani M, Hosseinnia M, Miri M, Heydari-Majd M, Mehramiz M, Rezayi M, Ferns GA, Avan A. High-density lipoprotein functionality and breast cancer: A potential therapeutic target. J Cell Biochem 2018; 120:5756-5765. [PMID: 30362608 DOI: 10.1002/jcb.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.
Collapse
Affiliation(s)
- Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhooshang Mohammadpour
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Tabadkani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hosseinnia
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Miri
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Heydari-Majd
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Cholesterol efflux capacity of large, small and total HDL particles is unaltered by atorvastatin in patients with type 2 diabetes. Atherosclerosis 2018; 277:72-79. [PMID: 30176567 DOI: 10.1016/j.atherosclerosis.2018.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Research on the biologic activities of HDL, such as cholesterol efflux capacity and HDL composition, has allowed the understanding of the effect of interventions directed to improve cardiovascular risk. Previously, statin therapy has shown conflicting results about its effects on cholesterol efflux capacity of HDL; the underlying mechanisms are unclear but studies with positive effects are associated with an increase of HDL-cholesterol levels. We investigated if 10 weeks of atorvastatin therapy changes HDL efflux capacity and the chemical composition of its subpopulations. METHODS In a before-after design basis, HDL-cholesterol levels, chemical composition and cholesterol efflux capacity from HDL subpopulations isolated by isophynic ultracentrifugation were assessed in plasma samples from 60 patients with type 2 diabetes mellito (T2DM) at baseline and after 10 weeks of treatment with 20 mg atorvastatin. Cholesterol efflux was measured from human THP-1 cells using large, light HDL2b and small, dense 3c subpopulations as well as total HDL as acceptors. Changes of cholesterol efflux and chemical composition of HDL after treatment were analyzed. Correlations among variables potentially involved in cholesterol efflux were evaluated. RESULTS A significant decrease of 4% in HDL-cholesterol levels was observed from 47 (42-54) to 45 (39-56) mg/dL, p = 0.02. Cholesterol efflux from total-HDL and HDL2b and 3c subfractions was maintained unchanged after treatment. The total mass of HDL remained unaffected, except for the HDL3a subpopulation accounted for by a significant increase in total protein content. No significant correlations for variables previously known to be associated with cholesterol efflux were found in our study. CONCLUSIONS Short therapy of 10 weeks with 20 mg of atorvastatin does not modify the cholesterol efflux capacity neither the total mass of HDL2b, HDL3c and total HDL. The discrepancy with previous reports may be due to the selective effects among different classes of statins or differences in the approaches to measure cellular cholesterol efflux.
Collapse
|
23
|
Zha ZM, Wang JH, Li SL, Guo Y. Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes. J Biomed Res 2018; 32:281-287. [PMID: 29089470 PMCID: PMC6117602 DOI: 10.7555/jbr.31.20160116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate whether pitavastatin protected against injury induced by advanced glycation end products products (AGEs) in neonatal rat cardiomyocytes, and to examine the underlying mechanisms. Cardiomyocytes of neonatal rats were incubated for 48 hours with AGEs (100μg/mL), receptor for advanced glycation end products (RAGE), antibody (1μg/mL) and pitavastatin (600 ng/mL). The levels of p62 and beclin1 were determined by Western blotting. Mitochondrial membrane potential (ΔΨm) and the generation of reactive oxygen species (ROS) were measured through the JC-1 and DCFH-DA. In the AGEs group, the expression of beclin1 was remarkably increased compared to the control group, while the expression of p62 was significantly decreased. AGEs also markedly decreased ΔΨm and significantly increased ROS compared with the control group. After treatment with RAGE antibody or pitavastatin, the level of beclin1 was markedly decreased compared with the AGEs group, but the level of p62 was remarkably increased. In the AGEs+ RAGE antibody group and AGEs+ pitavastatin group, ΔΨm was significantly increased and ROS was remarkably decreased compared with the AGEs group. In conclusion, AGEs-RAGE may induce autophagy of cardiomyocytes by generation of ROS and pitavastatin could protect against AGEs-induced injury against cardiomyocytes.
Collapse
Affiliation(s)
- Zhi-Min Zha
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun-Hong Wang
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shi-Ling Li
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Guo
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Cardioangiology, Shengze Hospital of Jiangsu Province, Suzhou, China
| |
Collapse
|
24
|
Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci 2018; 19:E1680. [PMID: 29874886 PMCID: PMC6032203 DOI: 10.3390/ijms19061680] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Almost 600 million people are predicted to have diabetes mellitus (DM) by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL) are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.
Collapse
Affiliation(s)
- Nathan K P Wong
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Joanne T M Tan
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
25
|
Jung KY, Kim KM, Han SK, Yun HM, Oh TJ, Choi SH, Park KS, Jang HC, Lim S. Effect of Rosuvastatin on Cholesterol Efflux Capacity and Endothelial Function in Type 2 Diabetes Mellitus and Dyslipidemia. Circ J 2018; 82:1387-1395. [PMID: 28943594 DOI: 10.1253/circj.cj-17-0411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Quality and quantity of high-density lipoprotein cholesterol (HDL-C) may be associated with cardiovascular risk. We investigated the effect of rosuvastatin on cholesterol efflux (CE) for HDL function and vascular health. METHODS AND RESULTS We enrolled 30 dyslipidemic patients with type 2 diabetes mellitus and 20 healthy subjects as controls. Vascular health was assessed on flow-medicated dilation (FMD), nitroglycerin-induced dilatation of the brachial artery and carotid artery intima-media thickness (cIMT). These parameters were compared between patients and controls, and between baseline and at 12 weeks of treatment with rosuvastatin 20 mg. Age and body mass index were 49.8±11.3 years and 25.8±3.7 kg/m2in the patients, and 28.8±3.2 years and 22.4±2.4 kg/m2in the controls, respectively. The biomarkers related to lipid and glucose metabolism and lipoprotein (a), high-sensitivity C-reactive protein, and cIMT were significantly higher, and CE and FMD were significantly lower in the patients than in the controls. In the patients, rosuvastatin 20 mg decreased low-density lipoprotein cholesterol by 54.1% and increased HDL-C by 4.8%. The CE increased significantly after rosuvastatin treatment (12.26±2.72% vs. 14.05±4.14%). FMD also increased, and lipoprotein (a) and cIMT decreased significantly and were associated with changes of CE. CONCLUSIONS Rosuvastatin-induced changes in HDL function are significantly associated with cardiovascular benefit.
Collapse
Affiliation(s)
- Kyong Yeun Jung
- Department of Internal Medicine, Eulji General Hospital
- Department of Internal Medicine, Seoul National University Bundang Hospital
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Sun Kyoung Han
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Han Mi Yun
- Physiologic Diagnostic Laboratory, Vascular Laboratory, Seoul National University Bundang Hospital
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital
- Department of Internal Medicine, Seoul National University College of Medicine
| |
Collapse
|
26
|
Sarzynski MA, Ruiz-Ramie JJ, Barber JL, Slentz CA, Apolzan JW, McGarrah RW, Harris MN, Church TS, Borja MS, He Y, Oda MN, Martin CK, Kraus WE, Rohatgi A. Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler Thromb Vasc Biol 2018; 38:943-952. [PMID: 29437573 PMCID: PMC5864525 DOI: 10.1161/atvbaha.117.310307] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Measures of HDL (high-density lipoprotein) function are associated with cardiovascular disease. However, the effects of regular exercise on these measures is largely unknown. Thus, we examined the effects of different doses of exercise on 3 measures of HDL function in 2 randomized clinical exercise trials. APPROACH AND RESULTS Radiolabeled and boron dipyrromethene difluoride-labeled cholesterol efflux capacity and HDL-apoA-I (apolipoprotein A-I) exchange were assessed before and after 6 months of exercise training in 2 cohorts: STRRIDE-PD (Studies of Targeted Risk Reduction Interventions through Defined Exercise, in individuals with Pre-Diabetes; n=106) and E-MECHANIC (Examination of Mechanisms of exercise-induced weight compensation; n=90). STRRIDE-PD participants completed 1 of 4 exercise interventions differing in amount and intensity. E-MECHANIC participants were randomized into 1 of 2 exercise groups (8 or 20 kcal/kg per week) or a control group. HDL-C significantly increased in the high-amount/vigorous-intensity group (3±5 mg/dL; P=0.02) of STRRIDE-PD, whereas no changes in HDL-C were observed in E-MECHANIC. In STRRIDE-PD, global radiolabeled efflux capacity significantly increased 6.2% (SEM, 0.06) in the high-amount/vigorous-intensity group compared with all other STRRIDE-PD groups (range, -2.4 to -8.4%; SEM, 0.06). In E-MECHANIC, non-ABCA1 (ATP-binding cassette transporter A1) radiolabeled efflux significantly increased 5.7% (95% CI, 1.2-10.2%) in the 20 kcal/kg per week group compared with the control group, with no change in the 8 kcal/kg per week group (2.6%; 95% CI, -1.4 to 6.7%). This association was attenuated when adjusting for change in HDL-C. Exercise training did not affect BODIPY-labeled cholesterol efflux capacity or HDL-apoA-I exchange in either study. CONCLUSIONS Regular prolonged vigorous exercise improves some but not all measures of HDL function. Future studies are warranted to investigate whether the effects of exercise on cardiovascular disease are mediated in part by improving HDL function. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifiers: NCT00962962 and NCT01264406.
Collapse
Affiliation(s)
- Mark A Sarzynski
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.).
| | - Jonathan J Ruiz-Ramie
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Jacob L Barber
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Cris A Slentz
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - John W Apolzan
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Robert W McGarrah
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Melissa N Harris
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Timothy S Church
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Mark S Borja
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Yumin He
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Michael N Oda
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Corby K Martin
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - William E Kraus
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| | - Anand Rohatgi
- From the Department of Exercise Science, University of South Carolina, Columbia (M.A.S., J.J.R.-R., J.L.B.); Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC (C.A.S., R.W.M., W.E.K.); Ingestive Behavior and Preventive Medicine Laboratories, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA (J.W.A., M.N.H., T.S.C., C.K.M.); Center for Prevention of Obesity, Cardiovascular Disease & Diabetes, Children's Hospital Oakland Research Institute, Oakland, CA (M.S.B., Y.H., M.N.O.); and Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.R.)
| |
Collapse
|
27
|
Chapman MJ, Orsoni A, Robillard P, Therond P, Giral P. Duality of statin action on lipoprotein subpopulations in the mixed dyslipidemia of metabolic syndrome: Quantity vs quality over time and implication of CETP. J Clin Lipidol 2018; 12:784-800.e4. [PMID: 29574070 DOI: 10.1016/j.jacl.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/28/2017] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Statins impact the metabolism, concentrations, composition, and function of circulating lipoproteins. OBJECTIVE We evaluated time course relationships between statin-mediated reduction in atherogenic apolipoprotein B (ApoB)-containing particles and dynamic intravascular remodeling of ApoAI-containing lipoprotein subpopulations in the mixed dyslipidemia of metabolic syndrome. METHODS Insulin-resistant, hypertriglyceridemic, hypercholesterolemic, obese males (n = 12) were treated with pitavastatin (4 mg/d) and response evaluated at 6, 42, and 180 days. RESULTS Reduction in low-density lipoprotein (LDL) cholesterol, ApoB, and triglycerides (TGs) was essentially complete at 42 days (-38%, -32%, and -35%, respectively); rapid reduction equally occurred in remnant cholesterol, ApoCII, CIII, and E levels (day 6; -35%, -50%, -23%, and -26%, respectively). Small dense LDLs (LDL4 and LDL5 subpopulations) predominated at baseline and were markedly reduced on treatment (-29% vs total LDL mass). Cholesteryl ester (CE) transfer protein activity and mass decreased progressively (-18% and -16%, respectively); concomitantly, TG depletion (up to -49%) and CE enrichment occurred in all high-density lipoprotein (HDL) particle subpopulations with normalization of CE/TG mass ratio at 180 days. ApoAI was redistributed from LpAI to LpAI:AII particles in HDL2a and HDL3a subpopulations; ApoCIII was preferentially depleted from LpAI:AII-rich particles on treatment. CONCLUSION Overall, statin action exhibits duality in mixed dyslipidemia, as CE transfer protein-mediated normalization of the HDL CE/TG core lags markedly behind subacute reduction in elevated levels of atherogenic ApoB-containing lipoproteins. Normalization of the HDL neutral lipid core is consistent with enhanced atheroprotective function. The HDL CE/TG ratio constitutes a metabolomic marker of perturbed HDL metabolism in insulin-resistant states, equally allowing monitoring of statin impact on HDL metabolism, structure, and function.
Collapse
Affiliation(s)
- M John Chapman
- National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris, France; Department of Endocrinology-Metabolism, Pitié-Salpêtrière University Hospital, Paris, France; Pierre et Marie Curie University-Paris 6, Paris, France.
| | - Alexina Orsoni
- National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris, France; Service de Biochimie, AP-HP, HUPS, Bicetre University Hospital, Le Kremlin Bicetre, France
| | - Paul Robillard
- National Institute for Health and Medical Research (INSERM), Pitié-Salpêtrière University Hospital, Paris, France
| | - Patrice Therond
- Service de Biochimie, AP-HP, HUPS, Bicetre University Hospital, Le Kremlin Bicetre, France; EA 7357, Paris-Sud University and Paris-Saclay University, Chatenay-Malabry, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitie-Salpetriere University Hospital, Paris, France
| |
Collapse
|
28
|
Furuyama F, Koba S, Yokota Y, Tsunoda F, Shoji M, Kobayashi Y. Effects of Cardiac Rehabilitation on High-Density Lipoprotein-mediated Cholesterol Efflux Capacity and Paraoxonase-1 Activity in Patients with Acute Coronary Syndrome. J Atheroscler Thromb 2017; 25:153-169. [PMID: 28855433 PMCID: PMC5827085 DOI: 10.5551/jat.41095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS We evaluated whether exercised-based cardiac rehabilitation (CR) can ameliorate the HDL function, i.e., cholesterol efflux capacity (CEC) and paraoxonase-1 activity in patients with acute coronary syndrome (ACS). METHODS This study is a retrospective analysis of stored serum from patients with ACS following successful percutaneous coronary intervention. The CEC, measured by a cell-based ex vivo assay using apolipoprotein B-depleted serum and 3H-cholesterol labeled macrophages and arylesterase activity (AREA) at the onset or early phase of ACS, and the follow-up periods were compared between 69 patients who completed the five-month outpatient CR program (CR group) and 15 patients who did not participate and/or dropped out from CR program (non-CR group). RESULTS Apolipoprotein A-I (apoA-I) and CEC significantly increased by 4.0% and 9.4%, respectively, in the CR group, whereas HDL-cholesterol and AREA were not changed during the follow-up periods in both groups. Among CR patients, the CEC significantly increased, irrespective of the different statin treatment, while HDL-cholesterol and apoA-I significantly increased in patients treated with rosuvastatin or pitavastatin. Although CEC and AREA were significantly correlated each other, there is a discordance between CEC and AREA for their correlations with other biomarkers. Both CEC and AREA were significantly correlated with apoA-I rather than HDL-cholesterol. Changes in CEC and those in AREA were significantly correlated with those in apoA-I (rho=0.328, p=0.002, and rho=0.428, p<0.0001, respectively) greater than those in HDL-cholesterol (rho=0.312, p= 0.0042,and rho=0.343, p=0.003, respectively). CONCLUSIONS CR can improve HDL function, and it is beneficial for secondary prevention.
Collapse
Affiliation(s)
- Fumiaki Furuyama
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Yuya Yokota
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Fumiyoshi Tsunoda
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Makoto Shoji
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Youichi Kobayashi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| |
Collapse
|
29
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
30
|
|
31
|
Harada A, Toh R, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Irino Y, Mori K, Tanaka N, Nishimura K, Ishida T, Hirata KI. Cholesterol Uptake Capacity: A New Measure of HDL Functionality for Coronary Risk Assessment. J Appl Lab Med 2017; 2:186-200. [PMID: 32630971 DOI: 10.1373/jalm.2016.022913] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent studies have shown that the cholesterol efflux capacity of HDL is a better predictor of cardiovascular disease (CVD) than HDL cholesterol. However, the standard procedures used for measuring cholesterol efflux capacity involve radioisotope-labeled cholesterol and cultured macrophages. Thus, a simpler method to measure HDL functionality is needed for clinical application. METHODS We established a cell-free assay system to evaluate the capacity of HDL to accept additional cholesterol, which we named cholesterol "uptake capacity," using fluorescently labeled cholesterol and an anti-apolipoprotein A1 antibody. We quantified cholesterol uptake capacity of apolipoprotein B (apoB)-depleted serum samples from patients with coronary artery disease who had previously undergone revascularization. RESULTS This assay system exhibited high reproducibility (CV <10%) and a short processing time (<6 h). The myeloperoxidase-mediated oxidation of apoB-depleted serum impaired cholesterol uptake capacity. Cholesterol uptake capacity correlated significantly with cholesterol efflux capacity (r2 = 0.47, n = 30). Furthermore, cholesterol uptake capacity correlated inversely with the requirement for revascularization because of recurrence of coronary lesions in patients with optimal control of LDL cholesterol (P < 0.01, n = 156). A multivariate analysis adjusted for traditional coronary risk factors showed that only cholesterol uptake capacity remained significant (odds ratio, 0.48; 95% CI, 0.29-0.80; P = 0.0048). CONCLUSIONS Cholesterol uptake capacity assay evaluates the functionality of HDL in a sensitive and high-throughput manner without using radioisotope label and cells. This assay system could be used for the assessment of CVD risk in the clinical settings.
Collapse
Affiliation(s)
- Amane Harada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine and
| | | | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Yoshikawa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Kenta Mori
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Tanaka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiologic Informatics, Office of Evidence-Based Medicine and Risk Analysis, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Evidence-Based Laboratory Medicine and.,Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
32
|
Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial. Lipids Health Dis 2017; 16:49. [PMID: 28245873 PMCID: PMC5331745 DOI: 10.1186/s12944-017-0433-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The influence of lipid-lowering therapy on high-density lipoprotein (HDL) is incompletely understood. We compared the effect of two lipid-lowering strategies on HDL functions and identified some HDL-related proteins. METHODS Thirty two patients were initially screened and HDLs of 21 patients were finally analyzed. Patients were randomized to receive atorvastatin 20 mg (n = 11) or atorvastatin 5 mg/ezetimibe 10 mg combination (n = 10) for 8 weeks. The cholesterol efflux capacity and other anti-inflammatory functions were assessed based on HDLs of the participants before and after treatment. Pre-specified HDL proteins of the same HDL samples were measured. RESULTS The post-treatment increase in cholesterol efflux capacities was similar between the groups (35.6% and 34.6% for mono-therapy and combination, respectively, p = 0.60). Changes in nitric oxide (NO) production, vascular cell adhesion molecule-1 (VCAM-1) expression, and reactive oxygen species (ROS) production were similar between the groups. The baseline cholesterol efflux capacity correlated positively with apolipoprotein (apo)A1 and C3, whereas apoA1 and apoC1 showed inverse associations with VCAM-1 expression. The changes in the cholesterol efflux capacity were positively correlated with multiple HDL proteins, especially apoA2. CONCLUSIONS Two regimens increased the cholesterol efflux capacity of HDL comparably. Multiple HDL proteins, not limited to apoA1, showed a correlation with HDL functions. These results indicate that conventional lipid therapy may have additional effects on HDL functions with changes in HDL proteins. TRIAL REGISTRATION ClinicalTrials.gov, number NCT02942602 .
Collapse
|
33
|
Paavola T, Kuusisto S, Jauhiainen M, Kakko S, Kangas-Kontio T, Metso J, Soininen P, Ala-Korpela M, Bloigu R, Hannuksela ML, Savolainen MJ, Salonurmi T. Impaired HDL2-mediated cholesterol efflux is associated with metabolic syndrome in families with early onset coronary heart disease and low HDL-cholesterol level. PLoS One 2017; 12:e0171993. [PMID: 28207870 PMCID: PMC5313225 DOI: 10.1371/journal.pone.0171993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/30/2017] [Indexed: 12/18/2022] Open
Abstract
Objective The potential of high-density lipoproteins (HDL) to facilitate cholesterol removal from arterial foam cells is a key function of HDL. We studied whether cholesterol efflux to serum and HDL subfractions is impaired in subjects with early coronary heart disease (CHD) or metabolic syndrome (MetS) in families where a low HDL-cholesterol level (HDL-C) predisposes to early CHD. Methods HDL subfractions were isolated from plasma by sequential ultracentrifugation. THP-1 macrophages loaded with acetyl-LDL were used in the assay of cholesterol efflux to total HDL, HDL2, HDL3 or serum. Results While cholesterol efflux to serum, total HDL and HDL3 was unchanged, the efflux to HDL2 was 14% lower in subjects with MetS than in subjects without MetS (p<0.001). The efflux to HDL2 was associated with components of MetS such as plasma HDL-C (r = 0.76 in men and r = 0.56 in women, p<0.001 for both). The efflux to HDL2 was reduced in men with early CHD (p<0.01) only in conjunction with their low HDL-C. The phospholipid content of HDL2 particles was a major correlate with the efflux to HDL2 (r = 0.70, p<0.001). A low ratio of HDL2 to total HDL was associated with MetS (p<0.001). Conclusion Our results indicate that impaired efflux to HDL2 is a functional feature of the low HDL-C state and MetS in families where these risk factors predispose to early CHD. The efflux to HDL2 related to the phospholipid content of HDL2 particles but the phospholipid content did not account for the impaired efflux in cardiometabolic disease, where a combination of low level and poor quality of HDL2 was observed.
Collapse
Affiliation(s)
- Timo Paavola
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sanna Kuusisto
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
| | - Sakari Kakko
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Tiia Kangas-Kontio
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Jari Metso
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
| | - Pasi Soininen
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Oulu University Hospital, Oulu, Finland
- Computational Medicine, School of Social and Community Medicine & Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Risto Bloigu
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Minna L. Hannuksela
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
- Department of Clinical Chemistry, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Markku J. Savolainen
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Tuire Salonurmi
- Department of Internal Medicine, Institute of Clinical Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland and Medical Research Center, Oulu University Hospital, Oulu, Finland
- * E-mail:
| |
Collapse
|
34
|
Kini AS, Vengrenyuk Y, Shameer K, Maehara A, Purushothaman M, Yoshimura T, Matsumura M, Aquino M, Haider N, Johnson KW, Readhead B, Kidd BA, Feig JE, Krishnan P, Sweeny J, Milind M, Moreno P, Mehran R, Kovacic JC, Baber U, Dudley JT, Narula J, Sharma S. Intracoronary Imaging, Cholesterol Efflux, and Transcriptomes After Intensive Statin Treatment. J Am Coll Cardiol 2017; 69:628-640. [DOI: 10.1016/j.jacc.2016.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
|
35
|
Orsoni A, Thérond P, Tan R, Giral P, Robillard P, Kontush A, Meikle PJ, Chapman MJ. Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia. J Lipid Res 2016; 57:2073-2087. [PMID: 27581680 DOI: 10.1194/jlr.p068585] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/14/2023] Open
Abstract
Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (-41%) and LDL-cholesterol (-38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3.
Collapse
Affiliation(s)
- Alexina Orsoni
- Clinical Biochemistry Service, APHP, HUPS, Bicêtre University Hospital, Le Kremlin Bicêtre, France
| | - Patrice Thérond
- Clinical Biochemistry Service, APHP, HUPS, Bicêtre University Hospital, Le Kremlin Bicêtre, France.,Lip(Sys) Department, Atherosclerosis: Cholesterol Homeostasis and Macrophage Trafficking, Paris-Sud University and Paris-Saclay University, Châtenay-Malabry, France
| | - Ricardo Tan
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Philippe Giral
- Service of Endocrinology-Metabolism and Cardiovascular Disease Prevention, Pitié-Salpêtrière University Hospital, Paris, France
| | - Paul Robillard
- INSERM UMR-S939, Dyslipidemia and Atherosclerosis, and University of Pierre and Marie Curie, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anatol Kontush
- INSERM UMR-S1166 and University of Pierre and Marie Curie, Pitié-Salpêtrière University Hospital, Paris, France
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - M John Chapman
- Clinical Biochemistry Service, APHP, HUPS, Bicêtre University Hospital, Le Kremlin Bicêtre, France .,Service of Endocrinology-Metabolism and Cardiovascular Disease Prevention, Pitié-Salpêtrière University Hospital, Paris, France.,INSERM UMR-S939, Dyslipidemia and Atherosclerosis, and University of Pierre and Marie Curie, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Low HDL-cholesterol (HDL-C) levels are predictive of incident atherosclerotic cardiovascular disease events. However, the use of medication to raise HDL-C levels has not consistently shown clinical benefit. As a result, studies have shifted toward HDL function, specifically cholesterol efflux, which has been inversely associated with prevalent subclinical atherosclerosis as well as subsequent atherosclerotic cardiovascular disease events. The purpose of this review is to summarize the effects of current medications and interventions on cholesterol efflux capacity. RECENT FINDINGS Medications for cardiovascular health, including statins, fibrates, niacin, and novel therapeutics, are reviewed for their effect on cholesterol efflux. Differences in population studied and assay used are addressed appropriately. Lifestyle interventions, including diet and exercise, are also included in the review. SUMMARY The modification of cholesterol efflux capacity (CEC) by current medications and interventions has been investigated in both large randomized control trials and smaller observational cohorts. This review serves to compile the results of these studies and evaluate CEC modulation by commonly used medications. Altering CEC could be a novel therapeutic approach to improving cardiovascular risk profiles.
Collapse
Affiliation(s)
- Nicholas Brownell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
37
|
Barrios V, Escobar C. Clinical benefits of pitavastatin: focus on patients with diabetes or at risk of developing diabetes. Future Cardiol 2016; 12:449-66. [DOI: 10.2217/fca-2016-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite attaining LDL-cholesterol targets, many patients with diabetes remain at risk of developing cardiovascular events. In addition, treatment with statins has been associated with a slight but significant increased risk of development of diabetes, particularly with high-intensity statins. Pitavastatin is a moderate- to high-intensity statin that effectively reduces LDL-cholesterol levels. Pitavastatin provides a sustained increase of HDL-cholesterol levels that may exhibit a neutral or positive effect on glucose metabolism, may not increase the risk of new-onset diabetes, may exhibit positive effects on renal function and urinary albumin excretion and the risk of drug–drug interactions is low. Therefore, it seems that pitavastatin should preferentially be considered in the treatment of dyslipidemia in diabetic patients or at risk of developing diabetes.
Collapse
|
38
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
39
|
Park DS, Yun KH, Park HY, Rhee SJ, Kim NH, Oh SK, Jeong JW. Antioxidative Activity after Rosuvastatin Treatment in Patients with Stable Ischemic Heart Disease and Decreased High Density Lipoprotein Cholesterol. Korean Circ J 2016; 46:309-14. [PMID: 27275167 PMCID: PMC4891595 DOI: 10.4070/kcj.2016.46.3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/31/2015] [Accepted: 10/06/2015] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives The clinical significance of statin-induced high-density lipoprotein cholesterol (HDL-C) changes is not well known. We investigated whether rosuvastatin-induced HDL-C changes can influence the anti-oxidative action of high-density lipoprotein particle. Subjects and Methods A total of 240 patients with stable ischemic heart disease were studied. Anti-oxidative property was assessed by paraoxonase 1 (PON1) activity. We compared the lipid profile and PON1 activity at baseline and at 8 weeks after rosuvastatin 10 mg treatment. Results Rosuvastatin treatment increased the mean HDL-C concentration by 1.9±9.2 mg/dL (6.4±21.4%). HDL-C increased in 138 patients (57.5%), but decreased in 102 patients (42.5%) after statin treatment. PON1 activity increased to 19.1% in all patients. In both, the patients with increased HDL-C and with decreased HDL-C, PON1 activity significantly increased after rosuvastatin treatment (+19.3% in increased HDL-C responder; p=0.018, +18.8% in decreased HDL-C responder; p=0.045 by paired t-test). Baseline PON1 activity modestly correlated with HDL-C levels (r=0.248, p=0.009); however, the PON1 activity evaluated during the course of the treatment did not correlate with HDL-C levels (r=0.153, p=0.075). Conclusion Rosuvastatin treatment improved the anti-oxidative properties as assessed by PON1 activity, regardless of on-treatment HDL-C levels, in patients with stable ischemic heart disease.
Collapse
Affiliation(s)
- Do-Sim Park
- Department of Laboratory medicine, Wonkwang University Hospital and School of Medicine, Iksan, Korea
| | - Kyeong Ho Yun
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea.; Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Hyun Young Park
- Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Sang Jae Rhee
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea
| | - Nam-Ho Kim
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea
| | - Seok Kyu Oh
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea
| | - Jin-Won Jeong
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea
| |
Collapse
|
40
|
Yamamoto S, Narita I, Kotani K. The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis. Clin Chim Acta 2016; 457:117-22. [PMID: 27087419 DOI: 10.1016/j.cca.2016.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/30/2022]
Abstract
The macrophage and its related cholesterol efflux are considered to be a key player in atherosclerotic formation in relation to the function of high-density lipoprotein (HDL). The HDL function can be evaluated by the reaction between lipid-loaded macrophages and lipid-acceptors in the HDL fraction from the plasma, apolipoprotein B-depleted serum, and/or whole serum/plasma. Recent studies have reported that an impaired cholesterol efflux of HDL is observed in patients with cardiometabolic diseases, such as dyslipidemia, diabetes mellitus, and chronic kidney disease. A population-based cohort study has reported an inverse association between the cholesterol efflux capacity of HDL and the incidence of atherosclerotic disease, regardless of the serum HDL-cholesterol level. Moreover, in this paper, when we summarized several clinical interventional studies of statin treatment that examined cholesterol efflux, a potential increase in the efflux in patients treated with statins was implied. However, the effect was not fully defined in the current situation because of the small sample sizes, lack of a unified protocol for measuring the efflux, and short-term intervention periods without cardiovascular outcomes in available studies. Further investigation is necessary to determine the effect of drugs on cholesterol efflux. With additional advanced studies, cholesterol efflux is a promising laboratory index to understand the HDL function.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Division of Community and Family Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan; Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| |
Collapse
|
41
|
Koba S, Ayaori M, Uto-Kondo H, Furuyama F, Yokota Y, Tsunoda F, Shoji M, Ikewaki K, Kobayashi Y. Beneficial Effects of Exercise-Based Cardiac Rehabilitation on High-Density Lipoprotein-Mediated Cholesterol Efflux Capacity in Patients with Acute Coronary Syndrome. J Atheroscler Thromb 2016; 23:865-77. [PMID: 26947596 DOI: 10.5551/jat.34454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM Recent studies reported that low high-density lipoprotein (HDL)-mediated cholesterol efflux capacity rather than low HDL cholesterol (HDL-C) is strongly associated with the increased risk for coronary artery disease. It remains unclear whether exercised-based cardiac rehabilitation (CR) can increase HDL cholesterol efflux capacity. METHOD This study is a retrospective analysis of stored serum from patients with acute coronary syndrome (ACS) who participated in outpatient CR program following successful percutaneous coronary intervention. We employed a cell-based cholesterol efflux system including the incubation of (3)H-cholesterol labeled macrophages with apolipoprotein B-depleted serum at the onset or early phase of ACS and at 6-month follow-up periods in 57 male and 11 female patients with ACS. Cardiopulmonary exercise tests were performed at the beginning and end of CR program. RESULT Fifty-seven patients completed the CR program. Compared with patients who dropped out from CR program (non-CR group), CR participants showed marked amelioration in serum lipid levels, increased efflux capacity, and improved exercise capacity. Spearman's rank correlation coefficient analysis revealed that the percent increases of efflux capacity were significantly associated with the percent increases in HDL-C (ρ=0.598, p<0.0001) and apolipoprotein A1 (ρ=0.508, p<0.0001), whereas no association between increases in efflux capacity and increases in cardiopulmonary fitness was observed. Increases in cholesterol efflux capacity were not seen in patients who continued smoking and those who did not achieve all risk factor targets and higher exercise tolerance. CONCLUSION CR can markedly increase both HDL-C and HDL cholesterol efflux capacity. These results suggest that CR is a very useful therapy for reverse cholesterol transport and secondary prevention.
Collapse
Affiliation(s)
- Shinji Koba
- The Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Samouilidou E, Kostopoulos V, Liaouri A, Kioussi E, Vassiliou K, Bountou E, Grapsa E. Association of lipid profile with serum PON1 concentration in patients with chronic kidney disease. Ren Fail 2016; 38:1601-1606. [DOI: 10.3109/0886022x.2016.1144031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | | | - Eva Kioussi
- Nephrology Department, “Aretaeio” University Hospital, Athens, Greece
| | | | - Eirini Bountou
- Nephrology Department, “Aretaeio” University Hospital, Athens, Greece
| | - Eirini Grapsa
- Nephrology Department, “Aretaeio” University Hospital, Athens, Greece
| |
Collapse
|
43
|
Ikenaga M, Higaki Y, Saku K, Uehara Y. High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J Atheroscler Thromb 2016; 23:385-94. [PMID: 26830201 DOI: 10.5551/jat.33720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinical trials and epidemiological studies have revealed a negative correlation between serum high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular events. Currently, statin treatment is the standard therapy for cardiovascular diseases, reducing plasma low-density lipoprotein (LDL) cholesterol levels. However, more than half of the patients have not been able to receive the beneficial effects of this treatment.The reverse cholesterol transport pathway has several potential anti-atherogenic properties. An important approach to HDL-targeted therapy is the optimization of HDL cholesterol levels and function in the blood to enhance the removal of circulating cholesterol and to prevent or mitigate inflammation that causes atherosclerosis. Cholesteryl ester transfer protein inhibitors increase HDL cholesterol levels in humans, but whether they reduce the risk of atherosclerotic diseases is unknown. HDL therapies using HDL mimetics, including reconstituted HDL, apolipoprotein (Apo) A-IMilano, ApoA-I mimetic peptides, or full-length ApoA-I, are highly effective in animal models. In particular, the Fukuoka University ApoA-I-mimetic peptide (FAMP) effectively removes cholesterol via the ABCA1 transporter and acts as an anti-atherosclerotic agent by enhancing the biological functions of HDL without elevating HDL cholesterol levels.Our literature review suggests that HDL mimetics have significant atheroprotective potential and are a therapeutic tool for atherosclerotic diseases.
Collapse
|
44
|
Gogonea V. Structural Insights into High Density Lipoprotein: Old Models and New Facts. Front Pharmacol 2016; 6:318. [PMID: 26793109 PMCID: PMC4709926 DOI: 10.3389/fphar.2015.00318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen-deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Chemistry, Cleveland State UniversityCleveland, OH, USA; Departments of Cellular and Molecular Medicine and the Center for Cardiovascular Diagnostics and Prevention, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
45
|
Ronsein GE, Hutchins PM, Isquith D, Vaisar T, Zhao XQ, Heinecke JW. Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects. Arterioscler Thromb Vasc Biol 2015; 36:404-11. [PMID: 26681752 DOI: 10.1161/atvbaha.115.306268] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. APPROACH In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. RESULTS Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. CONCLUSIONS Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL.
Collapse
Affiliation(s)
| | | | - Daniel Isquith
- From the Department of Medicine, University of Washington, Seattle
| | - Tomas Vaisar
- From the Department of Medicine, University of Washington, Seattle
| | - Xue-Qiao Zhao
- From the Department of Medicine, University of Washington, Seattle
| | - Jay W Heinecke
- From the Department of Medicine, University of Washington, Seattle.
| |
Collapse
|
46
|
Ferretti G, Bacchetti T, Sahebkar A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res 2015; 60:50-73. [DOI: 10.1016/j.plipres.2015.08.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/08/2015] [Accepted: 08/30/2015] [Indexed: 12/20/2022]
|
47
|
Abstract
High-density lipoproteins (HDLs) protect against atherosclerosis by removing excess cholesterol from macrophages through the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) pathways involved in reverse cholesterol transport. Factors that impair the availability of functional apolipoproteins or the activities of ABCA1 and ABCG1 could, therefore, strongly influence atherogenesis. HDL also inhibits lipid oxidation, restores endothelial function, exerts anti-inflammatory and antiapoptotic actions, and exerts anti-inflammatory actions in animal models. Such properties could contribute considerably to the capacity of HDL to inhibit atherosclerosis. Systemic and vascular inflammation has been proposed to convert HDL to a dysfunctional form that has impaired antiatherogenic effects. A loss of anti-inflammatory and antioxidative proteins, perhaps in combination with a gain of proinflammatory proteins, might be another important component in rendering HDL dysfunctional. The proinflammatory enzyme myeloperoxidase induces both oxidative modification and nitrosylation of specific residues on plasma and arterial apolipoprotein A-I to render HDL dysfunctional, which results in impaired ABCA1 macrophage transport, the activation of inflammatory pathways, and an increased risk of coronary artery disease. Understanding the features of dysfunctional HDL or apolipoprotein A-I in clinical practice might lead to new diagnostic and therapeutic approaches to atherosclerosis.
Collapse
|
48
|
Ishikawa T, Ayaori M, Uto-Kondo H, Nakajima T, Mutoh M, Ikewaki K. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis 2015; 242:318-22. [PMID: 26246268 DOI: 10.1016/j.atherosclerosis.2015.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND We examined the clinical relevance of high-density lipoprotein cholesterol (HDL-C) efflux capacity from macrophage (cholesterol efflux capacity) as a predictor of atherosclerotic coronary artery disease (CAD) in comparison with that of conventional coronary and lipid risk variables in Japanese daily practice. METHODS AND RESULTS Fasting blood sampling, including 6 routinely measured dyslipidemia-related variables, was performed at the time of coronary angiography (CAG) or multi-slice coronary computed tomography (MSCT) between January 2011 and January 2013. CAD, defined as native coronary atherosclerosis stenosis >50% by CAG or MSCT, was identified in 182 patients (CAD group), but not in 72 patients (non-CAD group). Cholesterol efflux capacity, measured using a cell-based efflux system in (3)[H]-cholesterol-labeled J774 macrophages in apolipoprotein B-depleted plasma, was significantly impaired in the CAD group compared with the non-CAD group (0.86 ± 0.26 vs. 1.02 ± 0.38; p = 0.001). After adjusting 15 patient and dyslipidemia-related variables using a propensity score matching analysis produced 55 patients in each arm, cholesterol efflux capacity in the CAD group remained to be significant compared with the non-CAD group (0.83 ± 0.24 vs. 0.97 ± 0.36; p = 0.019). Stepwise logistic regression analysis using a backward method after the baseline adjustment showed that cholesterol efflux capacity (odds ratio [OR]: 0.23; 95% confidence interval [CI]: 0.056-0.91; p = 0.037) was the single predictor of CAD, while other variables including HDL-C (p = 0.088) and apolipoprotein (apo) A-I (p = 0.681) were removed owing to those insignificance. The area under the receiver operating characteristic curve after the baseline adjustment was 0.67 (95% CI: 0.51-0.73, p = 0.048 by Hosmer-Lemeshow goodness-of-fit statistics). CONCLUSIONS The present observational study conducted under daily clinical practice confirmed that cholesterol efflux capacity is a clinically relevant predictor of CAD among the conventional coronary risk factors and dyslipidemia-related variables.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan.
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takatomo Nakajima
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Makoto Mutoh
- Division of Cardiology, Saitama Cardiovascular Respiratory Center, Kumagaya, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
49
|
Agarwala AP, Rodrigues A, Risman M, McCoy M, Trindade K, Qu L, Cuchel M, Billheimer J, Rader DJ. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arterioscler Thromb Vasc Biol 2015; 35:1515-9. [PMID: 25838421 DOI: 10.1161/atvbaha.115.305504] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Plasma levels of high-density lipoprotein cholesterol (HDL-C) are strongly inversely associated with coronary artery disease (CAD), and high HDL-C is generally associated with reduced risk of CAD. Extremely high HDL-C with CAD is an unusual phenotype, and we hypothesized that the HDL in such individuals may have an altered composition and reduced function when compared with controls with similarly high HDL-C and no CAD. APPROACH AND RESULTS Fifty-five subjects with very high HDL-C (mean, 86 mg/dL) and onset of CAD at the age of ≈ 60 years with no known risk factors for CAD (cases) were identified through systematic recruitment. A total of 120 control subjects without CAD, matched for race, sex, and HDL-C level (controls), were identified. In all subjects, HDL composition was analyzed and HDL cholesterol efflux capacity was assessed. HDL phospholipid composition was significantly lower in cases (92 ± 37 mg/dL) than in controls (109 ± 43 mg/dL; P=0.0095). HDL cholesterol efflux capacity was significantly lower in cases (1.96 ± 0.39) than in controls (2.11 ± 0.43; P=0.04). CONCLUSIONS In people with very high HDL-C, reduced HDL phospholipid content and cholesterol efflux capacity are associated with the paradoxical development of CAD.
Collapse
Affiliation(s)
- Anandita P Agarwala
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Amrith Rodrigues
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marjorie Risman
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mary McCoy
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kevin Trindade
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Liming Qu
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marina Cuchel
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jeffrey Billheimer
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Rader
- From the Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
50
|
The magic and mystery of statins in aging: The potent preventive and therapeutic agent. Int J Cardiol 2015; 187:58-9. [PMID: 25828313 DOI: 10.1016/j.ijcard.2015.03.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/29/2022]
|