1
|
Xu J, Tang M, Zhang W, Xie S, Gu Q, Zhang L. Controlled synthesis of superhydrophilic flower-like hierarchical porous diboronate affinity materials for capturing biomarkers. Anal Chim Acta 2025; 1357:344053. [PMID: 40316382 DOI: 10.1016/j.aca.2025.344053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Boronate affinity chromatography represents a powerful analytical technique for the selective separation and enrichment of biomolecules containing cis-diol moieties, including carbohydrates, glycoproteins, and other cis-dihydroxy compounds. While boronate affinity materials (BAMs) have shown promise in glycosylation-based separation and analysis, their practical application is hindered by non-biocompatible binding pH, low enrichment efficiency for low-abundance samples, non-specific adsorption, and limited loading capacity. To address these limitations, this work focuses on developing flower-like hierarchical porous diboronate affinity materials (FHP-DBAMs) with enhanced binding strength, selectivity, and capacity for cis-diol-containing biomolecules. RESULTS FHP-DBAM was synthesized via a facile sol-gel method, using tetrahydroxydiboron as a hydrophilic diboronic acid monomer. The electron-withdrawing nature and hydrophilicity of diboronate affinity mechanism enable FHP-DBAM to operate at lower pH values (pH ≥ 5), addressing the biocompatibility issue. DFT and experiment calculations confirm the enhanced cis-diol binding affinity of diboronate affinity mechanism compared with monoboronate affinity mechanism, resulting in a remarkably low dissociation constant (DFT Kd = 6.74 × 10-5 M, experiment Kd = 9.95 × 10-5 M) for FHP-DBAM. Furthermore, the unique flower-like hierarchical porous structure provides a high surface area and nanoconfinement effect, significantly boosting target molecule loading capacity and affinity reaction kinetics. Compared to traditional BAMs, FHP-DBAM exhibits over ten times higher loading capacity. As a proof-of-concept, FHP-DBAM successfully captures the biomarker GM1 in breast cancer cells MCF-7 with high efficiency. SIGNIFICANCE AND NOVELTY This work introduces diboronate affinity mechanism and flower-like hierarchical porous structure as new solution to overcome the limitations of conventional BAMs. FHP-DBAMs achieve lower binding pH, enhanced selectivity, and stronger binding stability through diboronate affinity mechanism. The unique flower-like porous structure maximizes surface area and active sites, addressing low enrichment efficiency and loading capacity. These advancements are critical for the efficient and biocompatible separation of cis-diol-containing biomolecules.
Collapse
Affiliation(s)
- Jinhua Xu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Minghui Tang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Shiye Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qianqian Gu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
2
|
Sabir MS, Hossain MS, Pollard L, Huizing M, Gahl WA, Platt FM, Malicdan MCV. Lack of significant ganglioside changes in Slc17a5 heterozygous mice: Relevance to FSASD and Parkinson's disease. Biochem Biophys Rep 2025; 42:101979. [PMID: 40144541 PMCID: PMC11937675 DOI: 10.1016/j.bbrep.2025.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Large population-based studies of Parkinson's disease (PD) have identified susceptibility genes, including SLC17A5. Biallelic mutations in SLC17A5, encoding the lysosomal sialic acid transporter sialin, cause the rare neurodegenerative disease, free sialic acid storage disorder (FSASD). To explore a potential biochemical link between FSASD and PD, we investigated ganglioside concentrations in a novel mouse model harboring the Slc17a5 p.Arg39Cys (p.R39C) variant. Our analysis revealed no significant alterations in ganglioside concentrations in heterozygous p.R39C mice, warranting further studies into other potential links between PD and sialin defects.
Collapse
Affiliation(s)
- Marya S. Sabir
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Mahin S. Hossain
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, SC, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - May Christine V. Malicdan
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Bie X, Zhang M, Wang Q, Wang Y. An unraveled mystery: What's the role of brain sphingolipids in neurodegenerative and psychiatric disorders. Neurobiol Dis 2025; 207:106852. [PMID: 39986545 DOI: 10.1016/j.nbd.2025.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025] Open
Abstract
Sphingolipids are a class of lipids highly expressed in brain, especially in the myelin sheath of white matter. In recent years, with the development of lipidomics, the role of brain sphingolipids in neurological disorders have raised lots of interests due to their function in neuronal signal transduction and survival. Although not thoroughly investigated, some previous studies have indicated that sphingolipids homeostasis are closely linked to the etiology and development of some neurological disorders. For example, disrupted sphingolipids level have been found in clinic patients with neurological disorders, such as neurodegeneration and psychiatric disorders. Conversely, intervention of sphingolipids metabolism by modulating activity of related enzymes also could result in pathological deficits identified in neurological disorders. Moreover, the alteration of sphingolipids catabolic pathway in the brain could be partly represented in cerebrospinal fluid and blood tissues, which show diagnostic potential for neurological disorders. Therefore, our review aims to summarize and discuss the known contents of bioactive sphingolipid metabolism with their related studies in neurodegenerative and psychiatric disorders, to help understand the potential mechanism underlying sphingolipid regulation of neural function and provide possible directions for further study. The new perspectives in this promising field will open up new therapeutic options for neurological disorders.
Collapse
Affiliation(s)
- Xintian Bie
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Maoxing Zhang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ying Wang
- Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 260071, China.
| |
Collapse
|
4
|
Montgomery MK, Lin S, Yang CH, Prasad K, Cheng ZL, Bayliss J, Leeming MG, Williamson NA, Loh K, Dong L, Watt MJ. HEXA-FC protein therapy increases skeletal muscle glucose uptake and improves glycaemic control in mice with insulin resistance and in a mouse model of type 2 diabetes. Diabetologia 2025:10.1007/s00125-025-06413-7. [PMID: 40156616 DOI: 10.1007/s00125-025-06413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 04/01/2025]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a chronic metabolic disorder characterised by insulin resistance and sustained hyperglycaemia, and is a major cause of blindness, kidney failure, heart attacks and stroke. Our team has recently identified hexosaminidase A (HEXA) as an endocrine factor secreted by the liver that regulates sphingolipid metabolism in skeletal muscle. Specifically, HEXA converts GM2 to GM3 gangliosides within cell-surface lipid rafts. Remodelling of ganglioside composition by HEXA enhances IGF1 signalling in skeletal muscle, increasing muscle glucose uptake and improving blood glucose control. METHODS We produced a long-acting HEXA-FC fusion protein (murine HEXA and the fragment crystallisable [FC] region from IgG1) and evaluated the effects of chronic bi-weekly HEXA-FC administration (1 mg/kg body weight) on glycaemic control in C57BL/6 mice with diet-induced obesity and insulin resistance and the db/db mouse model of severe type 2 diabetes. Outcome measures included glucose and insulin tolerance, including a stable isotope-labelled GTT and assessment of tissue-specific glucose disposal, as well as proteomics analysis to define changes in skeletal muscle metabolism. RESULTS Chronic administration of a long-acting recombinant HEXA-FC fusion protein led to improvements in random blood glucose, fasting blood glucose and glucose tolerance, driven by increased glucose disposal into skeletal muscle, effects that were associated with enhancement of IGF1 signalling in muscle. CONCLUSIONS/INTERPRETATION Given that skeletal muscle is a primary site of insulin resistance in individuals with type 2 diabetes, HEXA-FC protein therapy may open new avenues for therapeutic advancement in type 2 diabetes.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sihan Lin
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Chieh-Hsin Yang
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Krishneel Prasad
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Zhi Li Cheng
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kim Loh
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Li Dong
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Sanduja P, Schmieder SS, Baddal B, Tian S, Velarde JJ, Lencer WI, Dong M, Wessels MR. SLO co-opts host cell glycosphingolipids to access cholesterol-rich lipid rafts for enhanced pore formation and cytotoxicity. mBio 2025; 16:e0377724. [PMID: 39835825 PMCID: PMC11898750 DOI: 10.1128/mbio.03777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Streptolysin O (SLO) is a virulence determinant of group A Streptococcus (S. pyogenes), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells. Here, we find that unbiased CRISPR screens for host susceptibility factors for SLO cytotoxicity identified genes encoding enzymes involved in the earliest steps of glycosphingolipid (GSL) biosynthesis. Targeted knockouts of these genes conferred relative resistance to SLO cytotoxicity in two independent human cell lines. Inactivation of ugcg, which codes for UDP-glucose ceramide glucosyltransferase, the enzyme catalyzing the first glycosylation step in GSL biosynthesis, reduced the clustering of SLO on the cell surface. This result suggests that binding to GSLs serves to cluster SLO molecules at lipid rafts where both GSLs and cholesterol are abundant. SLO clustering and susceptibility to SLO cytotoxicity were restored by reconstituting the GSL content of ugcg knockout cells with ganglioside GM1, but susceptibility to SLO cytotoxicity was not restored by a GM1 variant that lacks an oligosaccharide head group required for SLO binding, nor by a variant with a "kinked" acyl chain that prevents efficient packing of the ganglioside ceramide moiety with cholesterol. Thus, SLO appears to co-opt cell surface glycosphingolipids to gain access to lipid rafts for increased efficiency of pore formation and cytotoxicity. IMPORTANCE Group A Streptococcus is a global public health concern as it causes streptococcal sore throat and less common but potentially life-threatening invasive infections. Invasive infections have been associated with bacterial strains that produce large amounts of a secreted toxin, streptolysin O (SLO), which belongs to a family of pore-forming toxins produced by a variety of bacterial species. This study reveals that SLO binds to a class of molecules known as glycosphingolipids on the surface of human cells and that this interaction promotes efficient binding of SLO to cholesterol in the cell membrane and enhances pore formation. Understanding how SLO damages human cells provides new insight into streptococcal infection and may inform new approaches to treatment and prevention.
Collapse
Affiliation(s)
- Pooja Sanduja
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie S. Schmieder
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Buket Baddal
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge J. Velarde
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lin S, Dong L, De Nardo W, Leeming MG, Cheng Z, Williamson NA, Watt MJ, Montgomery MK. Long-lasting recombinant HEXA treatment improves hepatic steatosis and glycemic control in mild, but not severe, metabolic dysfunction-associated steatohepatitis. Am J Physiol Endocrinol Metab 2025; 328:E377-E394. [PMID: 39925140 DOI: 10.1152/ajpendo.00359.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025]
Abstract
The prevalence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing at an alarming rate. To date, only one therapy has been provisionally approved for the treatment of MASH and liver fibrosis, and novel strategies are urgently needed. In addition, the frequent coexistence of MASH and type 2 diabetes has further intensified interest in devising comprehensive therapies to simultaneously tackle both diseases. We have recently shown that increasing hepatic and/or circulating levels of hexosaminidase A (HEXA), a lysosomal enzyme that remodels GM2 to GM3 gangliosides within lipid rafts, offers therapeutic benefits for metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes. Taking advantage of the MUP-uPA mouse model of MASH, including both wild-type (WT) mice with mild MASH and MUP-uPA mice with severe MASH and fibrosis, we show that biweekly treatment with a long-lasting HEXA-FC analog improves features of MASLD, including hepatic steatosis and hepatocyte ballooning, in mice with mild MASH, as well as glycemic control across both mouse models. Mechanistically, HEXA-FC enhances hepatic fatty acid oxidation and peripheral glucose disposal while not impacting endogenous glucose production. Together, these outcomes suggest that while HEXA-FC treatment may offer therapeutic benefits in mild MASH and insulin resistance, it is ineffective against severe MASH and liver fibrosis.NEW & NOTEWORTHY The prevalence of metabolic dysfunction-associated steatohepatitis (MASH) and type 2 diabetes is increasing. Here, we show that chronic FC-HEXA recombinant protein treatment reduces hepatic lipid accumulation and improves blood glucose control in mice with mild MASH and insulin resistance.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Li Dong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zhili Cheng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Stern S, Crisamore K, Li R, Pacanowski M, Schuck R. Evaluation of the Landscape of Pharmacodynamic Biomarkers in GM1 and GM2 Gangliosidosis. Clin Transl Sci 2025; 18:e70176. [PMID: 40016926 PMCID: PMC11868035 DOI: 10.1111/cts.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
GM1 and GM2 gangliosidosis are inherited, progressive, neurodegenerative lysosomal disorders of variable onset and disease progression. GM1 gangliosidosis is a result of biallelic pathogenic variants in the GLB1 gene, which confer absent or reduced β-galactosidase enzyme activity and lead to the accumulation of glycoconjugates such as glycosphingolipid GM1-gangliosides. GM2 is caused by biallelic pathogenic variants in one of the three genes (HEXA, HEXB, and GM2A) which confer deficiency of β-hexosaminidase or the GM2 ganglioside activator protein, responsible for the catabolism of GM2 gangliosides. In both gangliosidoses, glycosphingolipids accumulate primarily in neurons, with subsequent neuronal death, which translates to early mortality for patients. The clinical course is commonly differentiated by age of symptom onset. To date, no disease-modifying therapy has been approved globally, and treatment is typically supportive. The lack of mature biomarker development in these diseases contributes to challenges associated with quantifying treatment response. However, recent advancements in the detection of neurodegenerative biomarkers and treatment innovation have spurred interest in biomarker identification in plasma and cerebrospinal fluid in patients with GM1 and GM2 gangliosidosis as pharmacodynamic endpoints to support clinical trials and regulatory decision-making. In this review, we assess the landscape of lipid and protein biomarkers, the extent of evidence, and propose considerations for future biomarker development to measure treatment response and support drug development in GM1 and GM2 gangliosidosis.
Collapse
Affiliation(s)
- Sydney Stern
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Karryn Crisamore
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ruo‐Jing Li
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Michael Pacanowski
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Robert Schuck
- Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical PharmacologyUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
8
|
Permana YS, Jang M, Yeom K, Fagan E, Kim YJ, Choi JH, Park JH. Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform. Biomater Sci 2025; 13:1222-1232. [PMID: 39835476 DOI: 10.1039/d4bm01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Incorporation of polyethylene glycol (PEG) is widely used in lipid nanoparticle (LNP) formulation in order to achieve adequate stability due to its stealth properties. However, studies have detected the presence of anti-PEG neutralizing antibodies after PEGylated LNP treatment, which are associated with anaphylaxis, accelerated LNP clearance and premature release of cargo. Here, we report the development of LNPs incorporating ganglioside, a naturally occurring stealth lipid, as a PEG-free alternative. Physicochemical characterization showed that ganglioside-LNPs exhibited superior stability throughout prolonged cold storage compared to stealth-free LNPs, preventing particle aggregation. Additionally, there was no significant change in particle size after serum incubation, indicating the ability of ganglioside to prevent unwanted serum protein adsorption. These results exemplify the effective stealth properties of ganglioside. Furthermore, ganglioside-LNPs exhibited significantly higher mRNA transfection in vivo after intravenous administration compared to stealth-free LNPs. The ability of ganglioside to confer excellent stealth properties to LNPs while still enabling in vivo mRNA expression makes it a promising candidate as a natural substitute for immunogenic PEG in mRNA-LNP delivery platforms, contributing to the future advancement of gene therapy.
Collapse
Affiliation(s)
- Yafi S Permana
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Mincheol Jang
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Kyunghwan Yeom
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Erinn Fagan
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yong Jae Kim
- R&D, De novo Biotherapeutics, S-tower 17F, Saemunan-ro 82, Jongno-gu, Seoul, 03185, Republic of Korea
| | - Joon Hyeok Choi
- R&D, De novo Biotherapeutics, S-tower 17F, Saemunan-ro 82, Jongno-gu, Seoul, 03185, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
10
|
Rohokale R, Mane R, Malet L, Dessain S, Guo Z. Synthesis of Spin-Labeled α-/β-Galactosylceramides and Glucosylceramides as Electron Paramagnetic Probes. J Org Chem 2025; 90:877-888. [PMID: 39680867 PMCID: PMC11756922 DOI: 10.1021/acs.joc.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
α-/β-Galactosylceramide (GalCer) and glucosylceramide (GlcCer) derivatives having a radical label at the 6-C-position suitable for electron paramagnetic resonance spectroscopic studies were synthesized by a diversity-oriented strategy that is highlighted by the efficient glycosylation of a lipid precursor and late-stage ceramide assembly to enable lipid diversification. The strategy was also utilized to synthesize natural α-/β-GalCers and GlcCers. Furthermore, the involved azido-intermediates are flexible platforms to access various other GalCer and GlcCer derivatives.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rajendra Mane
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lucie Malet
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Selena Dessain
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Mannini A, Pastore M, Giachi A, Correnti M, Spínola Lasso E, Lottini T, Piombanti B, Tusa I, Rovida E, Coulouarn C, Andersen JB, Lewinska M, Campani C, Battula VL, Yuan B, Aureli M, Carsana EV, Peraldo Neia C, Ostano P, Tani A, Nosi D, Vanni A, Maggi L, Di Tommaso L, Comito G, Madiai S, Arcangeli A, Marra F, Raggi C. Ganglioside GD2 Contributes to a Stem-Like Phenotype in Intrahepatic Cholangiocarcinoma. Liver Int 2025; 45:e16208. [PMID: 39726234 PMCID: PMC11684508 DOI: 10.1111/liv.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND & AIMS GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored. METHODS The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON). GS profiles were evaluated by chromatography, after feeding with radioactive sphingosine. Membrane GD2 expression was evaluated by FACS, and the expression of enzymes of GS biosynthesis was analysed by RT-qPCR. The modulation of stem features by GS was investigated in vitro and in vivo using GD3S-overexpressing cells and corroborated by global transcriptomic analysis. RESULTS GS composition was markedly different comparing SPH and MON. Among complex GS, iCCA-SPH showed increased GD2 levels, in agreement with the high expression levels of GD3 and GM2/GD2 synthases. iCCA cells overexpressing GD3S had higher sphere-forming ability, invasive properties and drug resistance than parental cells. NOD/SCID mice implanted with CCLP1 cells overexpressing GD3S developed larger tumours than control cells. By global transcriptomic analysis, ontology investigation identified 74 processes shared by the iCCA-SPH and GD3S-transfected cells, with enrichment for development and morphogenesis processes, MAPK signalling and locomotion. In a cohort of patients with iCCA, GD3S expression was correlated with lymph node invasion, indicating a possible relevance of GD3S in the clinical setting. CONCLUSIONS The profile of GS derivatives regulates the stem-like properties of iCCA cells.
Collapse
Affiliation(s)
- Antonella Mannini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessia Giachi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Elena Spínola Lasso
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Tiziano Lottini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’University of FlorenceFlorenceItaly
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’University of FlorenceFlorenceItaly
| | - Cédric Coulouarn
- Univ Rennes, Inserm, InraInstitut NUMECAN (Nutrition Metabolisms and Cancer)‐UMR_S 1241, UMR_A 1341RennesFrance
| | - Jesper B. Andersen
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Monika Lewinska
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - V. Lokesh Battula
- Division of Cancer Medicine, Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Bin Yuan
- Division of Cancer Medicine, Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Emma V. Carsana
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | | | - Paola Ostano
- Fondazione Edo Ed Elvo Tempia ValentaBiellaItaly
| | - Alessia Tani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Daniele Nosi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Anna Vanni
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Laura Maggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Luca Di Tommaso
- Humanitas Research Hospital‐IRCCS, Pathology UnitRozzanoItaly
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’University of FlorenceFlorenceItaly
| | - Stefania Madiai
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Annarosa Arcangeli
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
12
|
Ichikawa S, Mishima Y, Nagao M, Sakashita G, Furukawa K, Sato T, Miyazawa K, Hamamura K. Suppression of Bone Formation and Resorption by the Deletion of Complex Gangliosides. In Vivo 2025; 39:257-266. [PMID: 39740874 PMCID: PMC11705114 DOI: 10.21873/invivo.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown. Therefore, we investigated whether deletion of complex gangliosides in mice affected bone metabolism. MATERIALS AND METHODS Twenty-six double-knockout mice lacking both GM2/GD2 and GD3 synthases (dKO) and 30 wild-type (WT) mice as controls were used. The mass of cancellous bone and bone strength in femurs were determined using three-dimensional micro-computed tomography and three-point bending test, respectively. Bone formation and resorption were assessed using histomorphometrical analysis with hematoxylin and eosin, and tartrate-resistant acid phosphatase (TRAP), respectively. Osteoblast proliferation was determined by bromodeoxyuridine assay and the differentiation into osteoclasts by TRAP staining; mRNA levels of osteoclast differentiation markers [nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1); Trap; and cathepsin K (Ctsk)] were also determined. RESULTS Bone mass increased in dKO mice, while bone formation and resorption decrease. In terms of bone strength, breaking displacement significantly increased in dKO mice. Furthermore, the proliferation of osteoblasts was suppressed, and the number of TRAP-positive multinucleated cells was reduced in dKO mice. Treatment with receptor activator of NF-[Formula: see text]B ligand significantly reduced Nfatc1, Trap and Ctsk mRNA levels in macrophages from dKO mice. CONCLUSION Bone formation and resorption were reduced by the deletion of genes for complex gangliosides. The slight increase in bone strength in dKO mice may be due to the cancellous bone volume increase in these mice.
Collapse
Affiliation(s)
- Shota Ichikawa
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Gyosuke Sakashita
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
| |
Collapse
|
13
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
14
|
Hosano N, Moosavi-Nejad Z, Hide T, Hosano H. Focused shock waves and inertial cavitation release tumor-associated antigens from renal cell carcinoma. ULTRASONICS SONOCHEMISTRY 2024; 111:107078. [PMID: 39327122 PMCID: PMC11600062 DOI: 10.1016/j.ultsonch.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Tumor biomarkers play an essential role in immunotherapeutic strategies in cancer treatment, contributing to early diagnosis, patient selection, treatment monitoring, and personalized treatment plans. Despite their importance in cancer care, circulating biomarkers may not always be detectable or sufficiently elevated to provide reliable test results. Due to the pressing need for innovative approaches to enhance biomarker levels, this study explored the potential use of focused shock waves and cavitation for non-invasively releasing tumor-associated antigens. Renal carcinoma cell lines ACHN and TOS-1 were used in an in vitro study to analyze the impact of shock waves on two membrane glycosphingolipid antigens, MSGG and G1, respectively. Focused shock waves were generated using a partial spherical piezoceramic dish. Flow-cytometric analysis of treated cells immediately after 1,000 focused shock waves at 16 MPa overpressure showed a 29.4 % and 17.6 % decrease in MSGG and G1 antigens on the cell surfaces. In the immunostaining of glycosphingolipid fractions on thin-layer chromatography (TLC), both tumor markers were reduced by an average of 49.30 % (MSGG) and 57.08 % (G1). Immunoelectron microscopy images confirmed decrease in the cell membrane intensity immediately after shock waves because of the release of antigens into the extracellular spaces. The released antigens were primarily found on cell debris formed by shock waves and cavitation induced damage to the cell membrane. Theoretical analyses were performed to understand antigen release mechanisms. Moreover, the biophysical events that occurred following the interaction of a shock wave with a suspended cell were modeled and clarified. A novel model was used to calculate the tensile stresses following shock waves and to explain the deformations observed in scanning electron microscopy images. The release of tumor antigens by focused shock waves and inertial cavitation represents exciting prospects for advancing cancer care strategies.
Collapse
Affiliation(s)
- Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Takuichiro Hide
- Department of Neurosurgery, School of Medicine, Kitasato University, Yokohama, Japan.
| | - Hamid Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Puljko B, Grbavac J, Potočki V, Ilic K, Viljetić B, Kalanj-Bognar S, Heffer M, Debeljak Ž, Blažetić S, Mlinac-Jerkovic K. The good, the bad, and the unknown nature of decreased GD3 synthase expression. Front Mol Neurosci 2024; 17:1465013. [PMID: 39649107 PMCID: PMC11621222 DOI: 10.3389/fnmol.2024.1465013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024] Open
Abstract
This paper explores the physiological consequences of decreased expression of GD3 synthase (GD3S), a biosynthetic enzyme that catalyzes the synthesis of b-series gangliosides. GD3S is a key factor in tumorigenesis, with overexpression enhancing tumor growth, proliferation, and metastasis in various cancers. Hence, inhibiting GD3S activity has potential therapeutic effects due to its role in malignancy-associated pathways across different cancer types. GD3S has also been investigated as a promising therapeutic target in treatment of various neurodegenerative disorders. Drugs targeting GD3 and GD3S have been extensively explored and underwent clinical trials, however decreased GD3S expression in mouse models, human subjects, and in vitro studies has demonstrated serious adverse effects. We highlight these negative consequences and show original mass spectrometry imaging (MSI) data indicating that inactivated GD3S can generally negatively affect energy metabolism, regulatory pathways, and mitigation of oxidative stress. The disturbance in several physiological systems induced by GD3S inhibition underscores the vital role of this enzyme in maintaining cellular homeostasis and should be taken into account when GD3S is considered as a therapeutic target.
Collapse
Affiliation(s)
- Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Josip Grbavac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vinka Potočki
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Zhang X, You W, Wang Y, Dejenie R, Wang C, Huang Y, Li J. Prospects of anti-GD2 immunotherapy for retinoblastoma. Front Immunol 2024; 15:1499700. [PMID: 39620227 PMCID: PMC11604707 DOI: 10.3389/fimmu.2024.1499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
Retinoblastoma is the most common type of eye tumor in infants and children. Current treatments for retinoblastoma include intravenous chemotherapy, intra-arterial chemotherapy, intravitreal chemotherapy, cryotherapy, radiotherapy, and surgery. However, these treatments come accompanied by adverse effects such as the toxic side effects of chemotherapeutic drugs, post-operative complications including blindness after surgery, or other complications caused by radiotherapy. Immunotherapy is more promising for its low toxicity on normal cells and effectively improves the quality of life of patients. Disialoganglioside (GD2), a sphingolipid expressed on the surface of retinoblastoma, is a potential therapeutic target for retinoblastoma. We summarized immunotherapeutic approaches for both preclinical studies and clinical trials of GD2. An anti-GD2 monoclonal antibody (Dinutuximab), which has been approved for the treatment of high-risk neuroblastomas, has shown promising efficacy in improving patients' prognosis. Additionally, chimeric antigen receptors (CAR)-T therapy, GD2 vaccines and nanoparticles are also potential therapeutics. Finally, we discuss the prospects and current limitations of these immunotherapeutic approaches for treating retinoblastoma, as well as how to address these problems.
Collapse
Affiliation(s)
- Xinlong Zhang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wulin You
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
- Medical Center, University of Chicago, Chicago, IL, United States
| | - Yuntao Wang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Rebeka Dejenie
- Medical Center, University of Chicago, Chicago, IL, United States
- School of Medicine, University of California, Davis, Davis, CA, United States
| | - Chenhao Wang
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Huang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jingjing Li
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Medical Center, University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
18
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Bonab MKF, Guo Z, Li Q. Glycosphingolipids: from metabolism to chemoenzymatic total synthesis. Org Biomol Chem 2024; 22:6665-6683. [PMID: 39120686 PMCID: PMC11341264 DOI: 10.1039/d4ob00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Collapse
Affiliation(s)
- Mitra K F Bonab
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
20
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
21
|
Williamson DL, Naylor CN, Nagy G. Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies. Anal Chem 2024. [PMID: 39137259 DOI: 10.1021/acs.analchem.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gangliosides, a diverse class of glycosphingolipids, are highly abundant in neural tissue and have been implicated in numerous aging-related diseases. Their characterization with methods such as liquid chromatography-tandem mass spectrometry is often precluded by their structural complexity, isomeric heterogeneity, and lack of commercially available authentic standards. In this work, we coupled high-resolution cyclic ion mobility spectrometry with multiple collision-induced dissociation-based tandem mass spectrometry strategies to sequence the sialic acid positions in various ganglioside isomers. Initially, as a proof-of-concept demonstration, we were able to characterize the sialic acid positions in several GD1 and GT1 species. From there, we extended our approach to identify the location of N-glycolylneuraminic acid (NeuGc) residues in previously uncharacterized GD1 and GQ1 isomers. Our results highlight the potential of this presented methodology for the de novo characterization of gangliosides within complex biological matrices without the need for authentic standards.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Djambazova K, Gibson-Corley KN, Freiberg JA, Caprioli RM, Skaar EP, Spraggins JM. MALDI TIMS IMS Reveals Ganglioside Molecular Diversity within Murine S. aureus Kidney Tissue Abscesses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1692-1701. [PMID: 39052897 PMCID: PMC11311236 DOI: 10.1021/jasms.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.
Collapse
Affiliation(s)
- Katerina
V. Djambazova
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jeffrey A. Freiberg
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Division
of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric P. Skaar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
| | - Jeffrey M. Spraggins
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
23
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
24
|
Giesche N, Böhm‐Gonzalez ST, Kleiser B, Kowarik MC, Dubois E, Stransky E, Armbruster M, Grimm A, Marquetand J. Antiganglioside antibody frequency in routine clinical care settings. Eur J Neurol 2024; 31:e16290. [PMID: 38556758 PMCID: PMC11236029 DOI: 10.1111/ene.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE Antiganglioside antibodies (AGAs) might be involved in the etiopathogenesis of many neurological diseases, such as Miller-Fisher syndrome (MFS) and Guillain-Barré syndrome (GBS). Available comprehensive reference data regarding AGA positivity rates and cross-responsiveness among AGAs (where one line immunoblot is positive for ≥1 AGA) during routine clinical care are scant. METHODS In this 10-year monocentric retrospective study, 3560 immunoglobulin (Ig) G and IgM line blots (GA Generic Assays' Anti-Ganglioside Dot kit) obtained using cerebrospinal fluid (CSF) and serum samples from 1342 patients were analyzed for AGA positivity in terms of 14 diagnosis categories and AGA cross-responsiveness. RESULTS Of all 3560 line blots 158 (4.4%) and of all CSF samples 0.4% (4/924) CSF line blots were AGA positive. For serum IgG, blots with positivity rates higher than the standard deviation of 15.6% were associated with MFS (GD3, GD1a, GT1a and GQ1b) and acute motor axonal neuropathy (AMAN) (GM1, GD1a and GT1a). For serum IgM, blots with positivity rates higher than the standard deviation of 8.1% were associated with AMAN (GM2, GT1a and GQ1b), MFS (GM1, GT1a and GQ1b), multifocal motor neuropathy (MMN) (GM1, GM2 and GQ1b) and chronic inflammatory demyelinating polyneuropathy (CIDP) (GM1). Cross-responsiveness was observed in 39.6% of all positive serum AGA. CONCLUSIONS Testing for AGAs during routine clinical care rarely led to positive findings, both in serum and even less in CSF, except for the diagnoses AMAN, MFS, MMN and CIDP. Nonspecific findings found as cross-responsiveness between different AGA samples occur frequently, impacting the positivity of most AGA subtypes.
Collapse
Affiliation(s)
- Niklas Giesche
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Samuel Tobias Böhm‐Gonzalez
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Benedict Kleiser
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Evelyn Dubois
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Elke Stransky
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Marcel Armbruster
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Alexander Grimm
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Justus Marquetand
- Department of Epileptology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Department of Neural Dynamics and Magnetoencephalography, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- MEG‐CenterUniversity of TübingenTübingenGermany
- Institute for Modelling and Simulation of Biomechanical SystemsStuttgartGermany
| |
Collapse
|
25
|
Schmidt EN, Guo XY, Bui DT, Jung J, Klassen JS, Macauley MS. Dissecting the abilities of murine Siglecs to interact with gangliosides. J Biol Chem 2024; 300:107482. [PMID: 38897567 PMCID: PMC11294694 DOI: 10.1016/j.jbc.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.
Collapse
Affiliation(s)
- Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xue Yan Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
26
|
Kang Y, Zhang Q, Xu S, Yu Y. The alteration and role of glycoconjugates in Alzheimer's disease. Front Aging Neurosci 2024; 16:1398641. [PMID: 38946780 PMCID: PMC11212478 DOI: 10.3389/fnagi.2024.1398641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-β clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Itokazu Y, Ariga T, Fuchigami T, Li D. Gangliosides in neural stem cell fate determination and nerve cell specification--preparation and administration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598109. [PMID: 38915682 PMCID: PMC11195043 DOI: 10.1101/2024.06.09.598109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gangliosides are sialylated glycosphingolipids with essential but enigmatic functions in healthy and disease brains. GD3 is the predominant species in neural stem cells (NSCs) and GD3-synthase (sialyltransferase II; St8Sia1) knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits including cognitive impairment, depression-like phenotypes, and olfactory dysfunction. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal, followed by restored neuronal functions. Our group discovered that GD3 is involved in the maintenance of NSC fate determination by interacting with epidermal growth factor receptors (EGFRs), by modulating expression of cyclin-dependent kinase (CDK) inhibitors p27 and p21, and by regulating mitochondrial dynamics via associating a mitochondrial fission protein, the dynamin-related protein-1 (Drp1). Furthermore, we discovered that nuclear GM1 promotes neuronal differentiation by an epigenetic regulatory mechanism. GM1 binds with acetylated histones on the promoter of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase (GM2S); B4galnt1) as well as on the NeuroD1 in differentiated neurons. In addition, epigenetic activation of the GM2S gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. Interestingly, GM1 induced epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of Nurr1 and PITX3, dopaminergic neuron-associated transcription factors, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression, and it would modify Parkinson's disease. Multifunctional gangliosides significantly modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains. Maintaining proper ganglioside microdomains benefits healthy neuronal development and millions of senior citizens with neurodegenerative diseases. Here, we introduce how to isolate GD3 and GM1 and how to administer them into the mouse brain to investigate their functions on NSC fate determination and nerve cell specification.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Departmet of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba, 260-8670, Japan
| | - Dongpei Li
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
| |
Collapse
|
28
|
Dong L, Xiang J, Babcock M, Cheng Y, Wang Y, Shen Y, Li L, Tan L, Garovoy M, Hu W, Zheng J. Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of Oral AL01211 in Healthy Chinese Volunteers. Clin Drug Investig 2024; 44:387-398. [PMID: 38698285 DOI: 10.1007/s40261-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Aberrant accumulation of glycosphingolipids (GSLs) in the lysosome leads to GSL storage diseases. Glucosylceramide synthase inhibitors (GCSi) have the potential to treat several GSL storage diseases by reducing the synthesis of the disease-causing GSLs. AL01211 is a potent oral GCSi under investigation for Type 1 Gaucher disease and Fabry disease. Here, we evaluate the pharmacokinetics, pharmacodynamics, safety, and tolerability of AL01211 in healthy Chinese volunteers. METHODS AL01211 was tested in a Phase 1, single-center, randomized, double-blind, placebo-controlled study with single-dose (15 and 60 mg) and multiple-dose (30 mg) arms. RESULTS Results of AL01211 demonstrated dose-dependent pharmacokinetics, rapid absorption (median time to maximum plasma concentration [tmax] 2.5-4 hours), relatively slow clearance rate (mean apparent total clearance from plasma [CL/F] 88.3-200 L/h) and the mean terminal half-life above 30 hours. Repeated once-daily oral administration of AL01211 for 14 days had an approximately 2-fold accumulation, reaching steady-state levels between 7 and 10 days, and led to a 73% reduction in plasma glucosylceramide (GL1) on Day 14. AL01211 was safe and well tolerated, with no identified serious adverse events. CONCLUSION AL01211 showed a favorable pharmacokinetic, pharmacodynamics, safety, and tolerability profile in healthy Chinese volunteers. These data support the further clinical development of AL01211 as a therapy for GSL storage diseases. CLINICAL TRIAL REGISTRY Clinical Trial Registry no. CTR20221202 ( http://www.chinadrugtrials.org.cn ) registered on 6 June 2022 and ChiCTR2200061431 ( http://www.chictr.org.cn ) registered on 24 June 2022.
Collapse
Affiliation(s)
- Lei Dong
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | | | | | - Yuanzhi Cheng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | | | - Li Li
- AceLink Therapeutics, Newark, CA, USA
| | | | | | - Wei Hu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | | |
Collapse
|
29
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
30
|
Gerges A, Canning U. Neuroblastoma and its Target Therapies: A Medicinal Chemistry Review. ChemMedChem 2024; 19:e202300535. [PMID: 38340043 DOI: 10.1002/cmdc.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Neuroblastoma (NB) is a childhood malignant tumour belonging to a group of embryonic tumours originating from progenitor cells of the sympathoadrenal lineage. The heterogeneity of NB is reflected in the survival rates of those with low and intermediate risk diseases who have survival rates ranging from 85 to 90 %. However, for those identified with high-risk Stage 4 NB, the treatment options are much more limited. For this group, current treatment consists of immunotherapy (monoclonal antibodies) in combination with anti-cancer drugs and has a 40 to 50 % survival rate. The purpose of this review is to summarise NB research from a medicinal chemistry perspective and to highlight advances in targeted drug therapy in the field. The review examines the medicinal chemistry of a number of drugs tested in research, some of which are currently under clinical trial. It concludes by proposing that future medicinal chemistry research into NB should consider other possible target therapies and adopt a multi-target drug approach rather than a one-drug-one-target approach for improved efficacy and less drug-drug interaction for the treatment of NB Stage 4 (NBS4) patients.
Collapse
Affiliation(s)
- A Gerges
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| | - U Canning
- Bioscience Department, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, England, United Kingdom
| |
Collapse
|
31
|
Jáñez Pedrayes A, Rymen D, Ghesquière B, Witters P. Glycosphingolipids in congenital disorders of glycosylation (CDG). Mol Genet Metab 2024; 142:108434. [PMID: 38489976 DOI: 10.1016/j.ymgme.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Congenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity. Associating specific symptoms to deficiencies of certain glycoproteins or glycolipids is thus a challenging task. In this review, we focus on the glycosphingolipid (GSL) synthesis pathway, which is still rather unexplored in the context of CDG, and outline the functions of the main GSLs, including gangliosides, and their role in the central nervous system. We provide an overview of GSL studies that have been performed in CDG and show that abnormal GSL levels are not only observed in CDG directly affecting GSL synthesis, but also in better known CDG, such as PMM2-CDG. We highlight the importance of studying GSLs in CDG in order to better understand the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Andrea Jáñez Pedrayes
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium; Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | - Daisy Rymen
- Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Center for Cancer Biology VIB, 3000 Leuven, Belgium.
| | - Peter Witters
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Center for Metabolic Diseases, Department of Paediatrics, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
33
|
Hamamura K, Nagao M, Furukawa K. Regulation of Glycosylation in Bone Metabolism. Int J Mol Sci 2024; 25:3568. [PMID: 38612379 PMCID: PMC11011486 DOI: 10.3390/ijms25073568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Aichi, Japan
| |
Collapse
|
34
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
35
|
Kumar R, Chowdhury S, Ledeen R. Alpha-Synuclein and GM1 Ganglioside Co-Localize in Neuronal Cytosol Leading to Inverse Interaction-Relevance to Parkinson's Disease. Int J Mol Sci 2024; 25:3323. [PMID: 38542297 PMCID: PMC10970170 DOI: 10.3390/ijms25063323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Robert Ledeen
- Department of Pharmacology Physiology & Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; (R.K.); (S.C.)
| |
Collapse
|
36
|
Dalal S, Shan KS, Thaw Dar NN, Hussein A, Ergle A. Role of Immunotherapy in Sarcomas. Int J Mol Sci 2024; 25:1266. [PMID: 38279265 PMCID: PMC10816403 DOI: 10.3390/ijms25021266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sarcomas are a group of malignancies of mesenchymal origin with a plethora of subtypes. Given the sheer heterogeneity of various subtypes and the rarity of the disease, the management of sarcomas has been challenging, with poor patient outcomes. Surgery, radiation therapy and chemotherapy have remained the backbone of treatment in patients with sarcoma. The introduction of immunotherapy has revolutionized the treatment of various solid and hematological malignancies. In this review, we discuss the basics of immunotherapy and the immune microenvironment in sarcomas; various modalities of immunotherapy, like immune checkpoint blockade, oncolytic viruses, cancer-targeted antibodies, vaccine therapy; and adoptive cell therapies like CAR T-cell therapy, T-cell therapy, and TCR therapy.
Collapse
Affiliation(s)
- Shivani Dalal
- Memorial Healthcare, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (K.S.S.); (N.N.T.D.); (A.H.); (A.E.)
| | | | | | | | | |
Collapse
|
37
|
Hein V, Baeza-Kallee N, Bertucci A, Colin C, Tchoghandjian A, Figarella-Branger D, Tabouret E. GD3 ganglioside is a promising therapeutic target for glioma patients. Neurooncol Adv 2024; 6:vdae038. [PMID: 38590763 PMCID: PMC11000324 DOI: 10.1093/noajnl/vdae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive primary brain tumor in adults. Currently, no curative treatment is available. Despite first-line treatment composed by the association of surgery, radiotherapy, and chemotherapy, relapse remains inevitable in a median delay of 6 to 10 months. Improving patient management and developing new therapeutic strategies are therefore a critical medical need in neuro-oncology. Gangliosides are sialic acid-containing glycosphingolipids, the most abundant in the nervous system, representing attractive therapeutic targets. The ganglioside GD3 is highly expressed in neuroectoderm-derived tumors such as melanoma and neuroblastoma, but also in gliomas. Moreover, interesting results, including our own, have reported the involvement of GD3 in the stemness of glioblastoma cells. In this review, we will first describe the characteristics of the ganglioside GD3 and its enzyme, the GD3 synthase (GD3S), including their biosynthesis and metabolism. Then, we will detail their expression and role in gliomas. Finally, we will summarize the current knowledge regarding the therapeutic development opportunities against GD3 and GD3S.
Collapse
Affiliation(s)
- Victoria Hein
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
| | - Nathalie Baeza-Kallee
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Alexandre Bertucci
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
| | - Carole Colin
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | | | - Emeline Tabouret
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| |
Collapse
|
38
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
39
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
40
|
Yu DL, van Lieshout LP, Stevens BAY, Near KJ(J, Stodola JK, Stinson KJ, Slavic D, Wootton SK. AAV Vectors Pseudotyped with Capsids from Porcine and Bovine Species Mediate In Vitro and In Vivo Gene Delivery. Viruses 2023; 16:57. [PMID: 38257756 PMCID: PMC10820940 DOI: 10.3390/v16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are among the most widely used delivery vehicles for in vivo gene therapy as they mediate robust and sustained transgene expression with limited toxicity. However, a significant impediment to the broad clinical success of AAV-based therapies is the widespread presence of pre-existing humoral immunity to AAVs in the human population. This immunity arises from the circulation of non-pathogenic endemic human AAV serotypes. One possible solution is to use non-human AAV capsids to pseudotype transgene-containing AAV vector genomes of interest. Due to the low probability of human exposure to animal AAVs, pre-existing immunity to animal-derived AAV capsids should be low. Here, we characterize two novel AAV capsid sequences: one derived from porcine colon tissue and the other from a caprine adenovirus stock. Both AAV capsids proved to be effective transducers of HeLa and HEK293T cells in vitro. In vivo, both capsids were able to transduce the murine nose, lung, and liver after either intranasal or intraperitoneal administration. In addition, we demonstrate that the porcine AAV capsid likely arose from multiple recombination events involving human- and animal-derived AAV sequences. We hypothesize that recurrent recombination events with similar and distantly related AAV sequences represent an effective mechanism for enhancing the fitness of wildtype AAV populations.
Collapse
Affiliation(s)
- Darrick L. Yu
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | - Jenny K. Stodola
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kevin J. Stinson
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
41
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
42
|
Sosnicki DM, Cohen R, Asano A, Nelson JL, Mukai C, Comizzoli P, Travis AJ. Segmental differentiation of the murine epididymis: identification of segment-specific, GM1-enriched vesicles and regulation by luminal fluid factors†. Biol Reprod 2023; 109:864-877. [PMID: 37694824 PMCID: PMC10724454 DOI: 10.1093/biolre/ioad120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The murine epididymis has 10 distinct segments that provide the opportunity to identify compartmentalized cell physiological mechanisms underlying sperm maturation. However, despite the essential role of the epididymis in reproduction, remarkably little is known about segment-specific functions of this organ. Here, we investigate the dramatic segmental localization of the ganglioside GM1, a glycosphingolipid already known to play key roles in sperm capacitation and acrosome exocytosis. Frozen tissue sections of epididymides from adult mice were treated with the binding subunit of cholera toxin conjugated to AlexaFluor 488 to label GM1. We report that GM1-enriched vesicles were found exclusively in principal and clear cells of segment 2. These vesicles were also restricted to the lumen of segment 2 and did not appear to flow with the sperm into segment 3, within the limits of detection by confocal microscopy. Interestingly, this segment-specific presence was altered in several azoospermic mouse models and in wild-type mice after efferent duct ligation. These findings indicate that a lumicrine factor, itself dependent on spermatogenesis, controls this segmental differentiation. The RNA sequencing results confirmed global de-differentiation of the proximal epididymal segments in response to efferent duct ligation. Additionally, GM1 localization on the surface of the sperm head increased as sperm transit through segment 2 and have contact with the GM1-enriched vesicles. This is the first report of segment-specific vesicles and their role in enriching sperm with GM1, a glycosphingolipid known to be critical for sperm function, providing key insights into the segment-specific physiology and function of the epididymis.
Collapse
Affiliation(s)
- Danielle M Sosnicki
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Roy Cohen
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| | - Atsushi Asano
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | | | - Chinatsu Mukai
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Alexander J Travis
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| |
Collapse
|
43
|
Liyanage OT, Xia C, Ringler S, Stahl B, Costello CE. Defining the Ceramide Composition of Bovine and Human Milk Gangliosides by Direct Infusion ESI-CID Tandem Mass Spectrometry of Native and Permethylated Molecular Species. Anal Chem 2023; 95:16465-16473. [PMID: 37877731 PMCID: PMC10652237 DOI: 10.1021/acs.analchem.3c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Gangliosides are glycosphingolipids composed of an oligosaccharide that contains one or more sialic acid residues and is linked to a ceramide, a lipid composed of a long chain base (LCB) that bears an amide-linked fatty acyl group (FA). The ceramide portions of gangliosides are embedded in cell membranes; the exposed glycans interact with the extracellular environment. Gangliosides play a myriad of roles in activities such as cell-cell communication, formation of lipid rafts, cellular adhesion, calcium homeostasis, host-pathogen interaction, and viral invasion. Although the epitopes responsible for the interactions of gangliosides are located in the glycan, the epitope presentation is strongly influenced by the orientation of the attached ceramide within the lipid membrane, a feature that depends on the details of its structure, that is, the specific LCB and FA. Since the identities of both the glycan and the ceramide affect the activity of gangliosides, it is important to characterize the individual intact molecular forms. We report here a mass spectrometry-based method that combines the information gained from low-energy collision-induced dissociation (CID) measurements for the determination of the glycan with tandem mass spectra obtained at stepped higher-energy CID for the detailed characterization of the LCB and FA components of intact gangliosides. We provide results from applications of this method to the analysis of gangliosides present in bovine and human milk in order to demonstrate the assignment of LCB and FA for intact gangliosides and differential detection of isomeric ceramide structures.
Collapse
Affiliation(s)
- O. Tara Liyanage
- Center
for Biomedical Mass Spectrometry, Boston
University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Chaoshuang Xia
- Center
for Biomedical Mass Spectrometry, Boston
University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Silvia Ringler
- Danone
Nutricia Research, Utrecht 3584 CT, The Netherlands
| | - Bernd Stahl
- Center
for Biomedical Mass Spectrometry, Boston
University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
- Danone
Nutricia Research, Utrecht 3584 CT, The Netherlands
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Catherine E. Costello
- Center
for Biomedical Mass Spectrometry, Boston
University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
44
|
Nejatie A, Yee SS, Jeter A, Saragovi HU. The cancer glycocode as a family of diagnostic biomarkers, exemplified by tumor-associated gangliosides. Front Oncol 2023; 13:1261090. [PMID: 37954075 PMCID: PMC10637394 DOI: 10.3389/fonc.2023.1261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
Collapse
Affiliation(s)
- Ali Nejatie
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Samantha S. Yee
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | | | - Horacio Uri Saragovi
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Ophthalmology and Vision Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
46
|
Martynowycz MW, Andreev K, Mor A, Gidalevitz D. Cancer-Associated Gangliosides as a Therapeutic Target for Host Defense Peptide Mimics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12541-12549. [PMID: 37647566 DOI: 10.1021/acs.langmuir.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.
Collapse
Affiliation(s)
- Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
47
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
48
|
Moriguchi K, Nakamura Y, Park AM, Sato F, Kuwahara M, Khadka S, Omura S, Ahmad I, Kusunoki S, Tsunoda I. Anti-Glycolipid Antibody Examination in Five EAE Models and Theiler's Virus Model of Multiple Sclerosis: Detection of Anti-GM1, GM3, GM4, and Sulfatide Antibodies in Relapsing-Remitting EAE. Int J Mol Sci 2023; 24:12937. [PMID: 37629117 PMCID: PMC10454742 DOI: 10.3390/ijms241612937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-glycolipid antibodies have been reported to play pathogenic roles in peripheral inflammatory neuropathies, such as Guillain-Barré syndrome. On the other hand, the role in multiple sclerosis (MS), inflammatory demyelinating disease in the central nervous system (CNS), is largely unknown, although the presence of anti-glycolipid antibodies was reported to differ among MS patients with relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP) disease courses. We investigated whether the induction of anti-glycolipid antibodies could differ among experimental MS models with distinct clinical courses, depending on induction methods. Using three mouse strains, SJL/J, C57BL/6, and A.SW mice, we induced five distinct experimental autoimmune encephalomyelitis (EAE) models with myelin oligodendrocyte glycoprotein (MOG)35-55, MOG92-106, or myelin proteolipid protein (PLP)139-151, with or without an additional adjuvant curdlan injection. We also induced a viral model of MS, using Theiler's murine encephalomyelitis virus (TMEV). Each MS model had an RR, SP, PP, hyperacute, or chronic clinical course. Using the sera from the MS models, we quantified antibodies against 11 glycolipids: GM1, GM2, GM3, GM4, GD3, galactocerebroside, GD1a, GD1b, GT1b, GQ1b, and sulfatide. Among the MS models, we detected significant increases in four anti-glycolipid antibodies, GM1, GM3, GM4, and sulfatide, in PLP139-151-induced EAE with an RR disease course. We also tested cellular immune responses to the glycolipids and found CD1d-independent lymphoproliferative responses only to sulfatide with decreased interleukin (IL)-10 production. Although these results implied that anti-glycolipid antibodies might play a role in remissions or relapses in RR-EAE, their functional roles need to be determined by mechanistic experiments, such as injections of monoclonal anti-glycolipid antibodies.
Collapse
Affiliation(s)
- Kota Moriguchi
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Internal Medicine, Japan Self Defense Forces Hanshin Hospital, Kawanishi City 666-0024, Hyogo, Japan
| | - Yumina Nakamura
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka City 577-8502, Osaka, Japan
| | - Ah-Mee Park
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Arts and Science, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Motoi Kuwahara
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (M.K.); (S.K.)
| | - Sundar Khadka
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
- Department of Immunology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Seiichi Omura
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Ijaz Ahmad
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (M.K.); (S.K.)
- Japan Community Health care Organization (JCHO) Headquarters, Minato City 108-8583, Tokyo, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, Osakasayama City 589-8511, Osaka, Japan; (K.M.); (Y.N.); (A.-M.P.); (F.S.); (S.K.); (S.O.); (I.A.)
| |
Collapse
|
49
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
50
|
Schmidt EN, Lamprinaki D, McCord KA, Joe M, Sojitra M, Waldow A, Nguyen J, Monyror J, Kitova EN, Mozaneh F, Guo XY, Jung J, Enterina JR, Daskhan GC, Han L, Krysler AR, Cromwell CR, Hubbard BP, West LJ, Kulka M, Sipione S, Klassen JS, Derda R, Lowary TL, Mahal LK, Riddell MR, Macauley MS. Siglec-6 mediates the uptake of extracellular vesicles through a noncanonical glycolipid binding pocket. Nat Commun 2023; 14:2327. [PMID: 37087495 PMCID: PMC10122656 DOI: 10.1038/s41467-023-38030-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer. A panel of synthetic neoglycolipids is used to probe the specificity of this glycolipid binding pocket on Siglec-6, leading to the development of a neoglycolipid with higher avidity for Siglec-6 compared to natural glycolipids. This neoglycolipid facilitates the delivery of liposomes to Siglec-6 on human mast cells, memory B-cells and placental syncytiotrophoblasts. A physiological relevance for glycolipid recognition by Siglec-6 is revealed for the binding and internalization of extracellular vesicles. These results demonstrate a unique and physiologically relevant ability of Siglec-6 to recognize glycolipids in a membrane.
Collapse
Affiliation(s)
- Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ayk Waldow
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Nguyen
- Department of Obstetrics & Gynaecology and Physiology University of Alberta, Edmonton, AB, Canada
| | - John Monyror
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Xue Yan Guo
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Amanda R Krysler
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | | | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lori J West
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Marianne Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- National Research Council, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Meghan R Riddell
- Department of Obstetrics & Gynaecology and Physiology University of Alberta, Edmonton, AB, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|